1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "TypeLocBuilder.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/CommentDiagnostic.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/EvaluatedExprVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/HeaderSearch.h" // FIXME: Sema shouldn't depend on Lex
31#include "clang/Lex/ModuleLoader.h" // FIXME: Sema shouldn't depend on Lex
32#include "clang/Lex/Preprocessor.h" // FIXME: Sema shouldn't depend on Lex
33#include "clang/Parse/ParseDiagnostic.h"
34#include "clang/Sema/CXXFieldCollector.h"
35#include "clang/Sema/DeclSpec.h"
36#include "clang/Sema/DelayedDiagnostic.h"
37#include "clang/Sema/Initialization.h"
38#include "clang/Sema/Lookup.h"
39#include "clang/Sema/ParsedTemplate.h"
40#include "clang/Sema/Scope.h"
41#include "clang/Sema/ScopeInfo.h"
42#include "llvm/ADT/SmallString.h"
43#include "llvm/ADT/Triple.h"
44#include <algorithm>
45#include <cstring>
46#include <functional>
47using namespace clang;
48using namespace sema;
49
50Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
51  if (OwnedType) {
52    Decl *Group[2] = { OwnedType, Ptr };
53    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
54  }
55
56  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
57}
58
59namespace {
60
61class TypeNameValidatorCCC : public CorrectionCandidateCallback {
62 public:
63  TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false)
64      : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass) {
65    WantExpressionKeywords = false;
66    WantCXXNamedCasts = false;
67    WantRemainingKeywords = false;
68  }
69
70  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
71    if (NamedDecl *ND = candidate.getCorrectionDecl())
72      return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
73          (AllowInvalidDecl || !ND->isInvalidDecl());
74    else
75      return !WantClassName && candidate.isKeyword();
76  }
77
78 private:
79  bool AllowInvalidDecl;
80  bool WantClassName;
81};
82
83}
84
85/// \brief Determine whether the token kind starts a simple-type-specifier.
86bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
87  switch (Kind) {
88  // FIXME: Take into account the current language when deciding whether a
89  // token kind is a valid type specifier
90  case tok::kw_short:
91  case tok::kw_long:
92  case tok::kw___int64:
93  case tok::kw___int128:
94  case tok::kw_signed:
95  case tok::kw_unsigned:
96  case tok::kw_void:
97  case tok::kw_char:
98  case tok::kw_int:
99  case tok::kw_half:
100  case tok::kw_float:
101  case tok::kw_double:
102  case tok::kw_wchar_t:
103  case tok::kw_bool:
104  case tok::kw___underlying_type:
105    return true;
106
107  case tok::annot_typename:
108  case tok::kw_char16_t:
109  case tok::kw_char32_t:
110  case tok::kw_typeof:
111  case tok::kw_decltype:
112    return getLangOpts().CPlusPlus;
113
114  default:
115    break;
116  }
117
118  return false;
119}
120
121/// \brief If the identifier refers to a type name within this scope,
122/// return the declaration of that type.
123///
124/// This routine performs ordinary name lookup of the identifier II
125/// within the given scope, with optional C++ scope specifier SS, to
126/// determine whether the name refers to a type. If so, returns an
127/// opaque pointer (actually a QualType) corresponding to that
128/// type. Otherwise, returns NULL.
129///
130/// If name lookup results in an ambiguity, this routine will complain
131/// and then return NULL.
132ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
133                             Scope *S, CXXScopeSpec *SS,
134                             bool isClassName, bool HasTrailingDot,
135                             ParsedType ObjectTypePtr,
136                             bool IsCtorOrDtorName,
137                             bool WantNontrivialTypeSourceInfo,
138                             IdentifierInfo **CorrectedII) {
139  // Determine where we will perform name lookup.
140  DeclContext *LookupCtx = 0;
141  if (ObjectTypePtr) {
142    QualType ObjectType = ObjectTypePtr.get();
143    if (ObjectType->isRecordType())
144      LookupCtx = computeDeclContext(ObjectType);
145  } else if (SS && SS->isNotEmpty()) {
146    LookupCtx = computeDeclContext(*SS, false);
147
148    if (!LookupCtx) {
149      if (isDependentScopeSpecifier(*SS)) {
150        // C++ [temp.res]p3:
151        //   A qualified-id that refers to a type and in which the
152        //   nested-name-specifier depends on a template-parameter (14.6.2)
153        //   shall be prefixed by the keyword typename to indicate that the
154        //   qualified-id denotes a type, forming an
155        //   elaborated-type-specifier (7.1.5.3).
156        //
157        // We therefore do not perform any name lookup if the result would
158        // refer to a member of an unknown specialization.
159        if (!isClassName && !IsCtorOrDtorName)
160          return ParsedType();
161
162        // We know from the grammar that this name refers to a type,
163        // so build a dependent node to describe the type.
164        if (WantNontrivialTypeSourceInfo)
165          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
166
167        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
168        QualType T =
169          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
170                            II, NameLoc);
171
172          return ParsedType::make(T);
173      }
174
175      return ParsedType();
176    }
177
178    if (!LookupCtx->isDependentContext() &&
179        RequireCompleteDeclContext(*SS, LookupCtx))
180      return ParsedType();
181  }
182
183  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
184  // lookup for class-names.
185  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
186                                      LookupOrdinaryName;
187  LookupResult Result(*this, &II, NameLoc, Kind);
188  if (LookupCtx) {
189    // Perform "qualified" name lookup into the declaration context we
190    // computed, which is either the type of the base of a member access
191    // expression or the declaration context associated with a prior
192    // nested-name-specifier.
193    LookupQualifiedName(Result, LookupCtx);
194
195    if (ObjectTypePtr && Result.empty()) {
196      // C++ [basic.lookup.classref]p3:
197      //   If the unqualified-id is ~type-name, the type-name is looked up
198      //   in the context of the entire postfix-expression. If the type T of
199      //   the object expression is of a class type C, the type-name is also
200      //   looked up in the scope of class C. At least one of the lookups shall
201      //   find a name that refers to (possibly cv-qualified) T.
202      LookupName(Result, S);
203    }
204  } else {
205    // Perform unqualified name lookup.
206    LookupName(Result, S);
207  }
208
209  NamedDecl *IIDecl = 0;
210  switch (Result.getResultKind()) {
211  case LookupResult::NotFound:
212  case LookupResult::NotFoundInCurrentInstantiation:
213    if (CorrectedII) {
214      TypeNameValidatorCCC Validator(true, isClassName);
215      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
216                                              Kind, S, SS, Validator);
217      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
218      TemplateTy Template;
219      bool MemberOfUnknownSpecialization;
220      UnqualifiedId TemplateName;
221      TemplateName.setIdentifier(NewII, NameLoc);
222      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
223      CXXScopeSpec NewSS, *NewSSPtr = SS;
224      if (SS && NNS) {
225        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
226        NewSSPtr = &NewSS;
227      }
228      if (Correction && (NNS || NewII != &II) &&
229          // Ignore a correction to a template type as the to-be-corrected
230          // identifier is not a template (typo correction for template names
231          // is handled elsewhere).
232          !(getLangOpts().CPlusPlus && NewSSPtr &&
233            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
234                           false, Template, MemberOfUnknownSpecialization))) {
235        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
236                                    isClassName, HasTrailingDot, ObjectTypePtr,
237                                    IsCtorOrDtorName,
238                                    WantNontrivialTypeSourceInfo);
239        if (Ty) {
240          std::string CorrectedStr(Correction.getAsString(getLangOpts()));
241          std::string CorrectedQuotedStr(
242              Correction.getQuoted(getLangOpts()));
243          Diag(NameLoc, diag::err_unknown_type_or_class_name_suggest)
244              << Result.getLookupName() << CorrectedQuotedStr << isClassName
245              << FixItHint::CreateReplacement(SourceRange(NameLoc),
246                                              CorrectedStr);
247          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
248            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
249              << CorrectedQuotedStr;
250
251          if (SS && NNS)
252            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
253          *CorrectedII = NewII;
254          return Ty;
255        }
256      }
257    }
258    // If typo correction failed or was not performed, fall through
259  case LookupResult::FoundOverloaded:
260  case LookupResult::FoundUnresolvedValue:
261    Result.suppressDiagnostics();
262    return ParsedType();
263
264  case LookupResult::Ambiguous:
265    // Recover from type-hiding ambiguities by hiding the type.  We'll
266    // do the lookup again when looking for an object, and we can
267    // diagnose the error then.  If we don't do this, then the error
268    // about hiding the type will be immediately followed by an error
269    // that only makes sense if the identifier was treated like a type.
270    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
271      Result.suppressDiagnostics();
272      return ParsedType();
273    }
274
275    // Look to see if we have a type anywhere in the list of results.
276    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
277         Res != ResEnd; ++Res) {
278      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
279        if (!IIDecl ||
280            (*Res)->getLocation().getRawEncoding() <
281              IIDecl->getLocation().getRawEncoding())
282          IIDecl = *Res;
283      }
284    }
285
286    if (!IIDecl) {
287      // None of the entities we found is a type, so there is no way
288      // to even assume that the result is a type. In this case, don't
289      // complain about the ambiguity. The parser will either try to
290      // perform this lookup again (e.g., as an object name), which
291      // will produce the ambiguity, or will complain that it expected
292      // a type name.
293      Result.suppressDiagnostics();
294      return ParsedType();
295    }
296
297    // We found a type within the ambiguous lookup; diagnose the
298    // ambiguity and then return that type. This might be the right
299    // answer, or it might not be, but it suppresses any attempt to
300    // perform the name lookup again.
301    break;
302
303  case LookupResult::Found:
304    IIDecl = Result.getFoundDecl();
305    break;
306  }
307
308  assert(IIDecl && "Didn't find decl");
309
310  QualType T;
311  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
312    DiagnoseUseOfDecl(IIDecl, NameLoc);
313
314    if (T.isNull())
315      T = Context.getTypeDeclType(TD);
316
317    // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
318    // constructor or destructor name (in such a case, the scope specifier
319    // will be attached to the enclosing Expr or Decl node).
320    if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
321      if (WantNontrivialTypeSourceInfo) {
322        // Construct a type with type-source information.
323        TypeLocBuilder Builder;
324        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
325
326        T = getElaboratedType(ETK_None, *SS, T);
327        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
328        ElabTL.setElaboratedKeywordLoc(SourceLocation());
329        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
330        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
331      } else {
332        T = getElaboratedType(ETK_None, *SS, T);
333      }
334    }
335  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
336    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
337    if (!HasTrailingDot)
338      T = Context.getObjCInterfaceType(IDecl);
339  }
340
341  if (T.isNull()) {
342    // If it's not plausibly a type, suppress diagnostics.
343    Result.suppressDiagnostics();
344    return ParsedType();
345  }
346  return ParsedType::make(T);
347}
348
349/// isTagName() - This method is called *for error recovery purposes only*
350/// to determine if the specified name is a valid tag name ("struct foo").  If
351/// so, this returns the TST for the tag corresponding to it (TST_enum,
352/// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
353/// cases in C where the user forgot to specify the tag.
354DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
355  // Do a tag name lookup in this scope.
356  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
357  LookupName(R, S, false);
358  R.suppressDiagnostics();
359  if (R.getResultKind() == LookupResult::Found)
360    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
361      switch (TD->getTagKind()) {
362      case TTK_Struct: return DeclSpec::TST_struct;
363      case TTK_Interface: return DeclSpec::TST_interface;
364      case TTK_Union:  return DeclSpec::TST_union;
365      case TTK_Class:  return DeclSpec::TST_class;
366      case TTK_Enum:   return DeclSpec::TST_enum;
367      }
368    }
369
370  return DeclSpec::TST_unspecified;
371}
372
373/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
374/// if a CXXScopeSpec's type is equal to the type of one of the base classes
375/// then downgrade the missing typename error to a warning.
376/// This is needed for MSVC compatibility; Example:
377/// @code
378/// template<class T> class A {
379/// public:
380///   typedef int TYPE;
381/// };
382/// template<class T> class B : public A<T> {
383/// public:
384///   A<T>::TYPE a; // no typename required because A<T> is a base class.
385/// };
386/// @endcode
387bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
388  if (CurContext->isRecord()) {
389    const Type *Ty = SS->getScopeRep()->getAsType();
390
391    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
392    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
393          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
394      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
395        return true;
396    return S->isFunctionPrototypeScope();
397  }
398  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
399}
400
401bool Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
402                                   SourceLocation IILoc,
403                                   Scope *S,
404                                   CXXScopeSpec *SS,
405                                   ParsedType &SuggestedType) {
406  // We don't have anything to suggest (yet).
407  SuggestedType = ParsedType();
408
409  // There may have been a typo in the name of the type. Look up typo
410  // results, in case we have something that we can suggest.
411  TypeNameValidatorCCC Validator(false);
412  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(II, IILoc),
413                                             LookupOrdinaryName, S, SS,
414                                             Validator)) {
415    std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
416    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
417
418    if (Corrected.isKeyword()) {
419      // We corrected to a keyword.
420      IdentifierInfo *NewII = Corrected.getCorrectionAsIdentifierInfo();
421      if (!isSimpleTypeSpecifier(NewII->getTokenID()))
422        CorrectedQuotedStr = "the keyword " + CorrectedQuotedStr;
423      Diag(IILoc, diag::err_unknown_typename_suggest)
424        << II << CorrectedQuotedStr
425        << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
426                                        CorrectedStr);
427      II = NewII;
428    } else {
429      NamedDecl *Result = Corrected.getCorrectionDecl();
430      // We found a similarly-named type or interface; suggest that.
431      if (!SS || !SS->isSet()) {
432        Diag(IILoc, diag::err_unknown_typename_suggest)
433          << II << CorrectedQuotedStr
434          << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
435                                          CorrectedStr);
436      } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
437        bool droppedSpecifier = Corrected.WillReplaceSpecifier() &&
438                                II->getName().equals(CorrectedStr);
439        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
440            << II << DC << droppedSpecifier << CorrectedQuotedStr
441            << SS->getRange()
442            << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
443                                            CorrectedStr);
444      }
445      else {
446        llvm_unreachable("could not have corrected a typo here");
447      }
448
449      Diag(Result->getLocation(), diag::note_previous_decl)
450        << CorrectedQuotedStr;
451
452      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
453                                  false, false, ParsedType(),
454                                  /*IsCtorOrDtorName=*/false,
455                                  /*NonTrivialTypeSourceInfo=*/true);
456    }
457    return true;
458  }
459
460  if (getLangOpts().CPlusPlus) {
461    // See if II is a class template that the user forgot to pass arguments to.
462    UnqualifiedId Name;
463    Name.setIdentifier(II, IILoc);
464    CXXScopeSpec EmptySS;
465    TemplateTy TemplateResult;
466    bool MemberOfUnknownSpecialization;
467    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
468                       Name, ParsedType(), true, TemplateResult,
469                       MemberOfUnknownSpecialization) == TNK_Type_template) {
470      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
471      Diag(IILoc, diag::err_template_missing_args) << TplName;
472      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
473        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
474          << TplDecl->getTemplateParameters()->getSourceRange();
475      }
476      return true;
477    }
478  }
479
480  // FIXME: Should we move the logic that tries to recover from a missing tag
481  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
482
483  if (!SS || (!SS->isSet() && !SS->isInvalid()))
484    Diag(IILoc, diag::err_unknown_typename) << II;
485  else if (DeclContext *DC = computeDeclContext(*SS, false))
486    Diag(IILoc, diag::err_typename_nested_not_found)
487      << II << DC << SS->getRange();
488  else if (isDependentScopeSpecifier(*SS)) {
489    unsigned DiagID = diag::err_typename_missing;
490    if (getLangOpts().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
491      DiagID = diag::warn_typename_missing;
492
493    Diag(SS->getRange().getBegin(), DiagID)
494      << (NestedNameSpecifier *)SS->getScopeRep() << II->getName()
495      << SourceRange(SS->getRange().getBegin(), IILoc)
496      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
497    SuggestedType = ActOnTypenameType(S, SourceLocation(),
498                                      *SS, *II, IILoc).get();
499  } else {
500    assert(SS && SS->isInvalid() &&
501           "Invalid scope specifier has already been diagnosed");
502  }
503
504  return true;
505}
506
507/// \brief Determine whether the given result set contains either a type name
508/// or
509static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
510  bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
511                       NextToken.is(tok::less);
512
513  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
514    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
515      return true;
516
517    if (CheckTemplate && isa<TemplateDecl>(*I))
518      return true;
519  }
520
521  return false;
522}
523
524static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
525                                    Scope *S, CXXScopeSpec &SS,
526                                    IdentifierInfo *&Name,
527                                    SourceLocation NameLoc) {
528  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
529  SemaRef.LookupParsedName(R, S, &SS);
530  if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
531    const char *TagName = 0;
532    const char *FixItTagName = 0;
533    switch (Tag->getTagKind()) {
534      case TTK_Class:
535        TagName = "class";
536        FixItTagName = "class ";
537        break;
538
539      case TTK_Enum:
540        TagName = "enum";
541        FixItTagName = "enum ";
542        break;
543
544      case TTK_Struct:
545        TagName = "struct";
546        FixItTagName = "struct ";
547        break;
548
549      case TTK_Interface:
550        TagName = "__interface";
551        FixItTagName = "__interface ";
552        break;
553
554      case TTK_Union:
555        TagName = "union";
556        FixItTagName = "union ";
557        break;
558    }
559
560    SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
561      << Name << TagName << SemaRef.getLangOpts().CPlusPlus
562      << FixItHint::CreateInsertion(NameLoc, FixItTagName);
563
564    for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
565         I != IEnd; ++I)
566      SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
567        << Name << TagName;
568
569    // Replace lookup results with just the tag decl.
570    Result.clear(Sema::LookupTagName);
571    SemaRef.LookupParsedName(Result, S, &SS);
572    return true;
573  }
574
575  return false;
576}
577
578/// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
579static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
580                                  QualType T, SourceLocation NameLoc) {
581  ASTContext &Context = S.Context;
582
583  TypeLocBuilder Builder;
584  Builder.pushTypeSpec(T).setNameLoc(NameLoc);
585
586  T = S.getElaboratedType(ETK_None, SS, T);
587  ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
588  ElabTL.setElaboratedKeywordLoc(SourceLocation());
589  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
590  return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
591}
592
593Sema::NameClassification Sema::ClassifyName(Scope *S,
594                                            CXXScopeSpec &SS,
595                                            IdentifierInfo *&Name,
596                                            SourceLocation NameLoc,
597                                            const Token &NextToken,
598                                            bool IsAddressOfOperand,
599                                            CorrectionCandidateCallback *CCC) {
600  DeclarationNameInfo NameInfo(Name, NameLoc);
601  ObjCMethodDecl *CurMethod = getCurMethodDecl();
602
603  if (NextToken.is(tok::coloncolon)) {
604    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
605                                QualType(), false, SS, 0, false);
606
607  }
608
609  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
610  LookupParsedName(Result, S, &SS, !CurMethod);
611
612  // Perform lookup for Objective-C instance variables (including automatically
613  // synthesized instance variables), if we're in an Objective-C method.
614  // FIXME: This lookup really, really needs to be folded in to the normal
615  // unqualified lookup mechanism.
616  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
617    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
618    if (E.get() || E.isInvalid())
619      return E;
620  }
621
622  bool SecondTry = false;
623  bool IsFilteredTemplateName = false;
624
625Corrected:
626  switch (Result.getResultKind()) {
627  case LookupResult::NotFound:
628    // If an unqualified-id is followed by a '(', then we have a function
629    // call.
630    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
631      // In C++, this is an ADL-only call.
632      // FIXME: Reference?
633      if (getLangOpts().CPlusPlus)
634        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
635
636      // C90 6.3.2.2:
637      //   If the expression that precedes the parenthesized argument list in a
638      //   function call consists solely of an identifier, and if no
639      //   declaration is visible for this identifier, the identifier is
640      //   implicitly declared exactly as if, in the innermost block containing
641      //   the function call, the declaration
642      //
643      //     extern int identifier ();
644      //
645      //   appeared.
646      //
647      // We also allow this in C99 as an extension.
648      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
649        Result.addDecl(D);
650        Result.resolveKind();
651        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
652      }
653    }
654
655    // In C, we first see whether there is a tag type by the same name, in
656    // which case it's likely that the user just forget to write "enum",
657    // "struct", or "union".
658    if (!getLangOpts().CPlusPlus && !SecondTry &&
659        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
660      break;
661    }
662
663    // Perform typo correction to determine if there is another name that is
664    // close to this name.
665    if (!SecondTry && CCC) {
666      SecondTry = true;
667      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
668                                                 Result.getLookupKind(), S,
669                                                 &SS, *CCC)) {
670        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
671        unsigned QualifiedDiag = diag::err_no_member_suggest;
672        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
673        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
674
675        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
676        NamedDecl *UnderlyingFirstDecl
677          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
678        if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
679            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
680          UnqualifiedDiag = diag::err_no_template_suggest;
681          QualifiedDiag = diag::err_no_member_template_suggest;
682        } else if (UnderlyingFirstDecl &&
683                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
684                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
685                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
686          UnqualifiedDiag = diag::err_unknown_typename_suggest;
687          QualifiedDiag = diag::err_unknown_nested_typename_suggest;
688        }
689
690        if (SS.isEmpty()) {
691          Diag(NameLoc, UnqualifiedDiag)
692            << Name << CorrectedQuotedStr
693            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
694        } else {// FIXME: is this even reachable? Test it.
695          bool droppedSpecifier = Corrected.WillReplaceSpecifier() &&
696                                  Name->getName().equals(CorrectedStr);
697          Diag(NameLoc, QualifiedDiag)
698            << Name << computeDeclContext(SS, false) << droppedSpecifier
699            << CorrectedQuotedStr << SS.getRange()
700            << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
701                                            CorrectedStr);
702        }
703
704        // Update the name, so that the caller has the new name.
705        Name = Corrected.getCorrectionAsIdentifierInfo();
706
707        // Typo correction corrected to a keyword.
708        if (Corrected.isKeyword())
709          return Corrected.getCorrectionAsIdentifierInfo();
710
711        // Also update the LookupResult...
712        // FIXME: This should probably go away at some point
713        Result.clear();
714        Result.setLookupName(Corrected.getCorrection());
715        if (FirstDecl) {
716          Result.addDecl(FirstDecl);
717          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
718            << CorrectedQuotedStr;
719        }
720
721        // If we found an Objective-C instance variable, let
722        // LookupInObjCMethod build the appropriate expression to
723        // reference the ivar.
724        // FIXME: This is a gross hack.
725        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
726          Result.clear();
727          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
728          return E;
729        }
730
731        goto Corrected;
732      }
733    }
734
735    // We failed to correct; just fall through and let the parser deal with it.
736    Result.suppressDiagnostics();
737    return NameClassification::Unknown();
738
739  case LookupResult::NotFoundInCurrentInstantiation: {
740    // We performed name lookup into the current instantiation, and there were
741    // dependent bases, so we treat this result the same way as any other
742    // dependent nested-name-specifier.
743
744    // C++ [temp.res]p2:
745    //   A name used in a template declaration or definition and that is
746    //   dependent on a template-parameter is assumed not to name a type
747    //   unless the applicable name lookup finds a type name or the name is
748    //   qualified by the keyword typename.
749    //
750    // FIXME: If the next token is '<', we might want to ask the parser to
751    // perform some heroics to see if we actually have a
752    // template-argument-list, which would indicate a missing 'template'
753    // keyword here.
754    return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
755                                      NameInfo, IsAddressOfOperand,
756                                      /*TemplateArgs=*/0);
757  }
758
759  case LookupResult::Found:
760  case LookupResult::FoundOverloaded:
761  case LookupResult::FoundUnresolvedValue:
762    break;
763
764  case LookupResult::Ambiguous:
765    if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
766        hasAnyAcceptableTemplateNames(Result)) {
767      // C++ [temp.local]p3:
768      //   A lookup that finds an injected-class-name (10.2) can result in an
769      //   ambiguity in certain cases (for example, if it is found in more than
770      //   one base class). If all of the injected-class-names that are found
771      //   refer to specializations of the same class template, and if the name
772      //   is followed by a template-argument-list, the reference refers to the
773      //   class template itself and not a specialization thereof, and is not
774      //   ambiguous.
775      //
776      // This filtering can make an ambiguous result into an unambiguous one,
777      // so try again after filtering out template names.
778      FilterAcceptableTemplateNames(Result);
779      if (!Result.isAmbiguous()) {
780        IsFilteredTemplateName = true;
781        break;
782      }
783    }
784
785    // Diagnose the ambiguity and return an error.
786    return NameClassification::Error();
787  }
788
789  if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
790      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
791    // C++ [temp.names]p3:
792    //   After name lookup (3.4) finds that a name is a template-name or that
793    //   an operator-function-id or a literal- operator-id refers to a set of
794    //   overloaded functions any member of which is a function template if
795    //   this is followed by a <, the < is always taken as the delimiter of a
796    //   template-argument-list and never as the less-than operator.
797    if (!IsFilteredTemplateName)
798      FilterAcceptableTemplateNames(Result);
799
800    if (!Result.empty()) {
801      bool IsFunctionTemplate;
802      bool IsVarTemplate;
803      TemplateName Template;
804      if (Result.end() - Result.begin() > 1) {
805        IsFunctionTemplate = true;
806        Template = Context.getOverloadedTemplateName(Result.begin(),
807                                                     Result.end());
808      } else {
809        TemplateDecl *TD
810          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
811        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
812        IsVarTemplate = isa<VarTemplateDecl>(TD);
813
814        if (SS.isSet() && !SS.isInvalid())
815          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
816                                                    /*TemplateKeyword=*/false,
817                                                      TD);
818        else
819          Template = TemplateName(TD);
820      }
821
822      if (IsFunctionTemplate) {
823        // Function templates always go through overload resolution, at which
824        // point we'll perform the various checks (e.g., accessibility) we need
825        // to based on which function we selected.
826        Result.suppressDiagnostics();
827
828        return NameClassification::FunctionTemplate(Template);
829      }
830
831      return IsVarTemplate ? NameClassification::VarTemplate(Template)
832                           : NameClassification::TypeTemplate(Template);
833    }
834  }
835
836  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
837  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
838    DiagnoseUseOfDecl(Type, NameLoc);
839    QualType T = Context.getTypeDeclType(Type);
840    if (SS.isNotEmpty())
841      return buildNestedType(*this, SS, T, NameLoc);
842    return ParsedType::make(T);
843  }
844
845  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
846  if (!Class) {
847    // FIXME: It's unfortunate that we don't have a Type node for handling this.
848    if (ObjCCompatibleAliasDecl *Alias
849                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
850      Class = Alias->getClassInterface();
851  }
852
853  if (Class) {
854    DiagnoseUseOfDecl(Class, NameLoc);
855
856    if (NextToken.is(tok::period)) {
857      // Interface. <something> is parsed as a property reference expression.
858      // Just return "unknown" as a fall-through for now.
859      Result.suppressDiagnostics();
860      return NameClassification::Unknown();
861    }
862
863    QualType T = Context.getObjCInterfaceType(Class);
864    return ParsedType::make(T);
865  }
866
867  // We can have a type template here if we're classifying a template argument.
868  if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
869    return NameClassification::TypeTemplate(
870        TemplateName(cast<TemplateDecl>(FirstDecl)));
871
872  // Check for a tag type hidden by a non-type decl in a few cases where it
873  // seems likely a type is wanted instead of the non-type that was found.
874  bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
875  if ((NextToken.is(tok::identifier) ||
876       (NextIsOp && FirstDecl->isFunctionOrFunctionTemplate())) &&
877      isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
878    TypeDecl *Type = Result.getAsSingle<TypeDecl>();
879    DiagnoseUseOfDecl(Type, NameLoc);
880    QualType T = Context.getTypeDeclType(Type);
881    if (SS.isNotEmpty())
882      return buildNestedType(*this, SS, T, NameLoc);
883    return ParsedType::make(T);
884  }
885
886  if (FirstDecl->isCXXClassMember())
887    return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
888
889  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
890  return BuildDeclarationNameExpr(SS, Result, ADL);
891}
892
893// Determines the context to return to after temporarily entering a
894// context.  This depends in an unnecessarily complicated way on the
895// exact ordering of callbacks from the parser.
896DeclContext *Sema::getContainingDC(DeclContext *DC) {
897
898  // Functions defined inline within classes aren't parsed until we've
899  // finished parsing the top-level class, so the top-level class is
900  // the context we'll need to return to.
901  if (isa<FunctionDecl>(DC)) {
902    DC = DC->getLexicalParent();
903
904    // A function not defined within a class will always return to its
905    // lexical context.
906    if (!isa<CXXRecordDecl>(DC))
907      return DC;
908
909    // A C++ inline method/friend is parsed *after* the topmost class
910    // it was declared in is fully parsed ("complete");  the topmost
911    // class is the context we need to return to.
912    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
913      DC = RD;
914
915    // Return the declaration context of the topmost class the inline method is
916    // declared in.
917    return DC;
918  }
919
920  return DC->getLexicalParent();
921}
922
923void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
924  assert(getContainingDC(DC) == CurContext &&
925      "The next DeclContext should be lexically contained in the current one.");
926  CurContext = DC;
927  S->setEntity(DC);
928}
929
930void Sema::PopDeclContext() {
931  assert(CurContext && "DeclContext imbalance!");
932
933  CurContext = getContainingDC(CurContext);
934  assert(CurContext && "Popped translation unit!");
935}
936
937/// EnterDeclaratorContext - Used when we must lookup names in the context
938/// of a declarator's nested name specifier.
939///
940void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
941  // C++0x [basic.lookup.unqual]p13:
942  //   A name used in the definition of a static data member of class
943  //   X (after the qualified-id of the static member) is looked up as
944  //   if the name was used in a member function of X.
945  // C++0x [basic.lookup.unqual]p14:
946  //   If a variable member of a namespace is defined outside of the
947  //   scope of its namespace then any name used in the definition of
948  //   the variable member (after the declarator-id) is looked up as
949  //   if the definition of the variable member occurred in its
950  //   namespace.
951  // Both of these imply that we should push a scope whose context
952  // is the semantic context of the declaration.  We can't use
953  // PushDeclContext here because that context is not necessarily
954  // lexically contained in the current context.  Fortunately,
955  // the containing scope should have the appropriate information.
956
957  assert(!S->getEntity() && "scope already has entity");
958
959#ifndef NDEBUG
960  Scope *Ancestor = S->getParent();
961  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
962  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
963#endif
964
965  CurContext = DC;
966  S->setEntity(DC);
967}
968
969void Sema::ExitDeclaratorContext(Scope *S) {
970  assert(S->getEntity() == CurContext && "Context imbalance!");
971
972  // Switch back to the lexical context.  The safety of this is
973  // enforced by an assert in EnterDeclaratorContext.
974  Scope *Ancestor = S->getParent();
975  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
976  CurContext = (DeclContext*) Ancestor->getEntity();
977
978  // We don't need to do anything with the scope, which is going to
979  // disappear.
980}
981
982
983void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
984  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
985  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
986    // We assume that the caller has already called
987    // ActOnReenterTemplateScope
988    FD = TFD->getTemplatedDecl();
989  }
990  if (!FD)
991    return;
992
993  // Same implementation as PushDeclContext, but enters the context
994  // from the lexical parent, rather than the top-level class.
995  assert(CurContext == FD->getLexicalParent() &&
996    "The next DeclContext should be lexically contained in the current one.");
997  CurContext = FD;
998  S->setEntity(CurContext);
999
1000  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
1001    ParmVarDecl *Param = FD->getParamDecl(P);
1002    // If the parameter has an identifier, then add it to the scope
1003    if (Param->getIdentifier()) {
1004      S->AddDecl(Param);
1005      IdResolver.AddDecl(Param);
1006    }
1007  }
1008}
1009
1010
1011void Sema::ActOnExitFunctionContext() {
1012  // Same implementation as PopDeclContext, but returns to the lexical parent,
1013  // rather than the top-level class.
1014  assert(CurContext && "DeclContext imbalance!");
1015  CurContext = CurContext->getLexicalParent();
1016  assert(CurContext && "Popped translation unit!");
1017}
1018
1019
1020/// \brief Determine whether we allow overloading of the function
1021/// PrevDecl with another declaration.
1022///
1023/// This routine determines whether overloading is possible, not
1024/// whether some new function is actually an overload. It will return
1025/// true in C++ (where we can always provide overloads) or, as an
1026/// extension, in C when the previous function is already an
1027/// overloaded function declaration or has the "overloadable"
1028/// attribute.
1029static bool AllowOverloadingOfFunction(LookupResult &Previous,
1030                                       ASTContext &Context) {
1031  if (Context.getLangOpts().CPlusPlus)
1032    return true;
1033
1034  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1035    return true;
1036
1037  return (Previous.getResultKind() == LookupResult::Found
1038          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
1039}
1040
1041/// Add this decl to the scope shadowed decl chains.
1042void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1043  // Move up the scope chain until we find the nearest enclosing
1044  // non-transparent context. The declaration will be introduced into this
1045  // scope.
1046  while (S->getEntity() &&
1047         ((DeclContext *)S->getEntity())->isTransparentContext())
1048    S = S->getParent();
1049
1050  // Add scoped declarations into their context, so that they can be
1051  // found later. Declarations without a context won't be inserted
1052  // into any context.
1053  if (AddToContext)
1054    CurContext->addDecl(D);
1055
1056  // Out-of-line definitions shouldn't be pushed into scope in C++.
1057  // Out-of-line variable and function definitions shouldn't even in C.
1058  if ((getLangOpts().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
1059      D->isOutOfLine() &&
1060      !D->getDeclContext()->getRedeclContext()->Equals(
1061        D->getLexicalDeclContext()->getRedeclContext()))
1062    return;
1063
1064  // Template instantiations should also not be pushed into scope.
1065  if (isa<FunctionDecl>(D) &&
1066      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1067    return;
1068
1069  // If this replaces anything in the current scope,
1070  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1071                               IEnd = IdResolver.end();
1072  for (; I != IEnd; ++I) {
1073    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1074      S->RemoveDecl(*I);
1075      IdResolver.RemoveDecl(*I);
1076
1077      // Should only need to replace one decl.
1078      break;
1079    }
1080  }
1081
1082  S->AddDecl(D);
1083
1084  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1085    // Implicitly-generated labels may end up getting generated in an order that
1086    // isn't strictly lexical, which breaks name lookup. Be careful to insert
1087    // the label at the appropriate place in the identifier chain.
1088    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1089      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1090      if (IDC == CurContext) {
1091        if (!S->isDeclScope(*I))
1092          continue;
1093      } else if (IDC->Encloses(CurContext))
1094        break;
1095    }
1096
1097    IdResolver.InsertDeclAfter(I, D);
1098  } else {
1099    IdResolver.AddDecl(D);
1100  }
1101}
1102
1103void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1104  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1105    TUScope->AddDecl(D);
1106}
1107
1108bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
1109                         bool ExplicitInstantiationOrSpecialization) {
1110  return IdResolver.isDeclInScope(D, Ctx, S,
1111                                  ExplicitInstantiationOrSpecialization);
1112}
1113
1114Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1115  DeclContext *TargetDC = DC->getPrimaryContext();
1116  do {
1117    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
1118      if (ScopeDC->getPrimaryContext() == TargetDC)
1119        return S;
1120  } while ((S = S->getParent()));
1121
1122  return 0;
1123}
1124
1125static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1126                                            DeclContext*,
1127                                            ASTContext&);
1128
1129/// Filters out lookup results that don't fall within the given scope
1130/// as determined by isDeclInScope.
1131void Sema::FilterLookupForScope(LookupResult &R,
1132                                DeclContext *Ctx, Scope *S,
1133                                bool ConsiderLinkage,
1134                                bool ExplicitInstantiationOrSpecialization) {
1135  LookupResult::Filter F = R.makeFilter();
1136  while (F.hasNext()) {
1137    NamedDecl *D = F.next();
1138
1139    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1140      continue;
1141
1142    if (ConsiderLinkage &&
1143        isOutOfScopePreviousDeclaration(D, Ctx, Context))
1144      continue;
1145
1146    F.erase();
1147  }
1148
1149  F.done();
1150}
1151
1152static bool isUsingDecl(NamedDecl *D) {
1153  return isa<UsingShadowDecl>(D) ||
1154         isa<UnresolvedUsingTypenameDecl>(D) ||
1155         isa<UnresolvedUsingValueDecl>(D);
1156}
1157
1158/// Removes using shadow declarations from the lookup results.
1159static void RemoveUsingDecls(LookupResult &R) {
1160  LookupResult::Filter F = R.makeFilter();
1161  while (F.hasNext())
1162    if (isUsingDecl(F.next()))
1163      F.erase();
1164
1165  F.done();
1166}
1167
1168/// \brief Check for this common pattern:
1169/// @code
1170/// class S {
1171///   S(const S&); // DO NOT IMPLEMENT
1172///   void operator=(const S&); // DO NOT IMPLEMENT
1173/// };
1174/// @endcode
1175static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1176  // FIXME: Should check for private access too but access is set after we get
1177  // the decl here.
1178  if (D->doesThisDeclarationHaveABody())
1179    return false;
1180
1181  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1182    return CD->isCopyConstructor();
1183  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1184    return Method->isCopyAssignmentOperator();
1185  return false;
1186}
1187
1188// We need this to handle
1189//
1190// typedef struct {
1191//   void *foo() { return 0; }
1192// } A;
1193//
1194// When we see foo we don't know if after the typedef we will get 'A' or '*A'
1195// for example. If 'A', foo will have external linkage. If we have '*A',
1196// foo will have no linkage. Since we can't know untill we get to the end
1197// of the typedef, this function finds out if D might have non external linkage.
1198// Callers should verify at the end of the TU if it D has external linkage or
1199// not.
1200bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1201  const DeclContext *DC = D->getDeclContext();
1202  while (!DC->isTranslationUnit()) {
1203    if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1204      if (!RD->hasNameForLinkage())
1205        return true;
1206    }
1207    DC = DC->getParent();
1208  }
1209
1210  return !D->isExternallyVisible();
1211}
1212
1213bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1214  assert(D);
1215
1216  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1217    return false;
1218
1219  // Ignore class templates.
1220  if (D->getDeclContext()->isDependentContext() ||
1221      D->getLexicalDeclContext()->isDependentContext())
1222    return false;
1223
1224  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1225    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1226      return false;
1227
1228    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1229      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1230        return false;
1231    } else {
1232      // 'static inline' functions are used in headers; don't warn.
1233      // Make sure we get the storage class from the canonical declaration,
1234      // since otherwise we will get spurious warnings on specialized
1235      // static template functions.
1236      if (FD->getCanonicalDecl()->getStorageClass() == SC_Static &&
1237          FD->isInlineSpecified())
1238        return false;
1239    }
1240
1241    if (FD->doesThisDeclarationHaveABody() &&
1242        Context.DeclMustBeEmitted(FD))
1243      return false;
1244  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1245    // Don't warn on variables of const-qualified or reference type, since their
1246    // values can be used even if though they're not odr-used, and because const
1247    // qualified variables can appear in headers in contexts where they're not
1248    // intended to be used.
1249    // FIXME: Use more principled rules for these exemptions.
1250    if (!VD->isFileVarDecl() ||
1251        VD->getType().isConstQualified() ||
1252        VD->getType()->isReferenceType() ||
1253        Context.DeclMustBeEmitted(VD))
1254      return false;
1255
1256    if (VD->isStaticDataMember() &&
1257        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1258      return false;
1259
1260  } else {
1261    return false;
1262  }
1263
1264  // Only warn for unused decls internal to the translation unit.
1265  return mightHaveNonExternalLinkage(D);
1266}
1267
1268void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1269  if (!D)
1270    return;
1271
1272  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1273    const FunctionDecl *First = FD->getFirstDeclaration();
1274    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1275      return; // First should already be in the vector.
1276  }
1277
1278  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1279    const VarDecl *First = VD->getFirstDeclaration();
1280    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1281      return; // First should already be in the vector.
1282  }
1283
1284  if (ShouldWarnIfUnusedFileScopedDecl(D))
1285    UnusedFileScopedDecls.push_back(D);
1286}
1287
1288static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1289  if (D->isInvalidDecl())
1290    return false;
1291
1292  if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1293    return false;
1294
1295  if (isa<LabelDecl>(D))
1296    return true;
1297
1298  // White-list anything that isn't a local variable.
1299  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1300      !D->getDeclContext()->isFunctionOrMethod())
1301    return false;
1302
1303  // Types of valid local variables should be complete, so this should succeed.
1304  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1305
1306    // White-list anything with an __attribute__((unused)) type.
1307    QualType Ty = VD->getType();
1308
1309    // Only look at the outermost level of typedef.
1310    if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1311      if (TT->getDecl()->hasAttr<UnusedAttr>())
1312        return false;
1313    }
1314
1315    // If we failed to complete the type for some reason, or if the type is
1316    // dependent, don't diagnose the variable.
1317    if (Ty->isIncompleteType() || Ty->isDependentType())
1318      return false;
1319
1320    if (const TagType *TT = Ty->getAs<TagType>()) {
1321      const TagDecl *Tag = TT->getDecl();
1322      if (Tag->hasAttr<UnusedAttr>())
1323        return false;
1324
1325      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1326        if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
1327          return false;
1328
1329        if (const Expr *Init = VD->getInit()) {
1330          if (const ExprWithCleanups *Cleanups = dyn_cast<ExprWithCleanups>(Init))
1331            Init = Cleanups->getSubExpr();
1332          const CXXConstructExpr *Construct =
1333            dyn_cast<CXXConstructExpr>(Init);
1334          if (Construct && !Construct->isElidable()) {
1335            CXXConstructorDecl *CD = Construct->getConstructor();
1336            if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>())
1337              return false;
1338          }
1339        }
1340      }
1341    }
1342
1343    // TODO: __attribute__((unused)) templates?
1344  }
1345
1346  return true;
1347}
1348
1349static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1350                                     FixItHint &Hint) {
1351  if (isa<LabelDecl>(D)) {
1352    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1353                tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1354    if (AfterColon.isInvalid())
1355      return;
1356    Hint = FixItHint::CreateRemoval(CharSourceRange::
1357                                    getCharRange(D->getLocStart(), AfterColon));
1358  }
1359  return;
1360}
1361
1362/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1363/// unless they are marked attr(unused).
1364void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1365  FixItHint Hint;
1366  if (!ShouldDiagnoseUnusedDecl(D))
1367    return;
1368
1369  GenerateFixForUnusedDecl(D, Context, Hint);
1370
1371  unsigned DiagID;
1372  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1373    DiagID = diag::warn_unused_exception_param;
1374  else if (isa<LabelDecl>(D))
1375    DiagID = diag::warn_unused_label;
1376  else
1377    DiagID = diag::warn_unused_variable;
1378
1379  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1380}
1381
1382static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1383  // Verify that we have no forward references left.  If so, there was a goto
1384  // or address of a label taken, but no definition of it.  Label fwd
1385  // definitions are indicated with a null substmt.
1386  if (L->getStmt() == 0)
1387    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1388}
1389
1390void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1391  if (S->decl_empty()) return;
1392  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1393         "Scope shouldn't contain decls!");
1394
1395  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1396       I != E; ++I) {
1397    Decl *TmpD = (*I);
1398    assert(TmpD && "This decl didn't get pushed??");
1399
1400    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1401    NamedDecl *D = cast<NamedDecl>(TmpD);
1402
1403    if (!D->getDeclName()) continue;
1404
1405    // Diagnose unused variables in this scope.
1406    if (!S->hasUnrecoverableErrorOccurred())
1407      DiagnoseUnusedDecl(D);
1408
1409    // If this was a forward reference to a label, verify it was defined.
1410    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1411      CheckPoppedLabel(LD, *this);
1412
1413    // Remove this name from our lexical scope.
1414    IdResolver.RemoveDecl(D);
1415  }
1416}
1417
1418void Sema::ActOnStartFunctionDeclarator() {
1419  ++InFunctionDeclarator;
1420}
1421
1422void Sema::ActOnEndFunctionDeclarator() {
1423  assert(InFunctionDeclarator);
1424  --InFunctionDeclarator;
1425}
1426
1427/// \brief Look for an Objective-C class in the translation unit.
1428///
1429/// \param Id The name of the Objective-C class we're looking for. If
1430/// typo-correction fixes this name, the Id will be updated
1431/// to the fixed name.
1432///
1433/// \param IdLoc The location of the name in the translation unit.
1434///
1435/// \param DoTypoCorrection If true, this routine will attempt typo correction
1436/// if there is no class with the given name.
1437///
1438/// \returns The declaration of the named Objective-C class, or NULL if the
1439/// class could not be found.
1440ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1441                                              SourceLocation IdLoc,
1442                                              bool DoTypoCorrection) {
1443  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1444  // creation from this context.
1445  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1446
1447  if (!IDecl && DoTypoCorrection) {
1448    // Perform typo correction at the given location, but only if we
1449    // find an Objective-C class name.
1450    DeclFilterCCC<ObjCInterfaceDecl> Validator;
1451    if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1452                                       LookupOrdinaryName, TUScope, NULL,
1453                                       Validator)) {
1454      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1455      Diag(IdLoc, diag::err_undef_interface_suggest)
1456        << Id << IDecl->getDeclName()
1457        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1458      Diag(IDecl->getLocation(), diag::note_previous_decl)
1459        << IDecl->getDeclName();
1460
1461      Id = IDecl->getIdentifier();
1462    }
1463  }
1464  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1465  // This routine must always return a class definition, if any.
1466  if (Def && Def->getDefinition())
1467      Def = Def->getDefinition();
1468  return Def;
1469}
1470
1471/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1472/// from S, where a non-field would be declared. This routine copes
1473/// with the difference between C and C++ scoping rules in structs and
1474/// unions. For example, the following code is well-formed in C but
1475/// ill-formed in C++:
1476/// @code
1477/// struct S6 {
1478///   enum { BAR } e;
1479/// };
1480///
1481/// void test_S6() {
1482///   struct S6 a;
1483///   a.e = BAR;
1484/// }
1485/// @endcode
1486/// For the declaration of BAR, this routine will return a different
1487/// scope. The scope S will be the scope of the unnamed enumeration
1488/// within S6. In C++, this routine will return the scope associated
1489/// with S6, because the enumeration's scope is a transparent
1490/// context but structures can contain non-field names. In C, this
1491/// routine will return the translation unit scope, since the
1492/// enumeration's scope is a transparent context and structures cannot
1493/// contain non-field names.
1494Scope *Sema::getNonFieldDeclScope(Scope *S) {
1495  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1496         (S->getEntity() &&
1497          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1498         (S->isClassScope() && !getLangOpts().CPlusPlus))
1499    S = S->getParent();
1500  return S;
1501}
1502
1503/// \brief Looks up the declaration of "struct objc_super" and
1504/// saves it for later use in building builtin declaration of
1505/// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
1506/// pre-existing declaration exists no action takes place.
1507static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
1508                                        IdentifierInfo *II) {
1509  if (!II->isStr("objc_msgSendSuper"))
1510    return;
1511  ASTContext &Context = ThisSema.Context;
1512
1513  LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
1514                      SourceLocation(), Sema::LookupTagName);
1515  ThisSema.LookupName(Result, S);
1516  if (Result.getResultKind() == LookupResult::Found)
1517    if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
1518      Context.setObjCSuperType(Context.getTagDeclType(TD));
1519}
1520
1521/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1522/// file scope.  lazily create a decl for it. ForRedeclaration is true
1523/// if we're creating this built-in in anticipation of redeclaring the
1524/// built-in.
1525NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1526                                     Scope *S, bool ForRedeclaration,
1527                                     SourceLocation Loc) {
1528  LookupPredefedObjCSuperType(*this, S, II);
1529
1530  Builtin::ID BID = (Builtin::ID)bid;
1531
1532  ASTContext::GetBuiltinTypeError Error;
1533  QualType R = Context.GetBuiltinType(BID, Error);
1534  switch (Error) {
1535  case ASTContext::GE_None:
1536    // Okay
1537    break;
1538
1539  case ASTContext::GE_Missing_stdio:
1540    if (ForRedeclaration)
1541      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1542        << Context.BuiltinInfo.GetName(BID);
1543    return 0;
1544
1545  case ASTContext::GE_Missing_setjmp:
1546    if (ForRedeclaration)
1547      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1548        << Context.BuiltinInfo.GetName(BID);
1549    return 0;
1550
1551  case ASTContext::GE_Missing_ucontext:
1552    if (ForRedeclaration)
1553      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1554        << Context.BuiltinInfo.GetName(BID);
1555    return 0;
1556  }
1557
1558  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1559    Diag(Loc, diag::ext_implicit_lib_function_decl)
1560      << Context.BuiltinInfo.GetName(BID)
1561      << R;
1562    if (Context.BuiltinInfo.getHeaderName(BID) &&
1563        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1564          != DiagnosticsEngine::Ignored)
1565      Diag(Loc, diag::note_please_include_header)
1566        << Context.BuiltinInfo.getHeaderName(BID)
1567        << Context.BuiltinInfo.GetName(BID);
1568  }
1569
1570  FunctionDecl *New = FunctionDecl::Create(Context,
1571                                           Context.getTranslationUnitDecl(),
1572                                           Loc, Loc, II, R, /*TInfo=*/0,
1573                                           SC_Extern,
1574                                           false,
1575                                           /*hasPrototype=*/true);
1576  New->setImplicit();
1577
1578  // Create Decl objects for each parameter, adding them to the
1579  // FunctionDecl.
1580  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1581    SmallVector<ParmVarDecl*, 16> Params;
1582    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1583      ParmVarDecl *parm =
1584        ParmVarDecl::Create(Context, New, SourceLocation(),
1585                            SourceLocation(), 0,
1586                            FT->getArgType(i), /*TInfo=*/0,
1587                            SC_None, 0);
1588      parm->setScopeInfo(0, i);
1589      Params.push_back(parm);
1590    }
1591    New->setParams(Params);
1592  }
1593
1594  AddKnownFunctionAttributes(New);
1595
1596  // TUScope is the translation-unit scope to insert this function into.
1597  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1598  // relate Scopes to DeclContexts, and probably eliminate CurContext
1599  // entirely, but we're not there yet.
1600  DeclContext *SavedContext = CurContext;
1601  CurContext = Context.getTranslationUnitDecl();
1602  PushOnScopeChains(New, TUScope);
1603  CurContext = SavedContext;
1604  return New;
1605}
1606
1607/// \brief Filter out any previous declarations that the given declaration
1608/// should not consider because they are not permitted to conflict, e.g.,
1609/// because they come from hidden sub-modules and do not refer to the same
1610/// entity.
1611static void filterNonConflictingPreviousDecls(ASTContext &context,
1612                                              NamedDecl *decl,
1613                                              LookupResult &previous){
1614  // This is only interesting when modules are enabled.
1615  if (!context.getLangOpts().Modules)
1616    return;
1617
1618  // Empty sets are uninteresting.
1619  if (previous.empty())
1620    return;
1621
1622  LookupResult::Filter filter = previous.makeFilter();
1623  while (filter.hasNext()) {
1624    NamedDecl *old = filter.next();
1625
1626    // Non-hidden declarations are never ignored.
1627    if (!old->isHidden())
1628      continue;
1629
1630    if (!old->isExternallyVisible())
1631      filter.erase();
1632  }
1633
1634  filter.done();
1635}
1636
1637bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1638  QualType OldType;
1639  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1640    OldType = OldTypedef->getUnderlyingType();
1641  else
1642    OldType = Context.getTypeDeclType(Old);
1643  QualType NewType = New->getUnderlyingType();
1644
1645  if (NewType->isVariablyModifiedType()) {
1646    // Must not redefine a typedef with a variably-modified type.
1647    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1648    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1649      << Kind << NewType;
1650    if (Old->getLocation().isValid())
1651      Diag(Old->getLocation(), diag::note_previous_definition);
1652    New->setInvalidDecl();
1653    return true;
1654  }
1655
1656  if (OldType != NewType &&
1657      !OldType->isDependentType() &&
1658      !NewType->isDependentType() &&
1659      !Context.hasSameType(OldType, NewType)) {
1660    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1661    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1662      << Kind << NewType << OldType;
1663    if (Old->getLocation().isValid())
1664      Diag(Old->getLocation(), diag::note_previous_definition);
1665    New->setInvalidDecl();
1666    return true;
1667  }
1668  return false;
1669}
1670
1671/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1672/// same name and scope as a previous declaration 'Old'.  Figure out
1673/// how to resolve this situation, merging decls or emitting
1674/// diagnostics as appropriate. If there was an error, set New to be invalid.
1675///
1676void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1677  // If the new decl is known invalid already, don't bother doing any
1678  // merging checks.
1679  if (New->isInvalidDecl()) return;
1680
1681  // Allow multiple definitions for ObjC built-in typedefs.
1682  // FIXME: Verify the underlying types are equivalent!
1683  if (getLangOpts().ObjC1) {
1684    const IdentifierInfo *TypeID = New->getIdentifier();
1685    switch (TypeID->getLength()) {
1686    default: break;
1687    case 2:
1688      {
1689        if (!TypeID->isStr("id"))
1690          break;
1691        QualType T = New->getUnderlyingType();
1692        if (!T->isPointerType())
1693          break;
1694        if (!T->isVoidPointerType()) {
1695          QualType PT = T->getAs<PointerType>()->getPointeeType();
1696          if (!PT->isStructureType())
1697            break;
1698        }
1699        Context.setObjCIdRedefinitionType(T);
1700        // Install the built-in type for 'id', ignoring the current definition.
1701        New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1702        return;
1703      }
1704    case 5:
1705      if (!TypeID->isStr("Class"))
1706        break;
1707      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1708      // Install the built-in type for 'Class', ignoring the current definition.
1709      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1710      return;
1711    case 3:
1712      if (!TypeID->isStr("SEL"))
1713        break;
1714      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1715      // Install the built-in type for 'SEL', ignoring the current definition.
1716      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1717      return;
1718    }
1719    // Fall through - the typedef name was not a builtin type.
1720  }
1721
1722  // Verify the old decl was also a type.
1723  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1724  if (!Old) {
1725    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1726      << New->getDeclName();
1727
1728    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1729    if (OldD->getLocation().isValid())
1730      Diag(OldD->getLocation(), diag::note_previous_definition);
1731
1732    return New->setInvalidDecl();
1733  }
1734
1735  // If the old declaration is invalid, just give up here.
1736  if (Old->isInvalidDecl())
1737    return New->setInvalidDecl();
1738
1739  // If the typedef types are not identical, reject them in all languages and
1740  // with any extensions enabled.
1741  if (isIncompatibleTypedef(Old, New))
1742    return;
1743
1744  // The types match.  Link up the redeclaration chain if the old
1745  // declaration was a typedef.
1746  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1747    New->setPreviousDeclaration(Typedef);
1748
1749  mergeDeclAttributes(New, Old);
1750
1751  if (getLangOpts().MicrosoftExt)
1752    return;
1753
1754  if (getLangOpts().CPlusPlus) {
1755    // C++ [dcl.typedef]p2:
1756    //   In a given non-class scope, a typedef specifier can be used to
1757    //   redefine the name of any type declared in that scope to refer
1758    //   to the type to which it already refers.
