1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/DeclVisitor.h"
21#include "clang/AST/EvaluatedExprVisitor.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/RecordLayout.h"
24#include "clang/AST/RecursiveASTVisitor.h"
25#include "clang/AST/StmtVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/LiteralSupport.h"
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Sema/CXXFieldCollector.h"
33#include "clang/Sema/DeclSpec.h"
34#include "clang/Sema/Initialization.h"
35#include "clang/Sema/Lookup.h"
36#include "clang/Sema/ParsedTemplate.h"
37#include "clang/Sema/Scope.h"
38#include "clang/Sema/ScopeInfo.h"
39#include "llvm/ADT/STLExtras.h"
40#include "llvm/ADT/SmallString.h"
41#include <map>
42#include <set>
43
44using namespace clang;
45
46//===----------------------------------------------------------------------===//
47// CheckDefaultArgumentVisitor
48//===----------------------------------------------------------------------===//
49
50namespace {
51  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
52  /// the default argument of a parameter to determine whether it
53  /// contains any ill-formed subexpressions. For example, this will
54  /// diagnose the use of local variables or parameters within the
55  /// default argument expression.
56  class CheckDefaultArgumentVisitor
57    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
58    Expr *DefaultArg;
59    Sema *S;
60
61  public:
62    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
63      : DefaultArg(defarg), S(s) {}
64
65    bool VisitExpr(Expr *Node);
66    bool VisitDeclRefExpr(DeclRefExpr *DRE);
67    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
68    bool VisitLambdaExpr(LambdaExpr *Lambda);
69    bool VisitPseudoObjectExpr(PseudoObjectExpr *POE);
70  };
71
72  /// VisitExpr - Visit all of the children of this expression.
73  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
74    bool IsInvalid = false;
75    for (Stmt::child_range I = Node->children(); I; ++I)
76      IsInvalid |= Visit(*I);
77    return IsInvalid;
78  }
79
80  /// VisitDeclRefExpr - Visit a reference to a declaration, to
81  /// determine whether this declaration can be used in the default
82  /// argument expression.
83  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
84    NamedDecl *Decl = DRE->getDecl();
85    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
86      // C++ [dcl.fct.default]p9
87      //   Default arguments are evaluated each time the function is
88      //   called. The order of evaluation of function arguments is
89      //   unspecified. Consequently, parameters of a function shall not
90      //   be used in default argument expressions, even if they are not
91      //   evaluated. Parameters of a function declared before a default
92      //   argument expression are in scope and can hide namespace and
93      //   class member names.
94      return S->Diag(DRE->getLocStart(),
95                     diag::err_param_default_argument_references_param)
96         << Param->getDeclName() << DefaultArg->getSourceRange();
97    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
98      // C++ [dcl.fct.default]p7
99      //   Local variables shall not be used in default argument
100      //   expressions.
101      if (VDecl->isLocalVarDecl())
102        return S->Diag(DRE->getLocStart(),
103                       diag::err_param_default_argument_references_local)
104          << VDecl->getDeclName() << DefaultArg->getSourceRange();
105    }
106
107    return false;
108  }
109
110  /// VisitCXXThisExpr - Visit a C++ "this" expression.
111  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
112    // C++ [dcl.fct.default]p8:
113    //   The keyword this shall not be used in a default argument of a
114    //   member function.
115    return S->Diag(ThisE->getLocStart(),
116                   diag::err_param_default_argument_references_this)
117               << ThisE->getSourceRange();
118  }
119
120  bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
121    bool Invalid = false;
122    for (PseudoObjectExpr::semantics_iterator
123           i = POE->semantics_begin(), e = POE->semantics_end(); i != e; ++i) {
124      Expr *E = *i;
125
126      // Look through bindings.
127      if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
128        E = OVE->getSourceExpr();
129        assert(E && "pseudo-object binding without source expression?");
130      }
131
132      Invalid |= Visit(E);
133    }
134    return Invalid;
135  }
136
137  bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
138    // C++11 [expr.lambda.prim]p13:
139    //   A lambda-expression appearing in a default argument shall not
140    //   implicitly or explicitly capture any entity.