1759    if (!isa<CXXRecordDecl>(CurContext))
1760      return;
1761
1762    // C++0x [dcl.typedef]p4:
1763    //   In a given class scope, a typedef specifier can be used to redefine
1764    //   any class-name declared in that scope that is not also a typedef-name
1765    //   to refer to the type to which it already refers.
1766    //
1767    // This wording came in via DR424, which was a correction to the
1768    // wording in DR56, which accidentally banned code like:
1769    //
1770    //   struct S {
1771    //     typedef struct A { } A;
1772    //   };
1773    //
1774    // in the C++03 standard. We implement the C++0x semantics, which
1775    // allow the above but disallow
1776    //
1777    //   struct S {
1778    //     typedef int I;
1779    //     typedef int I;
1780    //   };
1781    //
1782    // since that was the intent of DR56.
1783    if (!isa<TypedefNameDecl>(Old))
1784      return;
1785
1786    Diag(New->getLocation(), diag::err_redefinition)
1787      << New->getDeclName();
1788    Diag(Old->getLocation(), diag::note_previous_definition);
1789    return New->setInvalidDecl();
1790  }
1791
1792  // Modules always permit redefinition of typedefs, as does C11.
1793  if (getLangOpts().Modules || getLangOpts().C11)
1794    return;
1795
1796  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1797  // is normally mapped to an error, but can be controlled with
1798  // -Wtypedef-redefinition.  If either the original or the redefinition is
1799  // in a system header, don't emit this for compatibility with GCC.
1800  if (getDiagnostics().getSuppressSystemWarnings() &&
1801      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1802       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1803    return;
1804
1805  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1806    << New->getDeclName();
1807  Diag(Old->getLocation(), diag::note_previous_definition);
1808  return;
1809}
1810
1811/// DeclhasAttr - returns true if decl Declaration already has the target
1812/// attribute.
1813static bool
1814DeclHasAttr(const Decl *D, const Attr *A) {
1815  // There can be multiple AvailabilityAttr in a Decl. Make sure we copy
1816  // all of them. It is mergeAvailabilityAttr in SemaDeclAttr.cpp that is
1817  // responsible for making sure they are consistent.
1818  const AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(A);
1819  if (AA)
1820    return false;
1821
1822  // The following thread safety attributes can also be duplicated.
1823  switch (A->getKind()) {
1824    case attr::ExclusiveLocksRequired:
1825    case attr::SharedLocksRequired:
1826    case attr::LocksExcluded:
1827    case attr::ExclusiveLockFunction:
1828    case attr::SharedLockFunction:
1829    case attr::UnlockFunction:
1830    case attr::ExclusiveTrylockFunction:
1831    case attr::SharedTrylockFunction:
1832    case attr::GuardedBy:
1833    case attr::PtGuardedBy:
1834    case attr::AcquiredBefore:
1835    case attr::AcquiredAfter:
1836      return false;
1837    default:
1838      ;
1839  }
1840
1841  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1842  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1843  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1844    if ((*i)->getKind() == A->getKind()) {
1845      if (Ann) {
1846        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1847          return true;
1848        continue;
1849      }
1850      // FIXME: Don't hardcode this check
1851      if (OA && isa<OwnershipAttr>(*i))
1852        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1853      return true;
1854    }
1855
1856  return false;
1857}
1858
1859static bool isAttributeTargetADefinition(Decl *D) {
1860  if (VarDecl *VD = dyn_cast<VarDecl>(D))
1861    return VD->isThisDeclarationADefinition();
1862  if (TagDecl *TD = dyn_cast<TagDecl>(D))
1863    return TD->isCompleteDefinition() || TD->isBeingDefined();
1864  return true;
1865}
1866
1867/// Merge alignment attributes from \p Old to \p New, taking into account the
1868/// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
1869///
1870/// \return \c true if any attributes were added to \p New.
1871static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
1872  // Look for alignas attributes on Old, and pick out whichever attribute
1873  // specifies the strictest alignment requirement.
1874  AlignedAttr *OldAlignasAttr = 0;
1875  AlignedAttr *OldStrictestAlignAttr = 0;
1876  unsigned OldAlign = 0;
1877  for (specific_attr_iterator<AlignedAttr>
1878         I = Old->specific_attr_begin<AlignedAttr>(),
1879         E = Old->specific_attr_end<AlignedAttr>(); I != E; ++I) {
1880    // FIXME: We have no way of representing inherited dependent alignments
1881    // in a case like:
1882    //   template<int A, int B> struct alignas(A) X;
1883    //   template<int A, int B> struct alignas(B) X {};
1884    // For now, we just ignore any alignas attributes which are not on the
1885    // definition in such a case.
1886    if (I->isAlignmentDependent())
1887      return false;
1888
1889    if (I->isAlignas())
1890      OldAlignasAttr = *I;
1891
1892    unsigned Align = I->getAlignment(S.Context);
1893    if (Align > OldAlign) {
1894      OldAlign = Align;
1895      OldStrictestAlignAttr = *I;
1896    }
1897  }
1898
1899  // Look for alignas attributes on New.
1900  AlignedAttr *NewAlignasAttr = 0;
1901  unsigned NewAlign = 0;
1902  for (specific_attr_iterator<AlignedAttr>
1903         I = New->specific_attr_begin<AlignedAttr>(),
1904         E = New->specific_attr_end<AlignedAttr>(); I != E; ++I) {
1905    if (I->isAlignmentDependent())
1906      return false;
1907
1908    if (I->isAlignas())
1909      NewAlignasAttr = *I;
1910
1911    unsigned Align = I->getAlignment(S.Context);
1912    if (Align > NewAlign)
1913      NewAlign = Align;
1914  }
1915
1916  if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
1917    // Both declarations have 'alignas' attributes. We require them to match.
1918    // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
1919    // fall short. (If two declarations both have alignas, they must both match
1920    // every definition, and so must match each other if there is a definition.)
1921
1922    // If either declaration only contains 'alignas(0)' specifiers, then it
1923    // specifies the natural alignment for the type.
1924    if (OldAlign == 0 || NewAlign == 0) {
1925      QualType Ty;
1926      if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
1927        Ty = VD->getType();
1928      else
1929        Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
1930
1931      if (OldAlign == 0)
1932        OldAlign = S.Context.getTypeAlign(Ty);
1933      if (NewAlign == 0)
1934        NewAlign = S.Context.getTypeAlign(Ty);
1935    }
1936
1937    if (OldAlign != NewAlign) {
1938      S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
1939        << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
1940        << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
1941      S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
1942    }
1943  }
1944
1945  if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
1946    // C++11 [dcl.align]p6:
1947    //   if any declaration of an entity has an alignment-specifier,
1948    //   every defining declaration of that entity shall specify an
1949    //   equivalent alignment.
1950    // C11 6.7.5/7:
1951    //   If the definition of an object does not have an alignment
1952    //   specifier, any other declaration of that object shall also
1953    //   have no alignment specifier.
1954    S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
1955      << OldAlignasAttr->isC11();
1956    S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
1957      << OldAlignasAttr->isC11();
1958  }
1959
1960  bool AnyAdded = false;
1961
1962  // Ensure we have an attribute representing the strictest alignment.
1963  if (OldAlign > NewAlign) {
1964    AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
1965    Clone->setInherited(true);
1966    New->addAttr(Clone);
1967    AnyAdded = true;
1968  }
1969
1970  // Ensure we have an alignas attribute if the old declaration had one.
1971  if (OldAlignasAttr && !NewAlignasAttr &&
1972      !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
1973    AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
1974    Clone->setInherited(true);
1975    New->addAttr(Clone);
1976    AnyAdded = true;
1977  }
1978
1979  return AnyAdded;
1980}
1981
1982static bool mergeDeclAttribute(Sema &S, NamedDecl *D, InheritableAttr *Attr,
1983                               bool Override) {
1984  InheritableAttr *NewAttr = NULL;
1985  unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
1986  if (AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(Attr))
1987    NewAttr = S.mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
1988                                      AA->getIntroduced(), AA->getDeprecated(),
1989                                      AA->getObsoleted(), AA->getUnavailable(),
1990                                      AA->getMessage(), Override,
1991                                      AttrSpellingListIndex);
1992  else if (VisibilityAttr *VA = dyn_cast<VisibilityAttr>(Attr))
1993    NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
1994                                    AttrSpellingListIndex);
1995  else if (TypeVisibilityAttr *VA = dyn_cast<TypeVisibilityAttr>(Attr))
1996    NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
1997                                        AttrSpellingListIndex);
1998  else if (DLLImportAttr *ImportA = dyn_cast<DLLImportAttr>(Attr))
1999    NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
2000                                   AttrSpellingListIndex);
2001  else if (DLLExportAttr *ExportA = dyn_cast<DLLExportAttr>(Attr))
2002    NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
2003                                   AttrSpellingListIndex);
2004  else if (FormatAttr *FA = dyn_cast<FormatAttr>(Attr))
2005    NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
2006                                FA->getFormatIdx(), FA->getFirstArg(),
2007                                AttrSpellingListIndex);
2008  else if (SectionAttr *SA = dyn_cast<SectionAttr>(Attr))
2009    NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
2010                                 AttrSpellingListIndex);
2011  else if (isa<AlignedAttr>(Attr))
2012    // AlignedAttrs are handled separately, because we need to handle all
2013    // such attributes on a declaration at the same time.
2014    NewAttr = 0;
2015  else if (!DeclHasAttr(D, Attr))
2016    NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2017
2018  if (NewAttr) {
2019    NewAttr->setInherited(true);
2020    D->addAttr(NewAttr);
2021    return true;
2022  }
2023
2024  return false;
2025}
2026
2027static const Decl *getDefinition(const Decl *D) {
2028  if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2029    return TD->getDefinition();
2030  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
2031    return VD->getDefinition();
2032  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2033    const FunctionDecl* Def;
2034    if (FD->hasBody(Def))
2035      return Def;
2036  }
2037  return NULL;
2038}
2039
2040static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2041  for (Decl::attr_iterator I = D->attr_begin(), E = D->attr_end();
2042       I != E; ++I) {
2043    Attr *Attribute = *I;
2044    if (Attribute->getKind() == Kind)
2045      return true;
2046  }
2047  return false;
2048}
2049
2050/// checkNewAttributesAfterDef - If we already have a definition, check that
2051/// there are no new attributes in this declaration.
2052static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2053  if (!New->hasAttrs())
2054    return;
2055
2056  const Decl *Def = getDefinition(Old);
2057  if (!Def || Def == New)
2058    return;
2059
2060  AttrVec &NewAttributes = New->getAttrs();
2061  for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2062    const Attr *NewAttribute = NewAttributes[I];
2063    if (hasAttribute(Def, NewAttribute->getKind())) {
2064      ++I;
2065      continue; // regular attr merging will take care of validating this.
2066    }
2067
2068    if (isa<C11NoReturnAttr>(NewAttribute)) {
2069      // C's _Noreturn is allowed to be added to a function after it is defined.
2070      ++I;
2071      continue;
2072    } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2073      if (AA->isAlignas()) {
2074        // C++11 [dcl.align]p6:
2075        //   if any declaration of an entity has an alignment-specifier,
2076        //   every defining declaration of that entity shall specify an
2077        //   equivalent alignment.
2078        // C11 6.7.5/7:
2079        //   If the definition of an object does not have an alignment
2080        //   specifier, any other declaration of that object shall also
2081        //   have no alignment specifier.
2082        S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2083          << AA->isC11();
2084        S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2085          << AA->isC11();
2086        NewAttributes.erase(NewAttributes.begin() + I);
2087        --E;
2088        continue;
2089      }
2090    }
2091
2092    S.Diag(NewAttribute->getLocation(),
2093           diag::warn_attribute_precede_definition);
2094    S.Diag(Def->getLocation(), diag::note_previous_definition);
2095    NewAttributes.erase(NewAttributes.begin() + I);
2096    --E;
2097  }
2098}
2099
2100/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
2101void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2102                               AvailabilityMergeKind AMK) {
2103  if (!Old->hasAttrs() && !New->hasAttrs())
2104    return;
2105
2106  // attributes declared post-definition are currently ignored
2107  checkNewAttributesAfterDef(*this, New, Old);
2108
2109  if (!Old->hasAttrs())
2110    return;
2111
2112  bool foundAny = New->hasAttrs();
2113
2114  // Ensure that any moving of objects within the allocated map is done before
2115  // we process them.
2116  if (!foundAny) New->setAttrs(AttrVec());
2117
2118  for (specific_attr_iterator<InheritableAttr>
2119         i = Old->specific_attr_begin<InheritableAttr>(),
2120         e = Old->specific_attr_end<InheritableAttr>();
2121       i != e; ++i) {
2122    bool Override = false;
2123    // Ignore deprecated/unavailable/availability attributes if requested.
2124    if (isa<DeprecatedAttr>(*i) ||
2125        isa<UnavailableAttr>(*i) ||
2126        isa<AvailabilityAttr>(*i)) {
2127      switch (AMK) {
2128      case AMK_None:
2129        continue;
2130
2131      case AMK_Redeclaration:
2132        break;
2133
2134      case AMK_Override:
2135        Override = true;
2136        break;
2137      }
2138    }
2139
2140    if (mergeDeclAttribute(*this, New, *i, Override))
2141      foundAny = true;
2142  }
2143
2144  if (mergeAlignedAttrs(*this, New, Old))
2145    foundAny = true;
2146
2147  if (!foundAny) New->dropAttrs();
2148}
2149
2150/// mergeParamDeclAttributes - Copy attributes from the old parameter
2151/// to the new one.
2152static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
2153                                     const ParmVarDecl *oldDecl,
2154                                     Sema &S) {
2155  // C++11 [dcl.attr.depend]p2:
2156  //   The first declaration of a function shall specify the
2157  //   carries_dependency attribute for its declarator-id if any declaration
2158  //   of the function specifies the carries_dependency attribute.
2159  if (newDecl->hasAttr<CarriesDependencyAttr>() &&
2160      !oldDecl->hasAttr<CarriesDependencyAttr>()) {
2161    S.Diag(newDecl->getAttr<CarriesDependencyAttr>()->getLocation(),
2162           diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
2163    // Find the first declaration of the parameter.
2164    // FIXME: Should we build redeclaration chains for function parameters?
2165    const FunctionDecl *FirstFD =
2166      cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDeclaration();
2167    const ParmVarDecl *FirstVD =
2168      FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
2169    S.Diag(FirstVD->getLocation(),
2170           diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
2171  }
2172
2173  if (!oldDecl->hasAttrs())
2174    return;
2175
2176  bool foundAny = newDecl->hasAttrs();
2177
2178  // Ensure that any moving of objects within the allocated map is
2179  // done before we process them.
2180  if (!foundAny) newDecl->setAttrs(AttrVec());
2181
2182  for (specific_attr_iterator<InheritableParamAttr>
2183       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
2184       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
2185    if (!DeclHasAttr(newDecl, *i)) {
2186      InheritableAttr *newAttr =
2187        cast<InheritableParamAttr>((*i)->clone(S.Context));
2188      newAttr->setInherited(true);
2189      newDecl->addAttr(newAttr);
2190      foundAny = true;
2191    }
2192  }
2193
2194  if (!foundAny) newDecl->dropAttrs();
2195}
2196
2197namespace {
2198
2199/// Used in MergeFunctionDecl to keep track of function parameters in
2200/// C.
2201struct GNUCompatibleParamWarning {
2202  ParmVarDecl *OldParm;
2203  ParmVarDecl *NewParm;
2204  QualType PromotedType;
2205};
2206
2207}
2208
2209/// getSpecialMember - get the special member enum for a method.
2210Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
2211  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
2212    if (Ctor->isDefaultConstructor())
2213      return Sema::CXXDefaultConstructor;
2214
2215    if (Ctor->isCopyConstructor())
2216      return Sema::CXXCopyConstructor;
2217
2218    if (Ctor->isMoveConstructor())
2219      return Sema::CXXMoveConstructor;
2220  } else if (isa<CXXDestructorDecl>(MD)) {
2221    return Sema::CXXDestructor;
2222  } else if (MD->isCopyAssignmentOperator()) {
2223    return Sema::CXXCopyAssignment;
2224  } else if (MD->isMoveAssignmentOperator()) {
2225    return Sema::CXXMoveAssignment;
2226  }
2227
2228  return Sema::CXXInvalid;
2229}
2230
2231/// canRedefineFunction - checks if a function can be redefined. Currently,
2232/// only extern inline functions can be redefined, and even then only in
2233/// GNU89 mode.
2234static bool canRedefineFunction(const FunctionDecl *FD,
2235                                const LangOptions& LangOpts) {
2236  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
2237          !LangOpts.CPlusPlus &&
2238          FD->isInlineSpecified() &&
2239          FD->getStorageClass() == SC_Extern);
2240}
2241
2242/// Is the given calling convention the ABI default for the given
2243/// declaration?
2244static bool isABIDefaultCC(Sema &S, CallingConv CC, FunctionDecl *D) {
2245  CallingConv ABIDefaultCC;
2246  if (isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
2247    ABIDefaultCC = S.Context.getDefaultCXXMethodCallConv(D->isVariadic());
2248  } else {
2249    // Free C function or a static method.
2250    ABIDefaultCC = (S.Context.getLangOpts().MRTD ? CC_X86StdCall : CC_C);
2251  }
2252  return ABIDefaultCC == CC;
2253}
2254
2255template <typename T>
2256static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
2257  const DeclContext *DC = Old->getDeclContext();
2258  if (DC->isRecord())
2259    return false;
2260
2261  LanguageLinkage OldLinkage = Old->getLanguageLinkage();
2262  if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
2263    return true;
2264  if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
2265    return true;
2266  return false;
2267}
2268
2269/// MergeFunctionDecl - We just parsed a function 'New' from
2270/// declarator D which has the same name and scope as a previous
2271/// declaration 'Old'.  Figure out how to resolve this situation,
2272/// merging decls or emitting diagnostics as appropriate.
2273///
2274/// In C++, New and Old must be declarations that are not
2275/// overloaded. Use IsOverload to determine whether New and Old are
2276/// overloaded, and to select the Old declaration that New should be
2277/// merged with.
2278///
2279/// Returns true if there was an error, false otherwise.
2280bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, Scope *S) {
2281  // Verify the old decl was also a function.
2282  FunctionDecl *Old = 0;
2283  if (FunctionTemplateDecl *OldFunctionTemplate
2284        = dyn_cast<FunctionTemplateDecl>(OldD))
2285    Old = OldFunctionTemplate->getTemplatedDecl();
2286  else
2287    Old = dyn_cast<FunctionDecl>(OldD);
2288  if (!Old) {
2289    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
2290      if (New->getFriendObjectKind()) {
2291        Diag(New->getLocation(), diag::err_using_decl_friend);
2292        Diag(Shadow->getTargetDecl()->getLocation(),
2293             diag::note_using_decl_target);
2294        Diag(Shadow->getUsingDecl()->getLocation(),
2295             diag::note_using_decl) << 0;
2296        return true;
2297      }
2298
2299      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
2300      Diag(Shadow->getTargetDecl()->getLocation(),
2301           diag::note_using_decl_target);
2302      Diag(Shadow->getUsingDecl()->getLocation(),
2303           diag::note_using_decl) << 0;
2304      return true;
2305    }
2306
2307    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2308      << New->getDeclName();
2309    Diag(OldD->getLocation(), diag::note_previous_definition);
2310    return true;
2311  }
2312
2313  // If the old declaration is invalid, just give up here.
2314  if (Old->isInvalidDecl())
2315    return true;
2316
2317  // Determine whether the previous declaration was a definition,
2318  // implicit declaration, or a declaration.
2319  diag::kind PrevDiag;
2320  if (Old->isThisDeclarationADefinition())
2321    PrevDiag = diag::note_previous_definition;
2322  else if (Old->isImplicit())
2323    PrevDiag = diag::note_previous_implicit_declaration;
2324  else
2325    PrevDiag = diag::note_previous_declaration;
2326
2327  QualType OldQType = Context.getCanonicalType(Old->getType());
2328  QualType NewQType = Context.getCanonicalType(New->getType());
2329
2330  // Don't complain about this if we're in GNU89 mode and the old function
2331  // is an extern inline function.
2332  // Don't complain about specializations. They are not supposed to have
2333  // storage classes.
2334  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
2335      New->getStorageClass() == SC_Static &&
2336      Old->hasExternalFormalLinkage() &&
2337      !New->getTemplateSpecializationInfo() &&
2338      !canRedefineFunction(Old, getLangOpts())) {
2339    if (getLangOpts().MicrosoftExt) {
2340      Diag(New->getLocation(), diag::warn_static_non_static) << New;
2341      Diag(Old->getLocation(), PrevDiag);
2342    } else {
2343      Diag(New->getLocation(), diag::err_static_non_static) << New;
2344      Diag(Old->getLocation(), PrevDiag);
2345      return true;
2346    }
2347  }
2348
2349  // If a function is first declared with a calling convention, but is
2350  // later declared or defined without one, the second decl assumes the
2351  // calling convention of the first.
2352  //
2353  // It's OK if a function is first declared without a calling convention,
2354  // but is later declared or defined with the default calling convention.
2355  //
2356  // For the new decl, we have to look at the NON-canonical type to tell the
2357  // difference between a function that really doesn't have a calling
2358  // convention and one that is declared cdecl. That's because in
2359  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
2360  // because it is the default calling convention.
2361  //
2362  // Note also that we DO NOT return at this point, because we still have
2363  // other tests to run.
2364  const FunctionType *OldType = cast<FunctionType>(OldQType);
2365  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
2366  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
2367  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
2368  bool RequiresAdjustment = false;
2369  if (OldTypeInfo.getCC() == NewTypeInfo.getCC()) {
2370    // Fast path: nothing to do.
2371
2372  // Inherit the CC from the previous declaration if it was specified
2373  // there but not here.
2374  } else if (NewTypeInfo.getCC() == CC_Default) {
2375    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2376    RequiresAdjustment = true;
2377
2378  // Don't complain about mismatches when the default CC is
2379  // effectively the same as the explict one. Only Old decl contains correct
2380  // information about storage class of CXXMethod.
2381  } else if (OldTypeInfo.getCC() == CC_Default &&
2382             isABIDefaultCC(*this, NewTypeInfo.getCC(), Old)) {
2383    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2384    RequiresAdjustment = true;
2385
2386  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
2387                                     NewTypeInfo.getCC())) {
2388    // Calling conventions really aren't compatible, so complain.
2389    Diag(New->getLocation(), diag::err_cconv_change)
2390      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
2391      << (OldTypeInfo.getCC() == CC_Default)
2392      << (OldTypeInfo.getCC() == CC_Default ? "" :
2393          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
2394    Diag(Old->getLocation(), diag::note_previous_declaration);
2395    return true;
2396  }
2397
2398  // FIXME: diagnose the other way around?
2399  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
2400    NewTypeInfo = NewTypeInfo.withNoReturn(true);
2401    RequiresAdjustment = true;
2402  }
2403
2404  // Merge regparm attribute.
2405  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
2406      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
2407    if (NewTypeInfo.getHasRegParm()) {
2408      Diag(New->getLocation(), diag::err_regparm_mismatch)
2409        << NewType->getRegParmType()
2410        << OldType->getRegParmType();
2411      Diag(Old->getLocation(), diag::note_previous_declaration);
2412      return true;
2413    }
2414
2415    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
2416    RequiresAdjustment = true;
2417  }
2418
2419  // Merge ns_returns_retained attribute.
2420  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
2421    if (NewTypeInfo.getProducesResult()) {
2422      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
2423      Diag(Old->getLocation(), diag::note_previous_declaration);
2424      return true;
2425    }
2426
2427    NewTypeInfo = NewTypeInfo.withProducesResult(true);
2428    RequiresAdjustment = true;
2429  }
2430
2431  if (RequiresAdjustment) {
2432    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
2433    New->setType(QualType(NewType, 0));
2434    NewQType = Context.getCanonicalType(New->getType());
2435  }
2436
2437  // If this redeclaration makes the function inline, we may need to add it to
2438  // UndefinedButUsed.
2439  if (!Old->isInlined() && New->isInlined() &&
2440      !New->hasAttr<GNUInlineAttr>() &&
2441      (getLangOpts().CPlusPlus || !getLangOpts().GNUInline) &&
2442      Old->isUsed(false) &&
2443      !Old->isDefined() && !New->isThisDeclarationADefinition())
2444    UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
2445                                           SourceLocation()));
2446
2447  // If this redeclaration makes it newly gnu_inline, we don't want to warn
2448  // about it.
2449  if (New->hasAttr<GNUInlineAttr>() &&
2450      Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
2451    UndefinedButUsed.erase(Old->getCanonicalDecl());
2452  }
2453
2454  if (getLangOpts().CPlusPlus) {
2455    // (C++98 13.1p2):
2456    //   Certain function declarations cannot be overloaded:
2457    //     -- Function declarations that differ only in the return type
2458    //        cannot be overloaded.
2459
2460    // Go back to the type source info to compare the declared return types,
2461    // per C++1y [dcl.type.auto]p??:
2462    //   Redeclarations or specializations of a function or function template
2463    //   with a declared return type that uses a placeholder type shall also
2464    //   use that placeholder, not a deduced type.
2465    QualType OldDeclaredReturnType = (Old->getTypeSourceInfo()
2466      ? Old->getTypeSourceInfo()->getType()->castAs<FunctionType>()
2467      : OldType)->getResultType();
2468    QualType NewDeclaredReturnType = (New->getTypeSourceInfo()
2469      ? New->getTypeSourceInfo()->getType()->castAs<FunctionType>()
2470      : NewType)->getResultType();
2471    QualType ResQT;
2472    if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType)) {
2473      if (NewDeclaredReturnType->isObjCObjectPointerType() &&
2474          OldDeclaredReturnType->isObjCObjectPointerType())
2475        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
2476      if (ResQT.isNull()) {
2477        if (New->isCXXClassMember() && New->isOutOfLine())
2478          Diag(New->getLocation(),
2479               diag::err_member_def_does_not_match_ret_type) << New;
2480        else
2481          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
2482        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2483        return true;
2484      }
2485      else
2486        NewQType = ResQT;
2487    }
2488
2489    QualType OldReturnType = OldType->getResultType();
2490    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
2491    if (OldReturnType != NewReturnType) {
2492      // If this function has a deduced return type and has already been
2493      // defined, copy the deduced value from the old declaration.
2494      AutoType *OldAT = Old->getResultType()->getContainedAutoType();
2495      if (OldAT && OldAT->isDeduced()) {
2496        New->setType(SubstAutoType(New->getType(), OldAT->getDeducedType()));
2497        NewQType = Context.getCanonicalType(
2498            SubstAutoType(NewQType, OldAT->getDeducedType()));
2499      }
2500    }
2501
2502    const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
2503    CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
2504    if (OldMethod && NewMethod) {
2505      // Preserve triviality.
2506      NewMethod->setTrivial(OldMethod->isTrivial());
2507
2508      // MSVC allows explicit template specialization at class scope:
2509      // 2 CXMethodDecls referring to the same function will be injected.
2510      // We don't want a redeclartion error.
2511      bool IsClassScopeExplicitSpecialization =
2512                              OldMethod->isFunctionTemplateSpecialization() &&
2513                              NewMethod->isFunctionTemplateSpecialization();
2514      bool isFriend = NewMethod->getFriendObjectKind();
2515
2516      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2517          !IsClassScopeExplicitSpecialization) {
2518        //    -- Member function declarations with the same name and the
2519        //       same parameter types cannot be overloaded if any of them
2520        //       is a static member function declaration.
2521        if (OldMethod->isStatic() != NewMethod->isStatic()) {
2522          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2523          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2524          return true;
2525        }
2526
2527        // C++ [class.mem]p1:
2528        //   [...] A member shall not be declared twice in the
2529        //   member-specification, except that a nested class or member
2530        //   class template can be declared and then later defined.
2531        if (ActiveTemplateInstantiations.empty()) {
2532          unsigned NewDiag;
2533          if (isa<CXXConstructorDecl>(OldMethod))
2534            NewDiag = diag::err_constructor_redeclared;
2535          else if (isa<CXXDestructorDecl>(NewMethod))
2536            NewDiag = diag::err_destructor_redeclared;
2537          else if (isa<CXXConversionDecl>(NewMethod))
2538            NewDiag = diag::err_conv_function_redeclared;
2539          else
2540            NewDiag = diag::err_member_redeclared;
2541
2542          Diag(New->getLocation(), NewDiag);
2543        } else {
2544          Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
2545            << New << New->getType();
2546        }
2547        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2548
2549      // Complain if this is an explicit declaration of a special
2550      // member that was initially declared implicitly.
2551      //
2552      // As an exception, it's okay to befriend such methods in order
2553      // to permit the implicit constructor/destructor/operator calls.
2554      } else if (OldMethod->isImplicit()) {
2555        if (isFriend) {
2556          NewMethod->setImplicit();
2557        } else {
2558          Diag(NewMethod->getLocation(),
2559               diag::err_definition_of_implicitly_declared_member)
2560            << New << getSpecialMember(OldMethod);
2561          return true;
2562        }
2563      } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2564        Diag(NewMethod->getLocation(),
2565             diag::err_definition_of_explicitly_defaulted_member)
2566          << getSpecialMember(OldMethod);
2567        return true;
2568      }
2569    }
2570
2571    // C++11 [dcl.attr.noreturn]p1:
2572    //   The first declaration of a function shall specify the noreturn
2573    //   attribute if any declaration of that function specifies the noreturn
2574    //   attribute.
2575    if (New->hasAttr<CXX11NoReturnAttr>() &&
2576        !Old->hasAttr<CXX11NoReturnAttr>()) {
2577      Diag(New->getAttr<CXX11NoReturnAttr>()->getLocation(),
2578           diag::err_noreturn_missing_on_first_decl);
2579      Diag(Old->getFirstDeclaration()->getLocation(),
2580           diag::note_noreturn_missing_first_decl);
2581    }
2582
2583    // C++11 [dcl.attr.depend]p2:
2584    //   The first declaration of a function shall specify the
2585    //   carries_dependency attribute for its declarator-id if any declaration
2586    //   of the function specifies the carries_dependency attribute.
2587    if (New->hasAttr<CarriesDependencyAttr>() &&
2588        !Old->hasAttr<CarriesDependencyAttr>()) {
2589      Diag(New->getAttr<CarriesDependencyAttr>()->getLocation(),
2590           diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
2591      Diag(Old->getFirstDeclaration()->getLocation(),
2592           diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
2593    }
2594
2595    // (C++98 8.3.5p3):
2596    //   All declarations for a function shall agree exactly in both the
2597    //   return type and the parameter-type-list.
2598    // We also want to respect all the extended bits except noreturn.
2599
2600    // noreturn should now match unless the old type info didn't have it.
2601    QualType OldQTypeForComparison = OldQType;
2602    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
2603      assert(OldQType == QualType(OldType, 0));
2604      const FunctionType *OldTypeForComparison
2605        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
2606      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
2607      assert(OldQTypeForComparison.isCanonical());
2608    }
2609
2610    if (haveIncompatibleLanguageLinkages(Old, New)) {
2611      Diag(New->getLocation(), diag::err_different_language_linkage) << New;
2612      Diag(Old->getLocation(), PrevDiag);
2613      return true;
2614    }
2615
2616    if (OldQTypeForComparison == NewQType)
2617      return MergeCompatibleFunctionDecls(New, Old, S);
2618
2619    // Fall through for conflicting redeclarations and redefinitions.
2620  }
2621
2622  // C: Function types need to be compatible, not identical. This handles
2623  // duplicate function decls like "void f(int); void f(enum X);" properly.
2624  if (!getLangOpts().CPlusPlus &&
2625      Context.typesAreCompatible(OldQType, NewQType)) {
2626    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
2627    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
2628    const FunctionProtoType *OldProto = 0;
2629    if (isa<FunctionNoProtoType>(NewFuncType) &&
2630        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
2631      // The old declaration provided a function prototype, but the
2632      // new declaration does not. Merge in the prototype.
2633      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
2634      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
2635                                                 OldProto->arg_type_end());
2636      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
2637                                         ParamTypes,
2638                                         OldProto->getExtProtoInfo());
2639      New->setType(NewQType);
2640      New->setHasInheritedPrototype();
2641
2642      // Synthesize a parameter for each argument type.
2643      SmallVector<ParmVarDecl*, 16> Params;
2644      for (FunctionProtoType::arg_type_iterator
2645             ParamType = OldProto->arg_type_begin(),
2646             ParamEnd = OldProto->arg_type_end();
2647           ParamType != ParamEnd; ++ParamType) {
2648        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
2649                                                 SourceLocation(),
2650                                                 SourceLocation(), 0,
2651                                                 *ParamType, /*TInfo=*/0,
2652                                                 SC_None,
2653                                                 0);
2654        Param->setScopeInfo(0, Params.size());
2655        Param->setImplicit();
2656        Params.push_back(Param);
2657      }
2658
2659      New->setParams(Params);
2660    }
2661
2662    return MergeCompatibleFunctionDecls(New, Old, S);
2663  }
2664
2665  // GNU C permits a K&R definition to follow a prototype declaration
2666  // if the declared types of the parameters in the K&R definition
2667  // match the types in the prototype declaration, even when the
2668  // promoted types of the parameters from the K&R definition differ
2669  // from the types in the prototype. GCC then keeps the types from
2670  // the prototype.
2671  //
2672  // If a variadic prototype is followed by a non-variadic K&R definition,
2673  // the K&R definition becomes variadic.  This is sort of an edge case, but
2674  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2675  // C99 6.9.1p8.
2676  if (!getLangOpts().CPlusPlus &&
2677      Old->hasPrototype() && !New->hasPrototype() &&
2678      New->getType()->getAs<FunctionProtoType>() &&
2679      Old->getNumParams() == New->getNumParams()) {
2680    SmallVector<QualType, 16> ArgTypes;
2681    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2682    const FunctionProtoType *OldProto
2683      = Old->getType()->getAs<FunctionProtoType>();
2684    const FunctionProtoType *NewProto
2685      = New->getType()->getAs<FunctionProtoType>();
2686
2687    // Determine whether this is the GNU C extension.
2688    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2689                                               NewProto->getResultType());
2690    bool LooseCompatible = !MergedReturn.isNull();
2691    for (unsigned Idx = 0, End = Old->getNumParams();
2692         LooseCompatible && Idx != End; ++Idx) {
2693      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2694      ParmVarDecl *NewParm = New->getParamDecl(Idx);
2695      if (Context.typesAreCompatible(OldParm->getType(),
2696                                     NewProto->getArgType(Idx))) {
2697        ArgTypes.push_back(NewParm->getType());
2698      } else if (Context.typesAreCompatible(OldParm->getType(),
2699                                            NewParm->getType(),
2700                                            /*CompareUnqualified=*/true)) {
2701        GNUCompatibleParamWarning Warn
2702          = { OldParm, NewParm, NewProto->getArgType(Idx) };
2703        Warnings.push_back(Warn);
2704        ArgTypes.push_back(NewParm->getType());
2705      } else
2706        LooseCompatible = false;
2707    }
2708
2709    if (LooseCompatible) {
2710      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2711        Diag(Warnings[Warn].NewParm->getLocation(),
2712             diag::ext_param_promoted_not_compatible_with_prototype)
2713          << Warnings[Warn].PromotedType
2714          << Warnings[Warn].OldParm->getType();
2715        if (Warnings[Warn].OldParm->getLocation().isValid())
2716          Diag(Warnings[Warn].OldParm->getLocation(),
2717               diag::note_previous_declaration);
2718      }
2719
2720      New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
2721                                           OldProto->getExtProtoInfo()));
2722      return MergeCompatibleFunctionDecls(New, Old, S);
2723    }
2724
2725    // Fall through to diagnose conflicting types.
2726  }
2727
2728  // A function that has already been declared has been redeclared or
2729  // defined with a different type; show an appropriate diagnostic.
2730
2731  // If the previous declaration was an implicitly-generated builtin
2732  // declaration, then at the very least we should use a specialized note.
2733  unsigned BuiltinID;
2734  if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
2735    // If it's actually a library-defined builtin function like 'malloc'
2736    // or 'printf', just warn about the incompatible redeclaration.
2737    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2738      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2739      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2740        << Old << Old->getType();
2741
2742      // If this is a global redeclaration, just forget hereafter
2743      // about the "builtin-ness" of the function.
2744      //
2745      // Doing this for local extern declarations is problematic.  If
2746      // the builtin declaration remains visible, a second invalid
2747      // local declaration will produce a hard error; if it doesn't
2748      // remain visible, a single bogus local redeclaration (which is
2749      // actually only a warning) could break all the downstream code.
2750      if (!New->getDeclContext()->isFunctionOrMethod())
2751        New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2752
2753      return false;
2754    }
2755
2756    PrevDiag = diag::note_previous_builtin_declaration;
2757  }
2758
2759  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2760  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2761  return true;
2762}
2763
2764/// \brief Completes the merge of two function declarations that are
2765/// known to be compatible.
2766///
2767/// This routine handles the merging of attributes and other
2768/// properties of function declarations form the old declaration to
2769/// the new declaration, once we know that New is in fact a
2770/// redeclaration of Old.
2771///
2772/// \returns false
2773bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
2774                                        Scope *S) {
2775  // Merge the attributes
2776  mergeDeclAttributes(New, Old);
2777
2778  // Merge "pure" flag.
2779  if (Old->isPure())
2780    New->setPure();
2781
2782  // Merge "used" flag.
2783  if (Old->isUsed(false))
2784    New->setUsed();
2785
2786  // Merge attributes from the parameters.  These can mismatch with K&R
2787  // declarations.
2788  if (New->getNumParams() == Old->getNumParams())
2789    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2790      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2791                               *this);
2792
2793  if (getLangOpts().CPlusPlus)
2794    return MergeCXXFunctionDecl(New, Old, S);
2795
2796  // Merge the function types so the we get the composite types for the return
2797  // and argument types.
2798  QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
2799  if (!Merged.isNull())
2800    New->setType(Merged);
2801
2802  return false;
2803}
2804
2805
2806void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2807                                ObjCMethodDecl *oldMethod) {
2808
2809  // Merge the attributes, including deprecated/unavailable
2810  AvailabilityMergeKind MergeKind =
2811    isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
2812                                                   : AMK_Override;
2813  mergeDeclAttributes(newMethod, oldMethod, MergeKind);
2814
2815  // Merge attributes from the parameters.
2816  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
2817                                       oe = oldMethod->param_end();
2818  for (ObjCMethodDecl::param_iterator
2819         ni = newMethod->param_begin(), ne = newMethod->param_end();
2820       ni != ne && oi != oe; ++ni, ++oi)
2821    mergeParamDeclAttributes(*ni, *oi, *this);
2822
2823  CheckObjCMethodOverride(newMethod, oldMethod);
2824}
2825
2826/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2827/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2828/// emitting diagnostics as appropriate.
2829///
2830/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2831/// to here in AddInitializerToDecl. We can't check them before the initializer
2832/// is attached.
2833void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old, bool OldWasHidden) {
2834  if (New->isInvalidDecl() || Old->isInvalidDecl())
2835    return;
2836
2837  QualType MergedT;
2838  if (getLangOpts().CPlusPlus) {
2839    if (New->getType()->isUndeducedType()) {
2840      // We don't know what the new type is until the initializer is attached.
2841      return;
2842    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2843      // These could still be something that needs exception specs checked.
2844      return MergeVarDeclExceptionSpecs(New, Old);
2845    }
2846    // C++ [basic.link]p10:
2847    //   [...] the types specified by all declarations referring to a given
2848    //   object or function shall be identical, except that declarations for an
2849    //   array object can specify array types that differ by the presence or
2850    //   absence of a major array bound (8.3.4).
2851    else if (Old->getType()->isIncompleteArrayType() &&
2852             New->getType()->isArrayType()) {
2853      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2854      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2855      if (Context.hasSameType(OldArray->getElementType(),
2856                              NewArray->getElementType()))
2857        MergedT = New->getType();
2858    } else if (Old->getType()->isArrayType() &&
2859             New->getType()->isIncompleteArrayType()) {
2860      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2861      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2862      if (Context.hasSameType(OldArray->getElementType(),
2863                              NewArray->getElementType()))
2864        MergedT = Old->getType();
2865    } else if (New->getType()->isObjCObjectPointerType()
2866               && Old->getType()->isObjCObjectPointerType()) {
2867        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2868                                                        Old->getType());
2869    }
2870  } else {
2871    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2872  }
2873  if (MergedT.isNull()) {
2874    Diag(New->getLocation(), diag::err_redefinition_different_type)
2875      << New->getDeclName() << New->getType() << Old->getType();
2876    Diag(Old->getLocation(), diag::note_previous_definition);
2877    return New->setInvalidDecl();
2878  }
2879
2880  // Don't actually update the type on the new declaration if the old
2881  // declaration was a extern declaration in a different scope.
2882  if (!OldWasHidden)
2883    New->setType(MergedT);
2884}
2885
2886/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2887/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2888/// situation, merging decls or emitting diagnostics as appropriate.
2889///
2890/// Tentative definition rules (C99 6.9.2p2) are checked by
2891/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2892/// definitions here, since the initializer hasn't been attached.
2893///
2894void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous,
2895                        bool PreviousWasHidden) {
2896  // If the new decl is already invalid, don't do any other checking.
2897  if (New->isInvalidDecl())
2898    return;
2899
2900  // Verify the old decl was also a variable.
2901  VarDecl *Old = 0;
2902  if (!Previous.isSingleResult() ||
2903      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2904    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2905      << New->getDeclName();
2906    Diag(Previous.getRepresentativeDecl()->getLocation(),
2907         diag::note_previous_definition);
2908    return New->setInvalidDecl();
2909  }
2910
2911  if (!shouldLinkPossiblyHiddenDecl(Old, New))
2912    return;
2913
2914  // C++ [class.mem]p1:
2915  //   A member shall not be declared twice in the member-specification [...]
2916  //
2917  // Here, we need only consider static data members.
2918  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2919    Diag(New->getLocation(), diag::err_duplicate_member)
2920      << New->getIdentifier();
2921    Diag(Old->getLocation(), diag::note_previous_declaration);
2922    New->setInvalidDecl();
2923  }
2924
2925  mergeDeclAttributes(New, Old);
2926  // Warn if an already-declared variable is made a weak_import in a subsequent
2927  // declaration
2928  if (New->getAttr<WeakImportAttr>() &&
2929      Old->getStorageClass() == SC_None &&
2930      !Old->getAttr<WeakImportAttr>()) {
2931    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2932    Diag(Old->getLocation(), diag::note_previous_definition);
2933    // Remove weak_import attribute on new declaration.
2934    New->dropAttr<WeakImportAttr>();
2935  }
2936
2937  // Merge the types.
2938  MergeVarDeclTypes(New, Old, PreviousWasHidden);
2939  if (New->isInvalidDecl())
2940    return;
2941
2942  // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
2943  if (New->getStorageClass() == SC_Static &&
2944      !New->isStaticDataMember() &&
2945      Old->hasExternalFormalLinkage()) {
2946    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2947    Diag(Old->getLocation(), diag::note_previous_definition);
2948    return New->setInvalidDecl();
2949  }
2950  // C99 6.2.2p4:
2951  //   For an identifier declared with the storage-class specifier
2952  //   extern in a scope in which a prior declaration of that
2953  //   identifier is visible,23) if the prior declaration specifies
2954  //   internal or external linkage, the linkage of the identifier at
2955  //   the later declaration is the same as the linkage specified at
2956  //   the prior declaration. If no prior declaration is visible, or
2957  //   if the prior declaration specifies no linkage, then the
2958  //   identifier has external linkage.
2959  if (New->hasExternalStorage() && Old->hasLinkage())
2960    /* Okay */;
2961  else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
2962           !New->isStaticDataMember() &&
2963           Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
2964    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2965    Diag(Old->getLocation(), diag::note_previous_definition);
2966    return New->setInvalidDecl();
2967  }
2968
2969  // Check if extern is followed by non-extern and vice-versa.
2970  if (New->hasExternalStorage() &&
2971      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2972    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2973    Diag(Old->getLocation(), diag::note_previous_definition);
2974    return New->setInvalidDecl();
2975  }
2976  if (Old->hasLinkage() && New->isLocalVarDecl() &&
2977      !New->hasExternalStorage()) {
2978    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2979    Diag(Old->getLocation(), diag::note_previous_definition);
2980    return New->setInvalidDecl();
2981  }
2982
2983  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2984
2985  // FIXME: The test for external storage here seems wrong? We still
2986  // need to check for mismatches.
2987  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2988      // Don't complain about out-of-line definitions of static members.
2989      !(Old->getLexicalDeclContext()->isRecord() &&
2990        !New->getLexicalDeclContext()->isRecord())) {
2991    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2992    Diag(Old->getLocation(), diag::note_previous_definition);
2993    return New->setInvalidDecl();
2994  }
2995
2996  if (New->getTLSKind() != Old->getTLSKind()) {
2997    if (!Old->getTLSKind()) {
2998      Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2999      Diag(Old->getLocation(), diag::note_previous_declaration);
3000    } else if (!New->getTLSKind()) {
3001      Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
3002      Diag(Old->getLocation(), diag::note_previous_declaration);
3003    } else {
3004      // Do not allow redeclaration to change the variable between requiring
3005      // static and dynamic initialization.
3006      // FIXME: GCC allows this, but uses the TLS keyword on the first
3007      // declaration to determine the kind. Do we need to be compatible here?
3008      Diag(New->getLocation(), diag::err_thread_thread_different_kind)
3009        << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
3010      Diag(Old->getLocation(), diag::note_previous_declaration);
3011    }
3012  }
3013
3014  // C++ doesn't have tentative definitions, so go right ahead and check here.
3015  const VarDecl *Def;
3016  if (getLangOpts().CPlusPlus &&
3017      New->isThisDeclarationADefinition() == VarDecl::Definition &&
3018      (Def = Old->getDefinition())) {
3019    Diag(New->getLocation(), diag::err_redefinition) << New;
3020    Diag(Def->getLocation(), diag::note_previous_definition);
3021    New->setInvalidDecl();
3022    return;
3023  }
3024
3025  if (haveIncompatibleLanguageLinkages(Old, New)) {
3026    Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3027    Diag(Old->getLocation(), diag::note_previous_definition);
3028    New->setInvalidDecl();
3029    return;
3030  }
3031
3032  // Merge "used" flag.
3033  if (Old->isUsed(false))
3034    New->setUsed();
3035
3036  // Keep a chain of previous declarations.
3037  New->setPreviousDeclaration(Old);
3038
3039  // Inherit access appropriately.
3040  New->setAccess(Old->getAccess());
3041}
3042
3043/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
3044/// no declarator (e.g. "struct foo;") is parsed.
3045Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
3046                                       DeclSpec &DS) {
3047  return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
3048}
3049
3050static void HandleTagNumbering(Sema &S, const TagDecl *Tag) {
3051  if (isa<CXXRecordDecl>(Tag->getParent())) {
3052    // If this tag is the direct child of a class, number it if
3053    // it is anonymous.
3054    if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
3055      return;
3056    MangleNumberingContext &MCtx =
3057        S.Context.getManglingNumberContext(Tag->getParent());
3058    S.Context.setManglingNumber(Tag, MCtx.getManglingNumber(Tag));
3059    return;
3060  }
3061
3062  // If this tag isn't a direct child of a class, number it if it is local.
3063  Decl *ManglingContextDecl;
3064  if (MangleNumberingContext *MCtx =
3065          S.getCurrentMangleNumberContext(Tag->getDeclContext(),
3066                                          ManglingContextDecl)) {
3067    S.Context.setManglingNumber(Tag, MCtx->getManglingNumber(Tag));
3068  }
3069}
3070
3071/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
3072/// no declarator (e.g. "struct foo;") is parsed. It also accepts template
3073/// parameters to cope with template friend declarations.
3074Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
3075                                       DeclSpec &DS,
3076                                       MultiTemplateParamsArg TemplateParams,
3077                                       bool IsExplicitInstantiation) {
3078  Decl *TagD = 0;
3079  TagDecl *Tag = 0;
3080  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
3081      DS.getTypeSpecType() == DeclSpec::TST_struct ||
3082      DS.getTypeSpecType() == DeclSpec::TST_interface ||
3083      DS.getTypeSpecType() == DeclSpec::TST_union ||
3084      DS.getTypeSpecType() == DeclSpec::TST_enum) {
3085    TagD = DS.getRepAsDecl();
3086
3087    if (!TagD) // We probably had an error
3088      return 0;
3089
3090    // Note that the above type specs guarantee that the
3091    // type rep is a Decl, whereas in many of the others
3092    // it's a Type.
3093    if (isa<TagDecl>(TagD))
3094      Tag = cast<TagDecl>(TagD);
3095    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
3096      Tag = CTD->getTemplatedDecl();
3097  }
3098
3099  if (Tag) {
3100    HandleTagNumbering(*this, Tag);
3101    Tag->setFreeStanding();
3102    if (Tag->isInvalidDecl())
3103      return Tag;
3104  }
3105
3106  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
3107    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
3108    // or incomplete types shall not be restrict-qualified."
3109    if (TypeQuals & DeclSpec::TQ_restrict)
3110      Diag(DS.getRestrictSpecLoc(),
3111           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
3112           << DS.getSourceRange();
3113  }
3114
3115  if (DS.isConstexprSpecified()) {
3116    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
3117    // and definitions of functions and variables.
3118    if (Tag)
3119      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
3120        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3121            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3122            DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3123            DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4);
3124    else
3125      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
3126    // Don't emit warnings after this error.
3127    return TagD;
3128  }
3129
3130  DiagnoseFunctionSpecifiers(DS);
3131
3132  if (DS.isFriendSpecified()) {
3133    // If we're dealing with a decl but not a TagDecl, assume that
3134    // whatever routines created it handled the friendship aspect.
3135    if (TagD && !Tag)
3136      return 0;
3137    return ActOnFriendTypeDecl(S, DS, TemplateParams);
3138  }
3139
3140  CXXScopeSpec &SS = DS.getTypeSpecScope();
3141  bool IsExplicitSpecialization =
3142    !TemplateParams.empty() && TemplateParams.back()->size() == 0;
3143  if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
3144      !IsExplicitInstantiation && !IsExplicitSpecialization) {
3145    // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
3146    // nested-name-specifier unless it is an explicit instantiation
3147    // or an explicit specialization.
3148    // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
3149    Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
3150      << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3151          DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3152          DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3153          DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4)
3154      << SS.getRange();
3155    return 0;
3156  }
3157
3158  // Track whether this decl-specifier declares anything.
3159  bool DeclaresAnything = true;
3160
3161  // Handle anonymous struct definitions.
3162  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
3163    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
3164        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
3165      if (getLangOpts().CPlusPlus ||
3166          Record->getDeclContext()->isRecord())
3167        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
3168
3169      DeclaresAnything = false;
3170    }
3171  }
3172
3173  // Check for Microsoft C extension: anonymous struct member.
3174  if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
3175      CurContext->isRecord() &&
3176      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
3177    // Handle 2 kinds of anonymous struct:
3178    //   struct STRUCT;
3179    // and
3180    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
3181    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
3182    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
3183        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
3184         DS.getRepAsType().get()->isStructureType())) {
3185      Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
3186        << DS.getSourceRange();
3187      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
3188    }
3189  }
3190
3191  // Skip all the checks below if we have a type error.
3192  if (DS.getTypeSpecType() == DeclSpec::TST_error ||
3193      (TagD && TagD->isInvalidDecl()))
3194    return TagD;
3195
3196  if (getLangOpts().CPlusPlus &&
3197      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
3198    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
3199      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
3200          !Enum->getIdentifier() && !Enum->isInvalidDecl())
3201        DeclaresAnything = false;
3202
3203  if (!DS.isMissingDeclaratorOk()) {
3204    // Customize diagnostic for a typedef missing a name.
3205    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
3206      Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
3207        << DS.getSourceRange();
3208    else
3209      DeclaresAnything = false;
3210  }
3211
3212  if (DS.isModulePrivateSpecified() &&
3213      Tag && Tag->getDeclContext()->isFunctionOrMethod())
3214    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
3215      << Tag->getTagKind()
3216      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
3217
3218  ActOnDocumentableDecl(TagD);
3219
3220  // C 6.7/2:
3221  //   A declaration [...] shall declare at least a declarator [...], a tag,
3222  //   or the members of an enumeration.
3223  // C++ [dcl.dcl]p3:
3224  //   [If there are no declarators], and except for the declaration of an
3225  //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
3226  //   names into the program, or shall redeclare a name introduced by a
3227  //   previous declaration.
3228  if (!DeclaresAnything) {
3229    // In C, we allow this as a (popular) extension / bug. Don't bother
3230    // producing further diagnostics for redundant qualifiers after this.
3231    Diag(DS.getLocStart(), diag::ext_no_declarators) << DS.getSourceRange();
3232    return TagD;
3233  }
3234
3235  // C++ [dcl.stc]p1:
3236  //   If a storage-class-specifier appears in a decl-specifier-seq, [...] the
3237  //   init-declarator-list of the declaration shall not be empty.
3238  // C++ [dcl.fct.spec]p1:
3239  //   If a cv-qualifier appears in a decl-specifier-seq, the
3240  //   init-declarator-list of the declaration shall not be empty.
3241  //
3242  // Spurious qualifiers here appear to be valid in C.
3243  unsigned DiagID = diag::warn_standalone_specifier;
3244  if (getLangOpts().CPlusPlus)
3245    DiagID = diag::ext_standalone_specifier;
3246
3247  // Note that a linkage-specification sets a storage class, but
3248  // 'extern "C" struct foo;' is actually valid and not theoretically
3249  // useless.
3250  if (DeclSpec::SCS SCS = DS.getStorageClassSpec())
3251    if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
3252      Diag(DS.getStorageClassSpecLoc(), DiagID)
3253        << DeclSpec::getSpecifierName(SCS);
3254
3255  if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
3256    Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
3257      << DeclSpec::getSpecifierName(TSCS);
3258  if (DS.getTypeQualifiers()) {
3259    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3260      Diag(DS.getConstSpecLoc(), DiagID) << "const";
3261    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3262      Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
3263    // Restrict is covered above.
3264    if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
3265      Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
3266  }
3267
3268  // Warn about ignored type attributes, for example:
3269  // __attribute__((aligned)) struct A;
3270  // Attributes should be placed after tag to apply to type declaration.
3271  if (!DS.getAttributes().empty()) {
3272    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
3273    if (TypeSpecType == DeclSpec::TST_class ||
3274        TypeSpecType == DeclSpec::TST_struct ||
3275        TypeSpecType == DeclSpec::TST_interface ||
3276        TypeSpecType == DeclSpec::TST_union ||
3277        TypeSpecType == DeclSpec::TST_enum) {
3278      AttributeList* attrs = DS.getAttributes().getList();
3279      while (attrs) {
3280        Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored)
3281        << attrs->getName()
3282        << (TypeSpecType == DeclSpec::TST_class ? 0 :
3283            TypeSpecType == DeclSpec::TST_struct ? 1 :
3284            TypeSpecType == DeclSpec::TST_union ? 2 :
3285            TypeSpecType == DeclSpec::TST_interface ? 3 : 4);
3286        attrs = attrs->getNext();
3287      }
3288    }
3289  }
3290
3291  return TagD;
3292}
3293
3294/// We are trying to inject an anonymous member into the given scope;
3295/// check if there's an existing declaration that can't be overloaded.