141    if (Lambda->capture_begin() == Lambda->capture_end())
142      return false;
143
144    return S->Diag(Lambda->getLocStart(),
145                   diag::err_lambda_capture_default_arg);
146  }
147}
148
149void
150Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
151                                                 const CXXMethodDecl *Method) {
152  // If we have an MSAny spec already, don't bother.
153  if (!Method || ComputedEST == EST_MSAny)
154    return;
155
156  const FunctionProtoType *Proto
157    = Method->getType()->getAs<FunctionProtoType>();
158  Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
159  if (!Proto)
160    return;
161
162  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
163
164  // If this function can throw any exceptions, make a note of that.
165  if (EST == EST_MSAny || EST == EST_None) {
166    ClearExceptions();
167    ComputedEST = EST;
168    return;
169  }
170
171  // FIXME: If the call to this decl is using any of its default arguments, we
172  // need to search them for potentially-throwing calls.
173
174  // If this function has a basic noexcept, it doesn't affect the outcome.
175  if (EST == EST_BasicNoexcept)
176    return;
177
178  // If we have a throw-all spec at this point, ignore the function.
179  if (ComputedEST == EST_None)
180    return;
181
182  // If we're still at noexcept(true) and there's a nothrow() callee,
183  // change to that specification.
184  if (EST == EST_DynamicNone) {
185    if (ComputedEST == EST_BasicNoexcept)
186      ComputedEST = EST_DynamicNone;
187    return;
188  }
189
190  // Check out noexcept specs.
191  if (EST == EST_ComputedNoexcept) {
192    FunctionProtoType::NoexceptResult NR =
193        Proto->getNoexceptSpec(Self->Context);
194    assert(NR != FunctionProtoType::NR_NoNoexcept &&
195           "Must have noexcept result for EST_ComputedNoexcept.");
196    assert(NR != FunctionProtoType::NR_Dependent &&
197           "Should not generate implicit declarations for dependent cases, "
198           "and don't know how to handle them anyway.");
199
200    // noexcept(false) -> no spec on the new function
201    if (NR == FunctionProtoType::NR_Throw) {
202      ClearExceptions();
203      ComputedEST = EST_None;
204    }
205    // noexcept(true) won't change anything either.
206    return;
207  }
208
209  assert(EST == EST_Dynamic && "EST case not considered earlier.");
210  assert(ComputedEST != EST_None &&
211         "Shouldn't collect exceptions when throw-all is guaranteed.");
212  ComputedEST = EST_Dynamic;
213  // Record the exceptions in this function's exception specification.
214  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
215                                          EEnd = Proto->exception_end();
216       E != EEnd; ++E)
217    if (ExceptionsSeen.insert(Self->Context.getCanonicalType(*E)))
218      Exceptions.push_back(*E);
219}
220
221void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
222  if (!E || ComputedEST == EST_MSAny)
223    return;
224
225  // FIXME:
226  //
227  // C++0x [except.spec]p14:
228  //   [An] implicit exception-specification specifies the type-id T if and
229  // only if T is allowed by the exception-specification of a function directly
230  // invoked by f's implicit definition; f shall allow all exceptions if any
231  // function it directly invokes allows all exceptions, and f shall allow no
232  // exceptions if every function it directly invokes allows no exceptions.
233  //
234  // Note in particular that if an implicit exception-specification is generated
235  // for a function containing a throw-expression, that specification can still
236  // be noexcept(true).
237  //
238  // Note also that 'directly invoked' is not defined in the standard, and there
239  // is no indication that we should only consider potentially-evaluated calls.
240  //
241  // Ultimately we should implement the intent of the standard: the exception
242  // specification should be the set of exceptions which can be thrown by the
243  // implicit definition. For now, we assume that any non-nothrow expression can
244  // throw any exception.