3296///
3297/// \return true if this is a forbidden redeclaration
3298static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
3299                                         Scope *S,
3300                                         DeclContext *Owner,
3301                                         DeclarationName Name,
3302                                         SourceLocation NameLoc,
3303                                         unsigned diagnostic) {
3304  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
3305                 Sema::ForRedeclaration);
3306  if (!SemaRef.LookupName(R, S)) return false;
3307
3308  if (R.getAsSingle<TagDecl>())
3309    return false;
3310
3311  // Pick a representative declaration.
3312  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
3313  assert(PrevDecl && "Expected a non-null Decl");
3314
3315  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
3316    return false;
3317
3318  SemaRef.Diag(NameLoc, diagnostic) << Name;
3319  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3320
3321  return true;
3322}
3323
3324/// InjectAnonymousStructOrUnionMembers - Inject the members of the
3325/// anonymous struct or union AnonRecord into the owning context Owner
3326/// and scope S. This routine will be invoked just after we realize
3327/// that an unnamed union or struct is actually an anonymous union or
3328/// struct, e.g.,
3329///
3330/// @code
3331/// union {
3332///   int i;
3333///   float f;
3334/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
3335///    // f into the surrounding scope.x
3336/// @endcode
3337///
3338/// This routine is recursive, injecting the names of nested anonymous
3339/// structs/unions into the owning context and scope as well.
3340static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
3341                                         DeclContext *Owner,
3342                                         RecordDecl *AnonRecord,
3343                                         AccessSpecifier AS,
3344                                         SmallVectorImpl<NamedDecl *> &Chaining,
3345                                         bool MSAnonStruct) {
3346  unsigned diagKind
3347    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
3348                            : diag::err_anonymous_struct_member_redecl;
3349
3350  bool Invalid = false;
3351
3352  // Look every FieldDecl and IndirectFieldDecl with a name.
3353  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
3354                               DEnd = AnonRecord->decls_end();
3355       D != DEnd; ++D) {
3356    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
3357        cast<NamedDecl>(*D)->getDeclName()) {
3358      ValueDecl *VD = cast<ValueDecl>(*D);
3359      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
3360                                       VD->getLocation(), diagKind)) {
3361        // C++ [class.union]p2:
3362        //   The names of the members of an anonymous union shall be
3363        //   distinct from the names of any other entity in the
3364        //   scope in which the anonymous union is declared.
3365        Invalid = true;
3366      } else {
3367        // C++ [class.union]p2:
3368        //   For the purpose of name lookup, after the anonymous union
3369        //   definition, the members of the anonymous union are
3370        //   considered to have been defined in the scope in which the
3371        //   anonymous union is declared.
3372        unsigned OldChainingSize = Chaining.size();
3373        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
3374          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
3375               PE = IF->chain_end(); PI != PE; ++PI)
3376            Chaining.push_back(*PI);
3377        else
3378          Chaining.push_back(VD);
3379
3380        assert(Chaining.size() >= 2);
3381        NamedDecl **NamedChain =
3382          new (SemaRef.Context)NamedDecl*[Chaining.size()];
3383        for (unsigned i = 0; i < Chaining.size(); i++)
3384          NamedChain[i] = Chaining[i];
3385
3386        IndirectFieldDecl* IndirectField =
3387          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
3388                                    VD->getIdentifier(), VD->getType(),
3389                                    NamedChain, Chaining.size());
3390
3391        IndirectField->setAccess(AS);
3392        IndirectField->setImplicit();
3393        SemaRef.PushOnScopeChains(IndirectField, S);
3394
3395        // That includes picking up the appropriate access specifier.
3396        if (AS != AS_none) IndirectField->setAccess(AS);
3397
3398        Chaining.resize(OldChainingSize);
3399      }
3400    }
3401  }
3402
3403  return Invalid;
3404}
3405
3406/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
3407/// a VarDecl::StorageClass. Any error reporting is up to the caller:
3408/// illegal input values are mapped to SC_None.
3409static StorageClass
3410StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
3411  DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
3412  assert(StorageClassSpec != DeclSpec::SCS_typedef &&
3413         "Parser allowed 'typedef' as storage class VarDecl.");
3414  switch (StorageClassSpec) {
3415  case DeclSpec::SCS_unspecified:    return SC_None;
3416  case DeclSpec::SCS_extern:
3417    if (DS.isExternInLinkageSpec())
3418      return SC_None;
3419    return SC_Extern;
3420  case DeclSpec::SCS_static:         return SC_Static;
3421  case DeclSpec::SCS_auto:           return SC_Auto;
3422  case DeclSpec::SCS_register:       return SC_Register;
3423  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
3424    // Illegal SCSs map to None: error reporting is up to the caller.
3425  case DeclSpec::SCS_mutable:        // Fall through.
3426  case DeclSpec::SCS_typedef:        return SC_None;
3427  }
3428  llvm_unreachable("unknown storage class specifier");
3429}
3430
3431/// BuildAnonymousStructOrUnion - Handle the declaration of an
3432/// anonymous structure or union. Anonymous unions are a C++ feature
3433/// (C++ [class.union]) and a C11 feature; anonymous structures
3434/// are a C11 feature and GNU C++ extension.
3435Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
3436                                             AccessSpecifier AS,
3437                                             RecordDecl *Record) {
3438  DeclContext *Owner = Record->getDeclContext();
3439
3440  // Diagnose whether this anonymous struct/union is an extension.
3441  if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
3442    Diag(Record->getLocation(), diag::ext_anonymous_union);
3443  else if (!Record->isUnion() && getLangOpts().CPlusPlus)
3444    Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
3445  else if (!Record->isUnion() && !getLangOpts().C11)
3446    Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
3447
3448  // C and C++ require different kinds of checks for anonymous
3449  // structs/unions.
3450  bool Invalid = false;
3451  if (getLangOpts().CPlusPlus) {
3452    const char* PrevSpec = 0;
3453    unsigned DiagID;
3454    if (Record->isUnion()) {
3455      // C++ [class.union]p6:
3456      //   Anonymous unions declared in a named namespace or in the
3457      //   global namespace shall be declared static.
3458      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
3459          (isa<TranslationUnitDecl>(Owner) ||
3460           (isa<NamespaceDecl>(Owner) &&
3461            cast<NamespaceDecl>(Owner)->getDeclName()))) {
3462        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
3463          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
3464
3465        // Recover by adding 'static'.
3466        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
3467                               PrevSpec, DiagID);
3468      }
3469      // C++ [class.union]p6:
3470      //   A storage class is not allowed in a declaration of an
3471      //   anonymous union in a class scope.
3472      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
3473               isa<RecordDecl>(Owner)) {
3474        Diag(DS.getStorageClassSpecLoc(),
3475             diag::err_anonymous_union_with_storage_spec)
3476          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
3477
3478        // Recover by removing the storage specifier.
3479        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
3480                               SourceLocation(),
3481                               PrevSpec, DiagID);
3482      }
3483    }
3484
3485    // Ignore const/volatile/restrict qualifiers.
3486    if (DS.getTypeQualifiers()) {
3487      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3488        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
3489          << Record->isUnion() << "const"
3490          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
3491      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3492        Diag(DS.getVolatileSpecLoc(),
3493             diag::ext_anonymous_struct_union_qualified)
3494          << Record->isUnion() << "volatile"
3495          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
3496      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
3497        Diag(DS.getRestrictSpecLoc(),
3498             diag::ext_anonymous_struct_union_qualified)
3499          << Record->isUnion() << "restrict"
3500          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
3501      if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
3502        Diag(DS.getAtomicSpecLoc(),
3503             diag::ext_anonymous_struct_union_qualified)
3504          << Record->isUnion() << "_Atomic"
3505          << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
3506
3507      DS.ClearTypeQualifiers();
3508    }
3509
3510    // C++ [class.union]p2:
3511    //   The member-specification of an anonymous union shall only
3512    //   define non-static data members. [Note: nested types and
3513    //   functions cannot be declared within an anonymous union. ]
3514    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
3515                                 MemEnd = Record->decls_end();
3516         Mem != MemEnd; ++Mem) {
3517      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
3518        // C++ [class.union]p3:
3519        //   An anonymous union shall not have private or protected
3520        //   members (clause 11).
3521        assert(FD->getAccess() != AS_none);
3522        if (FD->getAccess() != AS_public) {
3523          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
3524            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
3525          Invalid = true;
3526        }
3527
3528        // C++ [class.union]p1
3529        //   An object of a class with a non-trivial constructor, a non-trivial
3530        //   copy constructor, a non-trivial destructor, or a non-trivial copy
3531        //   assignment operator cannot be a member of a union, nor can an
3532        //   array of such objects.
3533        if (CheckNontrivialField(FD))
3534          Invalid = true;
3535      } else if ((*Mem)->isImplicit()) {
3536        // Any implicit members are fine.
3537      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
3538        // This is a type that showed up in an
3539        // elaborated-type-specifier inside the anonymous struct or
3540        // union, but which actually declares a type outside of the
3541        // anonymous struct or union. It's okay.
3542      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
3543        if (!MemRecord->isAnonymousStructOrUnion() &&
3544            MemRecord->getDeclName()) {
3545          // Visual C++ allows type definition in anonymous struct or union.
3546          if (getLangOpts().MicrosoftExt)
3547            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
3548              << (int)Record->isUnion();
3549          else {
3550            // This is a nested type declaration.
3551            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
3552              << (int)Record->isUnion();
3553            Invalid = true;
3554          }
3555        } else {
3556          // This is an anonymous type definition within another anonymous type.
3557          // This is a popular extension, provided by Plan9, MSVC and GCC, but
3558          // not part of standard C++.
3559          Diag(MemRecord->getLocation(),
3560               diag::ext_anonymous_record_with_anonymous_type)
3561            << (int)Record->isUnion();
3562        }
3563      } else if (isa<AccessSpecDecl>(*Mem)) {
3564        // Any access specifier is fine.
3565      } else {
3566        // We have something that isn't a non-static data
3567        // member. Complain about it.
3568        unsigned DK = diag::err_anonymous_record_bad_member;
3569        if (isa<TypeDecl>(*Mem))
3570          DK = diag::err_anonymous_record_with_type;
3571        else if (isa<FunctionDecl>(*Mem))
3572          DK = diag::err_anonymous_record_with_function;
3573        else if (isa<VarDecl>(*Mem))
3574          DK = diag::err_anonymous_record_with_static;
3575
3576        // Visual C++ allows type definition in anonymous struct or union.
3577        if (getLangOpts().MicrosoftExt &&
3578            DK == diag::err_anonymous_record_with_type)
3579          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
3580            << (int)Record->isUnion();
3581        else {
3582          Diag((*Mem)->getLocation(), DK)
3583              << (int)Record->isUnion();
3584          Invalid = true;
3585        }
3586      }
3587    }
3588  }
3589
3590  if (!Record->isUnion() && !Owner->isRecord()) {
3591    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
3592      << (int)getLangOpts().CPlusPlus;
3593    Invalid = true;
3594  }
3595
3596  // Mock up a declarator.
3597  Declarator Dc(DS, Declarator::MemberContext);
3598  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3599  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
3600
3601  // Create a declaration for this anonymous struct/union.
3602  NamedDecl *Anon = 0;
3603  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
3604    Anon = FieldDecl::Create(Context, OwningClass,
3605                             DS.getLocStart(),
3606                             Record->getLocation(),
3607                             /*IdentifierInfo=*/0,
3608                             Context.getTypeDeclType(Record),
3609                             TInfo,
3610                             /*BitWidth=*/0, /*Mutable=*/false,
3611                             /*InitStyle=*/ICIS_NoInit);
3612    Anon->setAccess(AS);
3613    if (getLangOpts().CPlusPlus)
3614      FieldCollector->Add(cast<FieldDecl>(Anon));
3615  } else {
3616    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
3617    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
3618    if (SCSpec == DeclSpec::SCS_mutable) {
3619      // mutable can only appear on non-static class members, so it's always
3620      // an error here
3621      Diag(Record->getLocation(), diag::err_mutable_nonmember);
3622      Invalid = true;
3623      SC = SC_None;
3624    }
3625
3626    Anon = VarDecl::Create(Context, Owner,
3627                           DS.getLocStart(),
3628                           Record->getLocation(), /*IdentifierInfo=*/0,
3629                           Context.getTypeDeclType(Record),
3630                           TInfo, SC);
3631
3632    // Default-initialize the implicit variable. This initialization will be
3633    // trivial in almost all cases, except if a union member has an in-class
3634    // initializer:
3635    //   union { int n = 0; };
3636    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
3637  }
3638  Anon->setImplicit();
3639
3640  // Add the anonymous struct/union object to the current
3641  // context. We'll be referencing this object when we refer to one of
3642  // its members.
3643  Owner->addDecl(Anon);
3644
3645  // Inject the members of the anonymous struct/union into the owning
3646  // context and into the identifier resolver chain for name lookup
3647  // purposes.
3648  SmallVector<NamedDecl*, 2> Chain;
3649  Chain.push_back(Anon);
3650
3651  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
3652                                          Chain, false))
3653    Invalid = true;
3654
3655  // Mark this as an anonymous struct/union type. Note that we do not
3656  // do this until after we have already checked and injected the
3657  // members of this anonymous struct/union type, because otherwise
3658  // the members could be injected twice: once by DeclContext when it
3659  // builds its lookup table, and once by
3660  // InjectAnonymousStructOrUnionMembers.
3661  Record->setAnonymousStructOrUnion(true);
3662
3663  if (Invalid)
3664    Anon->setInvalidDecl();
3665
3666  return Anon;
3667}
3668
3669/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
3670/// Microsoft C anonymous structure.
3671/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
3672/// Example:
3673///
3674/// struct A { int a; };
3675/// struct B { struct A; int b; };
3676///
3677/// void foo() {
3678///   B var;
3679///   var.a = 3;
3680/// }
3681///
3682Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
3683                                           RecordDecl *Record) {
3684
3685  // If there is no Record, get the record via the typedef.
3686  if (!Record)
3687    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
3688
3689  // Mock up a declarator.
3690  Declarator Dc(DS, Declarator::TypeNameContext);
3691  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3692  assert(TInfo && "couldn't build declarator info for anonymous struct");
3693
3694  // Create a declaration for this anonymous struct.
3695  NamedDecl* Anon = FieldDecl::Create(Context,
3696                             cast<RecordDecl>(CurContext),
3697                             DS.getLocStart(),
3698                             DS.getLocStart(),
3699                             /*IdentifierInfo=*/0,
3700                             Context.getTypeDeclType(Record),
3701                             TInfo,
3702                             /*BitWidth=*/0, /*Mutable=*/false,
3703                             /*InitStyle=*/ICIS_NoInit);
3704  Anon->setImplicit();
3705
3706  // Add the anonymous struct object to the current context.
3707  CurContext->addDecl(Anon);
3708
3709  // Inject the members of the anonymous struct into the current
3710  // context and into the identifier resolver chain for name lookup
3711  // purposes.
3712  SmallVector<NamedDecl*, 2> Chain;
3713  Chain.push_back(Anon);
3714
3715  RecordDecl *RecordDef = Record->getDefinition();
3716  if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
3717                                                        RecordDef, AS_none,
3718                                                        Chain, true))
3719    Anon->setInvalidDecl();
3720
3721  return Anon;
3722}
3723
3724/// GetNameForDeclarator - Determine the full declaration name for the
3725/// given Declarator.
3726DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
3727  return GetNameFromUnqualifiedId(D.getName());
3728}
3729
3730/// \brief Retrieves the declaration name from a parsed unqualified-id.
3731DeclarationNameInfo
3732Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
3733  DeclarationNameInfo NameInfo;
3734  NameInfo.setLoc(Name.StartLocation);
3735
3736  switch (Name.getKind()) {
3737
3738  case UnqualifiedId::IK_ImplicitSelfParam:
3739  case UnqualifiedId::IK_Identifier:
3740    NameInfo.setName(Name.Identifier);
3741    NameInfo.setLoc(Name.StartLocation);
3742    return NameInfo;
3743
3744  case UnqualifiedId::IK_OperatorFunctionId:
3745    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
3746                                           Name.OperatorFunctionId.Operator));
3747    NameInfo.setLoc(Name.StartLocation);
3748    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
3749      = Name.OperatorFunctionId.SymbolLocations[0];
3750    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
3751      = Name.EndLocation.getRawEncoding();
3752    return NameInfo;
3753
3754  case UnqualifiedId::IK_LiteralOperatorId:
3755    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
3756                                                           Name.Identifier));
3757    NameInfo.setLoc(Name.StartLocation);
3758    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3759    return NameInfo;
3760
3761  case UnqualifiedId::IK_ConversionFunctionId: {
3762    TypeSourceInfo *TInfo;
3763    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3764    if (Ty.isNull())
3765      return DeclarationNameInfo();
3766    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3767                                               Context.getCanonicalType(Ty)));
3768    NameInfo.setLoc(Name.StartLocation);
3769    NameInfo.setNamedTypeInfo(TInfo);
3770    return NameInfo;
3771  }
3772
3773  case UnqualifiedId::IK_ConstructorName: {
3774    TypeSourceInfo *TInfo;
3775    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3776    if (Ty.isNull())
3777      return DeclarationNameInfo();
3778    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3779                                              Context.getCanonicalType(Ty)));
3780    NameInfo.setLoc(Name.StartLocation);
3781    NameInfo.setNamedTypeInfo(TInfo);
3782    return NameInfo;
3783  }
3784
3785  case UnqualifiedId::IK_ConstructorTemplateId: {
3786    // In well-formed code, we can only have a constructor
3787    // template-id that refers to the current context, so go there
3788    // to find the actual type being constructed.
3789    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3790    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3791      return DeclarationNameInfo();
3792
3793    // Determine the type of the class being constructed.
3794    QualType CurClassType = Context.getTypeDeclType(CurClass);
3795
3796    // FIXME: Check two things: that the template-id names the same type as
3797    // CurClassType, and that the template-id does not occur when the name
3798    // was qualified.
3799
3800    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3801                                    Context.getCanonicalType(CurClassType)));
3802    NameInfo.setLoc(Name.StartLocation);
3803    // FIXME: should we retrieve TypeSourceInfo?
3804    NameInfo.setNamedTypeInfo(0);
3805    return NameInfo;
3806  }
3807
3808  case UnqualifiedId::IK_DestructorName: {
3809    TypeSourceInfo *TInfo;
3810    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3811    if (Ty.isNull())
3812      return DeclarationNameInfo();
3813    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3814                                              Context.getCanonicalType(Ty)));
3815    NameInfo.setLoc(Name.StartLocation);
3816    NameInfo.setNamedTypeInfo(TInfo);
3817    return NameInfo;
3818  }
3819
3820  case UnqualifiedId::IK_TemplateId: {
3821    TemplateName TName = Name.TemplateId->Template.get();
3822    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3823    return Context.getNameForTemplate(TName, TNameLoc);
3824  }
3825
3826  } // switch (Name.getKind())
3827
3828  llvm_unreachable("Unknown name kind");
3829}
3830
3831static QualType getCoreType(QualType Ty) {
3832  do {
3833    if (Ty->isPointerType() || Ty->isReferenceType())
3834      Ty = Ty->getPointeeType();
3835    else if (Ty->isArrayType())
3836      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3837    else
3838      return Ty.withoutLocalFastQualifiers();
3839  } while (true);
3840}
3841
3842/// hasSimilarParameters - Determine whether the C++ functions Declaration
3843/// and Definition have "nearly" matching parameters. This heuristic is
3844/// used to improve diagnostics in the case where an out-of-line function
3845/// definition doesn't match any declaration within the class or namespace.
3846/// Also sets Params to the list of indices to the parameters that differ
3847/// between the declaration and the definition. If hasSimilarParameters
3848/// returns true and Params is empty, then all of the parameters match.
3849static bool hasSimilarParameters(ASTContext &Context,
3850                                     FunctionDecl *Declaration,
3851                                     FunctionDecl *Definition,
3852                                     SmallVectorImpl<unsigned> &Params) {
3853  Params.clear();
3854  if (Declaration->param_size() != Definition->param_size())
3855    return false;
3856  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3857    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3858    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3859
3860    // The parameter types are identical
3861    if (Context.hasSameType(DefParamTy, DeclParamTy))
3862      continue;
3863
3864    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3865    QualType DefParamBaseTy = getCoreType(DefParamTy);
3866    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3867    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3868
3869    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3870        (DeclTyName && DeclTyName == DefTyName))
3871      Params.push_back(Idx);
3872    else  // The two parameters aren't even close
3873      return false;
3874  }
3875
3876  return true;
3877}
3878
3879/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3880/// declarator needs to be rebuilt in the current instantiation.
3881/// Any bits of declarator which appear before the name are valid for
3882/// consideration here.  That's specifically the type in the decl spec
3883/// and the base type in any member-pointer chunks.
3884static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3885                                                    DeclarationName Name) {
3886  // The types we specifically need to rebuild are:
3887  //   - typenames, typeofs, and decltypes
3888  //   - types which will become injected class names
3889  // Of course, we also need to rebuild any type referencing such a
3890  // type.  It's safest to just say "dependent", but we call out a
3891  // few cases here.
3892
3893  DeclSpec &DS = D.getMutableDeclSpec();
3894  switch (DS.getTypeSpecType()) {
3895  case DeclSpec::TST_typename:
3896  case DeclSpec::TST_typeofType:
3897  case DeclSpec::TST_underlyingType:
3898  case DeclSpec::TST_atomic: {
3899    // Grab the type from the parser.
3900    TypeSourceInfo *TSI = 0;
3901    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3902    if (T.isNull() || !T->isDependentType()) break;
3903
3904    // Make sure there's a type source info.  This isn't really much
3905    // of a waste; most dependent types should have type source info
3906    // attached already.
3907    if (!TSI)
3908      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3909
3910    // Rebuild the type in the current instantiation.
3911    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3912    if (!TSI) return true;
3913
3914    // Store the new type back in the decl spec.
3915    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3916    DS.UpdateTypeRep(LocType);
3917    break;
3918  }
3919
3920  case DeclSpec::TST_decltype:
3921  case DeclSpec::TST_typeofExpr: {
3922    Expr *E = DS.getRepAsExpr();
3923    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3924    if (Result.isInvalid()) return true;
3925    DS.UpdateExprRep(Result.get());
3926    break;
3927  }
3928
3929  default:
3930    // Nothing to do for these decl specs.
3931    break;
3932  }
3933
3934  // It doesn't matter what order we do this in.
3935  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3936    DeclaratorChunk &Chunk = D.getTypeObject(I);
3937
3938    // The only type information in the declarator which can come
3939    // before the declaration name is the base type of a member
3940    // pointer.
3941    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3942      continue;
3943
3944    // Rebuild the scope specifier in-place.
3945    CXXScopeSpec &SS = Chunk.Mem.Scope();
3946    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3947      return true;
3948  }
3949
3950  return false;
3951}
3952
3953Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3954  D.setFunctionDefinitionKind(FDK_Declaration);
3955  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
3956
3957  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3958      Dcl && Dcl->getDeclContext()->isFileContext())
3959    Dcl->setTopLevelDeclInObjCContainer();
3960
3961  return Dcl;
3962}
3963
3964/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3965///   If T is the name of a class, then each of the following shall have a
3966///   name different from T:
3967///     - every static data member of class T;
3968///     - every member function of class T
3969///     - every member of class T that is itself a type;
3970/// \returns true if the declaration name violates these rules.
3971bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3972                                   DeclarationNameInfo NameInfo) {
3973  DeclarationName Name = NameInfo.getName();
3974
3975  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3976    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3977      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3978      return true;
3979    }
3980
3981  return false;
3982}
3983
3984/// \brief Diagnose a declaration whose declarator-id has the given
3985/// nested-name-specifier.
3986///
3987/// \param SS The nested-name-specifier of the declarator-id.
3988///
3989/// \param DC The declaration context to which the nested-name-specifier
3990/// resolves.
3991///
3992/// \param Name The name of the entity being declared.
3993///
3994/// \param Loc The location of the name of the entity being declared.
3995///
3996/// \returns true if we cannot safely recover from this error, false otherwise.
3997bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
3998                                        DeclarationName Name,
3999                                      SourceLocation Loc) {
4000  DeclContext *Cur = CurContext;
4001  while (isa<LinkageSpecDecl>(Cur))
4002    Cur = Cur->getParent();
4003
4004  // C++ [dcl.meaning]p1:
4005  //   A declarator-id shall not be qualified except for the definition
4006  //   of a member function (9.3) or static data member (9.4) outside of
4007  //   its class, the definition or explicit instantiation of a function
4008  //   or variable member of a namespace outside of its namespace, or the
4009  //   definition of an explicit specialization outside of its namespace,
4010  //   or the declaration of a friend function that is a member of
4011  //   another class or namespace (11.3). [...]
4012
4013  // The user provided a superfluous scope specifier that refers back to the
4014  // class or namespaces in which the entity is already declared.
4015  //
4016  // class X {
4017  //   void X::f();
4018  // };
4019  if (Cur->Equals(DC)) {
4020    Diag(Loc, LangOpts.MicrosoftExt? diag::warn_member_extra_qualification
4021                                   : diag::err_member_extra_qualification)
4022      << Name << FixItHint::CreateRemoval(SS.getRange());
4023    SS.clear();
4024    return false;
4025  }
4026
4027  // Check whether the qualifying scope encloses the scope of the original
4028  // declaration.
4029  if (!Cur->Encloses(DC)) {
4030    if (Cur->isRecord())
4031      Diag(Loc, diag::err_member_qualification)
4032        << Name << SS.getRange();
4033    else if (isa<TranslationUnitDecl>(DC))
4034      Diag(Loc, diag::err_invalid_declarator_global_scope)
4035        << Name << SS.getRange();
4036    else if (isa<FunctionDecl>(Cur))
4037      Diag(Loc, diag::err_invalid_declarator_in_function)
4038        << Name << SS.getRange();
4039    else
4040      Diag(Loc, diag::err_invalid_declarator_scope)
4041      << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
4042
4043    return true;
4044  }
4045
4046  if (Cur->isRecord()) {
4047    // Cannot qualify members within a class.
4048    Diag(Loc, diag::err_member_qualification)
4049      << Name << SS.getRange();
4050    SS.clear();
4051
4052    // C++ constructors and destructors with incorrect scopes can break
4053    // our AST invariants by having the wrong underlying types. If
4054    // that's the case, then drop this declaration entirely.
4055    if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
4056         Name.getNameKind() == DeclarationName::CXXDestructorName) &&
4057        !Context.hasSameType(Name.getCXXNameType(),
4058                             Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
4059      return true;
4060
4061    return false;
4062  }
4063
4064  // C++11 [dcl.meaning]p1:
4065  //   [...] "The nested-name-specifier of the qualified declarator-id shall
4066  //   not begin with a decltype-specifer"
4067  NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
4068  while (SpecLoc.getPrefix())
4069    SpecLoc = SpecLoc.getPrefix();
4070  if (dyn_cast_or_null<DecltypeType>(
4071        SpecLoc.getNestedNameSpecifier()->getAsType()))
4072    Diag(Loc, diag::err_decltype_in_declarator)
4073      << SpecLoc.getTypeLoc().getSourceRange();
4074
4075  return false;
4076}
4077
4078NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
4079                                  MultiTemplateParamsArg TemplateParamLists) {
4080  // TODO: consider using NameInfo for diagnostic.
4081  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4082  DeclarationName Name = NameInfo.getName();
4083
4084  // All of these full declarators require an identifier.  If it doesn't have
4085  // one, the ParsedFreeStandingDeclSpec action should be used.
4086  if (!Name) {
4087    if (!D.isInvalidType())  // Reject this if we think it is valid.
4088      Diag(D.getDeclSpec().getLocStart(),
4089           diag::err_declarator_need_ident)
4090        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
4091    return 0;
4092  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
4093    return 0;
4094
4095  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4096  // we find one that is.
4097  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4098         (S->getFlags() & Scope::TemplateParamScope) != 0)
4099    S = S->getParent();
4100
4101  DeclContext *DC = CurContext;
4102  if (D.getCXXScopeSpec().isInvalid())
4103    D.setInvalidType();
4104  else if (D.getCXXScopeSpec().isSet()) {
4105    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
4106                                        UPPC_DeclarationQualifier))
4107      return 0;
4108
4109    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
4110    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
4111    if (!DC) {
4112      // If we could not compute the declaration context, it's because the
4113      // declaration context is dependent but does not refer to a class,
4114      // class template, or class template partial specialization. Complain
4115      // and return early, to avoid the coming semantic disaster.
4116      Diag(D.getIdentifierLoc(),
4117           diag::err_template_qualified_declarator_no_match)
4118        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
4119        << D.getCXXScopeSpec().getRange();
4120      return 0;
4121    }
4122    bool IsDependentContext = DC->isDependentContext();
4123
4124    if (!IsDependentContext &&
4125        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
4126      return 0;
4127
4128    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
4129      Diag(D.getIdentifierLoc(),
4130           diag::err_member_def_undefined_record)
4131        << Name << DC << D.getCXXScopeSpec().getRange();
4132      D.setInvalidType();
4133    } else if (!D.getDeclSpec().isFriendSpecified()) {
4134      if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
4135                                      Name, D.getIdentifierLoc())) {
4136        if (DC->isRecord())
4137          return 0;
4138
4139        D.setInvalidType();
4140      }
4141    }
4142
4143    // Check whether we need to rebuild the type of the given
4144    // declaration in the current instantiation.
4145    if (EnteringContext && IsDependentContext &&
4146        TemplateParamLists.size() != 0) {
4147      ContextRAII SavedContext(*this, DC);
4148      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
4149        D.setInvalidType();
4150    }
4151  }
4152
4153  if (DiagnoseClassNameShadow(DC, NameInfo))
4154    // If this is a typedef, we'll end up spewing multiple diagnostics.
4155    // Just return early; it's safer.
4156    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4157      return 0;
4158
4159  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4160  QualType R = TInfo->getType();
4161
4162  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
4163                                      UPPC_DeclarationType))
4164    D.setInvalidType();
4165
4166  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
4167                        ForRedeclaration);
4168
4169  // See if this is a redefinition of a variable in the same scope.
4170  if (!D.getCXXScopeSpec().isSet()) {
4171    bool IsLinkageLookup = false;
4172
4173    // If the declaration we're planning to build will be a function
4174    // or object with linkage, then look for another declaration with
4175    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
4176    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4177      /* Do nothing*/;
4178    else if (R->isFunctionType()) {
4179      if (CurContext->isFunctionOrMethod() ||
4180          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
4181        IsLinkageLookup = true;
4182    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
4183      IsLinkageLookup = true;
4184    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
4185             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
4186      IsLinkageLookup = true;
4187
4188    if (IsLinkageLookup)
4189      Previous.clear(LookupRedeclarationWithLinkage);
4190
4191    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
4192  } else { // Something like "int foo::x;"
4193    LookupQualifiedName(Previous, DC);
4194
4195    // C++ [dcl.meaning]p1:
4196    //   When the declarator-id is qualified, the declaration shall refer to a
4197    //  previously declared member of the class or namespace to which the
4198    //  qualifier refers (or, in the case of a namespace, of an element of the
4199    //  inline namespace set of that namespace (7.3.1)) or to a specialization
4200    //  thereof; [...]
4201    //
4202    // Note that we already checked the context above, and that we do not have
4203    // enough information to make sure that Previous contains the declaration
4204    // we want to match. For example, given:
4205    //
4206    //   class X {
4207    //     void f();
4208    //     void f(float);
4209    //   };
4210    //
4211    //   void X::f(int) { } // ill-formed
4212    //
4213    // In this case, Previous will point to the overload set
4214    // containing the two f's declared in X, but neither of them
4215    // matches.
4216
4217    // C++ [dcl.meaning]p1:
4218    //   [...] the member shall not merely have been introduced by a
4219    //   using-declaration in the scope of the class or namespace nominated by
4220    //   the nested-name-specifier of the declarator-id.
4221    RemoveUsingDecls(Previous);
4222  }
4223
4224  if (Previous.isSingleResult() &&
4225      Previous.getFoundDecl()->isTemplateParameter()) {
4226    // Maybe we will complain about the shadowed template parameter.
4227    if (!D.isInvalidType())
4228      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
4229                                      Previous.getFoundDecl());
4230
4231    // Just pretend that we didn't see the previous declaration.
4232    Previous.clear();
4233  }
4234
4235  // In C++, the previous declaration we find might be a tag type
4236  // (class or enum). In this case, the new declaration will hide the
4237  // tag type. Note that this does does not apply if we're declaring a
4238  // typedef (C++ [dcl.typedef]p4).
4239  if (Previous.isSingleTagDecl() &&
4240      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
4241    Previous.clear();
4242
4243  // Check that there are no default arguments other than in the parameters
4244  // of a function declaration (C++ only).
4245  if (getLangOpts().CPlusPlus)
4246    CheckExtraCXXDefaultArguments(D);
4247
4248  NamedDecl *New;
4249
4250  bool AddToScope = true;
4251  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
4252    if (TemplateParamLists.size()) {
4253      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
4254      return 0;
4255    }
4256
4257    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
4258  } else if (R->isFunctionType()) {
4259    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
4260                                  TemplateParamLists,
4261                                  AddToScope);
4262  } else {
4263    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
4264                                  AddToScope);
4265  }
4266
4267  if (New == 0)
4268    return 0;
4269
4270  // If this has an identifier and is not an invalid redeclaration or
4271  // function template specialization, add it to the scope stack.
4272  if (New->getDeclName() && AddToScope &&
4273       !(D.isRedeclaration() && New->isInvalidDecl()))
4274    PushOnScopeChains(New, S);
4275
4276  return New;
4277}
4278
4279/// Helper method to turn variable array types into constant array
4280/// types in certain situations which would otherwise be errors (for
4281/// GCC compatibility).
4282static QualType TryToFixInvalidVariablyModifiedType(QualType T,
4283                                                    ASTContext &Context,
4284                                                    bool &SizeIsNegative,
4285                                                    llvm::APSInt &Oversized) {
4286  // This method tries to turn a variable array into a constant
4287  // array even when the size isn't an ICE.  This is necessary
4288  // for compatibility with code that depends on gcc's buggy
4289  // constant expression folding, like struct {char x[(int)(char*)2];}
4290  SizeIsNegative = false;
4291  Oversized = 0;
4292
4293  if (T->isDependentType())
4294    return QualType();
4295
4296  QualifierCollector Qs;
4297  const Type *Ty = Qs.strip(T);
4298
4299  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
4300    QualType Pointee = PTy->getPointeeType();
4301    QualType FixedType =
4302        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
4303                                            Oversized);
4304    if (FixedType.isNull()) return FixedType;
4305    FixedType = Context.getPointerType(FixedType);
4306    return Qs.apply(Context, FixedType);
4307  }
4308  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
4309    QualType Inner = PTy->getInnerType();
4310    QualType FixedType =
4311        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
4312                                            Oversized);
4313    if (FixedType.isNull()) return FixedType;
4314    FixedType = Context.getParenType(FixedType);
4315    return Qs.apply(Context, FixedType);
4316  }
4317
4318  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
4319  if (!VLATy)
4320    return QualType();
4321  // FIXME: We should probably handle this case
4322  if (VLATy->getElementType()->isVariablyModifiedType())
4323    return QualType();
4324
4325  llvm::APSInt Res;
4326  if (!VLATy->getSizeExpr() ||
4327      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
4328    return QualType();
4329
4330  // Check whether the array size is negative.
4331  if (Res.isSigned() && Res.isNegative()) {
4332    SizeIsNegative = true;
4333    return QualType();
4334  }
4335
4336  // Check whether the array is too large to be addressed.
4337  unsigned ActiveSizeBits
4338    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
4339                                              Res);
4340  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
4341    Oversized = Res;
4342    return QualType();
4343  }
4344
4345  return Context.getConstantArrayType(VLATy->getElementType(),
4346                                      Res, ArrayType::Normal, 0);
4347}
4348
4349static void
4350FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
4351  if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
4352    PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
4353    FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
4354                                      DstPTL.getPointeeLoc());
4355    DstPTL.setStarLoc(SrcPTL.getStarLoc());
4356    return;
4357  }
4358  if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
4359    ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
4360    FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
4361                                      DstPTL.getInnerLoc());
4362    DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
4363    DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
4364    return;
4365  }
4366  ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
4367  ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
4368  TypeLoc SrcElemTL = SrcATL.getElementLoc();
4369  TypeLoc DstElemTL = DstATL.getElementLoc();
4370  DstElemTL.initializeFullCopy(SrcElemTL);
4371  DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
4372  DstATL.setSizeExpr(SrcATL.getSizeExpr());
4373  DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
4374}
4375
4376/// Helper method to turn variable array types into constant array
4377/// types in certain situations which would otherwise be errors (for
4378/// GCC compatibility).
4379static TypeSourceInfo*
4380TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
4381                                              ASTContext &Context,
4382                                              bool &SizeIsNegative,
4383                                              llvm::APSInt &Oversized) {
4384  QualType FixedTy
4385    = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
4386                                          SizeIsNegative, Oversized);
4387  if (FixedTy.isNull())
4388    return 0;
4389  TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
4390  FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
4391                                    FixedTInfo->getTypeLoc());
4392  return FixedTInfo;
4393}
4394
4395/// \brief Register the given locally-scoped extern "C" declaration so
4396/// that it can be found later for redeclarations. We include any extern "C"
4397/// declaration that is not visible in the translation unit here, not just
4398/// function-scope declarations.
4399void
4400Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
4401  if (!getLangOpts().CPlusPlus &&
4402      ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
4403    // Don't need to track declarations in the TU in C.
4404    return;
4405
4406  // Note that we have a locally-scoped external with this name.
4407  // FIXME: There can be multiple such declarations if they are functions marked
4408  // __attribute__((overloadable)) declared in function scope in C.
4409  LocallyScopedExternCDecls[ND->getDeclName()] = ND;
4410}
4411
4412NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
4413  if (ExternalSource) {
4414    // Load locally-scoped external decls from the external source.
4415    // FIXME: This is inefficient. Maybe add a DeclContext for extern "C" decls?
4416    SmallVector<NamedDecl *, 4> Decls;
4417    ExternalSource->ReadLocallyScopedExternCDecls(Decls);
4418    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
4419      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4420        = LocallyScopedExternCDecls.find(Decls[I]->getDeclName());
4421      if (Pos == LocallyScopedExternCDecls.end())
4422        LocallyScopedExternCDecls[Decls[I]->getDeclName()] = Decls[I];
4423    }
4424  }
4425
4426  NamedDecl *D = LocallyScopedExternCDecls.lookup(Name);
4427  return D ? cast<NamedDecl>(D->getMostRecentDecl()) : 0;
4428}
4429
4430/// \brief Diagnose function specifiers on a declaration of an identifier that
4431/// does not identify a function.
4432void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
4433  // FIXME: We should probably indicate the identifier in question to avoid
4434  // confusion for constructs like "inline int a(), b;"
4435  if (DS.isInlineSpecified())
4436    Diag(DS.getInlineSpecLoc(),
4437         diag::err_inline_non_function);
4438
4439  if (DS.isVirtualSpecified())
4440    Diag(DS.getVirtualSpecLoc(),
4441         diag::err_virtual_non_function);
4442
4443  if (DS.isExplicitSpecified())
4444    Diag(DS.getExplicitSpecLoc(),
4445         diag::err_explicit_non_function);
4446
4447  if (DS.isNoreturnSpecified())
4448    Diag(DS.getNoreturnSpecLoc(),
4449         diag::err_noreturn_non_function);
4450}
4451
4452NamedDecl*
4453Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
4454                             TypeSourceInfo *TInfo, LookupResult &Previous) {
4455  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
4456  if (D.getCXXScopeSpec().isSet()) {
4457    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
4458      << D.getCXXScopeSpec().getRange();
4459    D.setInvalidType();
4460    // Pretend we didn't see the scope specifier.
4461    DC = CurContext;
4462    Previous.clear();
4463  }
4464
4465  DiagnoseFunctionSpecifiers(D.getDeclSpec());
4466
4467  if (D.getDeclSpec().isConstexprSpecified())
4468    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
4469      << 1;
4470
4471  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
4472    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
4473      << D.getName().getSourceRange();
4474    return 0;
4475  }
4476
4477  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
4478  if (!NewTD) return 0;
4479
4480  // Handle attributes prior to checking for duplicates in MergeVarDecl
4481  ProcessDeclAttributes(S, NewTD, D);
4482
4483  CheckTypedefForVariablyModifiedType(S, NewTD);
4484
4485  bool Redeclaration = D.isRedeclaration();
4486  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
4487  D.setRedeclaration(Redeclaration);
4488  return ND;
4489}
4490
4491void
4492Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
4493  // C99 6.7.7p2: If a typedef name specifies a variably modified type
4494  // then it shall have block scope.
4495  // Note that variably modified types must be fixed before merging the decl so
4496  // that redeclarations will match.
4497  TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
4498  QualType T = TInfo->getType();
4499  if (T->isVariablyModifiedType()) {
4500    getCurFunction()->setHasBranchProtectedScope();
4501
4502    if (S->getFnParent() == 0) {
4503      bool SizeIsNegative;
4504      llvm::APSInt Oversized;
4505      TypeSourceInfo *FixedTInfo =
4506        TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
4507                                                      SizeIsNegative,
4508                                                      Oversized);
4509      if (FixedTInfo) {
4510        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
4511        NewTD->setTypeSourceInfo(FixedTInfo);
4512      } else {
4513        if (SizeIsNegative)
4514          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
4515        else if (T->isVariableArrayType())
4516          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
4517        else if (Oversized.getBoolValue())
4518          Diag(NewTD->getLocation(), diag::err_array_too_large)
4519            << Oversized.toString(10);
4520        else
4521          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
4522        NewTD->setInvalidDecl();
4523      }
4524    }
4525  }
4526}
4527
4528
4529/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
4530/// declares a typedef-name, either using the 'typedef' type specifier or via
4531/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
4532NamedDecl*
4533Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
4534                           LookupResult &Previous, bool &Redeclaration) {
4535  // Merge the decl with the existing one if appropriate. If the decl is
4536  // in an outer scope, it isn't the same thing.
4537  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
4538                       /*ExplicitInstantiationOrSpecialization=*/false);
4539  filterNonConflictingPreviousDecls(Context, NewTD, Previous);
4540  if (!Previous.empty()) {
4541    Redeclaration = true;
4542    MergeTypedefNameDecl(NewTD, Previous);
4543  }
4544
4545  // If this is the C FILE type, notify the AST context.
4546  if (IdentifierInfo *II = NewTD->getIdentifier())
4547    if (!NewTD->isInvalidDecl() &&
4548        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4549      if (II->isStr("FILE"))
4550        Context.setFILEDecl(NewTD);
4551      else if (II->isStr("jmp_buf"))
4552        Context.setjmp_bufDecl(NewTD);
4553      else if (II->isStr("sigjmp_buf"))
4554        Context.setsigjmp_bufDecl(NewTD);
4555      else if (II->isStr("ucontext_t"))
4556        Context.setucontext_tDecl(NewTD);
4557    }
4558
4559  return NewTD;
4560}
4561
4562/// \brief Determines whether the given declaration is an out-of-scope
4563/// previous declaration.
4564///
4565/// This routine should be invoked when name lookup has found a
4566/// previous declaration (PrevDecl) that is not in the scope where a
4567/// new declaration by the same name is being introduced. If the new
4568/// declaration occurs in a local scope, previous declarations with
4569/// linkage may still be considered previous declarations (C99
4570/// 6.2.2p4-5, C++ [basic.link]p6).
4571///
4572/// \param PrevDecl the previous declaration found by name
4573/// lookup
4574///
4575/// \param DC the context in which the new declaration is being
4576/// declared.
4577///
4578/// \returns true if PrevDecl is an out-of-scope previous declaration
4579/// for a new delcaration with the same name.
4580static bool
4581isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
4582                                ASTContext &Context) {
4583  if (!PrevDecl)
4584    return false;
4585
4586  if (!PrevDecl->hasLinkage())
4587    return false;
4588
4589  if (Context.getLangOpts().CPlusPlus) {
4590    // C++ [basic.link]p6:
4591    //   If there is a visible declaration of an entity with linkage
4592    //   having the same name and type, ignoring entities declared
4593    //   outside the innermost enclosing namespace scope, the block
4594    //   scope declaration declares that same entity and receives the
4595    //   linkage of the previous declaration.
4596    DeclContext *OuterContext = DC->getRedeclContext();
4597    if (!OuterContext->isFunctionOrMethod())
4598      // This rule only applies to block-scope declarations.
4599      return false;
4600
4601    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
4602    if (PrevOuterContext->isRecord())
4603      // We found a member function: ignore it.
4604      return false;
4605
4606    // Find the innermost enclosing namespace for the new and
4607    // previous declarations.
4608    OuterContext = OuterContext->getEnclosingNamespaceContext();
4609    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
4610
4611    // The previous declaration is in a different namespace, so it
4612    // isn't the same function.
4613    if (!OuterContext->Equals(PrevOuterContext))
4614      return false;
4615  }
4616
4617  return true;
4618}
4619
4620static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
4621  CXXScopeSpec &SS = D.getCXXScopeSpec();
4622  if (!SS.isSet()) return;
4623  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
4624}
4625
4626bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
4627  QualType type = decl->getType();
4628  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
4629  if (lifetime == Qualifiers::OCL_Autoreleasing) {
4630    // Various kinds of declaration aren't allowed to be __autoreleasing.
4631    unsigned kind = -1U;
4632    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4633      if (var->hasAttr<BlocksAttr>())
4634        kind = 0; // __block
4635      else if (!var->hasLocalStorage())
4636        kind = 1; // global
4637    } else if (isa<ObjCIvarDecl>(decl)) {
4638      kind = 3; // ivar
4639    } else if (isa<FieldDecl>(decl)) {
4640      kind = 2; // field
4641    }
4642
4643    if (kind != -1U) {
4644      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
4645        << kind;
4646    }
4647  } else if (lifetime == Qualifiers::OCL_None) {
4648    // Try to infer lifetime.
4649    if (!type->isObjCLifetimeType())
4650      return false;
4651
4652    lifetime = type->getObjCARCImplicitLifetime();
4653    type = Context.getLifetimeQualifiedType(type, lifetime);
4654    decl->setType(type);
4655  }
4656
4657  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4658    // Thread-local variables cannot have lifetime.
4659    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
4660        var->getTLSKind()) {
4661      Diag(var->getLocation(), diag::err_arc_thread_ownership)
4662        << var->getType();
4663      return true;
4664    }
4665  }
4666
4667  return false;
4668}
4669
4670static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
4671  // 'weak' only applies to declarations with external linkage.
4672  if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
4673    if (!ND.isExternallyVisible()) {
4674      S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
4675      ND.dropAttr<WeakAttr>();
4676    }
4677  }
4678  if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
4679    if (ND.isExternallyVisible()) {
4680      S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
4681      ND.dropAttr<WeakRefAttr>();
4682    }
4683  }
4684
4685  // 'selectany' only applies to externally visible varable declarations.
4686  // It does not apply to functions.
4687  if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
4688    if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
4689      S.Diag(Attr->getLocation(), diag::err_attribute_selectany_non_extern_data);
4690      ND.dropAttr<SelectAnyAttr>();
4691    }
4692  }
4693}
4694
4695/// Given that we are within the definition of the given function,
4696/// will that definition behave like C99's 'inline', where the
4697/// definition is discarded except for optimization purposes?
4698static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
4699  // Try to avoid calling GetGVALinkageForFunction.
4700
4701  // All cases of this require the 'inline' keyword.
4702  if (!FD->isInlined()) return false;
4703
4704  // This is only possible in C++ with the gnu_inline attribute.
4705  if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
4706    return false;
4707
4708  // Okay, go ahead and call the relatively-more-expensive function.
4709
4710#ifndef NDEBUG
4711  // AST quite reasonably asserts that it's working on a function
4712  // definition.  We don't really have a way to tell it that we're
4713  // currently defining the function, so just lie to it in +Asserts
4714  // builds.  This is an awful hack.
4715  FD->setLazyBody(1);
4716#endif
4717
4718  bool isC99Inline = (S.Context.GetGVALinkageForFunction(FD) == GVA_C99Inline);
4719
4720#ifndef NDEBUG
4721  FD->setLazyBody(0);
4722#endif
4723
4724  return isC99Inline;
4725}
4726
4727/// Determine whether a variable is extern "C" prior to attaching
4728/// an initializer. We can't just call isExternC() here, because that
4729/// will also compute and cache whether the declaration is externally
4730/// visible, which might change when we attach the initializer.
4731///
4732/// This can only be used if the declaration is known to not be a
4733/// redeclaration of an internal linkage declaration.
4734///
4735/// For instance:
4736///
4737///   auto x = []{};
4738///
4739/// Attaching the initializer here makes this declaration not externally
4740/// visible, because its type has internal linkage.
4741///
4742/// FIXME: This is a hack.
4743template<typename T>
4744static bool isIncompleteDeclExternC(Sema &S, const T *D) {
4745  if (S.getLangOpts().CPlusPlus) {
4746    // In C++, the overloadable attribute negates the effects of extern "C".
4747    if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
4748      return false;
4749  }
4750  return D->isExternC();
4751}
4752
4753static bool shouldConsiderLinkage(const VarDecl *VD) {
4754  const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
4755  if (DC->isFunctionOrMethod())
4756    return VD->hasExternalStorage();
4757  if (DC->isFileContext())
4758    return true;
4759  if (DC->isRecord())
4760    return false;
4761  llvm_unreachable("Unexpected context");
4762}
4763
4764static bool shouldConsiderLinkage(const FunctionDecl *FD) {
4765  const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
4766  if (DC->isFileContext() || DC->isFunctionOrMethod())
4767    return true;
4768  if (DC->isRecord())
4769    return false;
4770  llvm_unreachable("Unexpected context");
4771}
4772
4773bool Sema::HandleVariableRedeclaration(Decl *D, CXXScopeSpec &SS) {
4774  // If this is a redeclaration of a variable template or a forward
4775  // declaration of a variable template partial specialization
4776  // with nested name specifier, complain.
4777
4778  if (D && SS.isNotEmpty() &&
4779      (isa<VarTemplateDecl>(D) ||
4780       isa<VarTemplatePartialSpecializationDecl>(D))) {
4781    Diag(SS.getBeginLoc(), diag::err_forward_var_nested_name_specifier)
4782      << isa<VarTemplatePartialSpecializationDecl>(D) << SS.getRange();
4783    return true;
4784  }
4785  return false;
4786}
4787
4788NamedDecl *
4789Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4790                              TypeSourceInfo *TInfo, LookupResult &Previous,
4791                              MultiTemplateParamsArg TemplateParamLists,
4792                              bool &AddToScope) {
4793  QualType R = TInfo->getType();
4794  DeclarationName Name = GetNameForDeclarator(D).getName();
4795
4796  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
4797  VarDecl::StorageClass SC =
4798    StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
4799
4800  if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16) {
4801    // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
4802    // half array type (unless the cl_khr_fp16 extension is enabled).
4803    if (Context.getBaseElementType(R)->isHalfType()) {
4804      Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
4805      D.setInvalidType();
4806    }
4807  }
4808
4809  if (SCSpec == DeclSpec::SCS_mutable) {
4810    // mutable can only appear on non-static class members, so it's always
4811    // an error here
4812    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
4813    D.setInvalidType();
4814    SC = SC_None;
4815  }
4816
4817  if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
4818      !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
4819                              D.getDeclSpec().getStorageClassSpecLoc())) {
4820    // In C++11, the 'register' storage class specifier is deprecated.
4821    // Suppress the warning in system macros, it's used in macros in some
4822    // popular C system headers, such as in glibc's htonl() macro.
4823    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4824         diag::warn_deprecated_register)
4825      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4826  }
4827
4828  IdentifierInfo *II = Name.getAsIdentifierInfo();
4829  if (!II) {
4830    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
4831      << Name;
4832    return 0;
4833  }
4834
4835  DiagnoseFunctionSpecifiers(D.getDeclSpec());
4836
4837  if (!DC->isRecord() && S->getFnParent() == 0) {
4838    // C99 6.9p2: The storage-class specifiers auto and register shall not
4839    // appear in the declaration specifiers in an external declaration.
4840    if (SC == SC_Auto || SC == SC_Register) {
4841      // If this is a register variable with an asm label specified, then this
4842      // is a GNU extension.
4843      if (SC == SC_Register && D.getAsmLabel())
4844        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
4845      else
4846        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
4847      D.setInvalidType();
4848    }
4849  }
4850
4851  if (getLangOpts().OpenCL) {
4852    // Set up the special work-group-local storage class for variables in the
4853    // OpenCL __local address space.
4854    if (R.getAddressSpace() == LangAS::opencl_local) {
4855      SC = SC_OpenCLWorkGroupLocal;
4856    }
4857
4858    // OpenCL v1.2 s6.9.b p4:
4859    // The sampler type cannot be used with the __local and __global address
4860    // space qualifiers.
4861    if (R->isSamplerT() && (R.getAddressSpace() == LangAS::opencl_local ||
4862      R.getAddressSpace() == LangAS::opencl_global)) {
4863      Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
4864    }
4865
4866    // OpenCL 1.2 spec, p6.9 r:
4867    // The event type cannot be used to declare a program scope variable.
4868    // The event type cannot be used with the __local, __constant and __global
4869    // address space qualifiers.
4870    if (R->isEventT()) {
4871      if (S->getParent() == 0) {
4872        Diag(D.getLocStart(), diag::err_event_t_global_var);
4873        D.setInvalidType();
4874      }
4875
4876      if (R.getAddressSpace()) {
4877        Diag(D.getLocStart(), diag::err_event_t_addr_space_qual);
4878        D.setInvalidType();
4879      }
4880    }
4881  }
4882
4883  bool IsExplicitSpecialization = false;
4884  bool IsVariableTemplateSpecialization = false;
4885  bool IsPartialSpecialization = false;
4886  bool Invalid = false; // TODO: Can we remove this (error-prone)?
4887  TemplateParameterList *TemplateParams = 0;
4888  VarTemplateDecl *PrevVarTemplate = 0;
4889  VarDecl *NewVD;
4890  if (!getLangOpts().CPlusPlus) {
4891    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4892                            D.getIdentifierLoc(), II,
4893                            R, TInfo, SC);
4894
4895    if (D.isInvalidType())
4896      NewVD->setInvalidDecl();
4897  } else {
4898    if (DC->isRecord() && !CurContext->isRecord()) {
4899      // This is an out-of-line definition of a static data member.
4900      switch (SC) {
4901      case SC_None:
4902        break;
4903      case SC_Static:
4904        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4905             diag::err_static_out_of_line)
4906          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4907        break;
4908      case SC_Auto:
4909      case SC_Register:
4910      case SC_Extern:
4911        // [dcl.stc] p2: The auto or register specifiers shall be applied only
4912        // to names of variables declared in a block or to function parameters.
4913        // [dcl.stc] p6: The extern specifier cannot be used in the declaration
4914        // of class members
4915
4916        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4917             diag::err_storage_class_for_static_member)
4918          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4919        break;
4920      case SC_PrivateExtern:
4921        llvm_unreachable("C storage class in c++!");
4922      case SC_OpenCLWorkGroupLocal:
4923        llvm_unreachable("OpenCL storage class in c++!");
4924      }
4925    }
4926
4927    if (SC == SC_Static && CurContext->isRecord()) {
4928      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
4929        if (RD->isLocalClass())
4930          Diag(D.getIdentifierLoc(),
4931               diag::err_static_data_member_not_allowed_in_local_class)
4932            << Name << RD->getDeclName();
4933
4934        // C++98 [class.union]p1: If a union contains a static data member,
4935        // the program is ill-formed. C++11 drops this restriction.
4936        if (RD->isUnion())
4937          Diag(D.getIdentifierLoc(),
4938               getLangOpts().CPlusPlus11
4939                 ? diag::warn_cxx98_compat_static_data_member_in_union
4940                 : diag::ext_static_data_member_in_union) << Name;
4941        // We conservatively disallow static data members in anonymous structs.
4942        else if (!RD->getDeclName())
4943          Diag(D.getIdentifierLoc(),
4944               diag::err_static_data_member_not_allowed_in_anon_struct)
4945            << Name << RD->isUnion();
4946      }
4947    }
4948
4949    NamedDecl *PrevDecl = 0;
4950    if (Previous.begin() != Previous.end())
4951      PrevDecl = (*Previous.begin())->getUnderlyingDecl();
4952    PrevVarTemplate = dyn_cast_or_null<VarTemplateDecl>(PrevDecl);
4953
4954    // Match up the template parameter lists with the scope specifier, then
4955    // determine whether we have a template or a template specialization.
4956    TemplateParams = MatchTemplateParametersToScopeSpecifier(
4957        D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
4958        D.getCXXScopeSpec(), TemplateParamLists,
4959        /*never a friend*/ false, IsExplicitSpecialization, Invalid);
4960    if (TemplateParams) {
4961      if (!TemplateParams->size() &&
4962          D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4963        // There is an extraneous 'template<>' for this variable. Complain
4964        // about it, but allow the declaration of the variable.
4965        Diag(TemplateParams->getTemplateLoc(),
4966             diag::err_template_variable_noparams)
4967          << II
4968          << SourceRange(TemplateParams->getTemplateLoc(),
4969                         TemplateParams->getRAngleLoc());
4970      } else {
4971        // Only C++1y supports variable templates (N3651).
4972        Diag(D.getIdentifierLoc(),
4973             getLangOpts().CPlusPlus1y
4974                 ? diag::warn_cxx11_compat_variable_template
4975                 : diag::ext_variable_template);
4976
4977        if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4978          // This is an explicit specialization or a partial specialization.
4979          // Check that we can declare a specialization here
4980
4981          IsVariableTemplateSpecialization = true;
4982          IsPartialSpecialization = TemplateParams->size() > 0;
4983
4984        } else { // if (TemplateParams->size() > 0)
4985          // This is a template declaration.
4986
4987          // Check that we can declare a template here.
4988          if (CheckTemplateDeclScope(S, TemplateParams))
4989            return 0;
4990
4991          // If there is a previous declaration with the same name, check
4992          // whether this is a valid redeclaration.
4993          if (PrevDecl && !isDeclInScope(PrevDecl, DC, S))
4994            PrevDecl = PrevVarTemplate = 0;
4995
4996          if (PrevVarTemplate) {
4997            // Ensure that the template parameter lists are compatible.
4998            if (!TemplateParameterListsAreEqual(
4999                    TemplateParams, PrevVarTemplate->getTemplateParameters(),
5000                    /*Complain=*/true, TPL_TemplateMatch))
5001              return 0;
5002          } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
5003            // Maybe we will complain about the shadowed template parameter.
5004            DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5005
5006            // Just pretend that we didn't see the previous declaration.
5007            PrevDecl = 0;
5008          } else if (PrevDecl) {
5009            // C++ [temp]p5:
5010            // ... a template name declared in namespace scope or in class
5011            // scope shall be unique in that scope.
5012            Diag(D.getIdentifierLoc(), diag::err_redefinition_different_kind)
5013                << Name;
5014            Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5015            return 0;
5016          }
5017
5018          // Check the template parameter list of this declaration, possibly
5019          // merging in the template parameter list from the previous variable
5020          // template declaration.
5021          if (CheckTemplateParameterList(
5022                  TemplateParams,
5023                  PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
5024                                  : 0,
5025                  (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
5026                   DC->isDependentContext())
5027                      ? TPC_ClassTemplateMember
5028                      : TPC_VarTemplate))
5029            Invalid = true;
5030
5031          if (D.getCXXScopeSpec().isSet()) {
5032            // If the name of the template was qualified, we must be defining
5033            // the template out-of-line.
5034            if (!D.getCXXScopeSpec().isInvalid() && !Invalid &&
5035                !PrevVarTemplate) {
5036              Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
5037                  << Name << DC << D.getCXXScopeSpec().getRange();
5038              Invalid = true;
5039            }
5040          }
5041        }
5042      }
5043    } else if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5044      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5045
5046      // We have encountered something that the user meant to be a
5047      // specialization (because it has explicitly-specified template
5048      // arguments) but that was not introduced with a "template<>" (or had
5049      // too few of them).
5050      // FIXME: Differentiate between attempts for explicit instantiations
5051      // (starting with "template") and the rest.
5052      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5053          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5054          << FixItHint::CreateInsertion(D.getDeclSpec().getLocStart(),
5055                                        "template<> ");
5056      IsVariableTemplateSpecialization = true;
5057    }
5058
5059    if (IsVariableTemplateSpecialization) {
5060      if (!PrevVarTemplate) {
5061        Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template)
5062            << IsPartialSpecialization;
5063        return 0;
5064      }
5065
5066      SourceLocation TemplateKWLoc =
5067          TemplateParamLists.size() > 0
5068              ? TemplateParamLists[0]->getTemplateLoc()
5069              : SourceLocation();
5070      DeclResult Res = ActOnVarTemplateSpecialization(
5071          S, PrevVarTemplate, D, TInfo, TemplateKWLoc, TemplateParams, SC,
5072          IsPartialSpecialization);
5073      if (Res.isInvalid())
5074        return 0;
5075      NewVD = cast<VarDecl>(Res.get());
5076      AddToScope = false;
5077    } else
5078      NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
5079                              D.getIdentifierLoc(), II, R, TInfo, SC);
5080
5081    // If this decl has an auto type in need of deduction, make a note of the
5082    // Decl so we can diagnose uses of it in its own initializer.
5083    if (D.getDeclSpec().containsPlaceholderType() && R->getContainedAutoType())
5084      ParsingInitForAutoVars.insert(NewVD);
5085
5086    if (D.isInvalidType() || Invalid)
5087      NewVD->setInvalidDecl();
5088
5089    SetNestedNameSpecifier(NewVD, D);
5090
5091    // FIXME: Do we need D.getCXXScopeSpec().isSet()?
5092    if (TemplateParams && TemplateParamLists.size() > 1 &&
5093        (!IsVariableTemplateSpecialization || D.getCXXScopeSpec().isSet())) {
5094      NewVD->setTemplateParameterListsInfo(
5095          Context, TemplateParamLists.size() - 1, TemplateParamLists.data());
5096    } else if (IsVariableTemplateSpecialization ||
5097               (!TemplateParams && TemplateParamLists.size() > 0 &&
5098                (D.getCXXScopeSpec().isSet()))) {
5099      NewVD->setTemplateParameterListsInfo(Context,
5100                                           TemplateParamLists.size(),
5101                                           TemplateParamLists.data());
5102    }
5103
5104    if (D.getDeclSpec().isConstexprSpecified())
5105      NewVD->setConstexpr(true);
5106  }
5107
5108  // Set the lexical context. If the declarator has a C++ scope specifier, the
5109  // lexical context will be different from the semantic context.
5110  NewVD->setLexicalDeclContext(CurContext);
5111
5112  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
5113    if (NewVD->hasLocalStorage()) {
5114      // C++11 [dcl.stc]p4:
5115      //   When thread_local is applied to a variable of block scope the
5116      //   storage-class-specifier static is implied if it does not appear
5117      //   explicitly.
5118      // Core issue: 'static' is not implied if the variable is declared
5119      //   'extern'.
5120      if (SCSpec == DeclSpec::SCS_unspecified &&
5121          TSCS == DeclSpec::TSCS_thread_local &&
5122          DC->isFunctionOrMethod())
5123        NewVD->setTSCSpec(TSCS);
5124      else
5125        Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
5126             diag::err_thread_non_global)
5127          << DeclSpec::getSpecifierName(TSCS);
5128    } else if (!Context.getTargetInfo().isTLSSupported())
5129      Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
5130           diag::err_thread_unsupported);
5131    else
5132      NewVD->setTSCSpec(TSCS);
5133  }
5134
5135  // C99 6.7.4p3
5136  //   An inline definition of a function with external linkage shall
5137  //   not contain a definition of a modifiable object with static or
5138  //   thread storage duration...
5139  // We only apply this when the function is required to be defined
5140  // elsewhere, i.e. when the function is not 'extern inline'.  Note
5141  // that a local variable with thread storage duration still has to
5142  // be marked 'static'.  Also note that it's possible to get these
5143  // semantics in C++ using __attribute__((gnu_inline)).
5144  if (SC == SC_Static && S->getFnParent() != 0 &&
5145      !NewVD->getType().isConstQualified()) {
5146    FunctionDecl *CurFD = getCurFunctionDecl();
5147    if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
5148      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5149           diag::warn_static_local_in_extern_inline);
5150      MaybeSuggestAddingStaticToDecl(CurFD);
5151    }
5152  }
5153
5154  if (D.getDeclSpec().isModulePrivateSpecified()) {
5155    if (IsVariableTemplateSpecialization)
5156      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
5157          << (IsPartialSpecialization ? 1 : 0)
5158          << FixItHint::CreateRemoval(
5159                 D.getDeclSpec().getModulePrivateSpecLoc());
5160    else if (IsExplicitSpecialization)
5161      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
5162        << 2
5163        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
5164    else if (NewVD->hasLocalStorage())
5165      Diag(NewVD->getLocation(), diag::err_module_private_local)
5166        << 0 << NewVD->getDeclName()
5167        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
5168        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
5169    else
5170      NewVD->setModulePrivate();
5171  }
5172
5173  // Handle attributes prior to checking for duplicates in MergeVarDecl
5174  ProcessDeclAttributes(S, NewVD, D);
5175
5176  if (NewVD->hasAttrs())
5177    CheckAlignasUnderalignment(NewVD);
5178
5179  if (getLangOpts().CUDA) {
5180    // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
5181    // storage [duration]."
5182    if (SC == SC_None && S->getFnParent() != 0 &&
5183        (NewVD->hasAttr<CUDASharedAttr>() ||
5184         NewVD->hasAttr<CUDAConstantAttr>())) {
5185      NewVD->setStorageClass(SC_Static);
5186    }
5187  }
5188
5189  // In auto-retain/release, infer strong retension for variables of
5190  // retainable type.
5191  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
5192    NewVD->setInvalidDecl();
5193
5194  // Handle GNU asm-label extension (encoded as an attribute).
5195  if (Expr *E = (Expr*)D.getAsmLabel()) {
5196    // The parser guarantees this is a string.
5197    StringLiteral *SE = cast<StringLiteral>(E);
5198    StringRef Label = SE->getString();
5199    if (S->getFnParent() != 0) {
5200      switch (SC) {
5201      case SC_None:
5202      case SC_Auto:
5203        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
5204        break;
5205      case SC_Register:
5206        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
5207          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
5208        break;
5209      case SC_Static:
5210      case SC_Extern:
5211      case SC_PrivateExtern:
5212      case SC_OpenCLWorkGroupLocal:
5213        break;
5214      }
5215    }
5216
5217    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
5218                                                Context, Label));
5219  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
5220    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
5221      ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
5222    if (I != ExtnameUndeclaredIdentifiers.end()) {
5223      NewVD->addAttr(I->second);
5224      ExtnameUndeclaredIdentifiers.erase(I);
5225    }
5226  }
5227
5228  // Diagnose shadowed variables before filtering for scope.
5229  // FIXME: Special treatment for static variable template members (?).
5230  if (!D.getCXXScopeSpec().isSet())
5231    CheckShadow(S, NewVD, Previous);
5232
5233  // Don't consider existing declarations that are in a different
5234  // scope and are out-of-semantic-context declarations (if the new
5235  // declaration has linkage).
5236  FilterLookupForScope(
5237      Previous, DC, S, shouldConsiderLinkage(NewVD),
5238      IsExplicitSpecialization || IsVariableTemplateSpecialization);
5239
5240  if (!getLangOpts().CPlusPlus) {
5241    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
5242  } else {
5243    // Merge the decl with the existing one if appropriate.
5244    if (!Previous.empty()) {
5245      if (Previous.isSingleResult() &&
5246          isa<FieldDecl>(Previous.getFoundDecl()) &&
5247          D.getCXXScopeSpec().isSet()) {
5248        // The user tried to define a non-static data member
5249        // out-of-line (C++ [dcl.meaning]p1).
5250        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
5251          << D.getCXXScopeSpec().getRange();
5252        Previous.clear();
5253        NewVD->setInvalidDecl();
5254      }
5255    } else if (D.getCXXScopeSpec().isSet()) {
5256      // No previous declaration in the qualifying scope.
5257      Diag(D.getIdentifierLoc(), diag::err_no_member)
5258        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
5259        << D.getCXXScopeSpec().getRange();
5260      NewVD->setInvalidDecl();
5261    }
5262
5263    if (!IsVariableTemplateSpecialization) {
5264      if (PrevVarTemplate) {
5265        LookupResult PrevDecl(*this, GetNameForDeclarator(D),
5266                              LookupOrdinaryName, ForRedeclaration);
5267        PrevDecl.addDecl(PrevVarTemplate->getTemplatedDecl());
5268        D.setRedeclaration(CheckVariableDeclaration(NewVD, PrevDecl));
5269      } else
5270        D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
5271    }
5272
5273    // This is an explicit specialization of a static data member. Check it.
5274    // FIXME: Special treatment for static variable template members (?).
5275    if (IsExplicitSpecialization && !NewVD->isInvalidDecl() &&
5276        CheckMemberSpecialization(NewVD, Previous))
5277      NewVD->setInvalidDecl();
5278  }
5279
5280  ProcessPragmaWeak(S, NewVD);
5281  checkAttributesAfterMerging(*this, *NewVD);
5282
5283  // If this is the first declaration of an extern C variable, update
5284  // the map of such variables.
5285  if (!NewVD->getPreviousDecl() && !NewVD->isInvalidDecl() &&
5286      isIncompleteDeclExternC(*this, NewVD))
5287    RegisterLocallyScopedExternCDecl(NewVD, S);
5288
5289  if (NewVD->isStaticLocal()) {
5290    Decl *ManglingContextDecl;
5291    if (MangleNumberingContext *MCtx =
5292            getCurrentMangleNumberContext(NewVD->getDeclContext(),
5293                                          ManglingContextDecl)) {
5294      Context.setManglingNumber(NewVD, MCtx->getManglingNumber(NewVD));
5295    }
5296  }
5297
5298  // If this is not a variable template, return it now
5299  if (!TemplateParams || IsVariableTemplateSpecialization)
5300    return NewVD;
5301
5302  // If this is supposed to be a variable template, create it as such.
5303  VarTemplateDecl *NewTemplate =
5304      VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
5305                              TemplateParams, NewVD, PrevVarTemplate);
5306  NewVD->setDescribedVarTemplate(NewTemplate);
5307
5308  if (D.getDeclSpec().isModulePrivateSpecified())
5309    NewTemplate->setModulePrivate();
5310
5311  // If we are providing an explicit specialization of a static variable
5312  // template, make a note of that.
5313  if (PrevVarTemplate && PrevVarTemplate->getInstantiatedFromMemberTemplate())
5314    NewTemplate->setMemberSpecialization();
5315
5316  // Set the lexical context of this template
5317  NewTemplate->setLexicalDeclContext(CurContext);
5318  if (NewVD->isStaticDataMember() && NewVD->isOutOfLine())
5319    NewTemplate->setAccess(NewVD->getAccess());
5320
5321  if (PrevVarTemplate)
5322    mergeDeclAttributes(NewVD, PrevVarTemplate->getTemplatedDecl());
5323
5324  AddPushedVisibilityAttribute(NewVD);
5325
5326  PushOnScopeChains(NewTemplate, S);
5327  AddToScope = false;
5328
5329  if (Invalid) {
5330    NewTemplate->setInvalidDecl();
5331    NewVD->setInvalidDecl();
5332  }
5333
5334  ActOnDocumentableDecl(NewTemplate);
5335
5336  return NewTemplate;
5337}
5338
5339/// \brief Diagnose variable or built-in function shadowing.  Implements
5340/// -Wshadow.
5341///
5342/// This method is called whenever a VarDecl is added to a "useful"
5343/// scope.
5344///
5345/// \param S the scope in which the shadowing name is being declared
5346/// \param R the lookup of the name
5347///
5348void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
5349  // Return if warning is ignored.
5350  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
5351        DiagnosticsEngine::Ignored)
5352    return;
5353
5354  // Don't diagnose declarations at file scope.
5355  if (D->hasGlobalStorage())
5356    return;
5357
5358  DeclContext *NewDC = D->getDeclContext();
5359
5360  // Only diagnose if we're shadowing an unambiguous field or variable.
5361  if (R.getResultKind() != LookupResult::Found)
5362    return;
5363
5364  NamedDecl* ShadowedDecl = R.getFoundDecl();
5365  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
5366    return;
5367
5368  // Fields are not shadowed by variables in C++ static methods.
5369  if (isa<FieldDecl>(ShadowedDecl))
5370    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
5371      if (MD->isStatic())
5372        return;
5373
5374  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
5375    if (shadowedVar->isExternC()) {
5376      // For shadowing external vars, make sure that we point to the global
5377      // declaration, not a locally scoped extern declaration.
5378      for (VarDecl::redecl_iterator
5379             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
5380           I != E; ++I)
5381        if (I->isFileVarDecl()) {
5382          ShadowedDecl = *I;
5383          break;
5384        }
5385    }
5386
5387  DeclContext *OldDC = ShadowedDecl->getDeclContext();
5388
5389  // Only warn about certain kinds of shadowing for class members.
5390  if (NewDC && NewDC->isRecord()) {
5391    // In particular, don't warn about shadowing non-class members.
5392    if (!OldDC->isRecord())
5393      return;
5394
5395    // TODO: should we warn about static data members shadowing
5396    // static data members from base classes?
5397
5398    // TODO: don't diagnose for inaccessible shadowed members.
5399    // This is hard to do perfectly because we might friend the
5400    // shadowing context, but that's just a false negative.
5401  }
5402
5403  // Determine what kind of declaration we're shadowing.
5404  unsigned Kind;
5405  if (isa<RecordDecl>(OldDC)) {
5406    if (isa<FieldDecl>(ShadowedDecl))
5407      Kind = 3; // field
5408    else
5409      Kind = 2; // static data member
5410  } else if (OldDC->isFileContext())
5411    Kind = 1; // global
5412  else
5413    Kind = 0; // local
5414
5415  DeclarationName Name = R.getLookupName();
5416
5417  // Emit warning and note.
5418  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
5419  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
5420}
5421
5422/// \brief Check -Wshadow without the advantage of a previous lookup.
5423void Sema::CheckShadow(Scope *S, VarDecl *D) {
5424  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
5425        DiagnosticsEngine::Ignored)
5426    return;
5427
5428  LookupResult R(*this, D->getDeclName(), D->getLocation(),
5429                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
5430  LookupName(R, S);
5431  CheckShadow(S, D, R);
5432}
5433
5434/// Check for conflict between this global or extern "C" declaration and
5435/// previous global or extern "C" declarations. This is only used in C++.
5436template<typename T>
5437static bool checkGlobalOrExternCConflict(
5438    Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
5439  assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"");
5440  NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
5441
5442  if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
5443    // The common case: this global doesn't conflict with any extern "C"
5444    // declaration.
5445    return false;
5446  }
5447
5448  if (Prev) {
5449    if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
5450      // Both the old and new declarations have C language linkage. This is a
5451      // redeclaration.
5452      Previous.clear();
5453      Previous.addDecl(Prev);
5454      return true;
5455    }
5456
5457    // This is a global, non-extern "C" declaration, and there is a previous
5458    // non-global extern "C" declaration. Diagnose if this is a variable
5459    // declaration.
5460    if (!isa<VarDecl>(ND))
5461      return false;
5462  } else {
5463    // The declaration is extern "C". Check for any declaration in the
5464    // translation unit which might conflict.
5465    if (IsGlobal) {
5466      // We have already performed the lookup into the translation unit.
5467      IsGlobal = false;
5468      for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5469           I != E; ++I) {
5470        if (isa<VarDecl>(*I)) {
5471          Prev = *I;
5472          break;
5473        }
5474      }
5475    } else {
5476      DeclContext::lookup_result R =
5477          S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
5478      for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
5479           I != E; ++I) {
5480        if (isa<VarDecl>(*I)) {
5481          Prev = *I;
5482          break;
5483        }
5484        // FIXME: If we have any other entity with this name in global scope,
5485        // the declaration is ill-formed, but that is a defect: it breaks the
5486        // 'stat' hack, for instance. Only variables can have mangled name
5487        // clashes with extern "C" declarations, so only they deserve a
5488        // diagnostic.
5489      }
5490    }
5491
5492    if (!Prev)
5493      return false;
5494  }
5495
5496  // Use the first declaration's location to ensure we point at something which
5497  // is lexically inside an extern "C" linkage-spec.
5498  assert(Prev && "should have found a previous declaration to diagnose");
5499  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
5500    Prev = FD->getFirstDeclaration();
5501  else
5502    Prev = cast<VarDecl>(Prev)->getFirstDeclaration();
5503
5504  S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
5505    << IsGlobal << ND;
5506  S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
5507    << IsGlobal;
5508  return false;
5509}
5510
5511/// Apply special rules for handling extern "C" declarations. Returns \c true
5512/// if we have found that this is a redeclaration of some prior entity.
5513///
5514/// Per C++ [dcl.link]p6:
5515///   Two declarations [for a function or variable] with C language linkage
5516///   with the same name that appear in different scopes refer to the same
5517///   [entity]. An entity with C language linkage shall not be declared with
5518///   the same name as an entity in global scope.
5519template<typename T>
5520static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
5521                                                  LookupResult &Previous) {
5522  if (!S.getLangOpts().CPlusPlus) {
5523    // In C, when declaring a global variable, look for a corresponding 'extern'
5524    // variable declared in function scope.
5525    //
5526    // FIXME: The corresponding case in C++ does not work.  We should instead
5527    // set the semantic DC for an extern local variable to be the innermost
5528    // enclosing namespace, and ensure they are only found by redeclaration
5529    // lookup.
5530    if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5531      if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
5532        Previous.clear();
5533        Previous.addDecl(Prev);
5534        return true;
5535      }
5536    }
5537    return false;
5538  }
5539
5540  // A declaration in the translation unit can conflict with an extern "C"
5541  // declaration.
5542  if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
5543    return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
5544
5545  // An extern "C" declaration can conflict with a declaration in the
5546  // translation unit or can be a redeclaration of an extern "C" declaration
5547  // in another scope.
5548  if (isIncompleteDeclExternC(S,ND))
5549    return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
5550
5551  // Neither global nor extern "C": nothing to do.
5552  return false;
5553}
5554
5555void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
5556  // If the decl is already known invalid, don't check it.
5557  if (NewVD->isInvalidDecl())
5558    return;
5559
5560  TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
5561  QualType T = TInfo->getType();
5562
5563  // Defer checking an 'auto' type until its initializer is attached.
5564  if (T->isUndeducedType())
5565    return;
5566
5567  if (T->isObjCObjectType()) {
5568    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
5569      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
5570    T = Context.getObjCObjectPointerType(T);
5571    NewVD->setType(T);
5572  }
5573
5574  // Emit an error if an address space was applied to decl with local storage.
5575  // This includes arrays of objects with address space qualifiers, but not
5576  // automatic variables that point to other address spaces.
5577  // ISO/IEC TR 18037 S5.1.2
5578  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
5579    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
5580    NewVD->setInvalidDecl();
5581    return;
5582  }
5583
5584  // OpenCL v1.2 s6.5 - All program scope variables must be declared in the
5585  // __constant address space.
5586  if (getLangOpts().OpenCL && NewVD->isFileVarDecl()
5587      && T.getAddressSpace() != LangAS::opencl_constant
5588      && !T->isSamplerT()){
5589    Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space);
5590    NewVD->setInvalidDecl();
5591    return;
5592  }
5593
5594  // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
5595  // scope.
5596  if ((getLangOpts().OpenCLVersion >= 120)
5597      && NewVD->isStaticLocal()) {
5598    Diag(NewVD->getLocation(), diag::err_static_function_scope);
5599    NewVD->setInvalidDecl();
5600    return;
5601  }
5602
5603  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
5604      && !NewVD->hasAttr<BlocksAttr>()) {
5605    if (getLangOpts().getGC() != LangOptions::NonGC)
5606      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
5607    else {
5608      assert(!getLangOpts().ObjCAutoRefCount);
5609      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
5610    }
5611  }
5612
5613  bool isVM = T->isVariablyModifiedType();
5614  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
5615      NewVD->hasAttr<BlocksAttr>())
5616    getCurFunction()->setHasBranchProtectedScope();
5617
5618  if ((isVM && NewVD->hasLinkage()) ||
5619      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
5620    bool SizeIsNegative;
5621    llvm::APSInt Oversized;
5622    TypeSourceInfo *FixedTInfo =
5623      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
5624                                                    SizeIsNegative, Oversized);
5625    if (FixedTInfo == 0 && T->isVariableArrayType()) {
5626      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
5627      // FIXME: This won't give the correct result for
5628      // int a[10][n];
5629      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
5630
5631      if (NewVD->isFileVarDecl())
5632        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
5633        << SizeRange;
5634      else if (NewVD->isStaticLocal())
5635        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
5636        << SizeRange;
5637      else
5638        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
5639        << SizeRange;
5640      NewVD->setInvalidDecl();
5641      return;
5642    }
5643
5644    if (FixedTInfo == 0) {
5645      if (NewVD->isFileVarDecl())
5646        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
5647      else
5648        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
5649      NewVD->setInvalidDecl();
5650      return;
5651    }
5652
5653    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
5654    NewVD->setType(FixedTInfo->getType());
5655    NewVD->setTypeSourceInfo(FixedTInfo);
5656  }
5657
5658  if (T->isVoidType()) {
5659    // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
5660    //                    of objects and functions.
5661    if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
5662      Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
5663        << T;
5664      NewVD->setInvalidDecl();
5665      return;
5666    }
5667  }
5668
5669  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
5670    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
5671    NewVD->setInvalidDecl();
5672    return;
5673  }
5674
5675  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
5676    Diag(NewVD->getLocation(), diag::err_block_on_vm);
5677    NewVD->setInvalidDecl();
5678    return;
5679  }
5680
5681  if (NewVD->isConstexpr() && !T->isDependentType() &&
5682      RequireLiteralType(NewVD->getLocation(), T,
5683                         diag::err_constexpr_var_non_literal)) {
5684    // Can't perform this check until the type is deduced.
5685    NewVD->setInvalidDecl();
5686    return;
5687  }
5688}
5689
5690/// \brief Perform semantic checking on a newly-created variable
5691/// declaration.
5692///
5693/// This routine performs all of the type-checking required for a
5694/// variable declaration once it has been built. It is used both to
5695/// check variables after they have been parsed and their declarators
5696/// have been translated into a declaration, and to check variables
5697/// that have been instantiated from a template.
5698///
5699/// Sets NewVD->isInvalidDecl() if an error was encountered.
5700///
5701/// Returns true if the variable declaration is a redeclaration.
5702bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
5703                                    LookupResult &Previous) {
5704  CheckVariableDeclarationType(NewVD);
5705
5706  // If the decl is already known invalid, don't check it.
5707  if (NewVD->isInvalidDecl())
5708    return false;
5709
5710  // If we did not find anything by this name, look for a non-visible
5711  // extern "C" declaration with the same name.
5712  //
5713  // Clang has a lot of problems with extern local declarations.
5714  // The actual standards text here is:
5715  //
5716  // C++11 [basic.link]p6:
5717  //   The name of a function declared in block scope and the name
5718  //   of a variable declared by a block scope extern declaration
5719  //   have linkage. If there is a visible declaration of an entity
5720  //   with linkage having the same name and type, ignoring entities
5721  //   declared outside the innermost enclosing namespace scope, the
5722  //   block scope declaration declares that same entity and
5723  //   receives the linkage of the previous declaration.
5724  //
5725  // C11 6.2.7p4:
5726  //   For an identifier with internal or external linkage declared
5727  //   in a scope in which a prior declaration of that identifier is
5728  //   visible, if the prior declaration specifies internal or
5729  //   external linkage, the type of the identifier at the later
5730  //   declaration becomes the composite type.
5731  //
5732  // The most important point here is that we're not allowed to
5733  // update our understanding of the type according to declarations
5734  // not in scope.
5735  bool PreviousWasHidden =
5736      Previous.empty() &&
5737      checkForConflictWithNonVisibleExternC(*this, NewVD, Previous);
5738
5739  // Filter out any non-conflicting previous declarations.
5740  filterNonConflictingPreviousDecls(Context, NewVD, Previous);
5741
5742  if (!Previous.empty()) {
5743    MergeVarDecl(NewVD, Previous, PreviousWasHidden);
5744    return true;
5745  }
5746  return false;
5747}
5748
5749/// \brief Data used with FindOverriddenMethod
5750struct FindOverriddenMethodData {
5751  Sema *S;
5752  CXXMethodDecl *Method;
5753};
5754
5755/// \brief Member lookup function that determines whether a given C++
5756/// method overrides a method in a base class, to be used with
5757/// CXXRecordDecl::lookupInBases().
5758static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
5759                                 CXXBasePath &Path,
5760                                 void *UserData) {
5761  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
5762
5763  FindOverriddenMethodData *Data
5764    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
5765
5766  DeclarationName Name = Data->Method->getDeclName();
5767
5768  // FIXME: Do we care about other names here too?
5769  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5770    // We really want to find the base class destructor here.
5771    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
5772    CanQualType CT = Data->S->Context.getCanonicalType(T);
5773
5774    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
5775  }
5776
5777  for (Path.Decls = BaseRecord->lookup(Name);
5778       !Path.Decls.empty();
5779       Path.Decls = Path.Decls.slice(1)) {
5780    NamedDecl *D = Path.Decls.front();
5781    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
5782      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
5783        return true;
5784    }
5785  }
5786
5787  return false;
5788}
5789
5790namespace {
5791  enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
5792}
5793/// \brief Report an error regarding overriding, along with any relevant
5794/// overriden methods.
5795///
5796/// \param DiagID the primary error to report.
5797/// \param MD the overriding method.
5798/// \param OEK which overrides to include as notes.
5799static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
5800                            OverrideErrorKind OEK = OEK_All) {
5801  S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
5802  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5803                                      E = MD->end_overridden_methods();
5804       I != E; ++I) {
5805    // This check (& the OEK parameter) could be replaced by a predicate, but
5806    // without lambdas that would be overkill. This is still nicer than writing
5807    // out the diag loop 3 times.
5808    if ((OEK == OEK_All) ||
5809        (OEK == OEK_NonDeleted && !(*I)->isDeleted()) ||
5810        (OEK == OEK_Deleted && (*I)->isDeleted()))
5811      S.Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
5812  }
5813}
5814
5815/// AddOverriddenMethods - See if a method overrides any in the base classes,
5816/// and if so, check that it's a valid override and remember it.
5817bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
5818  // Look for virtual methods in base classes that this method might override.
5819  CXXBasePaths Paths;
5820  FindOverriddenMethodData Data;
5821  Data.Method = MD;
5822  Data.S = this;
5823  bool hasDeletedOverridenMethods = false;
5824  bool hasNonDeletedOverridenMethods = false;
5825  bool AddedAny = false;
5826  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
5827    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
5828         E = Paths.found_decls_end(); I != E; ++I) {
5829      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
5830        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
5831        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
5832            !CheckOverridingFunctionAttributes(MD, OldMD) &&
5833            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
5834            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
5835          hasDeletedOverridenMethods |= OldMD->isDeleted();
5836          hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
5837          AddedAny = true;
5838        }
5839      }
5840    }
5841  }
5842
5843  if (hasDeletedOverridenMethods && !MD->isDeleted()) {
5844    ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
5845  }
5846  if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
5847    ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
5848  }
5849
5850  return AddedAny;
5851}
5852
5853namespace {
5854  // Struct for holding all of the extra arguments needed by
5855  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
5856  struct ActOnFDArgs {
5857    Scope *S;
5858    Declarator &D;
5859    MultiTemplateParamsArg TemplateParamLists;
5860    bool AddToScope;
5861  };
5862}
5863
5864namespace {
5865
5866// Callback to only accept typo corrections that have a non-zero edit distance.
5867// Also only accept corrections that have the same parent decl.
5868class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
5869 public:
5870  DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
5871                            CXXRecordDecl *Parent)
5872      : Context(Context), OriginalFD(TypoFD),
5873        ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
5874
5875  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5876    if (candidate.getEditDistance() == 0)
5877      return false;
5878
5879    SmallVector<unsigned, 1> MismatchedParams;
5880    for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
5881                                          CDeclEnd = candidate.end();
5882         CDecl != CDeclEnd; ++CDecl) {
5883      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
5884
5885      if (FD && !FD->hasBody() &&
5886          hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
5887        if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5888          CXXRecordDecl *Parent = MD->getParent();
5889          if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
5890            return true;
5891        } else if (!ExpectedParent) {
5892          return true;
5893        }
5894      }
5895    }
5896
5897    return false;
5898  }
5899
5900 private:
5901  ASTContext &Context;
5902  FunctionDecl *OriginalFD;
5903  CXXRecordDecl *ExpectedParent;
5904};
5905
5906}
5907
5908/// \brief Generate diagnostics for an invalid function redeclaration.
5909///
5910/// This routine handles generating the diagnostic messages for an invalid
5911/// function redeclaration, including finding possible similar declarations
5912/// or performing typo correction if there are no previous declarations with
5913/// the same name.
5914///
5915/// Returns a NamedDecl iff typo correction was performed and substituting in
5916/// the new declaration name does not cause new errors.
5917static NamedDecl* DiagnoseInvalidRedeclaration(
5918    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
5919    ActOnFDArgs &ExtraArgs) {
5920  NamedDecl *Result = NULL;
5921  DeclarationName Name = NewFD->getDeclName();
5922  DeclContext *NewDC = NewFD->getDeclContext();
5923  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
5924                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
5925  SmallVector<unsigned, 1> MismatchedParams;
5926  SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
5927  TypoCorrection Correction;
5928  bool isFriendDecl = (SemaRef.getLangOpts().CPlusPlus &&
5929                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
5930  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
5931                                  : diag::err_member_def_does_not_match;
5932
5933  NewFD->setInvalidDecl();
5934  SemaRef.LookupQualifiedName(Prev, NewDC);
5935  assert(!Prev.isAmbiguous() &&
5936         "Cannot have an ambiguity in previous-declaration lookup");
5937  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
5938  DifferentNameValidatorCCC Validator(SemaRef.Context, NewFD,
5939                                      MD ? MD->getParent() : 0);
5940  if (!Prev.empty()) {
5941    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
5942         Func != FuncEnd; ++Func) {
5943      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
5944      if (FD &&
5945          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
5946        // Add 1 to the index so that 0 can mean the mismatch didn't
5947        // involve a parameter
5948        unsigned ParamNum =
5949            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
5950        NearMatches.push_back(std::make_pair(FD, ParamNum));
5951      }
5952    }
5953  // If the qualified name lookup yielded nothing, try typo correction
5954  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
5955                                         Prev.getLookupKind(), 0, 0,
5956                                         Validator, NewDC))) {
5957    // Trap errors.
5958    Sema::SFINAETrap Trap(SemaRef);
5959
5960    // Set up everything for the call to ActOnFunctionDeclarator
5961    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
5962                              ExtraArgs.D.getIdentifierLoc());
5963    Previous.clear();
5964    Previous.setLookupName(Correction.getCorrection());
5965    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
5966                                    CDeclEnd = Correction.end();
5967         CDecl != CDeclEnd; ++CDecl) {
5968      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
5969      if (FD && !FD->hasBody() &&
5970          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
5971        Previous.addDecl(FD);
5972      }
5973    }
5974    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
5975    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
5976    // pieces need to verify the typo-corrected C++ declaraction and hopefully
5977    // eliminate the need for the parameter pack ExtraArgs.
5978    Result = SemaRef.ActOnFunctionDeclarator(
5979        ExtraArgs.S, ExtraArgs.D,
5980        Correction.getCorrectionDecl()->getDeclContext(),
5981        NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
5982        ExtraArgs.AddToScope);
5983    if (Trap.hasErrorOccurred()) {
5984      // Pretend the typo correction never occurred
5985      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
5986                                ExtraArgs.D.getIdentifierLoc());
5987      ExtraArgs.D.setRedeclaration(wasRedeclaration);
5988      Previous.clear();
5989      Previous.setLookupName(Name);
5990      Result = NULL;
5991    } else {
5992      for (LookupResult::iterator Func = Previous.begin(),
5993                               FuncEnd = Previous.end();
5994           Func != FuncEnd; ++Func) {
5995        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
5996          NearMatches.push_back(std::make_pair(FD, 0));
5997      }
5998    }
5999    if (NearMatches.empty()) {
6000      // Ignore the correction if it didn't yield any close FunctionDecl matches
6001      Correction = TypoCorrection();
6002    } else {
6003      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
6004                             : diag::err_member_def_does_not_match_suggest;
6005    }
6006  }
6007
6008  if (Correction) {
6009    // FIXME: use Correction.getCorrectionRange() instead of computing the range
6010    // here. This requires passing in the CXXScopeSpec to CorrectTypo which in
6011    // turn causes the correction to fully qualify the name. If we fix
6012    // CorrectTypo to minimally qualify then this change should be good.
6013    SourceRange FixItLoc(NewFD->getLocation());
6014    CXXScopeSpec &SS = ExtraArgs.D.getCXXScopeSpec();
6015    if (Correction.getCorrectionSpecifier() && SS.isValid())
6016      FixItLoc.setBegin(SS.getBeginLoc());
6017    SemaRef.Diag(NewFD->getLocStart(), DiagMsg)
6018        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOpts())
6019        << FixItHint::CreateReplacement(
6020            FixItLoc, Correction.getAsString(SemaRef.getLangOpts()));
6021  } else {
6022    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
6023        << Name << NewDC << NewFD->getLocation();
6024  }
6025
6026  bool NewFDisConst = false;
6027  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
6028    NewFDisConst = NewMD->isConst();
6029
6030  for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
6031       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
6032       NearMatch != NearMatchEnd; ++NearMatch) {
6033    FunctionDecl *FD = NearMatch->first;
6034    bool FDisConst = false;
6035    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
6036      FDisConst = MD->isConst();
6037
6038    if (unsigned Idx = NearMatch->second) {
6039      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
6040      SourceLocation Loc = FDParam->getTypeSpecStartLoc();
6041      if (Loc.isInvalid()) Loc = FD->getLocation();
6042      SemaRef.Diag(Loc, diag::note_member_def_close_param_match)
6043          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
6044    } else if (Correction) {
6045      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
6046          << Correction.getQuoted(SemaRef.getLangOpts());
6047    } else if (FDisConst != NewFDisConst) {
6048      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
6049          << NewFDisConst << FD->getSourceRange().getEnd();
6050    } else
6051      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
6052  }
6053  return Result;
6054}
6055
6056static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
6057                                                          Declarator &D) {
6058  switch (D.getDeclSpec().getStorageClassSpec()) {
6059  default: llvm_unreachable("Unknown storage class!");
6060  case DeclSpec::SCS_auto:
6061  case DeclSpec::SCS_register:
6062  case DeclSpec::SCS_mutable:
6063    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6064                 diag::err_typecheck_sclass_func);
6065    D.setInvalidType();
6066    break;
6067  case DeclSpec::SCS_unspecified: break;
6068  case DeclSpec::SCS_extern:
6069    if (D.getDeclSpec().isExternInLinkageSpec())
6070      return SC_None;
6071    return SC_Extern;
6072  case DeclSpec::SCS_static: {
6073    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
6074      // C99 6.7.1p5:
6075      //   The declaration of an identifier for a function that has
6076      //   block scope shall have no explicit storage-class specifier
6077      //   other than extern
6078      // See also (C++ [dcl.stc]p4).
6079      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6080                   diag::err_static_block_func);
6081      break;
6082    } else
6083      return SC_Static;
6084  }
6085  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
6086  }
6087
6088  // No explicit storage class has already been returned
6089  return SC_None;
6090}
6091
6092static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
6093                                           DeclContext *DC, QualType &R,
6094                                           TypeSourceInfo *TInfo,
6095                                           FunctionDecl::StorageClass SC,
6096                                           bool &IsVirtualOkay) {
6097  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
6098  DeclarationName Name = NameInfo.getName();
6099
6100  FunctionDecl *NewFD = 0;
6101  bool isInline = D.getDeclSpec().isInlineSpecified();
6102
6103  if (!SemaRef.getLangOpts().CPlusPlus) {
6104    // Determine whether the function was written with a
6105    // prototype. This true when:
6106    //   - there is a prototype in the declarator, or
6107    //   - the type R of the function is some kind of typedef or other reference
6108    //     to a type name (which eventually refers to a function type).
6109    bool HasPrototype =
6110      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
6111      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
6112
6113    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
6114                                 D.getLocStart(), NameInfo, R,
6115                                 TInfo, SC, isInline,
6116                                 HasPrototype, false);
6117    if (D.isInvalidType())
6118      NewFD->setInvalidDecl();
6119
6120    // Set the lexical context.
6121    NewFD->setLexicalDeclContext(SemaRef.CurContext);
6122
6123    return NewFD;
6124  }
6125
6126  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
6127  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
6128
6129  // Check that the return type is not an abstract class type.
6130  // For record types, this is done by the AbstractClassUsageDiagnoser once
6131  // the class has been completely parsed.
6132  if (!DC->isRecord() &&
6133      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
6134                                     R->getAs<FunctionType>()->getResultType(),
6135                                     diag::err_abstract_type_in_decl,
6136                                     SemaRef.AbstractReturnType))
6137    D.setInvalidType();
6138
6139  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
6140    // This is a C++ constructor declaration.
6141    assert(DC->isRecord() &&
6142           "Constructors can only be declared in a member context");
6143
6144    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
6145    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
6146                                      D.getLocStart(), NameInfo,
6147                                      R, TInfo, isExplicit, isInline,
6148                                      /*isImplicitlyDeclared=*/false,
6149                                      isConstexpr);
6150
6151  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
6152    // This is a C++ destructor declaration.
6153    if (DC->isRecord()) {
6154      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
6155      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
6156      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
6157                                        SemaRef.Context, Record,
6158                                        D.getLocStart(),
6159                                        NameInfo, R, TInfo, isInline,
6160                                        /*isImplicitlyDeclared=*/false);
6161
6162      // If the class is complete, then we now create the implicit exception
6163      // specification. If the class is incomplete or dependent, we can't do
6164      // it yet.
6165      if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() &&
6166          Record->getDefinition() && !Record->isBeingDefined() &&
6167          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
6168        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
6169      }
6170
6171      // The Microsoft ABI requires that we perform the destructor body
6172      // checks (i.e. operator delete() lookup) at every declaration, as
6173      // any translation unit may need to emit a deleting destructor.
6174      if (SemaRef.Context.getTargetInfo().getCXXABI().isMicrosoft() &&
6175          !Record->isDependentType() && Record->getDefinition() &&
6176          !Record->isBeingDefined()) {
6177        SemaRef.CheckDestructor(NewDD);
6178      }
6179
6180      IsVirtualOkay = true;
6181      return NewDD;
6182
6183    } else {
6184      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
6185      D.setInvalidType();
6186
6187      // Create a FunctionDecl to satisfy the function definition parsing
6188      // code path.
6189      return FunctionDecl::Create(SemaRef.Context, DC,
6190                                  D.getLocStart(),
6191                                  D.getIdentifierLoc(), Name, R, TInfo,
6192                                  SC, isInline,
6193                                  /*hasPrototype=*/true, isConstexpr);
6194    }
6195
6196  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
6197    if (!DC->isRecord()) {
6198      SemaRef.Diag(D.getIdentifierLoc(),
6199           diag::err_conv_function_not_member);
6200      return 0;
6201    }
6202
6203    SemaRef.CheckConversionDeclarator(D, R, SC);
6204    IsVirtualOkay = true;
6205    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
6206                                     D.getLocStart(), NameInfo,
6207                                     R, TInfo, isInline, isExplicit,
6208                                     isConstexpr, SourceLocation());
6209
6210  } else if (DC->isRecord()) {
6211    // If the name of the function is the same as the name of the record,
6212    // then this must be an invalid constructor that has a return type.
6213    // (The parser checks for a return type and makes the declarator a
6214    // constructor if it has no return type).
6215    if (Name.getAsIdentifierInfo() &&
6216        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
6217      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
6218        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
6219        << SourceRange(D.getIdentifierLoc());
6220      return 0;
6221    }
6222
6223    // This is a C++ method declaration.
6224    CXXMethodDecl *Ret = CXXMethodDecl::Create(SemaRef.Context,
6225                                               cast<CXXRecordDecl>(DC),
6226                                               D.getLocStart(), NameInfo, R,
6227                                               TInfo, SC, isInline,
6228                                               isConstexpr, SourceLocation());
6229    IsVirtualOkay = !Ret->isStatic();
6230    return Ret;
6231  } else {
6232    // Determine whether the function was written with a
6233    // prototype. This true when:
6234    //   - we're in C++ (where every function has a prototype),
6235    return FunctionDecl::Create(SemaRef.Context, DC,
6236                                D.getLocStart(),
6237                                NameInfo, R, TInfo, SC, isInline,
6238                                true/*HasPrototype*/, isConstexpr);
6239  }
6240}
6241
6242void Sema::checkVoidParamDecl(ParmVarDecl *Param) {
6243  // In C++, the empty parameter-type-list must be spelled "void"; a
6244  // typedef of void is not permitted.
6245  if (getLangOpts().CPlusPlus &&
6246      Param->getType().getUnqualifiedType() != Context.VoidTy) {
6247    bool IsTypeAlias = false;
6248    if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
6249      IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
6250    else if (const TemplateSpecializationType *TST =
6251               Param->getType()->getAs<TemplateSpecializationType>())
6252      IsTypeAlias = TST->isTypeAlias();
6253    Diag(Param->getLocation(), diag::err_param_typedef_of_void)
6254      << IsTypeAlias;
6255  }
6256}
6257
6258enum OpenCLParamType {
6259  ValidKernelParam,
6260  PtrPtrKernelParam,
6261  PtrKernelParam,
6262  InvalidKernelParam,
6263  RecordKernelParam
6264};
6265
6266static OpenCLParamType getOpenCLKernelParameterType(QualType PT) {
6267  if (PT->isPointerType()) {
6268    QualType PointeeType = PT->getPointeeType();
6269    return PointeeType->isPointerType() ? PtrPtrKernelParam : PtrKernelParam;
6270  }
6271
6272  // TODO: Forbid the other integer types (size_t, ptrdiff_t...) when they can
6273  // be used as builtin types.
6274
6275  if (PT->isImageType())
6276    return PtrKernelParam;
6277
6278  if (PT->isBooleanType())
6279    return InvalidKernelParam;
6280
6281  if (PT->isEventT())
6282    return InvalidKernelParam;
6283
6284  if (PT->isHalfType())
6285    return InvalidKernelParam;
6286
6287  if (PT->isRecordType())
6288    return RecordKernelParam;
6289
6290  return ValidKernelParam;
6291}
6292
6293static void checkIsValidOpenCLKernelParameter(
6294  Sema &S,
6295  Declarator &D,
6296  ParmVarDecl *Param,
6297  llvm::SmallPtrSet<const Type *, 16> &ValidTypes) {
6298  QualType PT = Param->getType();
6299
6300  // Cache the valid types we encounter to avoid rechecking structs that are
6301  // used again
6302  if (ValidTypes.count(PT.getTypePtr()))
6303    return;
6304
6305  switch (getOpenCLKernelParameterType(PT)) {
6306  case PtrPtrKernelParam:
6307    // OpenCL v1.2 s6.9.a:
6308    // A kernel function argument cannot be declared as a
6309    // pointer to a pointer type.
6310    S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
6311    D.setInvalidType();
6312    return;
6313
6314    // OpenCL v1.2 s6.9.k:
6315    // Arguments to kernel functions in a program cannot be declared with the
6316    // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
6317    // uintptr_t or a struct and/or union that contain fields declared to be
6318    // one of these built-in scalar types.
6319
6320  case InvalidKernelParam:
6321    // OpenCL v1.2 s6.8 n:
6322    // A kernel function argument cannot be declared
6323    // of event_t type.
6324    S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
6325    D.setInvalidType();
6326    return;
6327
6328  case PtrKernelParam:
6329  case ValidKernelParam:
6330    ValidTypes.insert(PT.getTypePtr());
6331    return;
6332
6333  case RecordKernelParam:
6334    break;
6335  }
6336
6337  // Track nested structs we will inspect
6338  SmallVector<const Decl *, 4> VisitStack;
6339
6340  // Track where we are in the nested structs. Items will migrate from
6341  // VisitStack to HistoryStack as we do the DFS for bad field.
6342  SmallVector<const FieldDecl *, 4> HistoryStack;
6343  HistoryStack.push_back((const FieldDecl *) 0);
6344
6345  const RecordDecl *PD = PT->castAs<RecordType>()->getDecl();
6346  VisitStack.push_back(PD);
6347
6348  assert(VisitStack.back() && "First decl null?");
6349
6350  do {
6351    const Decl *Next = VisitStack.pop_back_val();
6352    if (!Next) {
6353      assert(!HistoryStack.empty());
6354      // Found a marker, we have gone up a level
6355      if (const FieldDecl *Hist = HistoryStack.pop_back_val())
6356        ValidTypes.insert(Hist->getType().getTypePtr());
6357
6358      continue;
6359    }
6360
6361    // Adds everything except the original parameter declaration (which is not a
6362    // field itself) to the history stack.
6363    const RecordDecl *RD;
6364    if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
6365      HistoryStack.push_back(Field);
6366      RD = Field->getType()->castAs<RecordType>()->getDecl();
6367    } else {
6368      RD = cast<RecordDecl>(Next);
6369    }
6370
6371    // Add a null marker so we know when we've gone back up a level
6372    VisitStack.push_back((const Decl *) 0);
6373
6374    for (RecordDecl::field_iterator I = RD->field_begin(),
6375           E = RD->field_end(); I != E; ++I) {
6376      const FieldDecl *FD = *I;
6377      QualType QT = FD->getType();
6378
6379      if (ValidTypes.count(QT.getTypePtr()))
6380        continue;
6381
6382      OpenCLParamType ParamType = getOpenCLKernelParameterType(QT);
6383      if (ParamType == ValidKernelParam)
6384        continue;
6385
6386      if (ParamType == RecordKernelParam) {
6387        VisitStack.push_back(FD);
6388        continue;
6389      }
6390
6391      // OpenCL v1.2 s6.9.p:
6392      // Arguments to kernel functions that are declared to be a struct or union
6393      // do not allow OpenCL objects to be passed as elements of the struct or
6394      // union.
6395      if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam) {
6396        S.Diag(Param->getLocation(),
6397               diag::err_record_with_pointers_kernel_param)
6398          << PT->isUnionType()
6399          << PT;
6400      } else {
6401        S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
6402      }
6403
6404      S.Diag(PD->getLocation(), diag::note_within_field_of_type)
6405        << PD->getDeclName();
6406
6407      // We have an error, now let's go back up through history and show where
6408      // the offending field came from
6409      for (ArrayRef<const FieldDecl *>::const_iterator I = HistoryStack.begin() + 1,
6410             E = HistoryStack.end(); I != E; ++I) {
6411        const FieldDecl *OuterField = *I;
6412        S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
6413          << OuterField->getType();
6414      }
6415
6416      S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
6417        << QT->isPointerType()
6418        << QT;
6419      D.setInvalidType();
6420      return;
6421    }
6422  } while (!VisitStack.empty());
6423}
6424
6425NamedDecl*
6426Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
6427                              TypeSourceInfo *TInfo, LookupResult &Previous,
6428                              MultiTemplateParamsArg TemplateParamLists,
6429                              bool &AddToScope) {
6430  QualType R = TInfo->getType();
6431
6432  assert(R.getTypePtr()->isFunctionType());
6433
6434  // TODO: consider using NameInfo for diagnostic.
6435  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6436  DeclarationName Name = NameInfo.getName();
6437  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
6438
6439  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
6440    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6441         diag::err_invalid_thread)
6442      << DeclSpec::getSpecifierName(TSCS);
6443
6444  bool isFriend = false;
6445  FunctionTemplateDecl *FunctionTemplate = 0;
6446  bool isExplicitSpecialization = false;
6447  bool isFunctionTemplateSpecialization = false;
6448
6449  bool isDependentClassScopeExplicitSpecialization = false;
6450  bool HasExplicitTemplateArgs = false;
6451  TemplateArgumentListInfo TemplateArgs;
6452
6453  bool isVirtualOkay = false;
6454
6455  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
6456                                              isVirtualOkay);
6457  if (!NewFD) return 0;
6458
6459  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
6460    NewFD->setTopLevelDeclInObjCContainer();
6461
6462  if (getLangOpts().CPlusPlus) {
6463    bool isInline = D.getDeclSpec().isInlineSpecified();
6464    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
6465    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
6466    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
6467    isFriend = D.getDeclSpec().isFriendSpecified();
6468    if (isFriend && !isInline && D.isFunctionDefinition()) {
6469      // C++ [class.friend]p5
6470      //   A function can be defined in a friend declaration of a
6471      //   class . . . . Such a function is implicitly inline.
6472      NewFD->setImplicitlyInline();
6473    }
6474
6475    // If this is a method defined in an __interface, and is not a constructor
6476    // or an overloaded operator, then set the pure flag (isVirtual will already
6477    // return true).
6478    if (const CXXRecordDecl *Parent =
6479          dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
6480      if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
6481        NewFD->setPure(true);
6482    }
6483
6484    SetNestedNameSpecifier(NewFD, D);
6485    isExplicitSpecialization = false;
6486    isFunctionTemplateSpecialization = false;
6487    if (D.isInvalidType())
6488      NewFD->setInvalidDecl();
6489
6490    // Set the lexical context. If the declarator has a C++
6491    // scope specifier, or is the object of a friend declaration, the
6492    // lexical context will be different from the semantic context.
6493    NewFD->setLexicalDeclContext(CurContext);
6494
6495    // Match up the template parameter lists with the scope specifier, then
6496    // determine whether we have a template or a template specialization.