245
246  if (Self->canThrow(E))
247    ComputedEST = EST_None;
248}
249
250bool
251Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
252                              SourceLocation EqualLoc) {
253  if (RequireCompleteType(Param->getLocation(), Param->getType(),
254                          diag::err_typecheck_decl_incomplete_type)) {
255    Param->setInvalidDecl();
256    return true;
257  }
258
259  // C++ [dcl.fct.default]p5
260  //   A default argument expression is implicitly converted (clause
261  //   4) to the parameter type. The default argument expression has
262  //   the same semantic constraints as the initializer expression in
263  //   a declaration of a variable of the parameter type, using the
264  //   copy-initialization semantics (8.5).
265  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
266                                                                    Param);
267  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
268                                                           EqualLoc);
269  InitializationSequence InitSeq(*this, Entity, Kind, Arg);
270  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
271  if (Result.isInvalid())
272    return true;
273  Arg = Result.takeAs<Expr>();
274
275  CheckCompletedExpr(Arg, EqualLoc);
276  Arg = MaybeCreateExprWithCleanups(Arg);
277
278  // Okay: add the default argument to the parameter
279  Param->setDefaultArg(Arg);
280
281  // We have already instantiated this parameter; provide each of the
282  // instantiations with the uninstantiated default argument.
283  UnparsedDefaultArgInstantiationsMap::iterator InstPos
284    = UnparsedDefaultArgInstantiations.find(Param);
285  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
286    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
287      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
288
289    // We're done tracking this parameter's instantiations.
290    UnparsedDefaultArgInstantiations.erase(InstPos);
291  }
292
293  return false;
294}
295
296/// ActOnParamDefaultArgument - Check whether the default argument
297/// provided for a function parameter is well-formed. If so, attach it
298/// to the parameter declaration.
299void
300Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
301                                Expr *DefaultArg) {
302  if (!param || !DefaultArg)
303    return;
304
305  ParmVarDecl *Param = cast<ParmVarDecl>(param);
306  UnparsedDefaultArgLocs.erase(Param);
307
308  // Default arguments are only permitted in C++
309  if (!getLangOpts().CPlusPlus) {
310    Diag(EqualLoc, diag::err_param_default_argument)
311      << DefaultArg->getSourceRange();
312    Param->setInvalidDecl();
313    return;
314  }
315
316  // Check for unexpanded parameter packs.
317  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
318    Param->setInvalidDecl();
319    return;
320  }
321
322  // Check that the default argument is well-formed
323  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
324  if (DefaultArgChecker.Visit(DefaultArg)) {
325    Param->setInvalidDecl();
326    return;
327  }
328
329  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
330}
331
332/// ActOnParamUnparsedDefaultArgument - We've seen a default
333/// argument for a function parameter, but we can't parse it yet
334/// because we're inside a class definition. Note that this default
335/// argument will be parsed later.
336void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
337                                             SourceLocation EqualLoc,
338                                             SourceLocation ArgLoc) {
339  if (!param)
340    return;
341
342  ParmVarDecl *Param = cast<ParmVarDecl>(param);
343  if (Param)
344    Param->setUnparsedDefaultArg();
345
346  UnparsedDefaultArgLocs[Param] = ArgLoc;
347}
348
349/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
350/// the default argument for the parameter param failed.
351void Sema::ActOnParamDefaultArgumentError(Decl *param) {
352  if (!param)
353    return;
354
355  ParmVarDecl *Param = cast<ParmVarDecl>(param);
356
357  Param->setInvalidDecl();
358
359  UnparsedDefaultArgLocs.erase(Param);
360}
361
362/// CheckExtraCXXDefaultArguments - Check for any extra default
363/// arguments in the declarator, which is not a function declaration
364/// or definition and therefore is not permitted to have default
365/// arguments. This routine should be invoked for every declarator
366/// that is not a function declaration or definition.
367void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
368  // C++ [dcl.fct.default]p3
369  //   A default argument expression shall be specified only in the
370  //   parameter-declaration-clause of a function declaration or in a
371  //   template-parameter (14.1). It shall not be specified for a
372  //   parameter pack. If it is specified in a
373  //   parameter-declaration-clause, it shall not occur within a
374  //   declarator or abstract-declarator of a parameter-declaration.
375  bool MightBeFunction = D.isFunctionDeclarationContext();
376  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
377    DeclaratorChunk &chunk = D.getTypeObject(i);
378    if (chunk.Kind == DeclaratorChunk::Function) {
379      if (MightBeFunction) {
380        // This is a function declaration. It can have default arguments, but
381        // keep looking in case its return type is a function type with default
382        // arguments.
383        MightBeFunction = false;
384        continue;
385      }
386      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
387        ParmVarDecl *Param =
388          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
389        if (Param->hasUnparsedDefaultArg()) {
390          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
391          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
392            << SourceRange((*Toks)[1].getLocation(),
393                           Toks->back().getLocation());
394          delete Toks;
395          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
396        } else if (Param->getDefaultArg()) {
397          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
398            << Param->getDefaultArg()->getSourceRange();
399          Param->setDefaultArg(0);
400        }
401      }
402    } else if (chunk.Kind != DeclaratorChunk::Paren) {
403      MightBeFunction = false;
404    }
405  }
406}
407
408static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) {
409  for (unsigned NumParams = FD->getNumParams(); NumParams > 0; --NumParams) {
410    const ParmVarDecl *PVD = FD->getParamDecl(NumParams-1);
411    if (!PVD->hasDefaultArg())
412      return false;
413    if (!PVD->hasInheritedDefaultArg())
414      return true;
415  }
416  return false;
417}
418
419/// MergeCXXFunctionDecl - Merge two declarations of the same C++
420/// function, once we already know that they have the same
421/// type. Subroutine of MergeFunctionDecl. Returns true if there was an
422/// error, false otherwise.
423bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
424                                Scope *S) {
425  bool Invalid = false;
426
427  // C++ [dcl.fct.default]p4:
428  //   For non-template functions, default arguments can be added in
429  //   later declarations of a function in the same
430  //   scope. Declarations in different scopes have completely
431  //   distinct sets of default arguments. That is, declarations in
432  //   inner scopes do not acquire default arguments from
433  //   declarations in outer scopes, and vice versa. In a given
434  //   function declaration, all parameters subsequent to a
435  //   parameter with a default argument shall have default
436  //   arguments supplied in this or previous declarations. A
437  //   default argument shall not be redefined by a later
438  //   declaration (not even to the same value).
439  //
440  // C++ [dcl.fct.default]p6:
441  //   Except for member functions of class templates, the default arguments
442  //   in a member function definition that appears outside of the class
443  //   definition are added to the set of default arguments provided by the
444  //   member function declaration in the class definition.
445  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
446    ParmVarDecl *OldParam = Old->getParamDecl(p);
447    ParmVarDecl *NewParam = New->getParamDecl(p);
448
449    bool OldParamHasDfl = OldParam->hasDefaultArg();
450    bool NewParamHasDfl = NewParam->hasDefaultArg();
451
452    NamedDecl *ND = Old;
453    if (S && !isDeclInScope(ND, New->getDeclContext(), S))
454      // Ignore default parameters of old decl if they are not in
455      // the same scope.
456      OldParamHasDfl = false;
457
458    if (OldParamHasDfl && NewParamHasDfl) {
459
460      unsigned DiagDefaultParamID =
461        diag::err_param_default_argument_redefinition;
462
463      // MSVC accepts that default parameters be redefined for member functions
464      // of template class. The new default parameter's value is ignored.
465      Invalid = true;
466      if (getLangOpts().MicrosoftExt) {
467        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
468        if (MD && MD->getParent()->getDescribedClassTemplate()) {
469          // Merge the old default argument into the new parameter.