6497    bool Invalid = false;
6498    if (TemplateParameterList *TemplateParams =
6499            MatchTemplateParametersToScopeSpecifier(
6500                D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
6501                D.getCXXScopeSpec(), TemplateParamLists, isFriend,
6502                isExplicitSpecialization, Invalid)) {
6503      if (TemplateParams->size() > 0) {
6504        // This is a function template
6505
6506        // Check that we can declare a template here.
6507        if (CheckTemplateDeclScope(S, TemplateParams))
6508          return 0;
6509
6510        // A destructor cannot be a template.
6511        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
6512          Diag(NewFD->getLocation(), diag::err_destructor_template);
6513          return 0;
6514        }
6515
6516        // If we're adding a template to a dependent context, we may need to
6517        // rebuilding some of the types used within the template parameter list,
6518        // now that we know what the current instantiation is.
6519        if (DC->isDependentContext()) {
6520          ContextRAII SavedContext(*this, DC);
6521          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
6522            Invalid = true;
6523        }
6524
6525
6526        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
6527                                                        NewFD->getLocation(),
6528                                                        Name, TemplateParams,
6529                                                        NewFD);
6530        FunctionTemplate->setLexicalDeclContext(CurContext);
6531        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
6532
6533        // For source fidelity, store the other template param lists.
6534        if (TemplateParamLists.size() > 1) {
6535          NewFD->setTemplateParameterListsInfo(Context,
6536                                               TemplateParamLists.size() - 1,
6537                                               TemplateParamLists.data());
6538        }
6539      } else {
6540        // This is a function template specialization.
6541        isFunctionTemplateSpecialization = true;
6542        // For source fidelity, store all the template param lists.
6543        NewFD->setTemplateParameterListsInfo(Context,
6544                                             TemplateParamLists.size(),
6545                                             TemplateParamLists.data());
6546
6547        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
6548        if (isFriend) {
6549          // We want to remove the "template<>", found here.
6550          SourceRange RemoveRange = TemplateParams->getSourceRange();
6551
6552          // If we remove the template<> and the name is not a
6553          // template-id, we're actually silently creating a problem:
6554          // the friend declaration will refer to an untemplated decl,
6555          // and clearly the user wants a template specialization.  So
6556          // we need to insert '<>' after the name.
6557          SourceLocation InsertLoc;
6558          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
6559            InsertLoc = D.getName().getSourceRange().getEnd();
6560            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
6561          }
6562
6563          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
6564            << Name << RemoveRange
6565            << FixItHint::CreateRemoval(RemoveRange)
6566            << FixItHint::CreateInsertion(InsertLoc, "<>");
6567        }
6568      }
6569    }
6570    else {
6571      // All template param lists were matched against the scope specifier:
6572      // this is NOT (an explicit specialization of) a template.
6573      if (TemplateParamLists.size() > 0)
6574        // For source fidelity, store all the template param lists.
6575        NewFD->setTemplateParameterListsInfo(Context,
6576                                             TemplateParamLists.size(),
6577                                             TemplateParamLists.data());
6578    }
6579
6580    if (Invalid) {
6581      NewFD->setInvalidDecl();
6582      if (FunctionTemplate)
6583        FunctionTemplate->setInvalidDecl();
6584    }
6585
6586    // C++ [dcl.fct.spec]p5:
6587    //   The virtual specifier shall only be used in declarations of
6588    //   nonstatic class member functions that appear within a
6589    //   member-specification of a class declaration; see 10.3.
6590    //
6591    if (isVirtual && !NewFD->isInvalidDecl()) {
6592      if (!isVirtualOkay) {
6593        Diag(D.getDeclSpec().getVirtualSpecLoc(),
6594             diag::err_virtual_non_function);
6595      } else if (!CurContext->isRecord()) {
6596        // 'virtual' was specified outside of the class.
6597        Diag(D.getDeclSpec().getVirtualSpecLoc(),
6598             diag::err_virtual_out_of_class)
6599          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
6600      } else if (NewFD->getDescribedFunctionTemplate()) {
6601        // C++ [temp.mem]p3:
6602        //  A member function template shall not be virtual.
6603        Diag(D.getDeclSpec().getVirtualSpecLoc(),
6604             diag::err_virtual_member_function_template)
6605          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
6606      } else {
6607        // Okay: Add virtual to the method.
6608        NewFD->setVirtualAsWritten(true);
6609      }
6610
6611      if (getLangOpts().CPlusPlus1y &&
6612          NewFD->getResultType()->isUndeducedType())
6613        Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
6614    }
6615
6616    // C++ [dcl.fct.spec]p3:
6617    //  The inline specifier shall not appear on a block scope function
6618    //  declaration.
6619    if (isInline && !NewFD->isInvalidDecl()) {
6620      if (CurContext->isFunctionOrMethod()) {
6621        // 'inline' is not allowed on block scope function declaration.
6622        Diag(D.getDeclSpec().getInlineSpecLoc(),
6623             diag::err_inline_declaration_block_scope) << Name
6624          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
6625      }
6626    }
6627
6628    // C++ [dcl.fct.spec]p6:
6629    //  The explicit specifier shall be used only in the declaration of a
6630    //  constructor or conversion function within its class definition;
6631    //  see 12.3.1 and 12.3.2.
6632    if (isExplicit && !NewFD->isInvalidDecl()) {
6633      if (!CurContext->isRecord()) {
6634        // 'explicit' was specified outside of the class.
6635        Diag(D.getDeclSpec().getExplicitSpecLoc(),
6636             diag::err_explicit_out_of_class)
6637          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
6638      } else if (!isa<CXXConstructorDecl>(NewFD) &&
6639                 !isa<CXXConversionDecl>(NewFD)) {
6640        // 'explicit' was specified on a function that wasn't a constructor
6641        // or conversion function.
6642        Diag(D.getDeclSpec().getExplicitSpecLoc(),
6643             diag::err_explicit_non_ctor_or_conv_function)
6644          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
6645      }
6646    }
6647
6648    if (isConstexpr) {
6649      // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
6650      // are implicitly inline.
6651      NewFD->setImplicitlyInline();
6652
6653      // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
6654      // be either constructors or to return a literal type. Therefore,
6655      // destructors cannot be declared constexpr.
6656      if (isa<CXXDestructorDecl>(NewFD))
6657        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
6658    }
6659
6660    // If __module_private__ was specified, mark the function accordingly.
6661    if (D.getDeclSpec().isModulePrivateSpecified()) {
6662      if (isFunctionTemplateSpecialization) {
6663        SourceLocation ModulePrivateLoc
6664          = D.getDeclSpec().getModulePrivateSpecLoc();
6665        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
6666          << 0
6667          << FixItHint::CreateRemoval(ModulePrivateLoc);
6668      } else {
6669        NewFD->setModulePrivate();
6670        if (FunctionTemplate)
6671          FunctionTemplate->setModulePrivate();
6672      }
6673    }
6674
6675    if (isFriend) {
6676      if (FunctionTemplate) {
6677        FunctionTemplate->setObjectOfFriendDecl();
6678        FunctionTemplate->setAccess(AS_public);
6679      }
6680      NewFD->setObjectOfFriendDecl();
6681      NewFD->setAccess(AS_public);
6682    }
6683
6684    // If a function is defined as defaulted or deleted, mark it as such now.
6685    switch (D.getFunctionDefinitionKind()) {
6686      case FDK_Declaration:
6687      case FDK_Definition:
6688        break;
6689
6690      case FDK_Defaulted:
6691        NewFD->setDefaulted();
6692        break;
6693
6694      case FDK_Deleted:
6695        NewFD->setDeletedAsWritten();
6696        break;
6697    }
6698
6699    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
6700        D.isFunctionDefinition()) {
6701      // C++ [class.mfct]p2:
6702      //   A member function may be defined (8.4) in its class definition, in
6703      //   which case it is an inline member function (7.1.2)
6704      NewFD->setImplicitlyInline();
6705    }
6706
6707    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
6708        !CurContext->isRecord()) {
6709      // C++ [class.static]p1:
6710      //   A data or function member of a class may be declared static
6711      //   in a class definition, in which case it is a static member of
6712      //   the class.
6713
6714      // Complain about the 'static' specifier if it's on an out-of-line
6715      // member function definition.
6716      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6717           diag::err_static_out_of_line)
6718        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6719    }
6720
6721    // C++11 [except.spec]p15:
6722    //   A deallocation function with no exception-specification is treated
6723    //   as if it were specified with noexcept(true).
6724    const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
6725    if ((Name.getCXXOverloadedOperator() == OO_Delete ||
6726         Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
6727        getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec()) {
6728      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6729      EPI.ExceptionSpecType = EST_BasicNoexcept;
6730      NewFD->setType(Context.getFunctionType(FPT->getResultType(),
6731                                             FPT->getArgTypes(), EPI));
6732    }
6733  }
6734
6735  // Filter out previous declarations that don't match the scope.
6736  FilterLookupForScope(Previous, DC, S, shouldConsiderLinkage(NewFD),
6737                       isExplicitSpecialization ||
6738                       isFunctionTemplateSpecialization);
6739
6740  // Handle GNU asm-label extension (encoded as an attribute).
6741  if (Expr *E = (Expr*) D.getAsmLabel()) {
6742    // The parser guarantees this is a string.
6743    StringLiteral *SE = cast<StringLiteral>(E);
6744    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
6745                                                SE->getString()));
6746  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
6747    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
6748      ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
6749    if (I != ExtnameUndeclaredIdentifiers.end()) {
6750      NewFD->addAttr(I->second);
6751      ExtnameUndeclaredIdentifiers.erase(I);
6752    }
6753  }
6754
6755  // Copy the parameter declarations from the declarator D to the function
6756  // declaration NewFD, if they are available.  First scavenge them into Params.
6757  SmallVector<ParmVarDecl*, 16> Params;
6758  if (D.isFunctionDeclarator()) {
6759    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6760
6761    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
6762    // function that takes no arguments, not a function that takes a
6763    // single void argument.
6764    // We let through "const void" here because Sema::GetTypeForDeclarator
6765    // already checks for that case.
6766    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
6767        FTI.ArgInfo[0].Param &&
6768        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
6769      // Empty arg list, don't push any params.
6770      checkVoidParamDecl(cast<ParmVarDecl>(FTI.ArgInfo[0].Param));
6771    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
6772      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
6773        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
6774        assert(Param->getDeclContext() != NewFD && "Was set before ?");
6775        Param->setDeclContext(NewFD);
6776        Params.push_back(Param);
6777
6778        if (Param->isInvalidDecl())
6779          NewFD->setInvalidDecl();
6780      }
6781    }
6782
6783  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
6784    // When we're declaring a function with a typedef, typeof, etc as in the
6785    // following example, we'll need to synthesize (unnamed)
6786    // parameters for use in the declaration.
6787    //
6788    // @code
6789    // typedef void fn(int);
6790    // fn f;
6791    // @endcode
6792
6793    // Synthesize a parameter for each argument type.
6794    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
6795         AE = FT->arg_type_end(); AI != AE; ++AI) {
6796      ParmVarDecl *Param =
6797        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
6798      Param->setScopeInfo(0, Params.size());
6799      Params.push_back(Param);
6800    }
6801  } else {
6802    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
6803           "Should not need args for typedef of non-prototype fn");
6804  }
6805
6806  // Finally, we know we have the right number of parameters, install them.
6807  NewFD->setParams(Params);
6808
6809  // Find all anonymous symbols defined during the declaration of this function
6810  // and add to NewFD. This lets us track decls such 'enum Y' in:
6811  //
6812  //   void f(enum Y {AA} x) {}
6813  //
6814  // which would otherwise incorrectly end up in the translation unit scope.
6815  NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
6816  DeclsInPrototypeScope.clear();
6817
6818  if (D.getDeclSpec().isNoreturnSpecified())
6819    NewFD->addAttr(
6820        ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
6821                                       Context));
6822
6823  // Process the non-inheritable attributes on this declaration.
6824  ProcessDeclAttributes(S, NewFD, D,
6825                        /*NonInheritable=*/true, /*Inheritable=*/false);
6826
6827  // Functions returning a variably modified type violate C99 6.7.5.2p2
6828  // because all functions have linkage.
6829  if (!NewFD->isInvalidDecl() &&
6830      NewFD->getResultType()->isVariablyModifiedType()) {
6831    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
6832    NewFD->setInvalidDecl();
6833  }
6834
6835  // Handle attributes.
6836  ProcessDeclAttributes(S, NewFD, D,
6837                        /*NonInheritable=*/false, /*Inheritable=*/true);
6838
6839  QualType RetType = NewFD->getResultType();
6840  const CXXRecordDecl *Ret = RetType->isRecordType() ?
6841      RetType->getAsCXXRecordDecl() : RetType->getPointeeCXXRecordDecl();
6842  if (!NewFD->isInvalidDecl() && !NewFD->hasAttr<WarnUnusedResultAttr>() &&
6843      Ret && Ret->hasAttr<WarnUnusedResultAttr>()) {
6844    const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6845    if (!(MD && MD->getCorrespondingMethodInClass(Ret, true))) {
6846      NewFD->addAttr(new (Context) WarnUnusedResultAttr(SourceRange(),
6847                                                        Context));
6848    }
6849  }
6850
6851  if (!getLangOpts().CPlusPlus) {
6852    // Perform semantic checking on the function declaration.
6853    bool isExplicitSpecialization=false;
6854    if (!NewFD->isInvalidDecl() && NewFD->isMain())
6855      CheckMain(NewFD, D.getDeclSpec());
6856
6857    if (!NewFD->isInvalidDecl())
6858      D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
6859                                                  isExplicitSpecialization));
6860    // Make graceful recovery from an invalid redeclaration.
6861    else if (!Previous.empty())
6862           D.setRedeclaration(true);
6863    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
6864            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
6865           "previous declaration set still overloaded");
6866  } else {
6867    // If the declarator is a template-id, translate the parser's template
6868    // argument list into our AST format.
6869    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
6870      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
6871      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
6872      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
6873      ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
6874                                         TemplateId->NumArgs);
6875      translateTemplateArguments(TemplateArgsPtr,
6876                                 TemplateArgs);
6877
6878      HasExplicitTemplateArgs = true;
6879
6880      if (NewFD->isInvalidDecl()) {
6881        HasExplicitTemplateArgs = false;
6882      } else if (FunctionTemplate) {
6883        // Function template with explicit template arguments.
6884        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
6885          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
6886
6887        HasExplicitTemplateArgs = false;
6888      } else if (!isFunctionTemplateSpecialization &&
6889                 !D.getDeclSpec().isFriendSpecified()) {
6890        // We have encountered something that the user meant to be a
6891        // specialization (because it has explicitly-specified template
6892        // arguments) but that was not introduced with a "template<>" (or had
6893        // too few of them).
6894        // FIXME: Differentiate between attempts for explicit instantiations
6895        // (starting with "template") and the rest.
6896        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
6897          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
6898          << FixItHint::CreateInsertion(
6899                                    D.getDeclSpec().getLocStart(),
6900                                        "template<> ");
6901        isFunctionTemplateSpecialization = true;
6902      } else {
6903        // "friend void foo<>(int);" is an implicit specialization decl.
6904        isFunctionTemplateSpecialization = true;
6905      }
6906    } else if (isFriend && isFunctionTemplateSpecialization) {
6907      // This combination is only possible in a recovery case;  the user
6908      // wrote something like:
6909      //   template <> friend void foo(int);
6910      // which we're recovering from as if the user had written:
6911      //   friend void foo<>(int);
6912      // Go ahead and fake up a template id.
6913      HasExplicitTemplateArgs = true;
6914        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
6915      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
6916    }
6917
6918    // If it's a friend (and only if it's a friend), it's possible
6919    // that either the specialized function type or the specialized
6920    // template is dependent, and therefore matching will fail.  In
6921    // this case, don't check the specialization yet.
6922    bool InstantiationDependent = false;
6923    if (isFunctionTemplateSpecialization && isFriend &&
6924        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
6925         TemplateSpecializationType::anyDependentTemplateArguments(
6926            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
6927            InstantiationDependent))) {
6928      assert(HasExplicitTemplateArgs &&
6929             "friend function specialization without template args");
6930      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
6931                                                       Previous))
6932        NewFD->setInvalidDecl();
6933    } else if (isFunctionTemplateSpecialization) {
6934      if (CurContext->isDependentContext() && CurContext->isRecord()
6935          && !isFriend) {
6936        isDependentClassScopeExplicitSpecialization = true;
6937        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
6938          diag::ext_function_specialization_in_class :
6939          diag::err_function_specialization_in_class)
6940          << NewFD->getDeclName();
6941      } else if (CheckFunctionTemplateSpecialization(NewFD,
6942                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
6943                                                     Previous))
6944        NewFD->setInvalidDecl();
6945
6946      // C++ [dcl.stc]p1:
6947      //   A storage-class-specifier shall not be specified in an explicit
6948      //   specialization (14.7.3)
6949      FunctionTemplateSpecializationInfo *Info =
6950          NewFD->getTemplateSpecializationInfo();
6951      if (Info && SC != SC_None) {
6952        if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
6953          Diag(NewFD->getLocation(),
6954               diag::err_explicit_specialization_inconsistent_storage_class)
6955            << SC
6956            << FixItHint::CreateRemoval(
6957                                      D.getDeclSpec().getStorageClassSpecLoc());
6958
6959        else
6960          Diag(NewFD->getLocation(),
6961               diag::ext_explicit_specialization_storage_class)
6962            << FixItHint::CreateRemoval(
6963                                      D.getDeclSpec().getStorageClassSpecLoc());
6964      }
6965
6966    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
6967      if (CheckMemberSpecialization(NewFD, Previous))
6968          NewFD->setInvalidDecl();
6969    }
6970
6971    // Perform semantic checking on the function declaration.
6972    if (!isDependentClassScopeExplicitSpecialization) {
6973      if (!NewFD->isInvalidDecl() && NewFD->isMain())
6974        CheckMain(NewFD, D.getDeclSpec());
6975
6976      if (NewFD->isInvalidDecl()) {
6977        // If this is a class member, mark the class invalid immediately.
6978        // This avoids some consistency errors later.
6979        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
6980          methodDecl->getParent()->setInvalidDecl();
6981      } else
6982        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
6983                                                    isExplicitSpecialization));
6984    }
6985
6986    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
6987            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
6988           "previous declaration set still overloaded");
6989
6990    NamedDecl *PrincipalDecl = (FunctionTemplate
6991                                ? cast<NamedDecl>(FunctionTemplate)
6992                                : NewFD);
6993
6994    if (isFriend && D.isRedeclaration()) {
6995      AccessSpecifier Access = AS_public;
6996      if (!NewFD->isInvalidDecl())
6997        Access = NewFD->getPreviousDecl()->getAccess();
6998
6999      NewFD->setAccess(Access);
7000      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
7001    }
7002
7003    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
7004        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
7005      PrincipalDecl->setNonMemberOperator();
7006
7007    // If we have a function template, check the template parameter
7008    // list. This will check and merge default template arguments.
7009    if (FunctionTemplate) {
7010      FunctionTemplateDecl *PrevTemplate =
7011                                     FunctionTemplate->getPreviousDecl();
7012      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
7013                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
7014                            D.getDeclSpec().isFriendSpecified()
7015                              ? (D.isFunctionDefinition()
7016                                   ? TPC_FriendFunctionTemplateDefinition
7017                                   : TPC_FriendFunctionTemplate)
7018                              : (D.getCXXScopeSpec().isSet() &&
7019                                 DC && DC->isRecord() &&
7020                                 DC->isDependentContext())
7021                                  ? TPC_ClassTemplateMember
7022                                  : TPC_FunctionTemplate);
7023    }
7024
7025    if (NewFD->isInvalidDecl()) {
7026      // Ignore all the rest of this.
7027    } else if (!D.isRedeclaration()) {
7028      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
7029                                       AddToScope };
7030      // Fake up an access specifier if it's supposed to be a class member.
7031      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
7032        NewFD->setAccess(AS_public);
7033
7034      // Qualified decls generally require a previous declaration.
7035      if (D.getCXXScopeSpec().isSet()) {
7036        // ...with the major exception of templated-scope or
7037        // dependent-scope friend declarations.
7038
7039        // TODO: we currently also suppress this check in dependent
7040        // contexts because (1) the parameter depth will be off when
7041        // matching friend templates and (2) we might actually be
7042        // selecting a friend based on a dependent factor.  But there
7043        // are situations where these conditions don't apply and we
7044        // can actually do this check immediately.
7045        if (isFriend &&
7046            (TemplateParamLists.size() ||
7047             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
7048             CurContext->isDependentContext())) {
7049          // ignore these
7050        } else {
7051          // The user tried to provide an out-of-line definition for a
7052          // function that is a member of a class or namespace, but there
7053          // was no such member function declared (C++ [class.mfct]p2,
7054          // C++ [namespace.memdef]p2). For example:
7055          //
7056          // class X {
7057          //   void f() const;
7058          // };
7059          //
7060          // void X::f() { } // ill-formed
7061          //
7062          // Complain about this problem, and attempt to suggest close
7063          // matches (e.g., those that differ only in cv-qualifiers and
7064          // whether the parameter types are references).
7065
7066          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
7067                                                               NewFD,
7068                                                               ExtraArgs)) {
7069            AddToScope = ExtraArgs.AddToScope;
7070            return Result;
7071          }
7072        }
7073
7074        // Unqualified local friend declarations are required to resolve
7075        // to something.
7076      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
7077        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
7078                                                             NewFD,
7079                                                             ExtraArgs)) {
7080          AddToScope = ExtraArgs.AddToScope;
7081          return Result;
7082        }
7083      }
7084
7085    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
7086               !isFriend && !isFunctionTemplateSpecialization &&
7087               !isExplicitSpecialization) {
7088      // An out-of-line member function declaration must also be a
7089      // definition (C++ [dcl.meaning]p1).
7090      // Note that this is not the case for explicit specializations of
7091      // function templates or member functions of class templates, per
7092      // C++ [temp.expl.spec]p2. We also allow these declarations as an
7093      // extension for compatibility with old SWIG code which likes to
7094      // generate them.
7095      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
7096        << D.getCXXScopeSpec().getRange();
7097    }
7098  }
7099
7100  ProcessPragmaWeak(S, NewFD);
7101  checkAttributesAfterMerging(*this, *NewFD);
7102
7103  AddKnownFunctionAttributes(NewFD);
7104
7105  if (NewFD->hasAttr<OverloadableAttr>() &&
7106      !NewFD->getType()->getAs<FunctionProtoType>()) {
7107    Diag(NewFD->getLocation(),
7108         diag::err_attribute_overloadable_no_prototype)
7109      << NewFD;
7110
7111    // Turn this into a variadic function with no parameters.
7112    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
7113    FunctionProtoType::ExtProtoInfo EPI;
7114    EPI.Variadic = true;
7115    EPI.ExtInfo = FT->getExtInfo();
7116
7117    QualType R = Context.getFunctionType(FT->getResultType(), None, EPI);
7118    NewFD->setType(R);
7119  }
7120
7121  // If there's a #pragma GCC visibility in scope, and this isn't a class
7122  // member, set the visibility of this function.
7123  if (!DC->isRecord() && NewFD->isExternallyVisible())
7124    AddPushedVisibilityAttribute(NewFD);
7125
7126  // If there's a #pragma clang arc_cf_code_audited in scope, consider
7127  // marking the function.
7128  AddCFAuditedAttribute(NewFD);
7129
7130  // If this is the first declaration of an extern C variable, update
7131  // the map of such variables.
7132  if (!NewFD->getPreviousDecl() && !NewFD->isInvalidDecl() &&
7133      isIncompleteDeclExternC(*this, NewFD))
7134    RegisterLocallyScopedExternCDecl(NewFD, S);
7135
7136  // Set this FunctionDecl's range up to the right paren.
7137  NewFD->setRangeEnd(D.getSourceRange().getEnd());
7138
7139  if (getLangOpts().CPlusPlus) {
7140    if (FunctionTemplate) {
7141      if (NewFD->isInvalidDecl())
7142        FunctionTemplate->setInvalidDecl();
7143      return FunctionTemplate;
7144    }
7145  }
7146
7147  if (NewFD->hasAttr<OpenCLKernelAttr>()) {
7148    // OpenCL v1.2 s6.8 static is invalid for kernel functions.
7149    if ((getLangOpts().OpenCLVersion >= 120)
7150        && (SC == SC_Static)) {
7151      Diag(D.getIdentifierLoc(), diag::err_static_kernel);
7152      D.setInvalidType();
7153    }
7154
7155    // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
7156    if (!NewFD->getResultType()->isVoidType()) {
7157      Diag(D.getIdentifierLoc(),
7158           diag::err_expected_kernel_void_return_type);
7159      D.setInvalidType();
7160    }
7161
7162    llvm::SmallPtrSet<const Type *, 16> ValidTypes;
7163    for (FunctionDecl::param_iterator PI = NewFD->param_begin(),
7164         PE = NewFD->param_end(); PI != PE; ++PI) {
7165      ParmVarDecl *Param = *PI;
7166      checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
7167    }
7168  }
7169
7170  MarkUnusedFileScopedDecl(NewFD);
7171
7172  if (getLangOpts().CUDA)
7173    if (IdentifierInfo *II = NewFD->getIdentifier())
7174      if (!NewFD->isInvalidDecl() &&
7175          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
7176        if (II->isStr("cudaConfigureCall")) {
7177          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
7178            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
7179
7180          Context.setcudaConfigureCallDecl(NewFD);
7181        }
7182      }
7183
7184  // Here we have an function template explicit specialization at class scope.
7185  // The actually specialization will be postponed to template instatiation
7186  // time via the ClassScopeFunctionSpecializationDecl node.
7187  if (isDependentClassScopeExplicitSpecialization) {
7188    ClassScopeFunctionSpecializationDecl *NewSpec =
7189                         ClassScopeFunctionSpecializationDecl::Create(
7190                                Context, CurContext, SourceLocation(),
7191                                cast<CXXMethodDecl>(NewFD),
7192                                HasExplicitTemplateArgs, TemplateArgs);
7193    CurContext->addDecl(NewSpec);
7194    AddToScope = false;
7195  }
7196
7197  return NewFD;
7198}
7199
7200/// \brief Perform semantic checking of a new function declaration.
7201///
7202/// Performs semantic analysis of the new function declaration
7203/// NewFD. This routine performs all semantic checking that does not
7204/// require the actual declarator involved in the declaration, and is
7205/// used both for the declaration of functions as they are parsed
7206/// (called via ActOnDeclarator) and for the declaration of functions
7207/// that have been instantiated via C++ template instantiation (called
7208/// via InstantiateDecl).
7209///
7210/// \param IsExplicitSpecialization whether this new function declaration is
7211/// an explicit specialization of the previous declaration.
7212///
7213/// This sets NewFD->isInvalidDecl() to true if there was an error.
7214///
7215/// \returns true if the function declaration is a redeclaration.
7216bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
7217                                    LookupResult &Previous,
7218                                    bool IsExplicitSpecialization) {
7219  assert(!NewFD->getResultType()->isVariablyModifiedType()
7220         && "Variably modified return types are not handled here");
7221
7222  // Filter out any non-conflicting previous declarations.
7223  filterNonConflictingPreviousDecls(Context, NewFD, Previous);
7224
7225  bool Redeclaration = false;
7226  NamedDecl *OldDecl = 0;
7227
7228  // Merge or overload the declaration with an existing declaration of
7229  // the same name, if appropriate.
7230  if (!Previous.empty()) {
7231    // Determine whether NewFD is an overload of PrevDecl or
7232    // a declaration that requires merging. If it's an overload,
7233    // there's no more work to do here; we'll just add the new
7234    // function to the scope.
7235    if (!AllowOverloadingOfFunction(Previous, Context)) {
7236      NamedDecl *Candidate = Previous.getFoundDecl();
7237      if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
7238        Redeclaration = true;
7239        OldDecl = Candidate;
7240      }
7241    } else {
7242      switch (CheckOverload(S, NewFD, Previous, OldDecl,
7243                            /*NewIsUsingDecl*/ false)) {
7244      case Ovl_Match:
7245        Redeclaration = true;
7246        break;
7247
7248      case Ovl_NonFunction:
7249        Redeclaration = true;
7250        break;
7251
7252      case Ovl_Overload:
7253        Redeclaration = false;
7254        break;
7255      }
7256
7257      if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
7258        // If a function name is overloadable in C, then every function
7259        // with that name must be marked "overloadable".
7260        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
7261          << Redeclaration << NewFD;
7262        NamedDecl *OverloadedDecl = 0;
7263        if (Redeclaration)
7264          OverloadedDecl = OldDecl;
7265        else if (!Previous.empty())
7266          OverloadedDecl = Previous.getRepresentativeDecl();
7267        if (OverloadedDecl)
7268          Diag(OverloadedDecl->getLocation(),
7269               diag::note_attribute_overloadable_prev_overload);
7270        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
7271                                                        Context));
7272      }
7273    }
7274  }
7275
7276  // Check for a previous extern "C" declaration with this name.
7277  if (!Redeclaration &&
7278      checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
7279    filterNonConflictingPreviousDecls(Context, NewFD, Previous);
7280    if (!Previous.empty()) {
7281      // This is an extern "C" declaration with the same name as a previous
7282      // declaration, and thus redeclares that entity...
7283      Redeclaration = true;
7284      OldDecl = Previous.getFoundDecl();
7285
7286      // ... except in the presence of __attribute__((overloadable)).
7287      if (OldDecl->hasAttr<OverloadableAttr>()) {
7288        if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
7289          Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
7290            << Redeclaration << NewFD;
7291          Diag(Previous.getFoundDecl()->getLocation(),
7292               diag::note_attribute_overloadable_prev_overload);
7293          NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
7294                                                          Context));
7295        }
7296        if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
7297          Redeclaration = false;
7298          OldDecl = 0;
7299        }
7300      }
7301    }
7302  }
7303
7304  // C++11 [dcl.constexpr]p8:
7305  //   A constexpr specifier for a non-static member function that is not
7306  //   a constructor declares that member function to be const.
7307  //
7308  // This needs to be delayed until we know whether this is an out-of-line
7309  // definition of a static member function.
7310  //
7311  // This rule is not present in C++1y, so we produce a backwards
7312  // compatibility warning whenever it happens in C++11.
7313  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
7314  if (!getLangOpts().CPlusPlus1y && MD && MD->isConstexpr() &&
7315      !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
7316      (MD->getTypeQualifiers() & Qualifiers::Const) == 0) {
7317    CXXMethodDecl *OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl);
7318    if (FunctionTemplateDecl *OldTD =
7319          dyn_cast_or_null<FunctionTemplateDecl>(OldDecl))
7320      OldMD = dyn_cast<CXXMethodDecl>(OldTD->getTemplatedDecl());
7321    if (!OldMD || !OldMD->isStatic()) {
7322      const FunctionProtoType *FPT =
7323        MD->getType()->castAs<FunctionProtoType>();
7324      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7325      EPI.TypeQuals |= Qualifiers::Const;
7326      MD->setType(Context.getFunctionType(FPT->getResultType(),
7327                                          FPT->getArgTypes(), EPI));
7328
7329      // Warn that we did this, if we're not performing template instantiation.
7330      // In that case, we'll have warned already when the template was defined.
7331      if (ActiveTemplateInstantiations.empty()) {
7332        SourceLocation AddConstLoc;
7333        if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
7334                .IgnoreParens().getAs<FunctionTypeLoc>())
7335          AddConstLoc = PP.getLocForEndOfToken(FTL.getRParenLoc());
7336
7337        Diag(MD->getLocation(), diag::warn_cxx1y_compat_constexpr_not_const)
7338          << FixItHint::CreateInsertion(AddConstLoc, " const");
7339      }
7340    }
7341  }
7342
7343  if (Redeclaration) {
7344    // NewFD and OldDecl represent declarations that need to be
7345    // merged.
7346    if (MergeFunctionDecl(NewFD, OldDecl, S)) {
7347      NewFD->setInvalidDecl();
7348      return Redeclaration;
7349    }
7350
7351    Previous.clear();
7352    Previous.addDecl(OldDecl);
7353
7354    if (FunctionTemplateDecl *OldTemplateDecl
7355                                  = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
7356      NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
7357      FunctionTemplateDecl *NewTemplateDecl
7358        = NewFD->getDescribedFunctionTemplate();
7359      assert(NewTemplateDecl && "Template/non-template mismatch");
7360      if (CXXMethodDecl *Method
7361            = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
7362        Method->setAccess(OldTemplateDecl->getAccess());
7363        NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
7364      }
7365
7366      // If this is an explicit specialization of a member that is a function
7367      // template, mark it as a member specialization.
7368      if (IsExplicitSpecialization &&
7369          NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
7370        NewTemplateDecl->setMemberSpecialization();
7371        assert(OldTemplateDecl->isMemberSpecialization());
7372      }
7373
7374    } else {
7375      // This needs to happen first so that 'inline' propagates.
7376      NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
7377
7378      if (isa<CXXMethodDecl>(NewFD)) {
7379        // A valid redeclaration of a C++ method must be out-of-line,
7380        // but (unfortunately) it's not necessarily a definition
7381        // because of templates, which means that the previous
7382        // declaration is not necessarily from the class definition.
7383
7384        // For just setting the access, that doesn't matter.
7385        CXXMethodDecl *oldMethod = cast<CXXMethodDecl>(OldDecl);
7386        NewFD->setAccess(oldMethod->getAccess());
7387
7388        // Update the key-function state if necessary for this ABI.
7389        if (NewFD->isInlined() &&
7390            !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
7391          // setNonKeyFunction needs to work with the original
7392          // declaration from the class definition, and isVirtual() is
7393          // just faster in that case, so map back to that now.
7394          oldMethod = cast<CXXMethodDecl>(oldMethod->getFirstDeclaration());
7395          if (oldMethod->isVirtual()) {
7396            Context.setNonKeyFunction(oldMethod);
7397          }
7398        }
7399      }
7400    }
7401  }
7402
7403  // Semantic checking for this function declaration (in isolation).
7404  if (getLangOpts().CPlusPlus) {
7405    // C++-specific checks.
7406    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
7407      CheckConstructor(Constructor);
7408    } else if (CXXDestructorDecl *Destructor =
7409                dyn_cast<CXXDestructorDecl>(NewFD)) {
7410      CXXRecordDecl *Record = Destructor->getParent();
7411      QualType ClassType = Context.getTypeDeclType(Record);
7412
7413      // FIXME: Shouldn't we be able to perform this check even when the class
7414      // type is dependent? Both gcc and edg can handle that.
7415      if (!ClassType->isDependentType()) {
7416        DeclarationName Name
7417          = Context.DeclarationNames.getCXXDestructorName(
7418                                        Context.getCanonicalType(ClassType));
7419        if (NewFD->getDeclName() != Name) {
7420          Diag(NewFD->getLocation(), diag::err_destructor_name);
7421          NewFD->setInvalidDecl();
7422          return Redeclaration;
7423        }
7424      }
7425    } else if (CXXConversionDecl *Conversion
7426               = dyn_cast<CXXConversionDecl>(NewFD)) {
7427      ActOnConversionDeclarator(Conversion);
7428    }
7429
7430    // Find any virtual functions that this function overrides.
7431    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
7432      if (!Method->isFunctionTemplateSpecialization() &&
7433          !Method->getDescribedFunctionTemplate() &&
7434          Method->isCanonicalDecl()) {
7435        if (AddOverriddenMethods(Method->getParent(), Method)) {
7436          // If the function was marked as "static", we have a problem.
7437          if (NewFD->getStorageClass() == SC_Static) {
7438            ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
7439          }
7440        }
7441      }
7442
7443      if (Method->isStatic())
7444        checkThisInStaticMemberFunctionType(Method);
7445    }
7446
7447    // Extra checking for C++ overloaded operators (C++ [over.oper]).
7448    if (NewFD->isOverloadedOperator() &&
7449        CheckOverloadedOperatorDeclaration(NewFD)) {
7450      NewFD->setInvalidDecl();
7451      return Redeclaration;
7452    }
7453
7454    // Extra checking for C++0x literal operators (C++0x [over.literal]).
7455    if (NewFD->getLiteralIdentifier() &&
7456        CheckLiteralOperatorDeclaration(NewFD)) {
7457      NewFD->setInvalidDecl();
7458      return Redeclaration;
7459    }
7460
7461    // In C++, check default arguments now that we have merged decls. Unless
7462    // the lexical context is the class, because in this case this is done
7463    // during delayed parsing anyway.
7464    if (!CurContext->isRecord())
7465      CheckCXXDefaultArguments(NewFD);
7466
7467    // If this function declares a builtin function, check the type of this
7468    // declaration against the expected type for the builtin.
7469    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
7470      ASTContext::GetBuiltinTypeError Error;
7471      LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
7472      QualType T = Context.GetBuiltinType(BuiltinID, Error);
7473      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
7474        // The type of this function differs from the type of the builtin,
7475        // so forget about the builtin entirely.
7476        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
7477      }
7478    }
7479
7480    // If this function is declared as being extern "C", then check to see if
7481    // the function returns a UDT (class, struct, or union type) that is not C
7482    // compatible, and if it does, warn the user.
7483    // But, issue any diagnostic on the first declaration only.
7484    if (NewFD->isExternC() && Previous.empty()) {
7485      QualType R = NewFD->getResultType();
7486      if (R->isIncompleteType() && !R->isVoidType())
7487        Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
7488            << NewFD << R;
7489      else if (!R.isPODType(Context) && !R->isVoidType() &&
7490               !R->isObjCObjectPointerType())
7491        Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
7492    }
7493  }
7494  return Redeclaration;
7495}
7496
7497static SourceRange getResultSourceRange(const FunctionDecl *FD) {
7498  const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
7499  if (!TSI)
7500    return SourceRange();
7501
7502  TypeLoc TL = TSI->getTypeLoc();
7503  FunctionTypeLoc FunctionTL = TL.getAs<FunctionTypeLoc>();
7504  if (!FunctionTL)
7505    return SourceRange();
7506
7507  TypeLoc ResultTL = FunctionTL.getResultLoc();
7508  if (ResultTL.getUnqualifiedLoc().getAs<BuiltinTypeLoc>())
7509    return ResultTL.getSourceRange();
7510
7511  return SourceRange();
7512}
7513
7514void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
7515  // C++11 [basic.start.main]p3:  A program that declares main to be inline,
7516  //   static or constexpr is ill-formed.
7517  // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
7518  //   appear in a declaration of main.
7519  // static main is not an error under C99, but we should warn about it.
7520  // We accept _Noreturn main as an extension.
7521  if (FD->getStorageClass() == SC_Static)
7522    Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
7523         ? diag::err_static_main : diag::warn_static_main)
7524      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
7525  if (FD->isInlineSpecified())
7526    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
7527      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
7528  if (DS.isNoreturnSpecified()) {
7529    SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
7530    SourceRange NoreturnRange(NoreturnLoc,
7531                              PP.getLocForEndOfToken(NoreturnLoc));
7532    Diag(NoreturnLoc, diag::ext_noreturn_main);
7533    Diag(NoreturnLoc, diag::note_main_remove_noreturn)
7534      << FixItHint::CreateRemoval(NoreturnRange);
7535  }
7536  if (FD->isConstexpr()) {
7537    Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
7538      << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
7539    FD->setConstexpr(false);
7540  }
7541
7542  QualType T = FD->getType();
7543  assert(T->isFunctionType() && "function decl is not of function type");
7544  const FunctionType* FT = T->castAs<FunctionType>();
7545
7546  // All the standards say that main() should should return 'int'.
7547  if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
7548    // In C and C++, main magically returns 0 if you fall off the end;
7549    // set the flag which tells us that.
7550    // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
7551    FD->setHasImplicitReturnZero(true);
7552
7553  // In C with GNU extensions we allow main() to have non-integer return
7554  // type, but we should warn about the extension, and we disable the
7555  // implicit-return-zero rule.
7556  } else if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
7557    Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
7558
7559    SourceRange ResultRange = getResultSourceRange(FD);
7560    if (ResultRange.isValid())
7561      Diag(ResultRange.getBegin(), diag::note_main_change_return_type)
7562          << FixItHint::CreateReplacement(ResultRange, "int");
7563
7564  // Otherwise, this is just a flat-out error.
7565  } else {
7566    SourceRange ResultRange = getResultSourceRange(FD);
7567    if (ResultRange.isValid())
7568      Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
7569          << FixItHint::CreateReplacement(ResultRange, "int");
7570    else
7571      Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
7572
7573    FD->setInvalidDecl(true);
7574  }
7575
7576  // Treat protoless main() as nullary.
7577  if (isa<FunctionNoProtoType>(FT)) return;
7578
7579  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
7580  unsigned nparams = FTP->getNumArgs();
7581  assert(FD->getNumParams() == nparams);
7582
7583  bool HasExtraParameters = (nparams > 3);
7584
7585  // Darwin passes an undocumented fourth argument of type char**.  If
7586  // other platforms start sprouting these, the logic below will start
7587  // getting shifty.
7588  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
7589    HasExtraParameters = false;
7590
7591  if (HasExtraParameters) {
7592    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
7593    FD->setInvalidDecl(true);
7594    nparams = 3;
7595  }
7596
7597  // FIXME: a lot of the following diagnostics would be improved
7598  // if we had some location information about types.
7599
7600  QualType CharPP =
7601    Context.getPointerType(Context.getPointerType(Context.CharTy));
7602  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
7603
7604  for (unsigned i = 0; i < nparams; ++i) {
7605    QualType AT = FTP->getArgType(i);
7606
7607    bool mismatch = true;
7608
7609    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
7610      mismatch = false;
7611    else if (Expected[i] == CharPP) {
7612      // As an extension, the following forms are okay:
7613      //   char const **
7614      //   char const * const *
7615      //   char * const *
7616
7617      QualifierCollector qs;
7618      const PointerType* PT;
7619      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
7620          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
7621          Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
7622                              Context.CharTy)) {
7623        qs.removeConst();
7624        mismatch = !qs.empty();
7625      }
7626    }
7627
7628    if (mismatch) {
7629      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
7630      // TODO: suggest replacing given type with expected type
7631      FD->setInvalidDecl(true);
7632    }
7633  }
7634
7635  if (nparams == 1 && !FD->isInvalidDecl()) {
7636    Diag(FD->getLocation(), diag::warn_main_one_arg);
7637  }
7638
7639  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
7640    Diag(FD->getLocation(), diag::err_main_template_decl);
7641    FD->setInvalidDecl();
7642  }
7643}
7644
7645bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
7646  // FIXME: Need strict checking.  In C89, we need to check for
7647  // any assignment, increment, decrement, function-calls, or
7648  // commas outside of a sizeof.  In C99, it's the same list,
7649  // except that the aforementioned are allowed in unevaluated
7650  // expressions.  Everything else falls under the
7651  // "may accept other forms of constant expressions" exception.
7652  // (We never end up here for C++, so the constant expression
7653  // rules there don't matter.)
7654  if (Init->isConstantInitializer(Context, false))
7655    return false;
7656  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
7657    << Init->getSourceRange();
7658  return true;
7659}
7660
7661namespace {
7662  // Visits an initialization expression to see if OrigDecl is evaluated in
7663  // its own initialization and throws a warning if it does.
7664  class SelfReferenceChecker
7665      : public EvaluatedExprVisitor<SelfReferenceChecker> {
7666    Sema &S;
7667    Decl *OrigDecl;
7668    bool isRecordType;
7669    bool isPODType;
7670    bool isReferenceType;
7671
7672  public:
7673    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
7674
7675    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
7676                                                    S(S), OrigDecl(OrigDecl) {
7677      isPODType = false;
7678      isRecordType = false;
7679      isReferenceType = false;
7680      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
7681        isPODType = VD->getType().isPODType(S.Context);
7682        isRecordType = VD->getType()->isRecordType();
7683        isReferenceType = VD->getType()->isReferenceType();
7684      }
7685    }
7686
7687    // For most expressions, the cast is directly above the DeclRefExpr.
7688    // For conditional operators, the cast can be outside the conditional
7689    // operator if both expressions are DeclRefExpr's.
7690    void HandleValue(Expr *E) {
7691      if (isReferenceType)
7692        return;
7693      E = E->IgnoreParenImpCasts();
7694      if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
7695        HandleDeclRefExpr(DRE);
7696        return;
7697      }
7698
7699      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
7700        HandleValue(CO->getTrueExpr());
7701        HandleValue(CO->getFalseExpr());
7702        return;
7703      }
7704
7705      if (isa<MemberExpr>(E)) {
7706        Expr *Base = E->IgnoreParenImpCasts();
7707        while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
7708          // Check for static member variables and don't warn on them.
7709          if (!isa<FieldDecl>(ME->getMemberDecl()))
7710            return;
7711          Base = ME->getBase()->IgnoreParenImpCasts();
7712        }
7713        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
7714          HandleDeclRefExpr(DRE);
7715        return;
7716      }
7717    }
7718
7719    // Reference types are handled here since all uses of references are
7720    // bad, not just r-value uses.
7721    void VisitDeclRefExpr(DeclRefExpr *E) {
7722      if (isReferenceType)
7723        HandleDeclRefExpr(E);
7724    }
7725
7726    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
7727      if (E->getCastKind() == CK_LValueToRValue ||
7728          (isRecordType && E->getCastKind() == CK_NoOp))
7729        HandleValue(E->getSubExpr());
7730
7731      Inherited::VisitImplicitCastExpr(E);
7732    }
7733
7734    void VisitMemberExpr(MemberExpr *E) {
7735      // Don't warn on arrays since they can be treated as pointers.
7736      if (E->getType()->canDecayToPointerType()) return;
7737
7738      // Warn when a non-static method call is followed by non-static member
7739      // field accesses, which is followed by a DeclRefExpr.
7740      CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
7741      bool Warn = (MD && !MD->isStatic());
7742      Expr *Base = E->getBase()->IgnoreParenImpCasts();
7743      while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
7744        if (!isa<FieldDecl>(ME->getMemberDecl()))
7745          Warn = false;
7746        Base = ME->getBase()->IgnoreParenImpCasts();
7747      }
7748
7749      if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
7750        if (Warn)
7751          HandleDeclRefExpr(DRE);
7752        return;
7753      }
7754
7755      // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
7756      // Visit that expression.
7757      Visit(Base);
7758    }
7759
7760    void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
7761      if (E->getNumArgs() > 0)
7762        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getArg(0)))
7763          HandleDeclRefExpr(DRE);
7764
7765      Inherited::VisitCXXOperatorCallExpr(E);
7766    }
7767
7768    void VisitUnaryOperator(UnaryOperator *E) {
7769      // For POD record types, addresses of its own members are well-defined.
7770      if (E->getOpcode() == UO_AddrOf && isRecordType &&
7771          isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
7772        if (!isPODType)
7773          HandleValue(E->getSubExpr());
7774        return;
7775      }
7776      Inherited::VisitUnaryOperator(E);
7777    }
7778
7779    void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
7780
7781    void HandleDeclRefExpr(DeclRefExpr *DRE) {
7782      Decl* ReferenceDecl = DRE->getDecl();
7783      if (OrigDecl != ReferenceDecl) return;
7784      unsigned diag;
7785      if (isReferenceType) {
7786        diag = diag::warn_uninit_self_reference_in_reference_init;
7787      } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
7788        diag = diag::warn_static_self_reference_in_init;
7789      } else {
7790        diag = diag::warn_uninit_self_reference_in_init;
7791      }
7792
7793      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
7794                            S.PDiag(diag)
7795                              << DRE->getNameInfo().getName()
7796                              << OrigDecl->getLocation()
7797                              << DRE->getSourceRange());
7798    }
7799  };
7800
7801  /// CheckSelfReference - Warns if OrigDecl is used in expression E.
7802  static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
7803                                 bool DirectInit) {
7804    // Parameters arguments are occassionially constructed with itself,
7805    // for instance, in recursive functions.  Skip them.
7806    if (isa<ParmVarDecl>(OrigDecl))
7807      return;
7808
7809    E = E->IgnoreParens();
7810
7811    // Skip checking T a = a where T is not a record or reference type.
7812    // Doing so is a way to silence uninitialized warnings.
7813    if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
7814      if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
7815        if (ICE->getCastKind() == CK_LValueToRValue)
7816          if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
7817            if (DRE->getDecl() == OrigDecl)
7818              return;
7819
7820    SelfReferenceChecker(S, OrigDecl).Visit(E);
7821  }
7822}
7823
7824/// AddInitializerToDecl - Adds the initializer Init to the
7825/// declaration dcl. If DirectInit is true, this is C++ direct
7826/// initialization rather than copy initialization.
7827void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
7828                                bool DirectInit, bool TypeMayContainAuto) {
7829  // If there is no declaration, there was an error parsing it.  Just ignore
7830  // the initializer.
7831  if (RealDecl == 0 || RealDecl->isInvalidDecl())
7832    return;
7833
7834  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
7835    // With declarators parsed the way they are, the parser cannot
7836    // distinguish between a normal initializer and a pure-specifier.
7837    // Thus this grotesque test.
7838    IntegerLiteral *IL;
7839    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
7840        Context.getCanonicalType(IL->getType()) == Context.IntTy)
7841      CheckPureMethod(Method, Init->getSourceRange());
7842    else {
7843      Diag(Method->getLocation(), diag::err_member_function_initialization)
7844        << Method->getDeclName() << Init->getSourceRange();
7845      Method->setInvalidDecl();
7846    }
7847    return;
7848  }
7849
7850  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
7851  if (!VDecl) {
7852    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
7853    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
7854    RealDecl->setInvalidDecl();
7855    return;
7856  }
7857  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
7858
7859  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
7860  if (TypeMayContainAuto && VDecl->getType()->isUndeducedType()) {
7861    Expr *DeduceInit = Init;
7862    // Initializer could be a C++ direct-initializer. Deduction only works if it
7863    // contains exactly one expression.
7864    if (CXXDirectInit) {
7865      if (CXXDirectInit->getNumExprs() == 0) {
7866        // It isn't possible to write this directly, but it is possible to
7867        // end up in this situation with "auto x(some_pack...);"
7868        Diag(CXXDirectInit->getLocStart(),
7869             diag::err_auto_var_init_no_expression)
7870          << VDecl->getDeclName() << VDecl->getType()
7871          << VDecl->getSourceRange();
7872        RealDecl->setInvalidDecl();
7873        return;
7874      } else if (CXXDirectInit->getNumExprs() > 1) {
7875        Diag(CXXDirectInit->getExpr(1)->getLocStart(),
7876             diag::err_auto_var_init_multiple_expressions)
7877          << VDecl->getDeclName() << VDecl->getType()
7878          << VDecl->getSourceRange();
7879        RealDecl->setInvalidDecl();
7880        return;
7881      } else {
7882        DeduceInit = CXXDirectInit->getExpr(0);
7883      }
7884    }
7885
7886    // Expressions default to 'id' when we're in a debugger.
7887    bool DefaultedToAuto = false;
7888    if (getLangOpts().DebuggerCastResultToId &&
7889        Init->getType() == Context.UnknownAnyTy) {
7890      ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
7891      if (Result.isInvalid()) {
7892        VDecl->setInvalidDecl();
7893        return;
7894      }
7895      Init = Result.take();
7896      DefaultedToAuto = true;
7897    }
7898
7899    QualType DeducedType;
7900    if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
7901            DAR_Failed)
7902      DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
7903    if (DeducedType.isNull()) {
7904      RealDecl->setInvalidDecl();
7905      return;
7906    }
7907    VDecl->setType(DeducedType);
7908    assert(VDecl->isLinkageValid());
7909
7910    // In ARC, infer lifetime.
7911    if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
7912      VDecl->setInvalidDecl();
7913
7914    // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
7915    // 'id' instead of a specific object type prevents most of our usual checks.
7916    // We only want to warn outside of template instantiations, though:
7917    // inside a template, the 'id' could have come from a parameter.
7918    if (ActiveTemplateInstantiations.empty() && !DefaultedToAuto &&
7919        DeducedType->isObjCIdType()) {
7920      SourceLocation Loc =
7921          VDecl->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
7922      Diag(Loc, diag::warn_auto_var_is_id)
7923        << VDecl->getDeclName() << DeduceInit->getSourceRange();
7924    }
7925
7926    // If this is a redeclaration, check that the type we just deduced matches
7927    // the previously declared type.
7928    if (VarDecl *Old = VDecl->getPreviousDecl())
7929      MergeVarDeclTypes(VDecl, Old, /*OldWasHidden*/ false);
7930
7931    // Check the deduced type is valid for a variable declaration.
7932    CheckVariableDeclarationType(VDecl);
7933    if (VDecl->isInvalidDecl())
7934      return;
7935  }
7936
7937  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
7938    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
7939    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
7940    VDecl->setInvalidDecl();
7941    return;
7942  }
7943
7944  if (!VDecl->getType()->isDependentType()) {
7945    // A definition must end up with a complete type, which means it must be
7946    // complete with the restriction that an array type might be completed by
7947    // the initializer; note that later code assumes this restriction.
7948    QualType BaseDeclType = VDecl->getType();
7949    if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
7950      BaseDeclType = Array->getElementType();
7951    if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
7952                            diag::err_typecheck_decl_incomplete_type)) {
7953      RealDecl->setInvalidDecl();
7954      return;
7955    }
7956
7957    // The variable can not have an abstract class type.
7958    if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
7959                               diag::err_abstract_type_in_decl,
7960                               AbstractVariableType))
7961      VDecl->setInvalidDecl();
7962  }
7963
7964  const VarDecl *Def;
7965  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
7966    Diag(VDecl->getLocation(), diag::err_redefinition)
7967      << VDecl->getDeclName();
7968    Diag(Def->getLocation(), diag::note_previous_definition);
7969    VDecl->setInvalidDecl();
7970    return;
7971  }
7972
7973  const VarDecl* PrevInit = 0;
7974  if (getLangOpts().CPlusPlus) {
7975    // C++ [class.static.data]p4
7976    //   If a static data member is of const integral or const
7977    //   enumeration type, its declaration in the class definition can
7978    //   specify a constant-initializer which shall be an integral
7979    //   constant expression (5.19). In that case, the member can appear
7980    //   in integral constant expressions. The member shall still be
7981    //   defined in a namespace scope if it is used in the program and the
7982    //   namespace scope definition shall not contain an initializer.
7983    //
7984    // We already performed a redefinition check above, but for static
7985    // data members we also need to check whether there was an in-class
7986    // declaration with an initializer.
7987    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
7988      Diag(VDecl->getLocation(), diag::err_redefinition)
7989        << VDecl->getDeclName();
7990      Diag(PrevInit->getLocation(), diag::note_previous_definition);
7991      return;
7992    }
7993
7994    if (VDecl->hasLocalStorage())
7995      getCurFunction()->setHasBranchProtectedScope();
7996
7997    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
7998      VDecl->setInvalidDecl();
7999      return;
8000    }
8001  }
8002
8003  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
8004  // a kernel function cannot be initialized."
8005  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
8006    Diag(VDecl->getLocation(), diag::err_local_cant_init);
8007    VDecl->setInvalidDecl();
8008    return;
8009  }
8010
8011  // Get the decls type and save a reference for later, since
8012  // CheckInitializerTypes may change it.
8013  QualType DclT = VDecl->getType(), SavT = DclT;
8014
8015  // Expressions default to 'id' when we're in a debugger
8016  // and we are assigning it to a variable of Objective-C pointer type.