470          NewParam->setHasInheritedDefaultArg();
471          if (OldParam->hasUninstantiatedDefaultArg())
472            NewParam->setUninstantiatedDefaultArg(
473                                      OldParam->getUninstantiatedDefaultArg());
474          else
475            NewParam->setDefaultArg(OldParam->getInit());
476          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
477          Invalid = false;
478        }
479      }
480
481      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
482      // hint here. Alternatively, we could walk the type-source information
483      // for NewParam to find the last source location in the type... but it
484      // isn't worth the effort right now. This is the kind of test case that
485      // is hard to get right:
486      //   int f(int);
487      //   void g(int (*fp)(int) = f);
488      //   void g(int (*fp)(int) = &f);
489      Diag(NewParam->getLocation(), DiagDefaultParamID)
490        << NewParam->getDefaultArgRange();
491
492      // Look for the function declaration where the default argument was
493      // actually written, which may be a declaration prior to Old.
494      for (FunctionDecl *Older = Old->getPreviousDecl();
495           Older; Older = Older->getPreviousDecl()) {
496        if (!Older->getParamDecl(p)->hasDefaultArg())
497          break;
498
499        OldParam = Older->getParamDecl(p);
500      }
501
502      Diag(OldParam->getLocation(), diag::note_previous_definition)
503        << OldParam->getDefaultArgRange();
504    } else if (OldParamHasDfl) {
505      // Merge the old default argument into the new parameter.
506      // It's important to use getInit() here;  getDefaultArg()
507      // strips off any top-level ExprWithCleanups.
508      NewParam->setHasInheritedDefaultArg();
509      if (OldParam->hasUninstantiatedDefaultArg())
510        NewParam->setUninstantiatedDefaultArg(
511                                      OldParam->getUninstantiatedDefaultArg());
512      else
513        NewParam->setDefaultArg(OldParam->getInit());
514    } else if (NewParamHasDfl) {
515      if (New->getDescribedFunctionTemplate()) {
516        // Paragraph 4, quoted above, only applies to non-template functions.
517        Diag(NewParam->getLocation(),
518             diag::err_param_default_argument_template_redecl)
519          << NewParam->getDefaultArgRange();
520        Diag(Old->getLocation(), diag::note_template_prev_declaration)
521          << false;
522      } else if (New->getTemplateSpecializationKind()
523                   != TSK_ImplicitInstantiation &&
524                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
525        // C++ [temp.expr.spec]p21:
526        //   Default function arguments shall not be specified in a declaration
527        //   or a definition for one of the following explicit specializations:
528        //     - the explicit specialization of a function template;
529        //     - the explicit specialization of a member function template;
530        //     - the explicit specialization of a member function of a class
531        //       template where the class template specialization to which the
532        //       member function specialization belongs is implicitly
533        //       instantiated.
534        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
535          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
536          << New->getDeclName()
537          << NewParam->getDefaultArgRange();
538      } else if (New->getDeclContext()->isDependentContext()) {
539        // C++ [dcl.fct.default]p6 (DR217):
540        //   Default arguments for a member function of a class template shall
541        //   be specified on the initial declaration of the member function
542        //   within the class template.
543        //
544        // Reading the tea leaves a bit in DR217 and its reference to DR205
545        // leads me to the conclusion that one cannot add default function
546        // arguments for an out-of-line definition of a member function of a
547        // dependent type.
548        int WhichKind = 2;
549        if (CXXRecordDecl *Record
550              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
551          if (Record->getDescribedClassTemplate())
552            WhichKind = 0;
553          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
554            WhichKind = 1;
555          else
556            WhichKind = 2;
557        }
558
559        Diag(NewParam->getLocation(),
560             diag::err_param_default_argument_member_template_redecl)
561          << WhichKind
562          << NewParam->getDefaultArgRange();
563      }
564    }
565  }
566
567  // DR1344: If a default argument is added outside a class definition and that
568  // default argument makes the function a special member function, the program
569  // is ill-formed. This can only happen for constructors.
570  if (isa<CXXConstructorDecl>(New) &&
571      New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
572    CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
573                     OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
574    if (NewSM != OldSM) {
575      ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
576      assert(NewParam->hasDefaultArg());
577      Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
578        << NewParam->getDefaultArgRange() << NewSM;
579      Diag(Old->getLocation(), diag::note_previous_declaration);
580    }
581  }
582
583  // C++11 [dcl.constexpr]p1: If any declaration of a function or function
584  // template has a constexpr specifier then all its declarations shall
585  // contain the constexpr specifier.
586  if (New->isConstexpr() != Old->isConstexpr()) {
587    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
588      << New << New->isConstexpr();
589    Diag(Old->getLocation(), diag::note_previous_declaration);
590    Invalid = true;
591  }
592
593  // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default
594  // argument expression, that declaration shall be a definition and shall be
595  // the only declaration of the function or function template in the
596  // translation unit.
597  if (Old->getFriendObjectKind() == Decl::FOK_Undeclared &&
598      functionDeclHasDefaultArgument(Old)) {
599    Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
600    Diag(Old->getLocation(), diag::note_previous_declaration);
601    Invalid = true;
602  }
603
604  if (CheckEquivalentExceptionSpec(Old, New))
605    Invalid = true;
606
607  return Invalid;
608}
609
610/// \brief Merge the exception specifications of two variable declarations.
611///
612/// This is called when there's a redeclaration of a VarDecl. The function
613/// checks if the redeclaration might have an exception specification and
614/// validates compatibility and merges the specs if necessary.
615void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
616  // Shortcut if exceptions are disabled.
617  if (!getLangOpts().CXXExceptions)
618    return;
619
620  assert(Context.hasSameType(New->getType(), Old->getType()) &&
621         "Should only be called if types are otherwise the same.");
622
623  QualType NewType = New->getType();
624  QualType OldType = Old->getType();
625
626  // We're only interested in pointers and references to functions, as well
627  // as pointers to member functions.
628  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
629    NewType = R->getPointeeType();
630    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
631  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
632    NewType = P->getPointeeType();
633    OldType = OldType->getAs<PointerType>()->getPointeeType();
634  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
635    NewType = M->getPointeeType();
636    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
637  }
638
639  if (!NewType->isFunctionProtoType())
640    return;
641
642  // There's lots of special cases for functions. For function pointers, system
643  // libraries are hopefully not as broken so that we don't need these
644  // workarounds.
645  if (CheckEquivalentExceptionSpec(
646        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
647        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
648    New->setInvalidDecl();
649  }
650}
651
652/// CheckCXXDefaultArguments - Verify that the default arguments for a
653/// function declaration are well-formed according to C++
654/// [dcl.fct.default].
655void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
656  unsigned NumParams = FD->getNumParams();
657  unsigned p;
658
659  // Find first parameter with a default argument
660  for (p = 0; p < NumParams; ++p) {
661    ParmVarDecl *Param = FD->getParamDecl(p);
662    if (Param->hasDefaultArg())
663      break;
664  }
665
666  // C++ [dcl.fct.default]p4:
667  //   In a given function declaration, all parameters
668  //   subsequent to a parameter with a default argument shall
669  //   have default arguments supplied in this or previous
670  //   declarations. A default argument shall not be redefined
671  //   by a later declaration (not even to the same value).
672  unsigned LastMissingDefaultArg = 0;
673  for (; p < NumParams; ++p) {
674    ParmVarDecl *Param = FD->getParamDecl(p);
675    if (!Param->hasDefaultArg()) {
676      if (Param->isInvalidDecl())
677        /* We already complained about this parameter. */;
678      else if (Param->getIdentifier())
679        Diag(Param->getLocation(),
680             diag::err_param_default_argument_missing_name)
681          << Param->getIdentifier();
682      else
683        Diag(Param->getLocation(),
684             diag::err_param_default_argument_missing);
685
686      LastMissingDefaultArg = p;
687    }
688  }
689
690  if (LastMissingDefaultArg > 0) {
691    // Some default arguments were missing. Clear out all of the
692    // default arguments up to (and including) the last missing
693    // default argument, so that we leave the function parameters
694    // in a semantically valid state.