8017  if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
8018      Init->getType() == Context.UnknownAnyTy) {
8019    ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
8020    if (Result.isInvalid()) {
8021      VDecl->setInvalidDecl();
8022      return;
8023    }
8024    Init = Result.take();
8025  }
8026
8027  // Perform the initialization.
8028  if (!VDecl->isInvalidDecl()) {
8029    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
8030    InitializationKind Kind
8031      = DirectInit ?
8032          CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
8033                                                           Init->getLocStart(),
8034                                                           Init->getLocEnd())
8035                        : InitializationKind::CreateDirectList(
8036                                                          VDecl->getLocation())
8037                   : InitializationKind::CreateCopy(VDecl->getLocation(),
8038                                                    Init->getLocStart());
8039
8040    MultiExprArg Args = Init;
8041    if (CXXDirectInit)
8042      Args = MultiExprArg(CXXDirectInit->getExprs(),
8043                          CXXDirectInit->getNumExprs());
8044
8045    InitializationSequence InitSeq(*this, Entity, Kind, Args);
8046    ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
8047    if (Result.isInvalid()) {
8048      VDecl->setInvalidDecl();
8049      return;
8050    }
8051
8052    Init = Result.takeAs<Expr>();
8053  }
8054
8055  // Check for self-references within variable initializers.
8056  // Variables declared within a function/method body (except for references)
8057  // are handled by a dataflow analysis.
8058  if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
8059      VDecl->getType()->isReferenceType()) {
8060    CheckSelfReference(*this, RealDecl, Init, DirectInit);
8061  }
8062
8063  // If the type changed, it means we had an incomplete type that was
8064  // completed by the initializer. For example:
8065  //   int ary[] = { 1, 3, 5 };
8066  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
8067  if (!VDecl->isInvalidDecl() && (DclT != SavT))
8068    VDecl->setType(DclT);
8069
8070  if (!VDecl->isInvalidDecl()) {
8071    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
8072
8073    if (VDecl->hasAttr<BlocksAttr>())
8074      checkRetainCycles(VDecl, Init);
8075
8076    // It is safe to assign a weak reference into a strong variable.
8077    // Although this code can still have problems:
8078    //   id x = self.weakProp;
8079    //   id y = self.weakProp;
8080    // we do not warn to warn spuriously when 'x' and 'y' are on separate
8081    // paths through the function. This should be revisited if
8082    // -Wrepeated-use-of-weak is made flow-sensitive.
8083    if (VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong) {
8084      DiagnosticsEngine::Level Level =
8085        Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
8086                                 Init->getLocStart());
8087      if (Level != DiagnosticsEngine::Ignored)
8088        getCurFunction()->markSafeWeakUse(Init);
8089    }
8090  }
8091
8092  // The initialization is usually a full-expression.
8093  //
8094  // FIXME: If this is a braced initialization of an aggregate, it is not
8095  // an expression, and each individual field initializer is a separate
8096  // full-expression. For instance, in:
8097  //
8098  //   struct Temp { ~Temp(); };
8099  //   struct S { S(Temp); };
8100  //   struct T { S a, b; } t = { Temp(), Temp() }
8101  //
8102  // we should destroy the first Temp before constructing the second.
8103  ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(),
8104                                          false,
8105                                          VDecl->isConstexpr());
8106  if (Result.isInvalid()) {
8107    VDecl->setInvalidDecl();
8108    return;
8109  }
8110  Init = Result.take();
8111
8112  // Attach the initializer to the decl.
8113  VDecl->setInit(Init);
8114
8115  if (VDecl->isLocalVarDecl()) {
8116    // C99 6.7.8p4: All the expressions in an initializer for an object that has
8117    // static storage duration shall be constant expressions or string literals.
8118    // C++ does not have this restriction.
8119    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl()) {
8120      if (VDecl->getStorageClass() == SC_Static)
8121        CheckForConstantInitializer(Init, DclT);
8122      // C89 is stricter than C99 for non-static aggregate types.
8123      // C89 6.5.7p3: All the expressions [...] in an initializer list
8124      // for an object that has aggregate or union type shall be
8125      // constant expressions.
8126      else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
8127               isa<InitListExpr>(Init) &&
8128               !Init->isConstantInitializer(Context, false))
8129        Diag(Init->getExprLoc(),
8130             diag::ext_aggregate_init_not_constant)
8131          << Init->getSourceRange();
8132    }
8133  } else if (VDecl->isStaticDataMember() &&
8134             VDecl->getLexicalDeclContext()->isRecord()) {
8135    // This is an in-class initialization for a static data member, e.g.,
8136    //
8137    // struct S {
8138    //   static const int value = 17;
8139    // };
8140
8141    // C++ [class.mem]p4:
8142    //   A member-declarator can contain a constant-initializer only
8143    //   if it declares a static member (9.4) of const integral or
8144    //   const enumeration type, see 9.4.2.
8145    //
8146    // C++11 [class.static.data]p3:
8147    //   If a non-volatile const static data member is of integral or
8148    //   enumeration type, its declaration in the class definition can
8149    //   specify a brace-or-equal-initializer in which every initalizer-clause
8150    //   that is an assignment-expression is a constant expression. A static
8151    //   data member of literal type can be declared in the class definition
8152    //   with the constexpr specifier; if so, its declaration shall specify a
8153    //   brace-or-equal-initializer in which every initializer-clause that is
8154    //   an assignment-expression is a constant expression.
8155
8156    // Do nothing on dependent types.
8157    if (DclT->isDependentType()) {
8158
8159    // Allow any 'static constexpr' members, whether or not they are of literal
8160    // type. We separately check that every constexpr variable is of literal
8161    // type.
8162    } else if (VDecl->isConstexpr()) {
8163
8164    // Require constness.
8165    } else if (!DclT.isConstQualified()) {
8166      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
8167        << Init->getSourceRange();
8168      VDecl->setInvalidDecl();
8169
8170    // We allow integer constant expressions in all cases.
8171    } else if (DclT->isIntegralOrEnumerationType()) {
8172      // Check whether the expression is a constant expression.
8173      SourceLocation Loc;
8174      if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
8175        // In C++11, a non-constexpr const static data member with an
8176        // in-class initializer cannot be volatile.
8177        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
8178      else if (Init->isValueDependent())
8179        ; // Nothing to check.
8180      else if (Init->isIntegerConstantExpr(Context, &Loc))
8181        ; // Ok, it's an ICE!
8182      else if (Init->isEvaluatable(Context)) {
8183        // If we can constant fold the initializer through heroics, accept it,
8184        // but report this as a use of an extension for -pedantic.
8185        Diag(Loc, diag::ext_in_class_initializer_non_constant)
8186          << Init->getSourceRange();
8187      } else {
8188        // Otherwise, this is some crazy unknown case.  Report the issue at the
8189        // location provided by the isIntegerConstantExpr failed check.
8190        Diag(Loc, diag::err_in_class_initializer_non_constant)
8191          << Init->getSourceRange();
8192        VDecl->setInvalidDecl();
8193      }
8194
8195    // We allow foldable floating-point constants as an extension.
8196    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
8197      // In C++98, this is a GNU extension. In C++11, it is not, but we support
8198      // it anyway and provide a fixit to add the 'constexpr'.
8199      if (getLangOpts().CPlusPlus11) {
8200        Diag(VDecl->getLocation(),
8201             diag::ext_in_class_initializer_float_type_cxx11)
8202            << DclT << Init->getSourceRange();
8203        Diag(VDecl->getLocStart(),
8204             diag::note_in_class_initializer_float_type_cxx11)
8205            << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
8206      } else {
8207        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
8208          << DclT << Init->getSourceRange();
8209
8210        if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
8211          Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
8212            << Init->getSourceRange();
8213          VDecl->setInvalidDecl();
8214        }
8215      }
8216
8217    // Suggest adding 'constexpr' in C++11 for literal types.
8218    } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
8219      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
8220        << DclT << Init->getSourceRange()
8221        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
8222      VDecl->setConstexpr(true);
8223
8224    } else {
8225      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
8226        << DclT << Init->getSourceRange();
8227      VDecl->setInvalidDecl();
8228    }
8229  } else if (VDecl->isFileVarDecl()) {
8230    if (VDecl->getStorageClass() == SC_Extern &&
8231        (!getLangOpts().CPlusPlus ||
8232         !(Context.getBaseElementType(VDecl->getType()).isConstQualified() ||
8233           VDecl->isExternC())))
8234      Diag(VDecl->getLocation(), diag::warn_extern_init);
8235
8236    // C99 6.7.8p4. All file scoped initializers need to be constant.
8237    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
8238      CheckForConstantInitializer(Init, DclT);
8239    else if (VDecl->getTLSKind() == VarDecl::TLS_Static &&
8240             !VDecl->isInvalidDecl() && !DclT->isDependentType() &&
8241             !Init->isValueDependent() && !VDecl->isConstexpr() &&
8242             !Init->isConstantInitializer(
8243                 Context, VDecl->getType()->isReferenceType())) {
8244      // GNU C++98 edits for __thread, [basic.start.init]p4:
8245      //   An object of thread storage duration shall not require dynamic
8246      //   initialization.
8247      // FIXME: Need strict checking here.
8248      Diag(VDecl->getLocation(), diag::err_thread_dynamic_init);
8249      if (getLangOpts().CPlusPlus11)
8250        Diag(VDecl->getLocation(), diag::note_use_thread_local);
8251    }
8252  }
8253
8254  // We will represent direct-initialization similarly to copy-initialization:
8255  //    int x(1);  -as-> int x = 1;
8256  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
8257  //
8258  // Clients that want to distinguish between the two forms, can check for
8259  // direct initializer using VarDecl::getInitStyle().
8260  // A major benefit is that clients that don't particularly care about which
8261  // exactly form was it (like the CodeGen) can handle both cases without
8262  // special case code.
8263
8264  // C++ 8.5p11:
8265  // The form of initialization (using parentheses or '=') is generally
8266  // insignificant, but does matter when the entity being initialized has a
8267  // class type.
8268  if (CXXDirectInit) {
8269    assert(DirectInit && "Call-style initializer must be direct init.");
8270    VDecl->setInitStyle(VarDecl::CallInit);
8271  } else if (DirectInit) {
8272    // This must be list-initialization. No other way is direct-initialization.
8273    VDecl->setInitStyle(VarDecl::ListInit);
8274  }
8275
8276  CheckCompleteVariableDeclaration(VDecl);
8277}
8278
8279/// ActOnInitializerError - Given that there was an error parsing an
8280/// initializer for the given declaration, try to return to some form
8281/// of sanity.
8282void Sema::ActOnInitializerError(Decl *D) {
8283  // Our main concern here is re-establishing invariants like "a
8284  // variable's type is either dependent or complete".
8285  if (!D || D->isInvalidDecl()) return;
8286
8287  VarDecl *VD = dyn_cast<VarDecl>(D);
8288  if (!VD) return;
8289
8290  // Auto types are meaningless if we can't make sense of the initializer.
8291  if (ParsingInitForAutoVars.count(D)) {
8292    D->setInvalidDecl();
8293    return;
8294  }
8295
8296  QualType Ty = VD->getType();
8297  if (Ty->isDependentType()) return;
8298
8299  // Require a complete type.
8300  if (RequireCompleteType(VD->getLocation(),
8301                          Context.getBaseElementType(Ty),
8302                          diag::err_typecheck_decl_incomplete_type)) {
8303    VD->setInvalidDecl();
8304    return;
8305  }
8306
8307  // Require an abstract type.
8308  if (RequireNonAbstractType(VD->getLocation(), Ty,
8309                             diag::err_abstract_type_in_decl,
8310                             AbstractVariableType)) {
8311    VD->setInvalidDecl();
8312    return;
8313  }
8314
8315  // Don't bother complaining about constructors or destructors,
8316  // though.
8317}
8318
8319void Sema::ActOnUninitializedDecl(Decl *RealDecl,
8320                                  bool TypeMayContainAuto) {
8321  // If there is no declaration, there was an error parsing it. Just ignore it.
8322  if (RealDecl == 0)
8323    return;
8324
8325  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
8326    QualType Type = Var->getType();
8327
8328    // C++11 [dcl.spec.auto]p3
8329    if (TypeMayContainAuto && Type->getContainedAutoType()) {
8330      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
8331        << Var->getDeclName() << Type;
8332      Var->setInvalidDecl();
8333      return;
8334    }
8335
8336    // C++11 [class.static.data]p3: A static data member can be declared with
8337    // the constexpr specifier; if so, its declaration shall specify
8338    // a brace-or-equal-initializer.
8339    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
8340    // the definition of a variable [...] or the declaration of a static data
8341    // member.
8342    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
8343      if (Var->isStaticDataMember())
8344        Diag(Var->getLocation(),
8345             diag::err_constexpr_static_mem_var_requires_init)
8346          << Var->getDeclName();
8347      else
8348        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
8349      Var->setInvalidDecl();
8350      return;
8351    }
8352
8353    switch (Var->isThisDeclarationADefinition()) {
8354    case VarDecl::Definition:
8355      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
8356        break;
8357
8358      // We have an out-of-line definition of a static data member
8359      // that has an in-class initializer, so we type-check this like
8360      // a declaration.
8361      //
8362      // Fall through
8363
8364    case VarDecl::DeclarationOnly:
8365      // It's only a declaration.
8366
8367      // Block scope. C99 6.7p7: If an identifier for an object is
8368      // declared with no linkage (C99 6.2.2p6), the type for the
8369      // object shall be complete.
8370      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
8371          !Var->hasLinkage() && !Var->isInvalidDecl() &&
8372          RequireCompleteType(Var->getLocation(), Type,
8373                              diag::err_typecheck_decl_incomplete_type))
8374        Var->setInvalidDecl();
8375
8376      // Make sure that the type is not abstract.
8377      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
8378          RequireNonAbstractType(Var->getLocation(), Type,
8379                                 diag::err_abstract_type_in_decl,
8380                                 AbstractVariableType))
8381        Var->setInvalidDecl();
8382      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
8383          Var->getStorageClass() == SC_PrivateExtern) {
8384        Diag(Var->getLocation(), diag::warn_private_extern);
8385        Diag(Var->getLocation(), diag::note_private_extern);
8386      }
8387
8388      return;
8389
8390    case VarDecl::TentativeDefinition:
8391      // File scope. C99 6.9.2p2: A declaration of an identifier for an
8392      // object that has file scope without an initializer, and without a
8393      // storage-class specifier or with the storage-class specifier "static",
8394      // constitutes a tentative definition. Note: A tentative definition with
8395      // external linkage is valid (C99 6.2.2p5).
8396      if (!Var->isInvalidDecl()) {
8397        if (const IncompleteArrayType *ArrayT
8398                                    = Context.getAsIncompleteArrayType(Type)) {
8399          if (RequireCompleteType(Var->getLocation(),
8400                                  ArrayT->getElementType(),
8401                                  diag::err_illegal_decl_array_incomplete_type))
8402            Var->setInvalidDecl();
8403        } else if (Var->getStorageClass() == SC_Static) {
8404          // C99 6.9.2p3: If the declaration of an identifier for an object is
8405          // a tentative definition and has internal linkage (C99 6.2.2p3), the
8406          // declared type shall not be an incomplete type.
8407          // NOTE: code such as the following
8408          //     static struct s;
8409          //     struct s { int a; };
8410          // is accepted by gcc. Hence here we issue a warning instead of
8411          // an error and we do not invalidate the static declaration.
8412          // NOTE: to avoid multiple warnings, only check the first declaration.
8413          if (Var->getPreviousDecl() == 0)
8414            RequireCompleteType(Var->getLocation(), Type,
8415                                diag::ext_typecheck_decl_incomplete_type);
8416        }
8417      }
8418
8419      // Record the tentative definition; we're done.
8420      if (!Var->isInvalidDecl())
8421        TentativeDefinitions.push_back(Var);
8422      return;
8423    }
8424
8425    // Provide a specific diagnostic for uninitialized variable
8426    // definitions with incomplete array type.
8427    if (Type->isIncompleteArrayType()) {
8428      Diag(Var->getLocation(),
8429           diag::err_typecheck_incomplete_array_needs_initializer);
8430      Var->setInvalidDecl();
8431      return;
8432    }
8433
8434    // Provide a specific diagnostic for uninitialized variable
8435    // definitions with reference type.
8436    if (Type->isReferenceType()) {
8437      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
8438        << Var->getDeclName()
8439        << SourceRange(Var->getLocation(), Var->getLocation());
8440      Var->setInvalidDecl();
8441      return;
8442    }
8443
8444    // Do not attempt to type-check the default initializer for a
8445    // variable with dependent type.
8446    if (Type->isDependentType())
8447      return;
8448
8449    if (Var->isInvalidDecl())
8450      return;
8451
8452    if (RequireCompleteType(Var->getLocation(),
8453                            Context.getBaseElementType(Type),
8454                            diag::err_typecheck_decl_incomplete_type)) {
8455      Var->setInvalidDecl();
8456      return;
8457    }
8458
8459    // The variable can not have an abstract class type.
8460    if (RequireNonAbstractType(Var->getLocation(), Type,
8461                               diag::err_abstract_type_in_decl,
8462                               AbstractVariableType)) {
8463      Var->setInvalidDecl();
8464      return;
8465    }
8466
8467    // Check for jumps past the implicit initializer.  C++0x
8468    // clarifies that this applies to a "variable with automatic
8469    // storage duration", not a "local variable".
8470    // C++11 [stmt.dcl]p3
8471    //   A program that jumps from a point where a variable with automatic
8472    //   storage duration is not in scope to a point where it is in scope is
8473    //   ill-formed unless the variable has scalar type, class type with a
8474    //   trivial default constructor and a trivial destructor, a cv-qualified
8475    //   version of one of these types, or an array of one of the preceding
8476    //   types and is declared without an initializer.
8477    if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
8478      if (const RecordType *Record
8479            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
8480        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
8481        // Mark the function for further checking even if the looser rules of
8482        // C++11 do not require such checks, so that we can diagnose
8483        // incompatibilities with C++98.
8484        if (!CXXRecord->isPOD())
8485          getCurFunction()->setHasBranchProtectedScope();
8486      }
8487    }
8488
8489    // C++03 [dcl.init]p9:
8490    //   If no initializer is specified for an object, and the
8491    //   object is of (possibly cv-qualified) non-POD class type (or
8492    //   array thereof), the object shall be default-initialized; if
8493    //   the object is of const-qualified type, the underlying class
8494    //   type shall have a user-declared default
8495    //   constructor. Otherwise, if no initializer is specified for
8496    //   a non- static object, the object and its subobjects, if
8497    //   any, have an indeterminate initial value); if the object
8498    //   or any of its subobjects are of const-qualified type, the
8499    //   program is ill-formed.
8500    // C++0x [dcl.init]p11:
8501    //   If no initializer is specified for an object, the object is
8502    //   default-initialized; [...].
8503    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
8504    InitializationKind Kind
8505      = InitializationKind::CreateDefault(Var->getLocation());
8506
8507    InitializationSequence InitSeq(*this, Entity, Kind, None);
8508    ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
8509    if (Init.isInvalid())
8510      Var->setInvalidDecl();
8511    else if (Init.get()) {
8512      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
8513      // This is important for template substitution.
8514      Var->setInitStyle(VarDecl::CallInit);
8515    }
8516
8517    CheckCompleteVariableDeclaration(Var);
8518  }
8519}
8520
8521void Sema::ActOnCXXForRangeDecl(Decl *D) {
8522  VarDecl *VD = dyn_cast<VarDecl>(D);
8523  if (!VD) {
8524    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
8525    D->setInvalidDecl();
8526    return;
8527  }
8528
8529  VD->setCXXForRangeDecl(true);
8530
8531  // for-range-declaration cannot be given a storage class specifier.
8532  int Error = -1;
8533  switch (VD->getStorageClass()) {
8534  case SC_None:
8535    break;
8536  case SC_Extern:
8537    Error = 0;
8538    break;
8539  case SC_Static:
8540    Error = 1;
8541    break;
8542  case SC_PrivateExtern:
8543    Error = 2;
8544    break;
8545  case SC_Auto:
8546    Error = 3;
8547    break;
8548  case SC_Register:
8549    Error = 4;
8550    break;
8551  case SC_OpenCLWorkGroupLocal:
8552    llvm_unreachable("Unexpected storage class");
8553  }
8554  if (VD->isConstexpr())
8555    Error = 5;
8556  if (Error != -1) {
8557    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
8558      << VD->getDeclName() << Error;
8559    D->setInvalidDecl();
8560  }
8561}
8562
8563void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
8564  if (var->isInvalidDecl()) return;
8565
8566  // In ARC, don't allow jumps past the implicit initialization of a
8567  // local retaining variable.
8568  if (getLangOpts().ObjCAutoRefCount &&
8569      var->hasLocalStorage()) {
8570    switch (var->getType().getObjCLifetime()) {
8571    case Qualifiers::OCL_None:
8572    case Qualifiers::OCL_ExplicitNone:
8573    case Qualifiers::OCL_Autoreleasing:
8574      break;
8575
8576    case Qualifiers::OCL_Weak:
8577    case Qualifiers::OCL_Strong:
8578      getCurFunction()->setHasBranchProtectedScope();
8579      break;
8580    }
8581  }
8582
8583  if (var->isThisDeclarationADefinition() &&
8584      var->isExternallyVisible() &&
8585      getDiagnostics().getDiagnosticLevel(
8586                       diag::warn_missing_variable_declarations,
8587                       var->getLocation())) {
8588    // Find a previous declaration that's not a definition.
8589    VarDecl *prev = var->getPreviousDecl();
8590    while (prev && prev->isThisDeclarationADefinition())
8591      prev = prev->getPreviousDecl();
8592
8593    if (!prev)
8594      Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
8595  }
8596
8597  if (var->getTLSKind() == VarDecl::TLS_Static &&
8598      var->getType().isDestructedType()) {
8599    // GNU C++98 edits for __thread, [basic.start.term]p3:
8600    //   The type of an object with thread storage duration shall not
8601    //   have a non-trivial destructor.
8602    Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
8603    if (getLangOpts().CPlusPlus11)
8604      Diag(var->getLocation(), diag::note_use_thread_local);
8605  }
8606
8607  // All the following checks are C++ only.
8608  if (!getLangOpts().CPlusPlus) return;
8609
8610  QualType type = var->getType();
8611  if (type->isDependentType()) return;
8612
8613  // __block variables might require us to capture a copy-initializer.
8614  if (var->hasAttr<BlocksAttr>()) {
8615    // It's currently invalid to ever have a __block variable with an
8616    // array type; should we diagnose that here?
8617
8618    // Regardless, we don't want to ignore array nesting when
8619    // constructing this copy.
8620    if (type->isStructureOrClassType()) {
8621      EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
8622      SourceLocation poi = var->getLocation();
8623      Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
8624      ExprResult result
8625        = PerformMoveOrCopyInitialization(
8626            InitializedEntity::InitializeBlock(poi, type, false),
8627            var, var->getType(), varRef, /*AllowNRVO=*/true);
8628      if (!result.isInvalid()) {
8629        result = MaybeCreateExprWithCleanups(result);
8630        Expr *init = result.takeAs<Expr>();
8631        Context.setBlockVarCopyInits(var, init);
8632      }
8633    }
8634  }
8635
8636  Expr *Init = var->getInit();
8637  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
8638  QualType baseType = Context.getBaseElementType(type);
8639
8640  if (!var->getDeclContext()->isDependentContext() &&
8641      Init && !Init->isValueDependent()) {
8642    if (IsGlobal && !var->isConstexpr() &&
8643        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
8644                                            var->getLocation())
8645          != DiagnosticsEngine::Ignored) {
8646      // Warn about globals which don't have a constant initializer.  Don't
8647      // warn about globals with a non-trivial destructor because we already
8648      // warned about them.
8649      CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
8650      if (!(RD && !RD->hasTrivialDestructor()) &&
8651          !Init->isConstantInitializer(Context, baseType->isReferenceType()))
8652        Diag(var->getLocation(), diag::warn_global_constructor)
8653          << Init->getSourceRange();
8654    }
8655
8656    if (var->isConstexpr()) {
8657      SmallVector<PartialDiagnosticAt, 8> Notes;
8658      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
8659        SourceLocation DiagLoc = var->getLocation();
8660        // If the note doesn't add any useful information other than a source
8661        // location, fold it into the primary diagnostic.
8662        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
8663              diag::note_invalid_subexpr_in_const_expr) {
8664          DiagLoc = Notes[0].first;
8665          Notes.clear();
8666        }
8667        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
8668          << var << Init->getSourceRange();
8669        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
8670          Diag(Notes[I].first, Notes[I].second);
8671      }
8672    } else if (var->isUsableInConstantExpressions(Context)) {
8673      // Check whether the initializer of a const variable of integral or
8674      // enumeration type is an ICE now, since we can't tell whether it was
8675      // initialized by a constant expression if we check later.
8676      var->checkInitIsICE();
8677    }
8678  }
8679
8680  // Require the destructor.
8681  if (const RecordType *recordType = baseType->getAs<RecordType>())
8682    FinalizeVarWithDestructor(var, recordType);
8683}
8684
8685/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
8686/// any semantic actions necessary after any initializer has been attached.
8687void
8688Sema::FinalizeDeclaration(Decl *ThisDecl) {
8689  // Note that we are no longer parsing the initializer for this declaration.
8690  ParsingInitForAutoVars.erase(ThisDecl);
8691
8692  VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
8693  if (!VD)
8694    return;
8695
8696  const DeclContext *DC = VD->getDeclContext();
8697  // If there's a #pragma GCC visibility in scope, and this isn't a class
8698  // member, set the visibility of this variable.
8699  if (!DC->isRecord() && VD->isExternallyVisible())
8700    AddPushedVisibilityAttribute(VD);
8701
8702  if (VD->isFileVarDecl())
8703    MarkUnusedFileScopedDecl(VD);
8704
8705  // Now we have parsed the initializer and can update the table of magic
8706  // tag values.
8707  if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
8708      !VD->getType()->isIntegralOrEnumerationType())
8709    return;
8710
8711  for (specific_attr_iterator<TypeTagForDatatypeAttr>
8712         I = ThisDecl->specific_attr_begin<TypeTagForDatatypeAttr>(),
8713         E = ThisDecl->specific_attr_end<TypeTagForDatatypeAttr>();
8714       I != E; ++I) {
8715    const Expr *MagicValueExpr = VD->getInit();
8716    if (!MagicValueExpr) {
8717      continue;
8718    }
8719    llvm::APSInt MagicValueInt;
8720    if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
8721      Diag(I->getRange().getBegin(),
8722           diag::err_type_tag_for_datatype_not_ice)
8723        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
8724      continue;
8725    }
8726    if (MagicValueInt.getActiveBits() > 64) {
8727      Diag(I->getRange().getBegin(),
8728           diag::err_type_tag_for_datatype_too_large)
8729        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
8730      continue;
8731    }
8732    uint64_t MagicValue = MagicValueInt.getZExtValue();
8733    RegisterTypeTagForDatatype(I->getArgumentKind(),
8734                               MagicValue,
8735                               I->getMatchingCType(),
8736                               I->getLayoutCompatible(),
8737                               I->getMustBeNull());
8738  }
8739}
8740
8741Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
8742                                                   ArrayRef<Decl *> Group) {
8743  SmallVector<Decl*, 8> Decls;
8744
8745  if (DS.isTypeSpecOwned())
8746    Decls.push_back(DS.getRepAsDecl());
8747
8748  for (unsigned i = 0, e = Group.size(); i != e; ++i)
8749    if (Decl *D = Group[i])
8750      Decls.push_back(D);
8751
8752  if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
8753    if (const TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl()))
8754      HandleTagNumbering(*this, Tag);
8755  }
8756
8757  return BuildDeclaratorGroup(Decls, DS.containsPlaceholderType());
8758}
8759
8760/// BuildDeclaratorGroup - convert a list of declarations into a declaration
8761/// group, performing any necessary semantic checking.
8762Sema::DeclGroupPtrTy
8763Sema::BuildDeclaratorGroup(llvm::MutableArrayRef<Decl *> Group,
8764                           bool TypeMayContainAuto) {
8765  // C++0x [dcl.spec.auto]p7:
8766  //   If the type deduced for the template parameter U is not the same in each
8767  //   deduction, the program is ill-formed.
8768  // FIXME: When initializer-list support is added, a distinction is needed
8769  // between the deduced type U and the deduced type which 'auto' stands for.
8770  //   auto a = 0, b = { 1, 2, 3 };
8771  // is legal because the deduced type U is 'int' in both cases.
8772  if (TypeMayContainAuto && Group.size() > 1) {
8773    QualType Deduced;
8774    CanQualType DeducedCanon;
8775    VarDecl *DeducedDecl = 0;
8776    for (unsigned i = 0, e = Group.size(); i != e; ++i) {
8777      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
8778        AutoType *AT = D->getType()->getContainedAutoType();
8779        // Don't reissue diagnostics when instantiating a template.
8780        if (AT && D->isInvalidDecl())
8781          break;
8782        QualType U = AT ? AT->getDeducedType() : QualType();
8783        if (!U.isNull()) {
8784          CanQualType UCanon = Context.getCanonicalType(U);
8785          if (Deduced.isNull()) {
8786            Deduced = U;
8787            DeducedCanon = UCanon;
8788            DeducedDecl = D;
8789          } else if (DeducedCanon != UCanon) {
8790            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
8791                 diag::err_auto_different_deductions)
8792              << (AT->isDecltypeAuto() ? 1 : 0)
8793              << Deduced << DeducedDecl->getDeclName()
8794              << U << D->getDeclName()
8795              << DeducedDecl->getInit()->getSourceRange()
8796              << D->getInit()->getSourceRange();
8797            D->setInvalidDecl();
8798            break;
8799          }
8800        }
8801      }
8802    }
8803  }
8804
8805  ActOnDocumentableDecls(Group);
8806
8807  return DeclGroupPtrTy::make(
8808      DeclGroupRef::Create(Context, Group.data(), Group.size()));
8809}
8810
8811void Sema::ActOnDocumentableDecl(Decl *D) {
8812  ActOnDocumentableDecls(D);
8813}
8814
8815void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
8816  // Don't parse the comment if Doxygen diagnostics are ignored.
8817  if (Group.empty() || !Group[0])
8818   return;
8819
8820  if (Diags.getDiagnosticLevel(diag::warn_doc_param_not_found,
8821                               Group[0]->getLocation())
8822        == DiagnosticsEngine::Ignored)
8823    return;
8824
8825  if (Group.size() >= 2) {
8826    // This is a decl group.  Normally it will contain only declarations
8827    // produced from declarator list.  But in case we have any definitions or
8828    // additional declaration references:
8829    //   'typedef struct S {} S;'
8830    //   'typedef struct S *S;'
8831    //   'struct S *pS;'
8832    // FinalizeDeclaratorGroup adds these as separate declarations.
8833    Decl *MaybeTagDecl = Group[0];
8834    if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
8835      Group = Group.slice(1);
8836    }
8837  }
8838
8839  // See if there are any new comments that are not attached to a decl.
8840  ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
8841  if (!Comments.empty() &&
8842      !Comments.back()->isAttached()) {
8843    // There is at least one comment that not attached to a decl.
8844    // Maybe it should be attached to one of these decls?
8845    //
8846    // Note that this way we pick up not only comments that precede the
8847    // declaration, but also comments that *follow* the declaration -- thanks to
8848    // the lookahead in the lexer: we've consumed the semicolon and looked
8849    // ahead through comments.
8850    for (unsigned i = 0, e = Group.size(); i != e; ++i)
8851      Context.getCommentForDecl(Group[i], &PP);
8852  }
8853}
8854
8855/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
8856/// to introduce parameters into function prototype scope.
8857Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
8858  const DeclSpec &DS = D.getDeclSpec();
8859
8860  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
8861  // C++03 [dcl.stc]p2 also permits 'auto'.
8862  VarDecl::StorageClass StorageClass = SC_None;
8863  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
8864    StorageClass = SC_Register;
8865  } else if (getLangOpts().CPlusPlus &&
8866             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
8867    StorageClass = SC_Auto;
8868  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
8869    Diag(DS.getStorageClassSpecLoc(),
8870         diag::err_invalid_storage_class_in_func_decl);
8871    D.getMutableDeclSpec().ClearStorageClassSpecs();
8872  }
8873
8874  if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
8875    Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
8876      << DeclSpec::getSpecifierName(TSCS);
8877  if (DS.isConstexprSpecified())
8878    Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
8879      << 0;
8880
8881  DiagnoseFunctionSpecifiers(DS);
8882
8883  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8884  QualType parmDeclType = TInfo->getType();
8885
8886  if (getLangOpts().CPlusPlus) {
8887    // Check that there are no default arguments inside the type of this
8888    // parameter.
8889    CheckExtraCXXDefaultArguments(D);
8890
8891    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
8892    if (D.getCXXScopeSpec().isSet()) {
8893      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
8894        << D.getCXXScopeSpec().getRange();
8895      D.getCXXScopeSpec().clear();
8896    }
8897  }
8898
8899  // Ensure we have a valid name
8900  IdentifierInfo *II = 0;
8901  if (D.hasName()) {
8902    II = D.getIdentifier();
8903    if (!II) {
8904      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
8905        << GetNameForDeclarator(D).getName().getAsString();
8906      D.setInvalidType(true);
8907    }
8908  }
8909
8910  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
8911  if (II) {
8912    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
8913                   ForRedeclaration);
8914    LookupName(R, S);
8915    if (R.isSingleResult()) {
8916      NamedDecl *PrevDecl = R.getFoundDecl();
8917      if (PrevDecl->isTemplateParameter()) {
8918        // Maybe we will complain about the shadowed template parameter.
8919        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8920        // Just pretend that we didn't see the previous declaration.
8921        PrevDecl = 0;
8922      } else if (S->isDeclScope(PrevDecl)) {
8923        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
8924        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8925
8926        // Recover by removing the name
8927        II = 0;
8928        D.SetIdentifier(0, D.getIdentifierLoc());
8929        D.setInvalidType(true);
8930      }
8931    }
8932  }
8933
8934  // Temporarily put parameter variables in the translation unit, not
8935  // the enclosing context.  This prevents them from accidentally
8936  // looking like class members in C++.
8937  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
8938                                    D.getLocStart(),
8939                                    D.getIdentifierLoc(), II,
8940                                    parmDeclType, TInfo,
8941                                    StorageClass);
8942
8943  if (D.isInvalidType())
8944    New->setInvalidDecl();
8945
8946  assert(S->isFunctionPrototypeScope());
8947  assert(S->getFunctionPrototypeDepth() >= 1);
8948  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
8949                    S->getNextFunctionPrototypeIndex());
8950
8951  // Add the parameter declaration into this scope.
8952  S->AddDecl(New);
8953  if (II)
8954    IdResolver.AddDecl(New);
8955
8956  ProcessDeclAttributes(S, New, D);
8957
8958  if (D.getDeclSpec().isModulePrivateSpecified())
8959    Diag(New->getLocation(), diag::err_module_private_local)
8960      << 1 << New->getDeclName()
8961      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
8962      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
8963
8964  if (New->hasAttr<BlocksAttr>()) {
8965    Diag(New->getLocation(), diag::err_block_on_nonlocal);
8966  }
8967  return New;
8968}
8969
8970/// \brief Synthesizes a variable for a parameter arising from a
8971/// typedef.
8972ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
8973                                              SourceLocation Loc,
8974                                              QualType T) {
8975  /* FIXME: setting StartLoc == Loc.
8976     Would it be worth to modify callers so as to provide proper source
8977     location for the unnamed parameters, embedding the parameter's type? */
8978  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
8979                                T, Context.getTrivialTypeSourceInfo(T, Loc),
8980                                           SC_None, 0);
8981  Param->setImplicit();
8982  return Param;
8983}
8984
8985void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
8986                                    ParmVarDecl * const *ParamEnd) {
8987  // Don't diagnose unused-parameter errors in template instantiations; we
8988  // will already have done so in the template itself.
8989  if (!ActiveTemplateInstantiations.empty())
8990    return;
8991
8992  for (; Param != ParamEnd; ++Param) {
8993    if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
8994        !(*Param)->hasAttr<UnusedAttr>()) {
8995      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
8996        << (*Param)->getDeclName();
8997    }
8998  }
8999}
9000
9001void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
9002                                                  ParmVarDecl * const *ParamEnd,
9003                                                  QualType ReturnTy,
9004                                                  NamedDecl *D) {
9005  if (LangOpts.NumLargeByValueCopy == 0) // No check.
9006    return;
9007
9008  // Warn if the return value is pass-by-value and larger than the specified
9009  // threshold.
9010  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
9011    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
9012    if (Size > LangOpts.NumLargeByValueCopy)
9013      Diag(D->getLocation(), diag::warn_return_value_size)
9014          << D->getDeclName() << Size;
9015  }
9016
9017  // Warn if any parameter is pass-by-value and larger than the specified
9018  // threshold.
9019  for (; Param != ParamEnd; ++Param) {
9020    QualType T = (*Param)->getType();
9021    if (T->isDependentType() || !T.isPODType(Context))
9022      continue;
9023    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
9024    if (Size > LangOpts.NumLargeByValueCopy)
9025      Diag((*Param)->getLocation(), diag::warn_parameter_size)
9026          << (*Param)->getDeclName() << Size;
9027  }
9028}
9029
9030ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
9031                                  SourceLocation NameLoc, IdentifierInfo *Name,
9032                                  QualType T, TypeSourceInfo *TSInfo,
9033                                  VarDecl::StorageClass StorageClass) {
9034  // In ARC, infer a lifetime qualifier for appropriate parameter types.
9035  if (getLangOpts().ObjCAutoRefCount &&
9036      T.getObjCLifetime() == Qualifiers::OCL_None &&
9037      T->isObjCLifetimeType()) {
9038
9039    Qualifiers::ObjCLifetime lifetime;
9040
9041    // Special cases for arrays:
9042    //   - if it's const, use __unsafe_unretained
9043    //   - otherwise, it's an error
9044    if (T->isArrayType()) {
9045      if (!T.isConstQualified()) {
9046        DelayedDiagnostics.add(
9047            sema::DelayedDiagnostic::makeForbiddenType(
9048            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
9049      }
9050      lifetime = Qualifiers::OCL_ExplicitNone;
9051    } else {
9052      lifetime = T->getObjCARCImplicitLifetime();
9053    }
9054    T = Context.getLifetimeQualifiedType(T, lifetime);
9055  }
9056
9057  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
9058                                         Context.getAdjustedParameterType(T),
9059                                         TSInfo,
9060                                         StorageClass, 0);
9061
9062  // Parameters can not be abstract class types.
9063  // For record types, this is done by the AbstractClassUsageDiagnoser once
9064  // the class has been completely parsed.
9065  if (!CurContext->isRecord() &&
9066      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
9067                             AbstractParamType))
9068    New->setInvalidDecl();
9069
9070  // Parameter declarators cannot be interface types. All ObjC objects are
9071  // passed by reference.
9072  if (T->isObjCObjectType()) {
9073    SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
9074    Diag(NameLoc,
9075         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
9076      << FixItHint::CreateInsertion(TypeEndLoc, "*");
9077    T = Context.getObjCObjectPointerType(T);
9078    New->setType(T);
9079  }
9080
9081  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
9082  // duration shall not be qualified by an address-space qualifier."
9083  // Since all parameters have automatic store duration, they can not have
9084  // an address space.
9085  if (T.getAddressSpace() != 0) {
9086    Diag(NameLoc, diag::err_arg_with_address_space);
9087    New->setInvalidDecl();
9088  }
9089
9090  return New;
9091}
9092
9093void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
9094                                           SourceLocation LocAfterDecls) {
9095  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
9096
9097  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
9098  // for a K&R function.
9099  if (!FTI.hasPrototype) {
9100    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
9101      --i;
9102      if (FTI.ArgInfo[i].Param == 0) {
9103        SmallString<256> Code;
9104        llvm::raw_svector_ostream(Code) << "  int "
9105                                        << FTI.ArgInfo[i].Ident->getName()
9106                                        << ";\n";
9107        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
9108          << FTI.ArgInfo[i].Ident
9109          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
9110
9111        // Implicitly declare the argument as type 'int' for lack of a better
9112        // type.
9113        AttributeFactory attrs;
9114        DeclSpec DS(attrs);
9115        const char* PrevSpec; // unused
9116        unsigned DiagID; // unused
9117        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
9118                           PrevSpec, DiagID);
9119        // Use the identifier location for the type source range.
9120        DS.SetRangeStart(FTI.ArgInfo[i].IdentLoc);
9121        DS.SetRangeEnd(FTI.ArgInfo[i].IdentLoc);
9122        Declarator ParamD(DS, Declarator::KNRTypeListContext);
9123        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
9124        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
9125      }
9126    }
9127  }
9128}
9129
9130Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
9131  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
9132  assert(D.isFunctionDeclarator() && "Not a function declarator!");
9133  Scope *ParentScope = FnBodyScope->getParent();
9134
9135  D.setFunctionDefinitionKind(FDK_Definition);
9136  Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg());
9137  return ActOnStartOfFunctionDef(FnBodyScope, DP);
9138}
9139
9140static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
9141                             const FunctionDecl*& PossibleZeroParamPrototype) {
9142  // Don't warn about invalid declarations.
9143  if (FD->isInvalidDecl())
9144    return false;
9145
9146  // Or declarations that aren't global.
9147  if (!FD->isGlobal())
9148    return false;
9149
9150  // Don't warn about C++ member functions.
9151  if (isa<CXXMethodDecl>(FD))
9152    return false;
9153
9154  // Don't warn about 'main'.
9155  if (FD->isMain())
9156    return false;
9157
9158  // Don't warn about inline functions.
9159  if (FD->isInlined())
9160    return false;
9161
9162  // Don't warn about function templates.
9163  if (FD->getDescribedFunctionTemplate())
9164    return false;
9165
9166  // Don't warn about function template specializations.
9167  if (FD->isFunctionTemplateSpecialization())
9168    return false;
9169
9170  // Don't warn for OpenCL kernels.
9171  if (FD->hasAttr<OpenCLKernelAttr>())
9172    return false;
9173
9174  bool MissingPrototype = true;
9175  for (const FunctionDecl *Prev = FD->getPreviousDecl();
9176       Prev; Prev = Prev->getPreviousDecl()) {
9177    // Ignore any declarations that occur in function or method
9178    // scope, because they aren't visible from the header.
9179    if (Prev->getDeclContext()->isFunctionOrMethod())
9180      continue;
9181
9182    MissingPrototype = !Prev->getType()->isFunctionProtoType();
9183    if (FD->getNumParams() == 0)
9184      PossibleZeroParamPrototype = Prev;
9185    break;
9186  }
9187
9188  return MissingPrototype;
9189}
9190
9191void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
9192  // Don't complain if we're in GNU89 mode and the previous definition
9193  // was an extern inline function.
9194  const FunctionDecl *Definition;
9195  if (FD->isDefined(Definition) &&
9196      !canRedefineFunction(Definition, getLangOpts())) {
9197    if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
9198        Definition->getStorageClass() == SC_Extern)
9199      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
9200        << FD->getDeclName() << getLangOpts().CPlusPlus;
9201    else
9202      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
9203    Diag(Definition->getLocation(), diag::note_previous_definition);
9204    FD->setInvalidDecl();
9205  }
9206}
9207
9208Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
9209  // Clear the last template instantiation error context.
9210  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
9211
9212  if (!D)
9213    return D;
9214  FunctionDecl *FD = 0;
9215
9216  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
9217    FD = FunTmpl->getTemplatedDecl();
9218  else
9219    FD = cast<FunctionDecl>(D);
9220
9221  // Enter a new function scope
9222  PushFunctionScope();
9223
9224  // See if this is a redefinition.
9225  if (!FD->isLateTemplateParsed())
9226    CheckForFunctionRedefinition(FD);
9227
9228  // Builtin functions cannot be defined.
9229  if (unsigned BuiltinID = FD->getBuiltinID()) {
9230    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
9231        !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
9232      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
9233      FD->setInvalidDecl();
9234    }
9235  }
9236
9237  // The return type of a function definition must be complete
9238  // (C99 6.9.1p3, C++ [dcl.fct]p6).
9239  QualType ResultType = FD->getResultType();
9240  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
9241      !FD->isInvalidDecl() &&
9242      RequireCompleteType(FD->getLocation(), ResultType,
9243                          diag::err_func_def_incomplete_result))
9244    FD->setInvalidDecl();
9245
9246  // GNU warning -Wmissing-prototypes:
9247  //   Warn if a global function is defined without a previous
9248  //   prototype declaration. This warning is issued even if the
9249  //   definition itself provides a prototype. The aim is to detect
9250  //   global functions that fail to be declared in header files.
9251  const FunctionDecl *PossibleZeroParamPrototype = 0;
9252  if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
9253    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
9254
9255    if (PossibleZeroParamPrototype) {
9256      // We found a declaration that is not a prototype,
9257      // but that could be a zero-parameter prototype
9258      if (TypeSourceInfo *TI =
9259              PossibleZeroParamPrototype->getTypeSourceInfo()) {
9260        TypeLoc TL = TI->getTypeLoc();
9261        if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
9262          Diag(PossibleZeroParamPrototype->getLocation(),
9263               diag::note_declaration_not_a_prototype)
9264            << PossibleZeroParamPrototype
9265            << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void");
9266      }
9267    }
9268  }
9269
9270  if (FnBodyScope)
9271    PushDeclContext(FnBodyScope, FD);
9272
9273  // Check the validity of our function parameters
9274  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
9275                           /*CheckParameterNames=*/true);
9276
9277  // Introduce our parameters into the function scope
9278  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
9279    ParmVarDecl *Param = FD->getParamDecl(p);
9280    Param->setOwningFunction(FD);
9281
9282    // If this has an identifier, add it to the scope stack.
9283    if (Param->getIdentifier() && FnBodyScope) {
9284      CheckShadow(FnBodyScope, Param);
9285
9286      PushOnScopeChains(Param, FnBodyScope);
9287    }
9288  }
9289
9290  // If we had any tags defined in the function prototype,
9291  // introduce them into the function scope.
9292  if (FnBodyScope) {
9293    for (llvm::ArrayRef<NamedDecl*>::iterator I = FD->getDeclsInPrototypeScope().begin(),
9294           E = FD->getDeclsInPrototypeScope().end(); I != E; ++I) {
9295      NamedDecl *D = *I;
9296
9297      // Some of these decls (like enums) may have been pinned to the translation unit
9298      // for lack of a real context earlier. If so, remove from the translation unit
9299      // and reattach to the current context.
9300      if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
9301        // Is the decl actually in the context?
9302        for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
9303               DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
9304          if (*DI == D) {
9305            Context.getTranslationUnitDecl()->removeDecl(D);
9306            break;
9307          }
9308        }
9309        // Either way, reassign the lexical decl context to our FunctionDecl.
9310        D->setLexicalDeclContext(CurContext);
9311      }
9312
9313      // If the decl has a non-null name, make accessible in the current scope.
9314      if (!D->getName().empty())
9315        PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
9316
9317      // Similarly, dive into enums and fish their constants out, making them
9318      // accessible in this scope.
9319      if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
9320        for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
9321               EE = ED->enumerator_end(); EI != EE; ++EI)
9322          PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
9323      }
9324    }
9325  }
9326
9327  // Ensure that the function's exception specification is instantiated.
9328  if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
9329    ResolveExceptionSpec(D->getLocation(), FPT);
9330
9331  // Checking attributes of current function definition
9332  // dllimport attribute.
9333  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
9334  if (DA && (!FD->getAttr<DLLExportAttr>())) {
9335    // dllimport attribute cannot be directly applied to definition.
9336    // Microsoft accepts dllimport for functions defined within class scope.
9337    if (!DA->isInherited() &&
9338        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
9339      Diag(FD->getLocation(),
9340           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
9341        << "dllimport";
9342      FD->setInvalidDecl();
9343      return D;
9344    }
9345
9346    // Visual C++ appears to not think this is an issue, so only issue
9347    // a warning when Microsoft extensions are disabled.
9348    if (!LangOpts.MicrosoftExt) {
9349      // If a symbol previously declared dllimport is later defined, the
9350      // attribute is ignored in subsequent references, and a warning is
9351      // emitted.
9352      Diag(FD->getLocation(),
9353           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
9354        << FD->getName() << "dllimport";
9355    }
9356  }
9357  // We want to attach documentation to original Decl (which might be
9358  // a function template).
9359  ActOnDocumentableDecl(D);
9360  return D;
9361}
9362
9363/// \brief Given the set of return statements within a function body,
9364/// compute the variables that are subject to the named return value
9365/// optimization.
9366///
9367/// Each of the variables that is subject to the named return value
9368/// optimization will be marked as NRVO variables in the AST, and any
9369/// return statement that has a marked NRVO variable as its NRVO candidate can
9370/// use the named return value optimization.
9371///
9372/// This function applies a very simplistic algorithm for NRVO: if every return
9373/// statement in the function has the same NRVO candidate, that candidate is
9374/// the NRVO variable.
9375///
9376/// FIXME: Employ a smarter algorithm that accounts for multiple return
9377/// statements and the lifetimes of the NRVO candidates. We should be able to
9378/// find a maximal set of NRVO variables.
9379void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
9380  ReturnStmt **Returns = Scope->Returns.data();
9381
9382  const VarDecl *NRVOCandidate = 0;
9383  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
9384    if (!Returns[I]->getNRVOCandidate())
9385      return;
9386
9387    if (!NRVOCandidate)
9388      NRVOCandidate = Returns[I]->getNRVOCandidate();
9389    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
9390      return;
9391  }
9392
9393  if (NRVOCandidate)
9394    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
9395}
9396
9397bool Sema::canSkipFunctionBody(Decl *D) {
9398  if (!Consumer.shouldSkipFunctionBody(D))
9399    return false;
9400
9401  if (isa<ObjCMethodDecl>(D))
9402    return true;
9403
9404  FunctionDecl *FD = 0;
9405  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
9406    FD = FTD->getTemplatedDecl();
9407  else
9408    FD = cast<FunctionDecl>(D);
9409
9410  // We cannot skip the body of a function (or function template) which is
9411  // constexpr, since we may need to evaluate its body in order to parse the
9412  // rest of the file.
9413  // We cannot skip the body of a function with an undeduced return type,
9414  // because any callers of that function need to know the type.
9415  return !FD->isConstexpr() && !FD->getResultType()->isUndeducedType();
9416}
9417
9418Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
9419  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Decl))
9420    FD->setHasSkippedBody();
9421  else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(Decl))
9422    MD->setHasSkippedBody();
9423  return ActOnFinishFunctionBody(Decl, 0);
9424}
9425
9426Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
9427  return ActOnFinishFunctionBody(D, BodyArg, false);
9428}
9429
9430Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
9431                                    bool IsInstantiation) {
9432  FunctionDecl *FD = 0;
9433  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
9434  if (FunTmpl)
9435    FD = FunTmpl->getTemplatedDecl();
9436  else
9437    FD = dyn_cast_or_null<FunctionDecl>(dcl);
9438
9439  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
9440  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
9441
9442  if (FD) {
9443    FD->setBody(Body);
9444
9445    if (getLangOpts().CPlusPlus1y && !FD->isInvalidDecl() && Body &&
9446        !FD->isDependentContext() && FD->getResultType()->isUndeducedType()) {
9447      // If the function has a deduced result type but contains no 'return'
9448      // statements, the result type as written must be exactly 'auto', and
9449      // the deduced result type is 'void'.
9450      if (!FD->getResultType()->getAs<AutoType>()) {
9451        Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
9452          << FD->getResultType();
9453        FD->setInvalidDecl();
9454      } else {
9455        // Substitute 'void' for the 'auto' in the type.
9456        TypeLoc ResultType = FD->getTypeSourceInfo()->getTypeLoc().
9457            IgnoreParens().castAs<FunctionProtoTypeLoc>().getResultLoc();
9458        Context.adjustDeducedFunctionResultType(
9459            FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
9460      }
9461    }
9462
9463    // The only way to be included in UndefinedButUsed is if there is an
9464    // ODR use before the definition. Avoid the expensive map lookup if this
9465    // is the first declaration.
9466    if (FD->getPreviousDecl() != 0 && FD->getPreviousDecl()->isUsed()) {
9467      if (!FD->isExternallyVisible())
9468        UndefinedButUsed.erase(FD);
9469      else if (FD->isInlined() &&
9470               (LangOpts.CPlusPlus || !LangOpts.GNUInline) &&
9471               (!FD->getPreviousDecl()->hasAttr<GNUInlineAttr>()))
9472        UndefinedButUsed.erase(FD);
9473    }
9474
9475    // If the function implicitly returns zero (like 'main') or is naked,
9476    // don't complain about missing return statements.
9477    if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
9478      WP.disableCheckFallThrough();
9479
9480    // MSVC permits the use of pure specifier (=0) on function definition,
9481    // defined at class scope, warn about this non standard construct.
9482    if (getLangOpts().MicrosoftExt && FD->isPure())
9483      Diag(FD->getLocation(), diag::warn_pure_function_definition);
9484
9485    if (!FD->isInvalidDecl()) {
9486      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
9487      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
9488                                             FD->getResultType(), FD);
9489
9490      // If this is a constructor, we need a vtable.
9491      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
9492        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
9493
9494      // Try to apply the named return value optimization. We have to check
9495      // if we can do this here because lambdas keep return statements around
9496      // to deduce an implicit return type.
9497      if (getLangOpts().CPlusPlus && FD->getResultType()->isRecordType() &&
9498          !FD->isDependentContext())
9499        computeNRVO(Body, getCurFunction());
9500    }
9501
9502    assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
9503           "Function parsing confused");
9504  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
9505    assert(MD == getCurMethodDecl() && "Method parsing confused");
9506    MD->setBody(Body);
9507    if (!MD->isInvalidDecl()) {
9508      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
9509      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
9510                                             MD->getResultType(), MD);
9511
9512      if (Body)
9513        computeNRVO(Body, getCurFunction());
9514    }
9515    if (getCurFunction()->ObjCShouldCallSuper) {
9516      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
9517        << MD->getSelector().getAsString();
9518      getCurFunction()->ObjCShouldCallSuper = false;
9519    }
9520  } else {
9521    return 0;
9522  }
9523
9524  assert(!getCurFunction()->ObjCShouldCallSuper &&
9525         "This should only be set for ObjC methods, which should have been "
9526         "handled in the block above.");
9527
9528  // Verify and clean out per-function state.
9529  if (Body) {
9530    // C++ constructors that have function-try-blocks can't have return
9531    // statements in the handlers of that block. (C++ [except.handle]p14)
9532    // Verify this.
9533    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
9534      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
9535
9536    // Verify that gotos and switch cases don't jump into scopes illegally.
9537    if (getCurFunction()->NeedsScopeChecking() &&
9538        !dcl->isInvalidDecl() &&
9539        !hasAnyUnrecoverableErrorsInThisFunction() &&
9540        !PP.isCodeCompletionEnabled())
9541      DiagnoseInvalidJumps(Body);
9542
9543    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
9544      if (!Destructor->getParent()->isDependentType())
9545        CheckDestructor(Destructor);
9546
9547      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
9548                                             Destructor->getParent());
9549    }
9550
9551    // If any errors have occurred, clear out any temporaries that may have
9552    // been leftover. This ensures that these temporaries won't be picked up for
9553    // deletion in some later function.
9554    if (PP.getDiagnostics().hasErrorOccurred() ||
9555        PP.getDiagnostics().getSuppressAllDiagnostics()) {
9556      DiscardCleanupsInEvaluationContext();
9557    }
9558    if (!PP.getDiagnostics().hasUncompilableErrorOccurred() &&
9559        !isa<FunctionTemplateDecl>(dcl)) {
9560      // Since the body is valid, issue any analysis-based warnings that are
9561      // enabled.
9562      ActivePolicy = &WP;
9563    }
9564
9565    if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
9566        (!CheckConstexprFunctionDecl(FD) ||
9567         !CheckConstexprFunctionBody(FD, Body)))
9568      FD->setInvalidDecl();
9569
9570    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
9571    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
9572    assert(MaybeODRUseExprs.empty() &&
9573           "Leftover expressions for odr-use checking");
9574  }
9575
9576  if (!IsInstantiation)
9577    PopDeclContext();
9578
9579  PopFunctionScopeInfo(ActivePolicy, dcl);
9580
9581  // If any errors have occurred, clear out any temporaries that may have
9582  // been leftover. This ensures that these temporaries won't be picked up for
9583  // deletion in some later function.
9584  if (getDiagnostics().hasErrorOccurred()) {
9585    DiscardCleanupsInEvaluationContext();
9586  }
9587
9588  return dcl;
9589}
9590
9591
9592/// When we finish delayed parsing of an attribute, we must attach it to the
9593/// relevant Decl.
9594void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
9595                                       ParsedAttributes &Attrs) {
9596  // Always attach attributes to the underlying decl.
9597  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
9598    D = TD->getTemplatedDecl();
9599  ProcessDeclAttributeList(S, D, Attrs.getList());
9600
9601  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
9602    if (Method->isStatic())
9603      checkThisInStaticMemberFunctionAttributes(Method);
9604}
9605
9606
9607/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
9608/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
9609NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
9610                                          IdentifierInfo &II, Scope *S) {
9611  // Before we produce a declaration for an implicitly defined
9612  // function, see whether there was a locally-scoped declaration of
9613  // this name as a function or variable. If so, use that
9614  // (non-visible) declaration, and complain about it.
9615  if (NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II)) {
9616    Diag(Loc, diag::warn_use_out_of_scope_declaration) << ExternCPrev;
9617    Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
9618    return ExternCPrev;
9619  }
9620
9621  // Extension in C99.  Legal in C90, but warn about it.
9622  unsigned diag_id;
9623  if (II.getName().startswith("__builtin_"))
9624    diag_id = diag::warn_builtin_unknown;
9625  else if (getLangOpts().C99)
9626    diag_id = diag::ext_implicit_function_decl;
9627  else
9628    diag_id = diag::warn_implicit_function_decl;
9629  Diag(Loc, diag_id) << &II;
9630
9631  // Because typo correction is expensive, only do it if the implicit
9632  // function declaration is going to be treated as an error.
9633  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
9634    TypoCorrection Corrected;
9635    DeclFilterCCC<FunctionDecl> Validator;
9636    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
9637                                      LookupOrdinaryName, S, 0, Validator))) {
9638      std::string CorrectedStr = Corrected.getAsString(getLangOpts());
9639      std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOpts());
9640      FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
9641
9642      Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
9643          << FixItHint::CreateReplacement(Loc, CorrectedStr);
9644
9645      if (Func->getLocation().isValid()
9646          && !II.getName().startswith("__builtin_"))
9647        Diag(Func->getLocation(), diag::note_previous_decl)
9648            << CorrectedQuotedStr;
9649    }
9650  }
9651
9652  // Set a Declarator for the implicit definition: int foo();
9653  const char *Dummy;
9654  AttributeFactory attrFactory;
9655  DeclSpec DS(attrFactory);
9656  unsigned DiagID;
9657  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
9658  (void)Error; // Silence warning.
9659  assert(!Error && "Error setting up implicit decl!");
9660  SourceLocation NoLoc;
9661  Declarator D(DS, Declarator::BlockContext);
9662  D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
9663                                             /*IsAmbiguous=*/false,
9664                                             /*RParenLoc=*/NoLoc,
9665                                             /*ArgInfo=*/0,
9666                                             /*NumArgs=*/0,
9667                                             /*EllipsisLoc=*/NoLoc,
9668                                             /*RParenLoc=*/NoLoc,
9669                                             /*TypeQuals=*/0,
9670                                             /*RefQualifierIsLvalueRef=*/true,
9671                                             /*RefQualifierLoc=*/NoLoc,
9672                                             /*ConstQualifierLoc=*/NoLoc,
9673                                             /*VolatileQualifierLoc=*/NoLoc,
9674                                             /*MutableLoc=*/NoLoc,
9675                                             EST_None,
9676                                             /*ESpecLoc=*/NoLoc,
9677                                             /*Exceptions=*/0,
9678                                             /*ExceptionRanges=*/0,
9679                                             /*NumExceptions=*/0,
9680                                             /*NoexceptExpr=*/0,
9681                                             Loc, Loc, D),
9682                DS.getAttributes(),
9683                SourceLocation());
9684  D.SetIdentifier(&II, Loc);
9685
9686  // Insert this function into translation-unit scope.
9687
9688  DeclContext *PrevDC = CurContext;
9689  CurContext = Context.getTranslationUnitDecl();
9690
9691  FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
9692  FD->setImplicit();
9693
9694  CurContext = PrevDC;
9695
9696  AddKnownFunctionAttributes(FD);
9697
9698  return FD;
9699}
9700
9701/// \brief Adds any function attributes that we know a priori based on
9702/// the declaration of this function.
9703///
9704/// These attributes can apply both to implicitly-declared builtins
9705/// (like __builtin___printf_chk) or to library-declared functions
9706/// like NSLog or printf.
9707///
9708/// We need to check for duplicate attributes both here and where user-written
9709/// attributes are applied to declarations.
9710void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
9711  if (FD->isInvalidDecl())
9712    return;
9713
9714  // If this is a built-in function, map its builtin attributes to
9715  // actual attributes.
9716  if (unsigned BuiltinID = FD->getBuiltinID()) {
9717    // Handle printf-formatting attributes.
9718    unsigned FormatIdx;
9719    bool HasVAListArg;
9720    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
9721      if (!FD->getAttr<FormatAttr>()) {
9722        const char *fmt = "printf";
9723        unsigned int NumParams = FD->getNumParams();
9724        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
9725            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
9726          fmt = "NSString";
9727        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
9728                                               fmt, FormatIdx+1,
9729                                               HasVAListArg ? 0 : FormatIdx+2));
9730      }
9731    }
9732    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
9733                                             HasVAListArg)) {
9734     if (!FD->getAttr<FormatAttr>())
9735       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
9736                                              "scanf", FormatIdx+1,
9737                                              HasVAListArg ? 0 : FormatIdx+2));
9738    }
9739
9740    // Mark const if we don't care about errno and that is the only
9741    // thing preventing the function from being const. This allows
9742    // IRgen to use LLVM intrinsics for such functions.
9743    if (!getLangOpts().MathErrno &&
9744        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
9745      if (!FD->getAttr<ConstAttr>())
9746        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
9747    }
9748
9749    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
9750        !FD->getAttr<ReturnsTwiceAttr>())
9751      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
9752    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
9753      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
9754    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
9755      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
9756  }
9757
9758  IdentifierInfo *Name = FD->getIdentifier();
9759  if (!Name)
9760    return;
9761  if ((!getLangOpts().CPlusPlus &&
9762       FD->getDeclContext()->isTranslationUnit()) ||
9763      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
9764       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
9765       LinkageSpecDecl::lang_c)) {
9766    // Okay: this could be a libc/libm/Objective-C function we know
9767    // about.
9768  } else
9769    return;
9770
9771  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
9772    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
9773    // target-specific builtins, perhaps?
9774    if (!FD->getAttr<FormatAttr>())
9775      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
9776                                             "printf", 2,
9777                                             Name->isStr("vasprintf") ? 0 : 3));
9778  }
9779
9780  if (Name->isStr("__CFStringMakeConstantString")) {
9781    // We already have a __builtin___CFStringMakeConstantString,
9782    // but builds that use -fno-constant-cfstrings don't go through that.
9783    if (!FD->getAttr<FormatArgAttr>())
9784      FD->addAttr(::new (Context) FormatArgAttr(FD->getLocation(), Context, 1));
9785  }
9786}
9787
9788TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
9789                                    TypeSourceInfo *TInfo) {
9790  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
9791  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
9792
9793  if (!TInfo) {
9794    assert(D.isInvalidType() && "no declarator info for valid type");
9795    TInfo = Context.getTrivialTypeSourceInfo(T);
9796  }
9797
9798  // Scope manipulation handled by caller.
9799  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
9800                                           D.getLocStart(),
9801                                           D.getIdentifierLoc(),
9802                                           D.getIdentifier(),
9803                                           TInfo);
9804
9805  // Bail out immediately if we have an invalid declaration.
9806  if (D.isInvalidType()) {
9807    NewTD->setInvalidDecl();
9808    return NewTD;
9809  }
9810
9811  if (D.getDeclSpec().isModulePrivateSpecified()) {
9812    if (CurContext->isFunctionOrMethod())
9813      Diag(NewTD->getLocation(), diag::err_module_private_local)
9814        << 2 << NewTD->getDeclName()
9815        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
9816        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
9817    else
9818      NewTD->setModulePrivate();
9819  }
9820
9821  // C++ [dcl.typedef]p8:
9822  //   If the typedef declaration defines an unnamed class (or
9823  //   enum), the first typedef-name declared by the declaration
9824  //   to be that class type (or enum type) is used to denote the
9825  //   class type (or enum type) for linkage purposes only.
9826  // We need to check whether the type was declared in the declaration.
9827  switch (D.getDeclSpec().getTypeSpecType()) {
9828  case TST_enum:
9829  case TST_struct:
9830  case TST_interface:
9831  case TST_union:
9832  case TST_class: {
9833    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
9834
9835    // Do nothing if the tag is not anonymous or already has an
9836    // associated typedef (from an earlier typedef in this decl group).
9837    if (tagFromDeclSpec->getIdentifier()) break;
9838    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
9839
9840    // A well-formed anonymous tag must always be a TUK_Definition.
9841    assert(tagFromDeclSpec->isThisDeclarationADefinition());
9842
9843    // The type must match the tag exactly;  no qualifiers allowed.
9844    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
9845      break;
9846
9847    // Otherwise, set this is the anon-decl typedef for the tag.
9848    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
9849    break;
9850  }
9851
9852  default:
9853    break;
9854  }
9855
9856  return NewTD;
9857}
9858
9859
9860/// \brief Check that this is a valid underlying type for an enum declaration.
9861bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
9862  SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
9863  QualType T = TI->getType();
9864
9865  if (T->isDependentType())
9866    return false;
9867
9868  if (const BuiltinType *BT = T->getAs<BuiltinType>())
9869    if (BT->isInteger())
9870      return false;
9871
9872  Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
9873  return true;
9874}
9875
9876/// Check whether this is a valid redeclaration of a previous enumeration.
9877/// \return true if the redeclaration was invalid.
9878bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
9879                                  QualType EnumUnderlyingTy,
9880                                  const EnumDecl *Prev) {
9881  bool IsFixed = !EnumUnderlyingTy.isNull();
9882
9883  if (IsScoped != Prev->isScoped()) {
9884    Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
9885      << Prev->isScoped();
9886    Diag(Prev->getLocation(), diag::note_previous_use);
9887    return true;
9888  }
9889
9890  if (IsFixed && Prev->isFixed()) {
9891    if (!EnumUnderlyingTy->isDependentType() &&
9892        !Prev->getIntegerType()->isDependentType() &&
9893        !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
9894                                        Prev->getIntegerType())) {
9895      Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
9896        << EnumUnderlyingTy << Prev->getIntegerType();
9897      Diag(Prev->getLocation(), diag::note_previous_use);
9898      return true;
9899    }
9900  } else if (IsFixed != Prev->isFixed()) {
9901    Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
9902      << Prev->isFixed();
9903    Diag(Prev->getLocation(), diag::note_previous_use);
9904    return true;
9905  }
9906
9907  return false;
9908}
9909
9910/// \brief Get diagnostic %select index for tag kind for
9911/// redeclaration diagnostic message.
9912/// WARNING: Indexes apply to particular diagnostics only!
9913///
9914/// \returns diagnostic %select index.
9915static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
9916  switch (Tag) {
9917  case TTK_Struct: return 0;
9918  case TTK_Interface: return 1;
9919  case TTK_Class:  return 2;
9920  default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
9921  }
9922}
9923
9924/// \brief Determine if tag kind is a class-key compatible with
9925/// class for redeclaration (class, struct, or __interface).
9926///
9927/// \returns true iff the tag kind is compatible.
9928static bool isClassCompatTagKind(TagTypeKind Tag)
9929{
9930  return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
9931}
9932
9933/// \brief Determine whether a tag with a given kind is acceptable
9934/// as a redeclaration of the given tag declaration.
9935///
9936/// \returns true if the new tag kind is acceptable, false otherwise.
9937bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
9938                                        TagTypeKind NewTag, bool isDefinition,
9939                                        SourceLocation NewTagLoc,
9940                                        const IdentifierInfo &Name) {
9941  // C++ [dcl.type.elab]p3:
9942  //   The class-key or enum keyword present in the
9943  //   elaborated-type-specifier shall agree in kind with the
9944  //   declaration to which the name in the elaborated-type-specifier
9945  //   refers. This rule also applies to the form of
9946  //   elaborated-type-specifier that declares a class-name or
9947  //   friend class since it can be construed as referring to the
9948  //   definition of the class. Thus, in any
9949  //   elaborated-type-specifier, the enum keyword shall be used to
9950  //   refer to an enumeration (7.2), the union class-key shall be
9951  //   used to refer to a union (clause 9), and either the class or
9952  //   struct class-key shall be used to refer to a class (clause 9)
9953  //   declared using the class or struct class-key.
9954  TagTypeKind OldTag = Previous->getTagKind();
9955  if (!isDefinition || !isClassCompatTagKind(NewTag))
9956    if (OldTag == NewTag)
9957      return true;
9958
9959  if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
9960    // Warn about the struct/class tag mismatch.
9961    bool isTemplate = false;
9962    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
9963      isTemplate = Record->getDescribedClassTemplate();
9964
9965    if (!ActiveTemplateInstantiations.empty()) {
9966      // In a template instantiation, do not offer fix-its for tag mismatches
9967      // since they usually mess up the template instead of fixing the problem.
9968      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
9969        << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
9970        << getRedeclDiagFromTagKind(OldTag);
9971      return true;
9972    }
9973
9974    if (isDefinition) {
9975      // On definitions, check previous tags and issue a fix-it for each
9976      // one that doesn't match the current tag.
9977      if (Previous->getDefinition()) {
9978        // Don't suggest fix-its for redefinitions.
9979        return true;
9980      }
9981
9982      bool previousMismatch = false;
9983      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
9984           E(Previous->redecls_end()); I != E; ++I) {
9985        if (I->getTagKind() != NewTag) {
9986          if (!previousMismatch) {
9987            previousMismatch = true;
9988            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
9989              << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
9990              << getRedeclDiagFromTagKind(I->getTagKind());
9991          }
9992          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
9993            << getRedeclDiagFromTagKind(NewTag)
9994            << FixItHint::CreateReplacement(I->getInnerLocStart(),
9995                 TypeWithKeyword::getTagTypeKindName(NewTag));
9996        }
9997      }
9998      return true;
9999    }
10000
10001    // Check for a previous definition.  If current tag and definition
10002    // are same type, do nothing.  If no definition, but disagree with
10003    // with previous tag type, give a warning, but no fix-it.
10004    const TagDecl *Redecl = Previous->getDefinition() ?
10005                            Previous->getDefinition() : Previous;
10006    if (Redecl->getTagKind() == NewTag) {
10007      return true;
10008    }
10009
10010    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
10011      << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
10012      << getRedeclDiagFromTagKind(OldTag);
10013    Diag(Redecl->getLocation(), diag::note_previous_use);
10014
10015    // If there is a previous defintion, suggest a fix-it.
10016    if (Previous->getDefinition()) {
10017        Diag(NewTagLoc, diag::note_struct_class_suggestion)
10018          << getRedeclDiagFromTagKind(Redecl->getTagKind())
10019          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
10020               TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
10021    }
10022
10023    return true;
10024  }
10025  return false;
10026}
10027
10028/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
10029/// former case, Name will be non-null.  In the later case, Name will be null.
10030/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
10031/// reference/declaration/definition of a tag.
10032Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
10033                     SourceLocation KWLoc, CXXScopeSpec &SS,
10034                     IdentifierInfo *Name, SourceLocation NameLoc,
10035                     AttributeList *Attr, AccessSpecifier AS,
10036                     SourceLocation ModulePrivateLoc,
10037                     MultiTemplateParamsArg TemplateParameterLists,
10038                     bool &OwnedDecl, bool &IsDependent,
10039                     SourceLocation ScopedEnumKWLoc,
10040                     bool ScopedEnumUsesClassTag,
10041                     TypeResult UnderlyingType) {
10042  // If this is not a definition, it must have a name.
10043  IdentifierInfo *OrigName = Name;
10044  assert((Name != 0 || TUK == TUK_Definition) &&
10045         "Nameless record must be a definition!");
10046  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
10047
10048  OwnedDecl = false;
10049  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
10050  bool ScopedEnum = ScopedEnumKWLoc.isValid();
10051
10052  // FIXME: Check explicit specializations more carefully.
10053  bool isExplicitSpecialization = false;
10054  bool Invalid = false;
10055
10056  // We only need to do this matching if we have template parameters
10057  // or a scope specifier, which also conveniently avoids this work
10058  // for non-C++ cases.
10059  if (TemplateParameterLists.size() > 0 ||
10060      (SS.isNotEmpty() && TUK != TUK_Reference)) {
10061    if (TemplateParameterList *TemplateParams =
10062            MatchTemplateParametersToScopeSpecifier(
10063                KWLoc, NameLoc, SS, TemplateParameterLists, TUK == TUK_Friend,
10064                isExplicitSpecialization, Invalid)) {
10065      if (Kind == TTK_Enum) {
10066        Diag(KWLoc, diag::err_enum_template);
10067        return 0;
10068      }
10069
10070      if (TemplateParams->size() > 0) {
10071        // This is a declaration or definition of a class template (which may
10072        // be a member of another template).
10073
10074        if (Invalid)
10075          return 0;
10076
10077        OwnedDecl = false;
10078        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
10079                                               SS, Name, NameLoc, Attr,
10080                                               TemplateParams, AS,
10081                                               ModulePrivateLoc,
10082                                               TemplateParameterLists.size()-1,
10083                                               TemplateParameterLists.data());
10084        return Result.get();
10085      } else {
10086        // The "template<>" header is extraneous.
10087        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
10088          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
10089        isExplicitSpecialization = true;
10090      }
10091    }
10092  }
10093
10094  // Figure out the underlying type if this a enum declaration. We need to do
10095  // this early, because it's needed to detect if this is an incompatible
10096  // redeclaration.
10097  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
10098
10099  if (Kind == TTK_Enum) {
10100    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
10101      // No underlying type explicitly specified, or we failed to parse the
10102      // type, default to int.
10103      EnumUnderlying = Context.IntTy.getTypePtr();
10104    else if (UnderlyingType.get()) {
10105      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
10106      // integral type; any cv-qualification is ignored.
10107      TypeSourceInfo *TI = 0;
10108      GetTypeFromParser(UnderlyingType.get(), &TI);
10109      EnumUnderlying = TI;
10110
10111      if (CheckEnumUnderlyingType(TI))
10112        // Recover by falling back to int.
10113        EnumUnderlying = Context.IntTy.getTypePtr();
10114
10115      if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
10116                                          UPPC_FixedUnderlyingType))
10117        EnumUnderlying = Context.IntTy.getTypePtr();
10118
10119    } else if (getLangOpts().MicrosoftMode)
10120      // Microsoft enums are always of int type.
10121      EnumUnderlying = Context.IntTy.getTypePtr();
10122  }
10123
10124  DeclContext *SearchDC = CurContext;
10125  DeclContext *DC = CurContext;
10126  bool isStdBadAlloc = false;
10127
10128  RedeclarationKind Redecl = ForRedeclaration;
10129  if (TUK == TUK_Friend || TUK == TUK_Reference)
10130    Redecl = NotForRedeclaration;
10131
10132  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
10133  bool FriendSawTagOutsideEnclosingNamespace = false;
10134  if (Name && SS.isNotEmpty()) {
10135    // We have a nested-name tag ('struct foo::bar').
10136
10137    // Check for invalid 'foo::'.
10138    if (SS.isInvalid()) {
10139      Name = 0;
10140      goto CreateNewDecl;
10141    }
10142
10143    // If this is a friend or a reference to a class in a dependent
10144    // context, don't try to make a decl for it.
10145    if (TUK == TUK_Friend || TUK == TUK_Reference) {
10146      DC = computeDeclContext(SS, false);
10147      if (!DC) {
10148        IsDependent = true;
10149        return 0;
10150      }
10151    } else {
10152      DC = computeDeclContext(SS, true);
10153      if (!DC) {
10154        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
10155          << SS.getRange();
10156        return 0;
10157      }
10158    }
10159
10160    if (RequireCompleteDeclContext(SS, DC))
10161      return 0;
10162
10163    SearchDC = DC;
10164    // Look-up name inside 'foo::'.
10165    LookupQualifiedName(Previous, DC);
10166
10167    if (Previous.isAmbiguous())
10168      return 0;
10169
10170    if (Previous.empty()) {
10171      // Name lookup did not find anything. However, if the
10172      // nested-name-specifier refers to the current instantiation,
10173      // and that current instantiation has any dependent base
10174      // classes, we might find something at instantiation time: treat
10175      // this as a dependent elaborated-type-specifier.
10176      // But this only makes any sense for reference-like lookups.
10177      if (Previous.wasNotFoundInCurrentInstantiation() &&
10178          (TUK == TUK_Reference || TUK == TUK_Friend)) {
10179        IsDependent = true;
10180        return 0;
10181      }
10182
10183      // A tag 'foo::bar' must already exist.
10184      Diag(NameLoc, diag::err_not_tag_in_scope)
10185        << Kind << Name << DC << SS.getRange();
10186      Name = 0;
10187      Invalid = true;
10188      goto CreateNewDecl;
10189    }
10190  } else if (Name) {
10191    // If this is a named struct, check to see if there was a previous forward
10192    // declaration or definition.
10193    // FIXME: We're looking into outer scopes here, even when we
10194    // shouldn't be. Doing so can result in ambiguities that we
10195    // shouldn't be diagnosing.
10196    LookupName(Previous, S);
10197
10198    // When declaring or defining a tag, ignore ambiguities introduced
10199    // by types using'ed into this scope.
10200    if (Previous.isAmbiguous() &&
10201        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
10202      LookupResult::Filter F = Previous.makeFilter();
10203      while (F.hasNext()) {
10204        NamedDecl *ND = F.next();
10205        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
10206          F.erase();
10207      }
10208      F.done();
10209    }
10210
10211    // C++11 [namespace.memdef]p3:
10212    //   If the name in a friend declaration is neither qualified nor
10213    //   a template-id and the declaration is a function or an
10214    //   elaborated-type-specifier, the lookup to determine whether
10215    //   the entity has been previously declared shall not consider
10216    //   any scopes outside the innermost enclosing namespace.
10217    //
10218    // Does it matter that this should be by scope instead of by
10219    // semantic context?
10220    if (!Previous.empty() && TUK == TUK_Friend) {
10221      DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
10222      LookupResult::Filter F = Previous.makeFilter();
10223      while (F.hasNext()) {
10224        NamedDecl *ND = F.next();
10225        DeclContext *DC = ND->getDeclContext()->getRedeclContext();
10226        if (DC->isFileContext() &&
10227            !EnclosingNS->Encloses(ND->getDeclContext())) {
10228          F.erase();
10229          FriendSawTagOutsideEnclosingNamespace = true;
10230        }
10231      }
10232      F.done();
10233    }
10234
10235    // Note:  there used to be some attempt at recovery here.
10236    if (Previous.isAmbiguous())
10237      return 0;
10238
10239    if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
10240      // FIXME: This makes sure that we ignore the contexts associated
10241      // with C structs, unions, and enums when looking for a matching
10242      // tag declaration or definition. See the similar lookup tweak
10243      // in Sema::LookupName; is there a better way to deal with this?
10244      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
10245        SearchDC = SearchDC->getParent();
10246    }
10247  } else if (S->isFunctionPrototypeScope()) {
10248    // If this is an enum declaration in function prototype scope, set its
10249    // initial context to the translation unit.
10250    // FIXME: [citation needed]
10251    SearchDC = Context.getTranslationUnitDecl();
10252  }
10253
10254  if (Previous.isSingleResult() &&
10255      Previous.getFoundDecl()->isTemplateParameter()) {
10256    // Maybe we will complain about the shadowed template parameter.
10257    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
10258    // Just pretend that we didn't see the previous declaration.
10259    Previous.clear();
10260  }
10261
10262  if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
10263      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
10264    // This is a declaration of or a reference to "std::bad_alloc".
10265    isStdBadAlloc = true;
10266
10267    if (Previous.empty() && StdBadAlloc) {
10268      // std::bad_alloc has been implicitly declared (but made invisible to
10269      // name lookup). Fill in this implicit declaration as the previous
10270      // declaration, so that the declarations get chained appropriately.
10271      Previous.addDecl(getStdBadAlloc());
10272    }
10273  }
10274
10275  // If we didn't find a previous declaration, and this is a reference
10276  // (or friend reference), move to the correct scope.  In C++, we
10277  // also need to do a redeclaration lookup there, just in case
10278  // there's a shadow friend decl.
10279  if (Name && Previous.empty() &&
10280      (TUK == TUK_Reference || TUK == TUK_Friend)) {
10281    if (Invalid) goto CreateNewDecl;
10282    assert(SS.isEmpty());
10283
10284    if (TUK == TUK_Reference) {
10285      // C++ [basic.scope.pdecl]p5:
10286      //   -- for an elaborated-type-specifier of the form
10287      //
10288      //          class-key identifier
10289      //
10290      //      if the elaborated-type-specifier is used in the
10291      //      decl-specifier-seq or parameter-declaration-clause of a
10292      //      function defined in namespace scope, the identifier is
10293      //      declared as a class-name in the namespace that contains
10294      //      the declaration; otherwise, except as a friend
10295      //      declaration, the identifier is declared in the smallest
10296      //      non-class, non-function-prototype scope that contains the
10297      //      declaration.
10298      //
10299      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
10300      // C structs and unions.
10301      //
10302      // It is an error in C++ to declare (rather than define) an enum
10303      // type, including via an elaborated type specifier.  We'll
10304      // diagnose that later; for now, declare the enum in the same
10305      // scope as we would have picked for any other tag type.
10306      //
10307      // GNU C also supports this behavior as part of its incomplete
10308      // enum types extension, while GNU C++ does not.
10309      //
10310      // Find the context where we'll be declaring the tag.
10311      // FIXME: We would like to maintain the current DeclContext as the
10312      // lexical context,
10313      while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
10314        SearchDC = SearchDC->getParent();
10315
10316      // Find the scope where we'll be declaring the tag.
10317      while (S->isClassScope() ||
10318             (getLangOpts().CPlusPlus &&
10319              S->isFunctionPrototypeScope()) ||
10320             ((S->getFlags() & Scope::DeclScope) == 0) ||
10321             (S->getEntity() &&
10322              ((DeclContext *)S->getEntity())->isTransparentContext()))
10323        S = S->getParent();
10324    } else {
10325      assert(TUK == TUK_Friend);
10326      // C++ [namespace.memdef]p3:
10327      //   If a friend declaration in a non-local class first declares a
10328      //   class or function, the friend class or function is a member of
10329      //   the innermost enclosing namespace.
10330      SearchDC = SearchDC->getEnclosingNamespaceContext();
10331    }
10332
10333    // In C++, we need to do a redeclaration lookup to properly
10334    // diagnose some problems.
10335    if (getLangOpts().CPlusPlus) {
10336      Previous.setRedeclarationKind(ForRedeclaration);
10337      LookupQualifiedName(Previous, SearchDC);
10338    }
10339  }
10340
10341  if (!Previous.empty()) {
10342    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
10343
10344    // It's okay to have a tag decl in the same scope as a typedef
10345    // which hides a tag decl in the same scope.  Finding this
10346    // insanity with a redeclaration lookup can only actually happen
10347    // in C++.
10348    //
10349    // This is also okay for elaborated-type-specifiers, which is
10350    // technically forbidden by the current standard but which is
10351    // okay according to the likely resolution of an open issue;
10352    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
10353    if (getLangOpts().CPlusPlus) {
10354      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
10355        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
10356          TagDecl *Tag = TT->getDecl();
10357          if (Tag->getDeclName() == Name &&
10358              Tag->getDeclContext()->getRedeclContext()
10359                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
10360            PrevDecl = Tag;
10361            Previous.clear();
10362            Previous.addDecl(Tag);
10363            Previous.resolveKind();
10364          }
10365        }
10366      }
10367    }
10368
10369    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
10370      // If this is a use of a previous tag, or if the tag is already declared
10371      // in the same scope (so that the definition/declaration completes or
10372      // rementions the tag), reuse the decl.
10373      if (TUK == TUK_Reference || TUK == TUK_Friend ||
10374          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
10375        // Make sure that this wasn't declared as an enum and now used as a
10376        // struct or something similar.
10377        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
10378                                          TUK == TUK_Definition, KWLoc,
10379                                          *Name)) {
10380          bool SafeToContinue
10381            = (PrevTagDecl->getTagKind() != TTK_Enum &&
10382               Kind != TTK_Enum);
10383          if (SafeToContinue)
10384            Diag(KWLoc, diag::err_use_with_wrong_tag)
10385              << Name
10386              << FixItHint::CreateReplacement(SourceRange(KWLoc),
10387                                              PrevTagDecl->getKindName());
10388          else
10389            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
10390          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
10391
10392          if (SafeToContinue)
10393            Kind = PrevTagDecl->getTagKind();
10394          else {
10395            // Recover by making this an anonymous redefinition.
10396            Name = 0;
10397            Previous.clear();
10398            Invalid = true;
10399          }
10400        }
10401
10402        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
10403          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
10404
10405          // If this is an elaborated-type-specifier for a scoped enumeration,
10406          // the 'class' keyword is not necessary and not permitted.
10407          if (TUK == TUK_Reference || TUK == TUK_Friend) {
10408            if (ScopedEnum)
10409              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
10410                << PrevEnum->isScoped()
10411                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
10412            return PrevTagDecl;
10413          }
10414
10415          QualType EnumUnderlyingTy;
10416          if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
10417            EnumUnderlyingTy = TI->getType();
10418          else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
10419            EnumUnderlyingTy = QualType(T, 0);
10420
10421          // All conflicts with previous declarations are recovered by
10422          // returning the previous declaration, unless this is a definition,
10423          // in which case we want the caller to bail out.
10424          if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
10425                                     ScopedEnum, EnumUnderlyingTy, PrevEnum))
10426            return TUK == TUK_Declaration ? PrevTagDecl : 0;
10427        }
10428
10429        // C++11 [class.mem]p1:
10430        //   A member shall not be declared twice in the member-specification,
10431        //   except that a nested class or member class template can be declared
10432        //   and then later defined.
10433        if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
10434            S->isDeclScope(PrevDecl)) {
10435          Diag(NameLoc, diag::ext_member_redeclared);
10436          Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
10437        }
10438
10439        if (!Invalid) {
10440          // If this is a use, just return the declaration we found.
10441
10442          // FIXME: In the future, return a variant or some other clue
10443          // for the consumer of this Decl to know it doesn't own it.
10444          // For our current ASTs this shouldn't be a problem, but will
10445          // need to be changed with DeclGroups.
10446          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
10447               getLangOpts().MicrosoftExt)) || TUK == TUK_Friend)
10448            return PrevTagDecl;
10449
10450          // Diagnose attempts to redefine a tag.
10451          if (TUK == TUK_Definition) {
10452            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
10453              // If we're defining a specialization and the previous definition
10454              // is from an implicit instantiation, don't emit an error
10455              // here; we'll catch this in the general case below.
10456              bool IsExplicitSpecializationAfterInstantiation = false;
10457              if (isExplicitSpecialization) {
10458                if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
10459                  IsExplicitSpecializationAfterInstantiation =
10460                    RD->getTemplateSpecializationKind() !=
10461                    TSK_ExplicitSpecialization;
10462                else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
10463                  IsExplicitSpecializationAfterInstantiation =
10464                    ED->getTemplateSpecializationKind() !=
10465                    TSK_ExplicitSpecialization;
10466              }
10467
10468              if (!IsExplicitSpecializationAfterInstantiation) {
10469                // A redeclaration in function prototype scope in C isn't
10470                // visible elsewhere, so merely issue a warning.
10471                if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
10472                  Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
10473                else
10474                  Diag(NameLoc, diag::err_redefinition) << Name;
10475                Diag(Def->getLocation(), diag::note_previous_definition);
10476                // If this is a redefinition, recover by making this
10477                // struct be anonymous, which will make any later
10478                // references get the previous definition.
10479                Name = 0;
10480                Previous.clear();
10481                Invalid = true;
10482              }
10483            } else {
10484              // If the type is currently being defined, complain
10485              // about a nested redefinition.
10486              const TagType *Tag
10487                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
10488              if (Tag->isBeingDefined()) {
10489                Diag(NameLoc, diag::err_nested_redefinition) << Name;
10490                Diag(PrevTagDecl->getLocation(),
10491                     diag::note_previous_definition);
10492                Name = 0;
10493                Previous.clear();
10494                Invalid = true;
10495              }
10496            }
10497
10498            // Okay, this is definition of a previously declared or referenced
10499            // tag PrevDecl. We're going to create a new Decl for it.
10500          }
10501        }
10502        // If we get here we have (another) forward declaration or we
10503        // have a definition.  Just create a new decl.
10504
10505      } else {
10506        // If we get here, this is a definition of a new tag type in a nested
10507        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
10508        // new decl/type.  We set PrevDecl to NULL so that the entities
10509        // have distinct types.
10510        Previous.clear();
10511      }
10512      // If we get here, we're going to create a new Decl. If PrevDecl
10513      // is non-NULL, it's a definition of the tag declared by
10514      // PrevDecl. If it's NULL, we have a new definition.
10515
10516
10517    // Otherwise, PrevDecl is not a tag, but was found with tag
10518    // lookup.  This is only actually possible in C++, where a few
10519    // things like templates still live in the tag namespace.
10520    } else {
10521      // Use a better diagnostic if an elaborated-type-specifier
10522      // found the wrong kind of type on the first
10523      // (non-redeclaration) lookup.
10524      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
10525          !Previous.isForRedeclaration()) {
10526        unsigned Kind = 0;
10527        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
10528        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
10529        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
10530        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
10531        Diag(PrevDecl->getLocation(), diag::note_declared_at);
10532        Invalid = true;
10533
10534      // Otherwise, only diagnose if the declaration is in scope.
10535      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
10536                                isExplicitSpecialization)) {
10537        // do nothing
10538
10539      // Diagnose implicit declarations introduced by elaborated types.
10540      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
10541        unsigned Kind = 0;
10542        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
10543        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
10544        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
10545        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
10546        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
10547        Invalid = true;
10548
10549      // Otherwise it's a declaration.  Call out a particularly common
10550      // case here.
10551      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
10552        unsigned Kind = 0;
10553        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
10554        Diag(NameLoc, diag::err_tag_definition_of_typedef)
10555          << Name << Kind << TND->getUnderlyingType();
10556        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
10557        Invalid = true;
10558
10559      // Otherwise, diagnose.
10560      } else {
10561        // The tag name clashes with something else in the target scope,
10562        // issue an error and recover by making this tag be anonymous.
10563        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
10564        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
10565        Name = 0;
10566        Invalid = true;
10567      }
10568
10569      // The existing declaration isn't relevant to us; we're in a
10570      // new scope, so clear out the previous declaration.
10571      Previous.clear();
10572    }
10573  }
10574
10575CreateNewDecl:
10576
10577  TagDecl *PrevDecl = 0;
10578  if (Previous.isSingleResult())
10579    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
10580
10581  // If there is an identifier, use the location of the identifier as the
10582  // location of the decl, otherwise use the location of the struct/union
10583  // keyword.
10584  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
10585
10586  // Otherwise, create a new declaration. If there is a previous
10587  // declaration of the same entity, the two will be linked via
10588  // PrevDecl.
10589  TagDecl *New;
10590
10591  bool IsForwardReference = false;
10592  if (Kind == TTK_Enum) {
10593    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
10594    // enum X { A, B, C } D;    D should chain to X.
10595    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
10596                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
10597                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
10598    // If this is an undefined enum, warn.
10599    if (TUK != TUK_Definition && !Invalid) {
10600      TagDecl *Def;
10601      if ((getLangOpts().CPlusPlus11 || getLangOpts().ObjC2) &&
10602          cast<EnumDecl>(New)->isFixed()) {
10603        // C++0x: 7.2p2: opaque-enum-declaration.
10604        // Conflicts are diagnosed above. Do nothing.
10605      }
10606      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
10607        Diag(Loc, diag::ext_forward_ref_enum_def)
10608          << New;
10609        Diag(Def->getLocation(), diag::note_previous_definition);
10610      } else {
10611        unsigned DiagID = diag::ext_forward_ref_enum;
10612        if (getLangOpts().MicrosoftMode)
10613          DiagID = diag::ext_ms_forward_ref_enum;
10614        else if (getLangOpts().CPlusPlus)
10615          DiagID = diag::err_forward_ref_enum;
10616        Diag(Loc, DiagID);
10617
10618        // If this is a forward-declared reference to an enumeration, make a
10619        // note of it; we won't actually be introducing the declaration into
10620        // the declaration context.
10621        if (TUK == TUK_Reference)
10622          IsForwardReference = true;
10623      }
10624    }
10625
10626    if (EnumUnderlying) {
10627      EnumDecl *ED = cast<EnumDecl>(New);
10628      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
10629        ED->setIntegerTypeSourceInfo(TI);
10630      else
10631        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
10632      ED->setPromotionType(ED->getIntegerType());
10633    }
10634
10635  } else {
10636    // struct/union/class
10637
10638    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
10639    // struct X { int A; } D;    D should chain to X.
10640    if (getLangOpts().CPlusPlus) {
10641      // FIXME: Look for a way to use RecordDecl for simple structs.
10642      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
10643                                  cast_or_null<CXXRecordDecl>(PrevDecl));
10644
10645      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
10646        StdBadAlloc = cast<CXXRecordDecl>(New);
10647    } else
10648      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
10649                               cast_or_null<RecordDecl>(PrevDecl));
10650  }
10651
10652  // Maybe add qualifier info.
10653  if (SS.isNotEmpty()) {
10654    if (SS.isSet()) {
10655      // If this is either a declaration or a definition, check the
10656      // nested-name-specifier against the current context. We don't do this
10657      // for explicit specializations, because they have similar checking
10658      // (with more specific diagnostics) in the call to
10659      // CheckMemberSpecialization, below.
10660      if (!isExplicitSpecialization &&
10661          (TUK == TUK_Definition || TUK == TUK_Declaration) &&
10662          diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
10663        Invalid = true;
10664
10665      New->setQualifierInfo(SS.getWithLocInContext(Context));
10666      if (TemplateParameterLists.size() > 0) {
10667        New->setTemplateParameterListsInfo(Context,
10668                                           TemplateParameterLists.size(),
10669                                           TemplateParameterLists.data());
10670      }
10671    }
10672    else
10673      Invalid = true;
10674  }
10675
10676  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
10677    // Add alignment attributes if necessary; these attributes are checked when
10678    // the ASTContext lays out the structure.
10679    //
10680    // It is important for implementing the correct semantics that this
10681    // happen here (in act on tag decl). The #pragma pack stack is
10682    // maintained as a result of parser callbacks which can occur at
10683    // many points during the parsing of a struct declaration (because
10684    // the #pragma tokens are effectively skipped over during the
10685    // parsing of the struct).
10686    if (TUK == TUK_Definition) {
10687      AddAlignmentAttributesForRecord(RD);
10688      AddMsStructLayoutForRecord(RD);
10689    }
10690  }
10691
10692  if (ModulePrivateLoc.isValid()) {
10693    if (isExplicitSpecialization)
10694      Diag(New->getLocation(), diag::err_module_private_specialization)
10695        << 2
10696        << FixItHint::CreateRemoval(ModulePrivateLoc);
10697    // __module_private__ does not apply to local classes. However, we only
10698    // diagnose this as an error when the declaration specifiers are
10699    // freestanding. Here, we just ignore the __module_private__.
10700    else if (!SearchDC->isFunctionOrMethod())
10701      New->setModulePrivate();
10702  }
10703
10704  // If this is a specialization of a member class (of a class template),
10705  // check the specialization.
10706  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
10707    Invalid = true;
10708
10709  if (Invalid)
10710    New->setInvalidDecl();
10711
10712  if (Attr)
10713    ProcessDeclAttributeList(S, New, Attr);
10714
10715  // If we're declaring or defining a tag in function prototype scope
10716  // in C, note that this type can only be used within the function.
10717  if (Name && S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus)
10718    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
10719
10720  // Set the lexical context. If the tag has a C++ scope specifier, the
10721  // lexical context will be different from the semantic context.
10722  New->setLexicalDeclContext(CurContext);
10723
10724  // Mark this as a friend decl if applicable.
10725  // In Microsoft mode, a friend declaration also acts as a forward
10726  // declaration so we always pass true to setObjectOfFriendDecl to make
10727  // the tag name visible.
10728  if (TUK == TUK_Friend)
10729    New->setObjectOfFriendDecl(!FriendSawTagOutsideEnclosingNamespace &&
10730                               getLangOpts().MicrosoftExt);
10731
10732  // Set the access specifier.
10733  if (!Invalid && SearchDC->isRecord())
10734    SetMemberAccessSpecifier(New, PrevDecl, AS);
10735
10736  if (TUK == TUK_Definition)
10737    New->startDefinition();
10738
10739  // If this has an identifier, add it to the scope stack.
10740  if (TUK == TUK_Friend) {
10741    // We might be replacing an existing declaration in the lookup tables;
10742    // if so, borrow its access specifier.
10743    if (PrevDecl)
10744      New->setAccess(PrevDecl->getAccess());
10745
10746    DeclContext *DC = New->getDeclContext()->getRedeclContext();
10747    DC->makeDeclVisibleInContext(New);
10748    if (Name) // can be null along some error paths
10749      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10750        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
10751  } else if (Name) {
10752    S = getNonFieldDeclScope(S);
10753    PushOnScopeChains(New, S, !IsForwardReference);
10754    if (IsForwardReference)
10755      SearchDC->makeDeclVisibleInContext(New);
10756
10757  } else {
10758    CurContext->addDecl(New);
10759  }
10760
10761  // If this is the C FILE type, notify the AST context.
10762  if (IdentifierInfo *II = New->getIdentifier())
10763    if (!New->isInvalidDecl() &&
10764        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
10765        II->isStr("FILE"))
10766      Context.setFILEDecl(New);
10767
10768  // If we were in function prototype scope (and not in C++ mode), add this
10769  // tag to the list of decls to inject into the function definition scope.
10770  if (S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus &&
10771      InFunctionDeclarator && Name)
10772    DeclsInPrototypeScope.push_back(New);
10773
10774  if (PrevDecl)
10775    mergeDeclAttributes(New, PrevDecl);
10776
10777  // If there's a #pragma GCC visibility in scope, set the visibility of this
10778  // record.
10779  AddPushedVisibilityAttribute(New);
10780
10781  OwnedDecl = true;
10782  // In C++, don't return an invalid declaration. We can't recover well from
10783  // the cases where we make the type anonymous.
10784  return (Invalid && getLangOpts().CPlusPlus) ? 0 : New;
10785}
10786
10787void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
10788  AdjustDeclIfTemplate(TagD);
10789  TagDecl *Tag = cast<TagDecl>(TagD);
10790
10791  // Enter the tag context.
10792  PushDeclContext(S, Tag);
10793
10794  ActOnDocumentableDecl(TagD);
10795
10796  // If there's a #pragma GCC visibility in scope, set the visibility of this
10797  // record.
10798  AddPushedVisibilityAttribute(Tag);
10799}
10800
10801Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
10802  assert(isa<ObjCContainerDecl>(IDecl) &&
10803         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
10804  DeclContext *OCD = cast<DeclContext>(IDecl);
10805  assert(getContainingDC(OCD) == CurContext &&
10806      "The next DeclContext should be lexically contained in the current one.");
10807  CurContext = OCD;
10808  return IDecl;
10809}
10810
10811void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
10812                                           SourceLocation FinalLoc,
10813                                           SourceLocation LBraceLoc) {
10814  AdjustDeclIfTemplate(TagD);
10815  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
10816
10817  FieldCollector->StartClass();
10818
10819  if (!Record->getIdentifier())
10820    return;
10821
10822  if (FinalLoc.isValid())
10823    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
10824
10825  // C++ [class]p2:
10826  //   [...] The class-name is also inserted into the scope of the
10827  //   class itself; this is known as the injected-class-name. For
10828  //   purposes of access checking, the injected-class-name is treated
10829  //   as if it were a public member name.
10830  CXXRecordDecl *InjectedClassName
10831    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
10832                            Record->getLocStart(), Record->getLocation(),
10833                            Record->getIdentifier(),
10834                            /*PrevDecl=*/0,
10835                            /*DelayTypeCreation=*/true);
10836  Context.getTypeDeclType(InjectedClassName, Record);
10837  InjectedClassName->setImplicit();
10838  InjectedClassName->setAccess(AS_public);
10839  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
10840      InjectedClassName->setDescribedClassTemplate(Template);
10841  PushOnScopeChains(InjectedClassName, S);
10842  assert(InjectedClassName->isInjectedClassName() &&
10843         "Broken injected-class-name");
10844}
10845
10846void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
10847                                    SourceLocation RBraceLoc) {
10848  AdjustDeclIfTemplate(TagD);
10849  TagDecl *Tag = cast<TagDecl>(TagD);
10850  Tag->setRBraceLoc(RBraceLoc);
10851
10852  // Make sure we "complete" the definition even it is invalid.
10853  if (Tag->isBeingDefined()) {
10854    assert(Tag->isInvalidDecl() && "We should already have completed it");
10855    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
10856      RD->completeDefinition();
10857  }
10858
10859  if (isa<CXXRecordDecl>(Tag))
10860    FieldCollector->FinishClass();
10861
10862  // Exit this scope of this tag's definition.
10863  PopDeclContext();
10864
10865  if (getCurLexicalContext()->isObjCContainer() &&
10866      Tag->getDeclContext()->isFileContext())
10867    Tag->setTopLevelDeclInObjCContainer();
10868
10869  // Notify the consumer that we've defined a tag.
10870  if (!Tag->isInvalidDecl())
10871    Consumer.HandleTagDeclDefinition(Tag);
10872}
10873
10874void Sema::ActOnObjCContainerFinishDefinition() {
10875  // Exit this scope of this interface definition.
10876  PopDeclContext();
10877}
10878
10879void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
10880  assert(DC == CurContext && "Mismatch of container contexts");
10881  OriginalLexicalContext = DC;
10882  ActOnObjCContainerFinishDefinition();
10883}
10884
10885void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
10886  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
10887  OriginalLexicalContext = 0;
10888}
10889
10890void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
10891  AdjustDeclIfTemplate(TagD);
10892  TagDecl *Tag = cast<TagDecl>(TagD);
10893  Tag->setInvalidDecl();
10894
10895  // Make sure we "complete" the definition even it is invalid.
10896  if (Tag->isBeingDefined()) {
10897    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
10898      RD->completeDefinition();
10899  }
10900
10901  // We're undoing ActOnTagStartDefinition here, not
10902  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
10903  // the FieldCollector.
10904
10905  PopDeclContext();
10906}
10907
10908// Note that FieldName may be null for anonymous bitfields.
10909ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
10910                                IdentifierInfo *FieldName,
10911                                QualType FieldTy, bool IsMsStruct,
10912                                Expr *BitWidth, bool *ZeroWidth) {
10913  // Default to true; that shouldn't confuse checks for emptiness
10914  if (ZeroWidth)
10915    *ZeroWidth = true;
10916
10917  // C99 6.7.2.1p4 - verify the field type.
10918  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
10919  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
10920    // Handle incomplete types with specific error.
10921    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
10922      return ExprError();
10923    if (FieldName)
10924      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
10925        << FieldName << FieldTy << BitWidth->getSourceRange();
10926    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
10927      << FieldTy << BitWidth->getSourceRange();
10928  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
10929                                             UPPC_BitFieldWidth))
10930    return ExprError();
10931
10932  // If the bit-width is type- or value-dependent, don't try to check
10933  // it now.
10934  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
10935    return Owned(BitWidth);
10936
10937  llvm::APSInt Value;
10938  ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
10939  if (ICE.isInvalid())
10940    return ICE;
10941  BitWidth = ICE.take();
10942
10943  if (Value != 0 && ZeroWidth)
10944    *ZeroWidth = false;
10945
10946  // Zero-width bitfield is ok for anonymous field.
10947  if (Value == 0 && FieldName)
10948    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
10949
10950  if (Value.isSigned() && Value.isNegative()) {
10951    if (FieldName)
10952      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
10953               << FieldName << Value.toString(10);
10954    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
10955      << Value.toString(10);
10956  }
10957
10958  if (!FieldTy->isDependentType()) {
10959    uint64_t TypeSize = Context.getTypeSize(FieldTy);
10960    if (Value.getZExtValue() > TypeSize) {
10961      if (!getLangOpts().CPlusPlus || IsMsStruct) {
10962        if (FieldName)
10963          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
10964            << FieldName << (unsigned)Value.getZExtValue()
10965            << (unsigned)TypeSize;
10966
10967        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
10968          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
10969      }
10970
10971      if (FieldName)
10972        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
10973          << FieldName << (unsigned)Value.getZExtValue()
10974          << (unsigned)TypeSize;
10975      else
10976        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
10977          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
10978    }
10979  }
10980
10981  return Owned(BitWidth);
10982}
10983
10984/// ActOnField - Each field of a C struct/union is passed into this in order
10985/// to create a FieldDecl object for it.
10986Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
10987                       Declarator &D, Expr *BitfieldWidth) {
10988  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
10989                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
10990                               /*InitStyle=*/ICIS_NoInit, AS_public);
10991  return Res;
10992}
10993
10994/// HandleField - Analyze a field of a C struct or a C++ data member.
10995///
10996FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
10997                             SourceLocation DeclStart,
10998                             Declarator &D, Expr *BitWidth,
10999                             InClassInitStyle InitStyle,
11000                             AccessSpecifier AS) {
11001  IdentifierInfo *II = D.getIdentifier();
11002  SourceLocation Loc = DeclStart;
11003  if (II) Loc = D.getIdentifierLoc();
11004
11005  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
11006  QualType T = TInfo->getType();
11007  if (getLangOpts().CPlusPlus) {
11008    CheckExtraCXXDefaultArguments(D);
11009
11010    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
11011                                        UPPC_DataMemberType)) {
11012      D.setInvalidType();
11013      T = Context.IntTy;
11014      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
11015    }
11016  }
11017
11018  // TR 18037 does not allow fields to be declared with address spaces.
11019  if (T.getQualifiers().hasAddressSpace()) {
11020    Diag(Loc, diag::err_field_with_address_space);
11021    D.setInvalidType();
11022  }
11023
11024  // OpenCL 1.2 spec, s6.9 r:
11025  // The event type cannot be used to declare a structure or union field.
11026  if (LangOpts.OpenCL && T->isEventT()) {
11027    Diag(Loc, diag::err_event_t_struct_field);
11028    D.setInvalidType();
11029  }
11030
11031  DiagnoseFunctionSpecifiers(D.getDeclSpec());
11032
11033  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
11034    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
11035         diag::err_invalid_thread)
11036      << DeclSpec::getSpecifierName(TSCS);
11037
11038  // Check to see if this name was declared as a member previously
11039  NamedDecl *PrevDecl = 0;
11040  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
11041  LookupName(Previous, S);
11042  switch (Previous.getResultKind()) {
11043    case LookupResult::Found:
11044    case LookupResult::FoundUnresolvedValue:
11045      PrevDecl = Previous.getAsSingle<NamedDecl>();
11046      break;
11047
11048    case LookupResult::FoundOverloaded:
11049      PrevDecl = Previous.getRepresentativeDecl();
11050      break;
11051
11052    case LookupResult::NotFound:
11053    case LookupResult::NotFoundInCurrentInstantiation:
11054    case LookupResult::Ambiguous:
11055      break;
11056  }
11057  Previous.suppressDiagnostics();
11058
11059  if (PrevDecl && PrevDecl->isTemplateParameter()) {
11060    // Maybe we will complain about the shadowed template parameter.
11061    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
11062    // Just pretend that we didn't see the previous declaration.
11063    PrevDecl = 0;
11064  }
11065
11066  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
11067    PrevDecl = 0;
11068
11069  bool Mutable
11070    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
11071  SourceLocation TSSL = D.getLocStart();
11072  FieldDecl *NewFD
11073    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
11074                     TSSL, AS, PrevDecl, &D);
11075
11076  if (NewFD->isInvalidDecl())
11077    Record->setInvalidDecl();
11078
11079  if (D.getDeclSpec().isModulePrivateSpecified())
11080    NewFD->setModulePrivate();
11081
11082  if (NewFD->isInvalidDecl() && PrevDecl) {
11083    // Don't introduce NewFD into scope; there's already something
11084    // with the same name in the same scope.
11085  } else if (II) {
11086    PushOnScopeChains(NewFD, S);
11087  } else
11088    Record->addDecl(NewFD);
11089
11090  return NewFD;
11091}
11092
11093/// \brief Build a new FieldDecl and check its well-formedness.
11094///
11095/// This routine builds a new FieldDecl given the fields name, type,
11096/// record, etc. \p PrevDecl should refer to any previous declaration
11097/// with the same name and in the same scope as the field to be
11098/// created.
11099///
11100/// \returns a new FieldDecl.
11101///
11102/// \todo The Declarator argument is a hack. It will be removed once
11103FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
11104                                TypeSourceInfo *TInfo,
11105                                RecordDecl *Record, SourceLocation Loc,
11106                                bool Mutable, Expr *BitWidth,
11107                                InClassInitStyle InitStyle,
11108                                SourceLocation TSSL,
11109                                AccessSpecifier AS, NamedDecl *PrevDecl,
11110                                Declarator *D) {
11111  IdentifierInfo *II = Name.getAsIdentifierInfo();
11112  bool InvalidDecl = false;
11113  if (D) InvalidDecl = D->isInvalidType();
11114
11115  // If we receive a broken type, recover by assuming 'int' and
11116  // marking this declaration as invalid.
11117  if (T.isNull()) {
11118    InvalidDecl = true;
11119    T = Context.IntTy;
11120  }
11121
11122  QualType EltTy = Context.getBaseElementType(T);
11123  if (!EltTy->isDependentType()) {
11124    if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
11125      // Fields of incomplete type force their record to be invalid.
11126      Record->setInvalidDecl();
11127      InvalidDecl = true;
11128    } else {
11129      NamedDecl *Def;
11130      EltTy->isIncompleteType(&Def);
11131      if (Def && Def->isInvalidDecl()) {
11132        Record->setInvalidDecl();
11133        InvalidDecl = true;
11134      }
11135    }
11136  }
11137
11138  // OpenCL v1.2 s6.9.c: bitfields are not supported.
11139  if (BitWidth && getLangOpts().OpenCL) {
11140    Diag(Loc, diag::err_opencl_bitfields);
11141    InvalidDecl = true;
11142  }
11143
11144  // C99 6.7.2.1p8: A member of a structure or union may have any type other
11145  // than a variably modified type.
11146  if (!InvalidDecl && T->isVariablyModifiedType()) {
11147    bool SizeIsNegative;
11148    llvm::APSInt Oversized;
11149
11150    TypeSourceInfo *FixedTInfo =
11151      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
11152                                                    SizeIsNegative,
11153                                                    Oversized);
11154    if (FixedTInfo) {
11155      Diag(Loc, diag::warn_illegal_constant_array_size);
11156      TInfo = FixedTInfo;
11157      T = FixedTInfo->getType();
11158    } else {
11159      if (SizeIsNegative)
11160        Diag(Loc, diag::err_typecheck_negative_array_size);
11161      else if (Oversized.getBoolValue())
11162        Diag(Loc, diag::err_array_too_large)
11163          << Oversized.toString(10);
11164      else
11165        Diag(Loc, diag::err_typecheck_field_variable_size);
11166      InvalidDecl = true;
11167    }
11168  }
11169
11170  // Fields can not have abstract class types
11171  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
11172                                             diag::err_abstract_type_in_decl,
11173                                             AbstractFieldType))
11174    InvalidDecl = true;
11175
11176  bool ZeroWidth = false;
11177  // If this is declared as a bit-field, check the bit-field.
11178  if (!InvalidDecl && BitWidth) {
11179    BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth,
11180                              &ZeroWidth).take();
11181    if (!BitWidth) {
11182      InvalidDecl = true;
11183      BitWidth = 0;
11184      ZeroWidth = false;
11185    }
11186  }
11187
11188  // Check that 'mutable' is consistent with the type of the declaration.
11189  if (!InvalidDecl && Mutable) {
11190    unsigned DiagID = 0;
11191    if (T->isReferenceType())
11192      DiagID = diag::err_mutable_reference;
11193    else if (T.isConstQualified())
11194      DiagID = diag::err_mutable_const;
11195
11196    if (DiagID) {
11197      SourceLocation ErrLoc = Loc;
11198      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
11199        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
11200      Diag(ErrLoc, DiagID);
11201      Mutable = false;
11202      InvalidDecl = true;
11203    }
11204  }
11205
11206  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
11207                                       BitWidth, Mutable, InitStyle);
11208  if (InvalidDecl)
11209    NewFD->setInvalidDecl();
11210
11211  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
11212    Diag(Loc, diag::err_duplicate_member) << II;
11213    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
11214    NewFD->setInvalidDecl();
11215  }
11216
11217  if (!InvalidDecl && getLangOpts().CPlusPlus) {
11218    if (Record->isUnion()) {
11219      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
11220        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
11221        if (RDecl->getDefinition()) {
11222          // C++ [class.union]p1: An object of a class with a non-trivial
11223          // constructor, a non-trivial copy constructor, a non-trivial
11224          // destructor, or a non-trivial copy assignment operator
11225          // cannot be a member of a union, nor can an array of such
11226          // objects.
11227          if (CheckNontrivialField(NewFD))
11228            NewFD->setInvalidDecl();
11229        }
11230      }
11231
11232      // C++ [class.union]p1: If a union contains a member of reference type,
11233      // the program is ill-formed, except when compiling with MSVC extensions
11234      // enabled.
11235      if (EltTy->isReferenceType()) {
11236        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
11237                                    diag::ext_union_member_of_reference_type :
11238                                    diag::err_union_member_of_reference_type)
11239          << NewFD->getDeclName() << EltTy;
11240        if (!getLangOpts().MicrosoftExt)
11241          NewFD->setInvalidDecl();
11242      }
11243    }
11244  }
11245
11246  // FIXME: We need to pass in the attributes given an AST
11247  // representation, not a parser representation.
11248  if (D) {
11249    // FIXME: The current scope is almost... but not entirely... correct here.
11250    ProcessDeclAttributes(getCurScope(), NewFD, *D);
11251
11252    if (NewFD->hasAttrs())
11253      CheckAlignasUnderalignment(NewFD);
11254  }
11255
11256  // In auto-retain/release, infer strong retension for fields of
11257  // retainable type.
11258  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
11259    NewFD->setInvalidDecl();
11260
11261  if (T.isObjCGCWeak())
11262    Diag(Loc, diag::warn_attribute_weak_on_field);
11263
11264  NewFD->setAccess(AS);
11265  return NewFD;
11266}
11267
11268bool Sema::CheckNontrivialField(FieldDecl *FD) {
11269  assert(FD);
11270  assert(getLangOpts().CPlusPlus && "valid check only for C++");
11271
11272  if (FD->isInvalidDecl() || FD->getType()->isDependentType())
11273    return false;
11274
11275  QualType EltTy = Context.getBaseElementType(FD->getType());
11276  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
11277    CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
11278    if (RDecl->getDefinition()) {
11279      // We check for copy constructors before constructors
11280      // because otherwise we'll never get complaints about
11281      // copy constructors.
11282
11283      CXXSpecialMember member = CXXInvalid;
11284      // We're required to check for any non-trivial constructors. Since the
11285      // implicit default constructor is suppressed if there are any
11286      // user-declared constructors, we just need to check that there is a
11287      // trivial default constructor and a trivial copy constructor. (We don't
11288      // worry about move constructors here, since this is a C++98 check.)
11289      if (RDecl->hasNonTrivialCopyConstructor())
11290        member = CXXCopyConstructor;
11291      else if (!RDecl->hasTrivialDefaultConstructor())
11292        member = CXXDefaultConstructor;
11293      else if (RDecl->hasNonTrivialCopyAssignment())
11294        member = CXXCopyAssignment;
11295      else if (RDecl->hasNonTrivialDestructor())
11296        member = CXXDestructor;
11297
11298      if (member != CXXInvalid) {
11299        if (!getLangOpts().CPlusPlus11 &&
11300            getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
11301          // Objective-C++ ARC: it is an error to have a non-trivial field of
11302          // a union. However, system headers in Objective-C programs
11303          // occasionally have Objective-C lifetime objects within unions,
11304          // and rather than cause the program to fail, we make those
11305          // members unavailable.
11306          SourceLocation Loc = FD->getLocation();
11307          if (getSourceManager().isInSystemHeader(Loc)) {
11308            if (!FD->hasAttr<UnavailableAttr>())
11309              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
11310                                  "this system field has retaining ownership"));
11311            return false;
11312          }
11313        }
11314
11315        Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
11316               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
11317               diag::err_illegal_union_or_anon_struct_member)
11318          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
11319        DiagnoseNontrivial(RDecl, member);
11320        return !getLangOpts().CPlusPlus11;
11321      }
11322    }
11323  }
11324
11325  return false;
11326}
11327
11328/// TranslateIvarVisibility - Translate visibility from a token ID to an
11329///  AST enum value.
11330static ObjCIvarDecl::AccessControl
11331TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
11332  switch (ivarVisibility) {
11333  default: llvm_unreachable("Unknown visitibility kind");
11334  case tok::objc_private: return ObjCIvarDecl::Private;
11335  case tok::objc_public: return ObjCIvarDecl::Public;
11336  case tok::objc_protected: return ObjCIvarDecl::Protected;
11337  case tok::objc_package: return ObjCIvarDecl::Package;
11338  }
11339}
11340
11341/// ActOnIvar - Each ivar field of an objective-c class is passed into this
11342/// in order to create an IvarDecl object for it.
11343Decl *Sema::ActOnIvar(Scope *S,
11344                                SourceLocation DeclStart,
11345                                Declarator &D, Expr *BitfieldWidth,
11346                                tok::ObjCKeywordKind Visibility) {
11347
11348  IdentifierInfo *II = D.getIdentifier();
11349  Expr *BitWidth = (Expr*)BitfieldWidth;
11350  SourceLocation Loc = DeclStart;
11351  if (II) Loc = D.getIdentifierLoc();
11352
11353  // FIXME: Unnamed fields can be handled in various different ways, for
11354  // example, unnamed unions inject all members into the struct namespace!
11355
11356  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
11357  QualType T = TInfo->getType();
11358
11359  if (BitWidth) {
11360    // 6.7.2.1p3, 6.7.2.1p4
11361    BitWidth =
11362        VerifyBitField(Loc, II, T, /*IsMsStruct=*/false, BitWidth).take();
11363    if (!BitWidth)
11364      D.setInvalidType();
11365  } else {
11366    // Not a bitfield.
11367
11368    // validate II.
11369
11370  }
11371  if (T->isReferenceType()) {
11372    Diag(Loc, diag::err_ivar_reference_type);
11373    D.setInvalidType();
11374  }
11375  // C99 6.7.2.1p8: A member of a structure or union may have any type other
11376  // than a variably modified type.
11377  else if (T->isVariablyModifiedType()) {
11378    Diag(Loc, diag::err_typecheck_ivar_variable_size);
11379    D.setInvalidType();
11380  }
11381
11382  // Get the visibility (access control) for this ivar.
11383  ObjCIvarDecl::AccessControl ac =
11384    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
11385                                        : ObjCIvarDecl::None;
11386  // Must set ivar's DeclContext to its enclosing interface.
11387  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
11388  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
11389    return 0;
11390  ObjCContainerDecl *EnclosingContext;
11391  if (ObjCImplementationDecl *IMPDecl =
11392      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
11393    if (LangOpts.ObjCRuntime.isFragile()) {
11394    // Case of ivar declared in an implementation. Context is that of its class.
11395      EnclosingContext = IMPDecl->getClassInterface();
11396      assert(EnclosingContext && "Implementation has no class interface!");
11397    }
11398    else
11399      EnclosingContext = EnclosingDecl;
11400  } else {
11401    if (ObjCCategoryDecl *CDecl =
11402        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
11403      if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
11404        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
11405        return 0;
11406      }
11407    }
11408    EnclosingContext = EnclosingDecl;
11409  }
11410
11411  // Construct the decl.
11412  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
11413                                             DeclStart, Loc, II, T,
11414                                             TInfo, ac, (Expr *)BitfieldWidth);
11415
11416  if (II) {
11417    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
11418                                           ForRedeclaration);
11419    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
11420        && !isa<TagDecl>(PrevDecl)) {
11421      Diag(Loc, diag::err_duplicate_member) << II;
11422      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
11423      NewID->setInvalidDecl();
11424    }
11425  }
11426
11427  // Process attributes attached to the ivar.
11428  ProcessDeclAttributes(S, NewID, D);
11429
11430  if (D.isInvalidType())
11431    NewID->setInvalidDecl();
11432
11433  // In ARC, infer 'retaining' for ivars of retainable type.
11434  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
11435    NewID->setInvalidDecl();
11436
11437  if (D.getDeclSpec().isModulePrivateSpecified())
11438    NewID->setModulePrivate();
11439
11440  if (II) {
11441    // FIXME: When interfaces are DeclContexts, we'll need to add
11442    // these to the interface.
11443    S->AddDecl(NewID);
11444    IdResolver.AddDecl(NewID);
11445  }
11446
11447  if (LangOpts.ObjCRuntime.isNonFragile() &&
11448      !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
11449    Diag(Loc, diag::warn_ivars_in_interface);
11450
11451  return NewID;
11452}
11453
11454/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
11455/// class and class extensions. For every class \@interface and class
11456/// extension \@interface, if the last ivar is a bitfield of any type,
11457/// then add an implicit `char :0` ivar to the end of that interface.
11458void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
11459                             SmallVectorImpl<Decl *> &AllIvarDecls) {
11460  if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
11461    return;
11462
11463  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
11464  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
11465
11466  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
11467    return;
11468  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
11469  if (!ID) {
11470    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
11471      if (!CD->IsClassExtension())
11472        return;
11473    }
11474    // No need to add this to end of @implementation.
11475    else
11476      return;
11477  }
11478  // All conditions are met. Add a new bitfield to the tail end of ivars.
11479  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
11480  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
11481
11482  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
11483                              DeclLoc, DeclLoc, 0,
11484                              Context.CharTy,
11485                              Context.getTrivialTypeSourceInfo(Context.CharTy,
11486                                                               DeclLoc),
11487                              ObjCIvarDecl::Private, BW,
11488                              true);
11489  AllIvarDecls.push_back(Ivar);
11490}
11491
11492void Sema::ActOnFields(Scope* S,
11493                       SourceLocation RecLoc, Decl *EnclosingDecl,
11494                       llvm::ArrayRef<Decl *> Fields,
11495                       SourceLocation LBrac, SourceLocation RBrac,
11496                       AttributeList *Attr) {
11497  assert(EnclosingDecl && "missing record or interface decl");
11498
11499  // If this is an Objective-C @implementation or category and we have
11500  // new fields here we should reset the layout of the interface since
11501  // it will now change.
11502  if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
11503    ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
11504    switch (DC->getKind()) {
11505    default: break;
11506    case Decl::ObjCCategory:
11507      Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
11508      break;
11509    case Decl::ObjCImplementation:
11510      Context.
11511        ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
11512      break;
11513    }
11514  }
11515
11516  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
11517
11518  // Start counting up the number of named members; make sure to include
11519  // members of anonymous structs and unions in the total.
11520  unsigned NumNamedMembers = 0;
11521  if (Record) {
11522    for (RecordDecl::decl_iterator i = Record->decls_begin(),
11523                                   e = Record->decls_end(); i != e; i++) {
11524      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
11525        if (IFD->getDeclName())
11526          ++NumNamedMembers;
11527    }
11528  }
11529
11530  // Verify that all the fields are okay.
11531  SmallVector<FieldDecl*, 32> RecFields;
11532
11533  bool ARCErrReported = false;
11534  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
11535       i != end; ++i) {
11536    FieldDecl *FD = cast<FieldDecl>(*i);
11537
11538    // Get the type for the field.
11539    const Type *FDTy = FD->getType().getTypePtr();
11540
11541    if (!FD->isAnonymousStructOrUnion()) {
11542      // Remember all fields written by the user.
11543      RecFields.push_back(FD);
11544    }
11545
11546    // If the field is already invalid for some reason, don't emit more
11547    // diagnostics about it.
11548    if (FD->isInvalidDecl()) {
11549      EnclosingDecl->setInvalidDecl();
11550      continue;
11551    }
11552
11553    // C99 6.7.2.1p2:
11554    //   A structure or union shall not contain a member with
11555    //   incomplete or function type (hence, a structure shall not
11556    //   contain an instance of itself, but may contain a pointer to
11557    //   an instance of itself), except that the last member of a
11558    //   structure with more than one named member may have incomplete
11559    //   array type; such a structure (and any union containing,
11560    //   possibly recursively, a member that is such a structure)
11561    //   shall not be a member of a structure or an element of an
11562    //   array.
11563    if (FDTy->isFunctionType()) {
11564      // Field declared as a function.
11565      Diag(FD->getLocation(), diag::err_field_declared_as_function)
11566        << FD->getDeclName();
11567      FD->setInvalidDecl();
11568      EnclosingDecl->setInvalidDecl();
11569      continue;
11570    } else if (FDTy->isIncompleteArrayType() && Record &&
11571               ((i + 1 == Fields.end() && !Record->isUnion()) ||
11572                ((getLangOpts().MicrosoftExt ||
11573                  getLangOpts().CPlusPlus) &&
11574                 (i + 1 == Fields.end() || Record->isUnion())))) {
11575      // Flexible array member.
11576      // Microsoft and g++ is more permissive regarding flexible array.
11577      // It will accept flexible array in union and also
11578      // as the sole element of a struct/class.
11579      if (getLangOpts().MicrosoftExt) {
11580        if (Record->isUnion())
11581          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
11582            << FD->getDeclName();
11583        else if (Fields.size() == 1)
11584          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
11585            << FD->getDeclName() << Record->getTagKind();
11586      } else if (getLangOpts().CPlusPlus) {
11587        if (Record->isUnion())
11588          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
11589            << FD->getDeclName();
11590        else if (Fields.size() == 1)
11591          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
11592            << FD->getDeclName() << Record->getTagKind();
11593      } else if (!getLangOpts().C99) {
11594      if (Record->isUnion())
11595        Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
11596          << FD->getDeclName();
11597      else
11598        Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
11599          << FD->getDeclName() << Record->getTagKind();
11600      } else if (NumNamedMembers < 1) {
11601        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
11602          << FD->getDeclName();
11603        FD->setInvalidDecl();
11604        EnclosingDecl->setInvalidDecl();
11605        continue;
11606      }
11607      if (!FD->getType()->isDependentType() &&
11608          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
11609        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
11610          << FD->getDeclName() << FD->getType();
11611        FD->setInvalidDecl();
11612        EnclosingDecl->setInvalidDecl();
11613        continue;
11614      }
11615      // Okay, we have a legal flexible array member at the end of the struct.
11616      if (Record)
11617        Record->setHasFlexibleArrayMember(true);
11618    } else if (!FDTy->isDependentType() &&
11619               RequireCompleteType(FD->getLocation(), FD->getType(),
11620                                   diag::err_field_incomplete)) {
11621      // Incomplete type
11622      FD->setInvalidDecl();
11623      EnclosingDecl->setInvalidDecl();
11624      continue;
11625    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
11626      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
11627        // If this is a member of a union, then entire union becomes "flexible".
11628        if (Record && Record->isUnion()) {
11629          Record->setHasFlexibleArrayMember(true);
11630        } else {
11631          // If this is a struct/class and this is not the last element, reject
11632          // it.  Note that GCC supports variable sized arrays in the middle of
11633          // structures.
11634          if (i + 1 != Fields.end())
11635            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
11636              << FD->getDeclName() << FD->getType();
11637          else {
11638            // We support flexible arrays at the end of structs in
11639            // other structs as an extension.
11640            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
11641              << FD->getDeclName();
11642            if (Record)
11643              Record->setHasFlexibleArrayMember(true);
11644          }
11645        }
11646      }
11647      if (isa<ObjCContainerDecl>(EnclosingDecl) &&
11648          RequireNonAbstractType(FD->getLocation(), FD->getType(),
11649                                 diag::err_abstract_type_in_decl,
11650                                 AbstractIvarType)) {
11651        // Ivars can not have abstract class types
11652        FD->setInvalidDecl();
11653      }
11654      if (Record && FDTTy->getDecl()->hasObjectMember())
11655        Record->setHasObjectMember(true);
11656      if (Record && FDTTy->getDecl()->hasVolatileMember())
11657        Record->setHasVolatileMember(true);
11658    } else if (FDTy->isObjCObjectType()) {
11659      /// A field cannot be an Objective-c object
11660      Diag(FD->getLocation(), diag::err_statically_allocated_object)
11661        << FixItHint::CreateInsertion(FD->getLocation(), "*");
11662      QualType T = Context.getObjCObjectPointerType(FD->getType());
11663      FD->setType(T);
11664    } else if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported &&
11665               (!getLangOpts().CPlusPlus || Record->isUnion())) {
11666      // It's an error in ARC if a field has lifetime.
11667      // We don't want to report this in a system header, though,
11668      // so we just make the field unavailable.
11669      // FIXME: that's really not sufficient; we need to make the type
11670      // itself invalid to, say, initialize or copy.
11671      QualType T = FD->getType();
11672      Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
11673      if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
11674        SourceLocation loc = FD->getLocation();
11675        if (getSourceManager().isInSystemHeader(loc)) {
11676          if (!FD->hasAttr<UnavailableAttr>()) {
11677            FD->addAttr(new (Context) UnavailableAttr(loc, Context,
11678                              "this system field has retaining ownership"));
11679          }
11680        } else {
11681          Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag)
11682            << T->isBlockPointerType() << Record->getTagKind();
11683        }
11684        ARCErrReported = true;
11685      }
11686    } else if (getLangOpts().ObjC1 &&
11687               getLangOpts().getGC() != LangOptions::NonGC &&
11688               Record && !Record->hasObjectMember()) {
11689      if (FD->getType()->isObjCObjectPointerType() ||
11690          FD->getType().isObjCGCStrong())
11691        Record->setHasObjectMember(true);
11692      else if (Context.getAsArrayType(FD->getType())) {
11693        QualType BaseType = Context.getBaseElementType(FD->getType());
11694        if (BaseType->isRecordType() &&
11695            BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
11696          Record->setHasObjectMember(true);
11697        else if (BaseType->isObjCObjectPointerType() ||
11698                 BaseType.isObjCGCStrong())
11699               Record->setHasObjectMember(true);
11700      }
11701    }
11702    if (Record && FD->getType().isVolatileQualified())
11703      Record->setHasVolatileMember(true);
11704    // Keep track of the number of named members.
11705    if (FD->getIdentifier())
11706      ++NumNamedMembers;
11707  }
11708
11709  // Okay, we successfully defined 'Record'.
11710  if (Record) {
11711    bool Completed = false;
11712    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
11713      if (!CXXRecord->isInvalidDecl()) {
11714        // Set access bits correctly on the directly-declared conversions.
11715        for (CXXRecordDecl::conversion_iterator
11716               I = CXXRecord->conversion_begin(),
11717               E = CXXRecord->conversion_end(); I != E; ++I)
11718          I.setAccess((*I)->getAccess());
11719
11720        if (!CXXRecord->isDependentType()) {
11721          if (CXXRecord->hasUserDeclaredDestructor()) {
11722            // Adjust user-defined destructor exception spec.
11723            if (getLangOpts().CPlusPlus11)
11724              AdjustDestructorExceptionSpec(CXXRecord,
11725                                            CXXRecord->getDestructor());
11726
11727            // The Microsoft ABI requires that we perform the destructor body
11728            // checks (i.e. operator delete() lookup) at every declaration, as
11729            // any translation unit may need to emit a deleting destructor.
11730            if (Context.getTargetInfo().getCXXABI().isMicrosoft())
11731              CheckDestructor(CXXRecord->getDestructor());
11732          }
11733
11734          // Add any implicitly-declared members to this class.
11735          AddImplicitlyDeclaredMembersToClass(CXXRecord);
11736
11737          // If we have virtual base classes, we may end up finding multiple
11738          // final overriders for a given virtual function. Check for this
11739          // problem now.
11740          if (CXXRecord->getNumVBases()) {
11741            CXXFinalOverriderMap FinalOverriders;
11742            CXXRecord->getFinalOverriders(FinalOverriders);
11743
11744            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
11745                                             MEnd = FinalOverriders.end();
11746                 M != MEnd; ++M) {
11747              for (OverridingMethods::iterator SO = M->second.begin(),
11748                                            SOEnd = M->second.end();
11749                   SO != SOEnd; ++SO) {
11750                assert(SO->second.size() > 0 &&
11751                       "Virtual function without overridding functions?");
11752                if (SO->second.size() == 1)
11753                  continue;
11754
11755                // C++ [class.virtual]p2:
11756                //   In a derived class, if a virtual member function of a base
11757                //   class subobject has more than one final overrider the
11758                //   program is ill-formed.
11759                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
11760                  << (const NamedDecl *)M->first << Record;
11761                Diag(M->first->getLocation(),
11762                     diag::note_overridden_virtual_function);
11763                for (OverridingMethods::overriding_iterator
11764                          OM = SO->second.begin(),
11765                       OMEnd = SO->second.end();
11766                     OM != OMEnd; ++OM)
11767                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
11768                    << (const NamedDecl *)M->first << OM->Method->getParent();
11769
11770                Record->setInvalidDecl();
11771              }
11772            }
11773            CXXRecord->completeDefinition(&FinalOverriders);
11774            Completed = true;
11775          }
11776        }
11777      }
11778    }
11779
11780    if (!Completed)
11781      Record->completeDefinition();
11782
11783    if (Record->hasAttrs())
11784      CheckAlignasUnderalignment(Record);
11785
11786    // Check if the structure/union declaration is a language extension.
11787    if (!getLangOpts().CPlusPlus) {
11788      bool ZeroSize = true;
11789      bool IsEmpty = true;
11790      unsigned NonBitFields = 0;
11791      for (RecordDecl::field_iterator I = Record->field_begin(),
11792                                      E = Record->field_end();
11793           (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
11794        IsEmpty = false;
11795        if (I->isUnnamedBitfield()) {
11796          if (I->getBitWidthValue(Context) > 0)
11797            ZeroSize = false;
11798        } else {
11799          ++NonBitFields;
11800          QualType FieldType = I->getType();
11801          if (FieldType->isIncompleteType() ||
11802              !Context.getTypeSizeInChars(FieldType).isZero())
11803            ZeroSize = false;
11804        }
11805      }
11806
11807      // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
11808      // C++.
11809      if (ZeroSize)
11810        Diag(RecLoc, diag::warn_zero_size_struct_union_compat) << IsEmpty
11811            << Record->isUnion() << (NonBitFields > 1);
11812
11813      // Structs without named members are extension in C (C99 6.7.2.1p7), but
11814      // are accepted by GCC.
11815      if (NonBitFields == 0) {
11816        if (IsEmpty)
11817          Diag(RecLoc, diag::ext_empty_struct_union) << Record->isUnion();
11818        else
11819          Diag(RecLoc, diag::ext_no_named_members_in_struct_union) << Record->isUnion();
11820      }
11821    }
11822  } else {
11823    ObjCIvarDecl **ClsFields =
11824      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
11825    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
11826      ID->setEndOfDefinitionLoc(RBrac);
11827      // Add ivar's to class's DeclContext.
11828      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
11829        ClsFields[i]->setLexicalDeclContext(ID);
11830        ID->addDecl(ClsFields[i]);
11831      }
11832      // Must enforce the rule that ivars in the base classes may not be
11833      // duplicates.
11834      if (ID->getSuperClass())
11835        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
11836    } else if (ObjCImplementationDecl *IMPDecl =
11837                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
11838      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
11839      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
11840        // Ivar declared in @implementation never belongs to the implementation.
11841        // Only it is in implementation's lexical context.
11842        ClsFields[I]->setLexicalDeclContext(IMPDecl);
11843      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
11844      IMPDecl->setIvarLBraceLoc(LBrac);
11845      IMPDecl->setIvarRBraceLoc(RBrac);
11846    } else if (ObjCCategoryDecl *CDecl =
11847                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
11848      // case of ivars in class extension; all other cases have been
11849      // reported as errors elsewhere.
11850      // FIXME. Class extension does not have a LocEnd field.
11851      // CDecl->setLocEnd(RBrac);
11852      // Add ivar's to class extension's DeclContext.
11853      // Diagnose redeclaration of private ivars.
11854      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
11855      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
11856        if (IDecl) {
11857          if (const ObjCIvarDecl *ClsIvar =
11858              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
11859            Diag(ClsFields[i]->getLocation(),
11860                 diag::err_duplicate_ivar_declaration);
11861            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
11862            continue;
11863          }
11864          for (ObjCInterfaceDecl::known_extensions_iterator
11865                 Ext = IDecl->known_extensions_begin(),
11866                 ExtEnd = IDecl->known_extensions_end();
11867               Ext != ExtEnd; ++Ext) {
11868            if (const ObjCIvarDecl *ClsExtIvar
11869                  = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
11870              Diag(ClsFields[i]->getLocation(),
11871                   diag::err_duplicate_ivar_declaration);
11872              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
11873              continue;
11874            }
11875          }
11876        }
11877        ClsFields[i]->setLexicalDeclContext(CDecl);
11878        CDecl->addDecl(ClsFields[i]);
11879      }
11880      CDecl->setIvarLBraceLoc(LBrac);
11881      CDecl->setIvarRBraceLoc(RBrac);
11882    }
11883  }
11884
11885  if (Attr)
11886    ProcessDeclAttributeList(S, Record, Attr);
11887}
11888
11889/// \brief Determine whether the given integral value is representable within
11890/// the given type T.
11891static bool isRepresentableIntegerValue(ASTContext &Context,
11892                                        llvm::APSInt &Value,
11893                                        QualType T) {
11894  assert(T->isIntegralType(Context) && "Integral type required!");
11895  unsigned BitWidth = Context.getIntWidth(T);
11896
11897  if (Value.isUnsigned() || Value.isNonNegative()) {
11898    if (T->isSignedIntegerOrEnumerationType())
11899      --BitWidth;
11900    return Value.getActiveBits() <= BitWidth;
11901  }
11902  return Value.getMinSignedBits() <= BitWidth;
11903}
11904
11905// \brief Given an integral type, return the next larger integral type
11906// (or a NULL type of no such type exists).
11907static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
11908  // FIXME: Int128/UInt128 support, which also needs to be introduced into
11909  // enum checking below.
11910  assert(T->isIntegralType(Context) && "Integral type required!");
11911  const unsigned NumTypes = 4;
11912  QualType SignedIntegralTypes[NumTypes] = {
11913    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
11914  };
11915  QualType UnsignedIntegralTypes[NumTypes] = {
11916    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
11917    Context.UnsignedLongLongTy
11918  };
11919
11920  unsigned BitWidth = Context.getTypeSize(T);
11921  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
11922                                                        : UnsignedIntegralTypes;
11923  for (unsigned I = 0; I != NumTypes; ++I)
11924    if (Context.getTypeSize(Types[I]) > BitWidth)
11925      return Types[I];
11926
11927  return QualType();
11928}
11929
11930EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
11931                                          EnumConstantDecl *LastEnumConst,
11932                                          SourceLocation IdLoc,
11933                                          IdentifierInfo *Id,
11934                                          Expr *Val) {
11935  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
11936  llvm::APSInt EnumVal(IntWidth);
11937  QualType EltTy;
11938
11939  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
11940    Val = 0;
11941
11942  if (Val)
11943    Val = DefaultLvalueConversion(Val).take();
11944
11945  if (Val) {
11946    if (Enum->isDependentType() || Val->isTypeDependent())
11947      EltTy = Context.DependentTy;
11948    else {
11949      SourceLocation ExpLoc;
11950      if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
11951          !getLangOpts().MicrosoftMode) {
11952        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
11953        // constant-expression in the enumerator-definition shall be a converted
11954        // constant expression of the underlying type.
11955        EltTy = Enum->getIntegerType();
11956        ExprResult Converted =
11957          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
11958                                           CCEK_Enumerator);
11959        if (Converted.isInvalid())
11960          Val = 0;
11961        else
11962          Val = Converted.take();
11963      } else if (!Val->isValueDependent() &&
11964                 !(Val = VerifyIntegerConstantExpression(Val,
11965                                                         &EnumVal).take())) {
11966        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
11967      } else {
11968        if (Enum->isFixed()) {
11969          EltTy = Enum->getIntegerType();
11970
11971          // In Obj-C and Microsoft mode, require the enumeration value to be
11972          // representable in the underlying type of the enumeration. In C++11,
11973          // we perform a non-narrowing conversion as part of converted constant
11974          // expression checking.
11975          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
11976            if (getLangOpts().MicrosoftMode) {
11977              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
11978              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
11979            } else
11980              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
11981          } else
11982            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
11983        } else if (getLangOpts().CPlusPlus) {
11984          // C++11 [dcl.enum]p5:
11985          //   If the underlying type is not fixed, the type of each enumerator
11986          //   is the type of its initializing value:
11987          //     - If an initializer is specified for an enumerator, the
11988          //       initializing value has the same type as the expression.
11989          EltTy = Val->getType();
11990        } else {
11991          // C99 6.7.2.2p2:
11992          //   The expression that defines the value of an enumeration constant
11993          //   shall be an integer constant expression that has a value
11994          //   representable as an int.
11995
11996          // Complain if the value is not representable in an int.
11997          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
11998            Diag(IdLoc, diag::ext_enum_value_not_int)
11999              << EnumVal.toString(10) << Val->getSourceRange()
12000              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
12001          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
12002            // Force the type of the expression to 'int'.
12003            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
12004          }
12005          EltTy = Val->getType();
12006        }
12007      }
12008    }
12009  }
12010
12011  if (!Val) {
12012    if (Enum->isDependentType())
12013      EltTy = Context.DependentTy;
12014    else if (!LastEnumConst) {
12015      // C++0x [dcl.enum]p5:
12016      //   If the underlying type is not fixed, the type of each enumerator
12017      //   is the type of its initializing value:
12018      //     - If no initializer is specified for the first enumerator, the
12019      //       initializing value has an unspecified integral type.
12020      //
12021      // GCC uses 'int' for its unspecified integral type, as does
12022      // C99 6.7.2.2p3.
12023      if (Enum->isFixed()) {
12024        EltTy = Enum->getIntegerType();
12025      }
12026      else {
12027        EltTy = Context.IntTy;
12028      }
12029    } else {
12030      // Assign the last value + 1.
12031      EnumVal = LastEnumConst->getInitVal();
12032      ++EnumVal;
12033      EltTy = LastEnumConst->getType();
12034
12035      // Check for overflow on increment.
12036      if (EnumVal < LastEnumConst->getInitVal()) {
12037        // C++0x [dcl.enum]p5:
12038        //   If the underlying type is not fixed, the type of each enumerator
12039        //   is the type of its initializing value:
12040        //
12041        //     - Otherwise the type of the initializing value is the same as
12042        //       the type of the initializing value of the preceding enumerator
12043        //       unless the incremented value is not representable in that type,
12044        //       in which case the type is an unspecified integral type
12045        //       sufficient to contain the incremented value. If no such type
12046        //       exists, the program is ill-formed.
12047        QualType T = getNextLargerIntegralType(Context, EltTy);
12048        if (T.isNull() || Enum->isFixed()) {
12049          // There is no integral type larger enough to represent this
12050          // value. Complain, then allow the value to wrap around.
12051          EnumVal = LastEnumConst->getInitVal();
12052          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
12053          ++EnumVal;
12054          if (Enum->isFixed())
12055            // When the underlying type is fixed, this is ill-formed.
12056            Diag(IdLoc, diag::err_enumerator_wrapped)
12057              << EnumVal.toString(10)
12058              << EltTy;
12059          else
12060            Diag(IdLoc, diag::warn_enumerator_too_large)
12061              << EnumVal.toString(10);
12062        } else {
12063          EltTy = T;
12064        }
12065
12066        // Retrieve the last enumerator's value, extent that type to the
12067        // type that is supposed to be large enough to represent the incremented
12068        // value, then increment.
12069        EnumVal = LastEnumConst->getInitVal();
12070        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
12071        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
12072        ++EnumVal;
12073
12074        // If we're not in C++, diagnose the overflow of enumerator values,
12075        // which in C99 means that the enumerator value is not representable in
12076        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
12077        // permits enumerator values that are representable in some larger
12078        // integral type.
12079        if (!getLangOpts().CPlusPlus && !T.isNull())
12080          Diag(IdLoc, diag::warn_enum_value_overflow);
12081      } else if (!getLangOpts().CPlusPlus &&
12082                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
12083        // Enforce C99 6.7.2.2p2 even when we compute the next value.
12084        Diag(IdLoc, diag::ext_enum_value_not_int)
12085          << EnumVal.toString(10) << 1;
12086      }
12087    }
12088  }
12089
12090  if (!EltTy->isDependentType()) {
12091    // Make the enumerator value match the signedness and size of the
12092    // enumerator's type.
12093    EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
12094    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
12095  }
12096
12097  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
12098                                  Val, EnumVal);
12099}
12100
12101
12102Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
12103                              SourceLocation IdLoc, IdentifierInfo *Id,
12104                              AttributeList *Attr,
12105                              SourceLocation EqualLoc, Expr *Val) {
12106  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
12107  EnumConstantDecl *LastEnumConst =
12108    cast_or_null<EnumConstantDecl>(lastEnumConst);
12109
12110  // The scope passed in may not be a decl scope.  Zip up the scope tree until
12111  // we find one that is.
12112  S = getNonFieldDeclScope(S);
12113
12114  // Verify that there isn't already something declared with this name in this
12115  // scope.
12116  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
12117                                         ForRedeclaration);
12118  if (PrevDecl && PrevDecl->isTemplateParameter()) {
12119    // Maybe we will complain about the shadowed template parameter.
12120    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
12121    // Just pretend that we didn't see the previous declaration.
12122    PrevDecl = 0;
12123  }
12124
12125  if (PrevDecl) {
12126    // When in C++, we may get a TagDecl with the same name; in this case the
12127    // enum constant will 'hide' the tag.
12128    assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
12129           "Received TagDecl when not in C++!");
12130    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
12131      if (isa<EnumConstantDecl>(PrevDecl))
12132        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
12133      else
12134        Diag(IdLoc, diag::err_redefinition) << Id;
12135      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
12136      return 0;
12137    }
12138  }
12139
12140  // C++ [class.mem]p15:
12141  // If T is the name of a class, then each of the following shall have a name
12142  // different from T:
12143  // - every enumerator of every member of class T that is an unscoped
12144  // enumerated type
12145  if (CXXRecordDecl *Record
12146                      = dyn_cast<CXXRecordDecl>(
12147                             TheEnumDecl->getDeclContext()->getRedeclContext()))
12148    if (!TheEnumDecl->isScoped() &&
12149        Record->getIdentifier() && Record->getIdentifier() == Id)
12150      Diag(IdLoc, diag::err_member_name_of_class) << Id;
12151
12152  EnumConstantDecl *New =
12153    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
12154
12155  if (New) {
12156    // Process attributes.
12157    if (Attr) ProcessDeclAttributeList(S, New, Attr);
12158
12159    // Register this decl in the current scope stack.
12160    New->setAccess(TheEnumDecl->getAccess());
12161    PushOnScopeChains(New, S);
12162  }
12163
12164  ActOnDocumentableDecl(New);
12165
12166  return New;
12167}
12168
12169// Returns true when the enum initial expression does not trigger the
12170// duplicate enum warning.  A few common cases are exempted as follows:
12171// Element2 = Element1
12172// Element2 = Element1 + 1
12173// Element2 = Element1 - 1
12174// Where Element2 and Element1 are from the same enum.
12175static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
12176  Expr *InitExpr = ECD->getInitExpr();
12177  if (!InitExpr)
12178    return true;
12179  InitExpr = InitExpr->IgnoreImpCasts();
12180
12181  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
12182    if (!BO->isAdditiveOp())
12183      return true;
12184    IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
12185    if (!IL)
12186      return true;
12187    if (IL->getValue() != 1)
12188      return true;
12189
12190    InitExpr = BO->getLHS();
12191  }
12192
12193  // This checks if the elements are from the same enum.
12194  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
12195  if (!DRE)
12196    return true;
12197
12198  EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
12199  if (!EnumConstant)
12200    return true;
12201
12202  if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
12203      Enum)
12204    return true;
12205
12206  return false;
12207}
12208
12209struct DupKey {
12210  int64_t val;
12211  bool isTombstoneOrEmptyKey;
12212  DupKey(int64_t val, bool isTombstoneOrEmptyKey)
12213    : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {}
12214};
12215
12216static DupKey GetDupKey(const llvm::APSInt& Val) {
12217  return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(),
12218                false);
12219}
12220
12221struct DenseMapInfoDupKey {
12222  static DupKey getEmptyKey() { return DupKey(0, true); }
12223  static DupKey getTombstoneKey() { return DupKey(1, true); }
12224  static unsigned getHashValue(const DupKey Key) {
12225    return (unsigned)(Key.val * 37);
12226  }
12227  static bool isEqual(const DupKey& LHS, const DupKey& RHS) {
12228    return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey &&
12229           LHS.val == RHS.val;
12230  }
12231};
12232
12233// Emits a warning when an element is implicitly set a value that
12234// a previous element has already been set to.
12235static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
12236                                        EnumDecl *Enum,
12237                                        QualType EnumType) {
12238  if (S.Diags.getDiagnosticLevel(diag::warn_duplicate_enum_values,
12239                                 Enum->getLocation()) ==
12240      DiagnosticsEngine::Ignored)
12241    return;
12242  // Avoid anonymous enums
12243  if (!Enum->getIdentifier())
12244    return;
12245
12246  // Only check for small enums.
12247  if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
12248    return;
12249
12250  typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
12251  typedef SmallVector<ECDVector *, 3> DuplicatesVector;
12252
12253  typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
12254  typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey>
12255          ValueToVectorMap;
12256
12257  DuplicatesVector DupVector;
12258  ValueToVectorMap EnumMap;
12259
12260  // Populate the EnumMap with all values represented by enum constants without
12261  // an initialier.
12262  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
12263    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
12264
12265    // Null EnumConstantDecl means a previous diagnostic has been emitted for
12266    // this constant.  Skip this enum since it may be ill-formed.
12267    if (!ECD) {
12268      return;
12269    }
12270
12271    if (ECD->getInitExpr())
12272      continue;
12273
12274    DupKey Key = GetDupKey(ECD->getInitVal());
12275    DeclOrVector &Entry = EnumMap[Key];
12276
12277    // First time encountering this value.
12278    if (Entry.isNull())
12279      Entry = ECD;
12280  }
12281
12282  // Create vectors for any values that has duplicates.
12283  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
12284    EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
12285    if (!ValidDuplicateEnum(ECD, Enum))
12286      continue;
12287
12288    DupKey Key = GetDupKey(ECD->getInitVal());
12289
12290    DeclOrVector& Entry = EnumMap[Key];
12291    if (Entry.isNull())
12292      continue;
12293
12294    if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
12295      // Ensure constants are different.
12296      if (D == ECD)
12297        continue;
12298
12299      // Create new vector and push values onto it.
12300      ECDVector *Vec = new ECDVector();
12301      Vec->push_back(D);
12302      Vec->push_back(ECD);
12303
12304      // Update entry to point to the duplicates vector.
12305      Entry = Vec;
12306
12307      // Store the vector somewhere we can consult later for quick emission of
12308      // diagnostics.
12309      DupVector.push_back(Vec);
12310      continue;
12311    }
12312
12313    ECDVector *Vec = Entry.get<ECDVector*>();
12314    // Make sure constants are not added more than once.
12315    if (*Vec->begin() == ECD)
12316      continue;
12317
12318    Vec->push_back(ECD);
12319  }
12320
12321  // Emit diagnostics.
12322  for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(),
12323                                  DupVectorEnd = DupVector.end();
12324       DupVectorIter != DupVectorEnd; ++DupVectorIter) {
12325    ECDVector *Vec = *DupVectorIter;
12326    assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
12327
12328    // Emit warning for one enum constant.
12329    ECDVector::iterator I = Vec->begin();
12330    S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values)
12331      << (*I)->getName() << (*I)->getInitVal().toString(10)
12332      << (*I)->getSourceRange();
12333    ++I;
12334
12335    // Emit one note for each of the remaining enum constants with
12336    // the same value.
12337    for (ECDVector::iterator E = Vec->end(); I != E; ++I)
12338      S.Diag((*I)->getLocation(), diag::note_duplicate_element)
12339        << (*I)->getName() << (*I)->getInitVal().toString(10)
12340        << (*I)->getSourceRange();
12341    delete Vec;
12342  }
12343}
12344
12345void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
12346                         SourceLocation RBraceLoc, Decl *EnumDeclX,
12347                         ArrayRef<Decl *> Elements,
12348                         Scope *S, AttributeList *Attr) {
12349  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
12350  QualType EnumType = Context.getTypeDeclType(Enum);
12351
12352  if (Attr)
12353    ProcessDeclAttributeList(S, Enum, Attr);
12354
12355  if (Enum->isDependentType()) {
12356    for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
12357      EnumConstantDecl *ECD =
12358        cast_or_null<EnumConstantDecl>(Elements[i]);
12359      if (!ECD) continue;
12360
12361      ECD->setType(EnumType);
12362    }
12363
12364    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
12365    return;
12366  }
12367
12368  // TODO: If the result value doesn't fit in an int, it must be a long or long
12369  // long value.  ISO C does not support this, but GCC does as an extension,
12370  // emit a warning.
12371  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
12372  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
12373  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
12374
12375  // Verify that all the values are okay, compute the size of the values, and
12376  // reverse the list.
12377  unsigned NumNegativeBits = 0;
12378  unsigned NumPositiveBits = 0;
12379
12380  // Keep track of whether all elements have type int.
12381  bool AllElementsInt = true;
12382
12383  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
12384    EnumConstantDecl *ECD =
12385      cast_or_null<EnumConstantDecl>(Elements[i]);
12386    if (!ECD) continue;  // Already issued a diagnostic.
12387
12388    const llvm::APSInt &InitVal = ECD->getInitVal();
12389
12390    // Keep track of the size of positive and negative values.
12391    if (InitVal.isUnsigned() || InitVal.isNonNegative())
12392      NumPositiveBits = std::max(NumPositiveBits,
12393                                 (unsigned)InitVal.getActiveBits());
12394    else
12395      NumNegativeBits = std::max(NumNegativeBits,
12396                                 (unsigned)InitVal.getMinSignedBits());
12397
12398    // Keep track of whether every enum element has type int (very commmon).
12399    if (AllElementsInt)
12400      AllElementsInt = ECD->getType() == Context.IntTy;
12401  }
12402
12403  // Figure out the type that should be used for this enum.
12404  QualType BestType;
12405  unsigned BestWidth;
12406
12407  // C++0x N3000 [conv.prom]p3:
12408  //   An rvalue of an unscoped enumeration type whose underlying
12409  //   type is not fixed can be converted to an rvalue of the first
12410  //   of the following types that can represent all the values of
12411  //   the enumeration: int, unsigned int, long int, unsigned long
12412  //   int, long long int, or unsigned long long int.
12413  // C99 6.4.4.3p2:
12414  //   An identifier declared as an enumeration constant has type int.
12415  // The C99 rule is modified by a gcc extension
12416  QualType BestPromotionType;
12417
12418  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
12419  // -fshort-enums is the equivalent to specifying the packed attribute on all
12420  // enum definitions.
12421  if (LangOpts.ShortEnums)
12422    Packed = true;
12423
12424  if (Enum->isFixed()) {
12425    BestType = Enum->getIntegerType();
12426    if (BestType->isPromotableIntegerType())
12427      BestPromotionType = Context.getPromotedIntegerType(BestType);
12428    else
12429      BestPromotionType = BestType;
12430    // We don't need to set BestWidth, because BestType is going to be the type
12431    // of the enumerators, but we do anyway because otherwise some compilers
12432    // warn that it might be used uninitialized.
12433    BestWidth = CharWidth;
12434  }
12435  else if (NumNegativeBits) {
12436    // If there is a negative value, figure out the smallest integer type (of
12437    // int/long/longlong) that fits.
12438    // If it's packed, check also if it fits a char or a short.
12439    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
12440      BestType = Context.SignedCharTy;
12441      BestWidth = CharWidth;
12442    } else if (Packed && NumNegativeBits <= ShortWidth &&
12443               NumPositiveBits < ShortWidth) {
12444      BestType = Context.ShortTy;
12445      BestWidth = ShortWidth;
12446    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
12447      BestType = Context.IntTy;
12448      BestWidth = IntWidth;
12449    } else {
12450      BestWidth = Context.getTargetInfo().getLongWidth();
12451
12452      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
12453        BestType = Context.LongTy;
12454      } else {
12455        BestWidth = Context.getTargetInfo().getLongLongWidth();
12456
12457        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
12458          Diag(Enum->getLocation(), diag::warn_enum_too_large);
12459        BestType = Context.LongLongTy;
12460      }
12461    }
12462    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
12463  } else {
12464    // If there is no negative value, figure out the smallest type that fits
12465    // all of the enumerator values.
12466    // If it's packed, check also if it fits a char or a short.
12467    if (Packed && NumPositiveBits <= CharWidth) {
12468      BestType = Context.UnsignedCharTy;
12469      BestPromotionType = Context.IntTy;
12470      BestWidth = CharWidth;
12471    } else if (Packed && NumPositiveBits <= ShortWidth) {
12472      BestType = Context.UnsignedShortTy;
12473      BestPromotionType = Context.IntTy;
12474      BestWidth = ShortWidth;
12475    } else if (NumPositiveBits <= IntWidth) {
12476      BestType = Context.UnsignedIntTy;
12477      BestWidth = IntWidth;
12478      BestPromotionType
12479        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
12480                           ? Context.UnsignedIntTy : Context.IntTy;
12481    } else if (NumPositiveBits <=
12482               (BestWidth = Context.getTargetInfo().getLongWidth())) {
12483      BestType = Context.UnsignedLongTy;
12484      BestPromotionType
12485        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
12486                           ? Context.UnsignedLongTy : Context.LongTy;
12487    } else {
12488      BestWidth = Context.getTargetInfo().getLongLongWidth();
12489      assert(NumPositiveBits <= BestWidth &&
12490             "How could an initializer get larger than ULL?");
12491      BestType = Context.UnsignedLongLongTy;
12492      BestPromotionType
12493        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
12494                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
12495    }
12496  }
12497
12498  // Loop over all of the enumerator constants, changing their types to match
12499  // the type of the enum if needed.
12500  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
12501    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
12502    if (!ECD) continue;  // Already issued a diagnostic.
12503
12504    // Standard C says the enumerators have int type, but we allow, as an
12505    // extension, the enumerators to be larger than int size.  If each
12506    // enumerator value fits in an int, type it as an int, otherwise type it the
12507    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
12508    // that X has type 'int', not 'unsigned'.
12509
12510    // Determine whether the value fits into an int.
12511    llvm::APSInt InitVal = ECD->getInitVal();
12512
12513    // If it fits into an integer type, force it.  Otherwise force it to match
12514    // the enum decl type.
12515    QualType NewTy;
12516    unsigned NewWidth;
12517    bool NewSign;
12518    if (!getLangOpts().CPlusPlus &&
12519        !Enum->isFixed() &&
12520        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
12521      NewTy = Context.IntTy;
12522      NewWidth = IntWidth;
12523      NewSign = true;
12524    } else if (ECD->getType() == BestType) {
12525      // Already the right type!
12526      if (getLangOpts().CPlusPlus)
12527        // C++ [dcl.enum]p4: Following the closing brace of an
12528        // enum-specifier, each enumerator has the type of its
12529        // enumeration.
12530        ECD->setType(EnumType);
12531      continue;
12532    } else {
12533      NewTy = BestType;
12534      NewWidth = BestWidth;
12535      NewSign = BestType->isSignedIntegerOrEnumerationType();
12536    }
12537
12538    // Adjust the APSInt value.
12539    InitVal = InitVal.extOrTrunc(NewWidth);
12540    InitVal.setIsSigned(NewSign);
12541    ECD->setInitVal(InitVal);
12542
12543    // Adjust the Expr initializer and type.
12544    if (ECD->getInitExpr() &&
12545        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
12546      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
12547                                                CK_IntegralCast,
12548                                                ECD->getInitExpr(),
12549                                                /*base paths*/ 0,
12550                                                VK_RValue));
12551    if (getLangOpts().CPlusPlus)
12552      // C++ [dcl.enum]p4: Following the closing brace of an
12553      // enum-specifier, each enumerator has the type of its
12554      // enumeration.
12555      ECD->setType(EnumType);
12556    else
12557      ECD->setType(NewTy);
12558  }
12559
12560  Enum->completeDefinition(BestType, BestPromotionType,
12561                           NumPositiveBits, NumNegativeBits);
12562
12563  // If we're declaring a function, ensure this decl isn't forgotten about -
12564  // it needs to go into the function scope.
12565  if (InFunctionDeclarator)
12566    DeclsInPrototypeScope.push_back(Enum);
12567
12568  CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
12569
12570  // Now that the enum type is defined, ensure it's not been underaligned.
12571  if (Enum->hasAttrs())
12572    CheckAlignasUnderalignment(Enum);
12573}
12574
12575Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
12576                                  SourceLocation StartLoc,
12577                                  SourceLocation EndLoc) {
12578  StringLiteral *AsmString = cast<StringLiteral>(expr);
12579
12580  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
12581                                                   AsmString, StartLoc,
12582                                                   EndLoc);
12583  CurContext->addDecl(New);
12584  return New;
12585}
12586
12587DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
12588                                   SourceLocation ImportLoc,
12589                                   ModuleIdPath Path) {
12590  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
12591                                                Module::AllVisible,
12592                                                /*IsIncludeDirective=*/false);
12593  if (!Mod)
12594    return true;
12595
12596  SmallVector<SourceLocation, 2> IdentifierLocs;
12597  Module *ModCheck = Mod;
12598  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
12599    // If we've run out of module parents, just drop the remaining identifiers.
12600    // We need the length to be consistent.
12601    if (!ModCheck)
12602      break;
12603    ModCheck = ModCheck->Parent;
12604
12605    IdentifierLocs.push_back(Path[I].second);
12606  }
12607
12608  ImportDecl *Import = ImportDecl::Create(Context,
12609                                          Context.getTranslationUnitDecl(),
12610                                          AtLoc.isValid()? AtLoc : ImportLoc,
12611                                          Mod, IdentifierLocs);
12612  Context.getTranslationUnitDecl()->addDecl(Import);
12613  return Import;
12614}
12615
12616void Sema::createImplicitModuleImport(SourceLocation Loc, Module *Mod) {
12617  // Create the implicit import declaration.
12618  TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
12619  ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
12620                                                   Loc, Mod, Loc);
12621  TU->addDecl(ImportD);
12622  Consumer.HandleImplicitImportDecl(ImportD);
12623
12624  // Make the module visible.
12625  PP.getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc,
12626                                         /*Complain=*/false);
12627}
12628
12629void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
12630                                      IdentifierInfo* AliasName,
12631                                      SourceLocation PragmaLoc,
12632                                      SourceLocation NameLoc,
12633                                      SourceLocation AliasNameLoc) {
12634  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
12635                                    LookupOrdinaryName);
12636  AsmLabelAttr *Attr =
12637     ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
12638
12639  if (PrevDecl)
12640    PrevDecl->addAttr(Attr);
12641  else
12642    (void)ExtnameUndeclaredIdentifiers.insert(
12643      std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
12644}
12645
12646void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
12647                             SourceLocation PragmaLoc,
12648                             SourceLocation NameLoc) {
12649  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
12650
12651  if (PrevDecl) {
12652    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
12653  } else {
12654    (void)WeakUndeclaredIdentifiers.insert(
12655      std::pair<IdentifierInfo*,WeakInfo>
12656        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
12657  }
12658}
12659
12660void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
12661                                IdentifierInfo* AliasName,
12662                                SourceLocation PragmaLoc,
12663                                SourceLocation NameLoc,
12664                                SourceLocation AliasNameLoc) {
12665  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
12666                                    LookupOrdinaryName);
12667  WeakInfo W = WeakInfo(Name, NameLoc);
12668
12669  if (PrevDecl) {
12670    if (!PrevDecl->hasAttr<AliasAttr>())
12671      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
12672        DeclApplyPragmaWeak(TUScope, ND, W);
12673  } else {
12674    (void)WeakUndeclaredIdentifiers.insert(
12675      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
12676  }
12677}
12678
12679Decl *Sema::getObjCDeclContext() const {
12680  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
12681}
12682
12683AvailabilityResult Sema::getCurContextAvailability() const {
12684  const Decl *D = cast<Decl>(getCurObjCLexicalContext());
12685  return D->getAvailability();
12686}
12687