695    for (p = 0; p <= LastMissingDefaultArg; ++p) {
696      ParmVarDecl *Param = FD->getParamDecl(p);
697      if (Param->hasDefaultArg()) {
698        Param->setDefaultArg(0);
699      }
700    }
701  }
702}
703
704// CheckConstexprParameterTypes - Check whether a function's parameter types
705// are all literal types. If so, return true. If not, produce a suitable
706// diagnostic and return false.
707static bool CheckConstexprParameterTypes(Sema &SemaRef,
708                                         const FunctionDecl *FD) {
709  unsigned ArgIndex = 0;
710  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
711  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
712       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
713    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
714    SourceLocation ParamLoc = PD->getLocation();
715    if (!(*i)->isDependentType() &&
716        SemaRef.RequireLiteralType(ParamLoc, *i,
717                                   diag::err_constexpr_non_literal_param,
718                                   ArgIndex+1, PD->getSourceRange(),
719                                   isa<CXXConstructorDecl>(FD)))
720      return false;
721  }
722  return true;
723}
724
725/// \brief Get diagnostic %select index for tag kind for
726/// record diagnostic message.
727/// WARNING: Indexes apply to particular diagnostics only!
728///
729/// \returns diagnostic %select index.
730static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
731  switch (Tag) {
732  case TTK_Struct: return 0;
733  case TTK_Interface: return 1;
734  case TTK_Class:  return 2;
735  default: llvm_unreachable("Invalid tag kind for record diagnostic!");
736  }
737}
738
739// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
740// the requirements of a constexpr function definition or a constexpr
741// constructor definition. If so, return true. If not, produce appropriate
742// diagnostics and return false.
743//
744// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
745bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
746  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
747  if (MD && MD->isInstance()) {
748    // C++11 [dcl.constexpr]p4:
749    //  The definition of a constexpr constructor shall satisfy the following
750    //  constraints:
751    //  - the class shall not have any virtual base classes;
752    const CXXRecordDecl *RD = MD->getParent();
753    if (RD->getNumVBases()) {
754      Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
755        << isa<CXXConstructorDecl>(NewFD)
756        << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
757      for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
758             E = RD->vbases_end(); I != E; ++I)
759        Diag(I->getLocStart(),
760             diag::note_constexpr_virtual_base_here) << I->getSourceRange();
761      return false;
762    }
763  }
764
765  if (!isa<CXXConstructorDecl>(NewFD)) {
766    // C++11 [dcl.constexpr]p3:
767    //  The definition of a constexpr function shall satisfy the following
768    //  constraints:
769    // - it shall not be virtual;
770    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
771    if (Method && Method->isVirtual()) {
772      Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
773
774      // If it's not obvious why this function is virtual, find an overridden
775      // function which uses the 'virtual' keyword.
776      const CXXMethodDecl *WrittenVirtual = Method;
777      while (!WrittenVirtual->isVirtualAsWritten())
778        WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
779      if (WrittenVirtual != Method)
780        Diag(WrittenVirtual->getLocation(),
781             diag::note_overridden_virtual_function);
782      return false;
783    }
784
785    // - its return type shall be a literal type;
786    QualType RT = NewFD->getResultType();
787    if (!RT->isDependentType() &&
788        RequireLiteralType(NewFD->getLocation(), RT,
789                           diag::err_constexpr_non_literal_return))
790      return false;
791  }
792
793  // - each of its parameter types shall be a literal type;
794  if (!CheckConstexprParameterTypes(*this, NewFD))
795    return false;
796
797  return true;
798}
799
800/// Check the given declaration statement is legal within a constexpr function
801/// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3.
802///
803/// \return true if the body is OK (maybe only as an extension), false if we
804///         have diagnosed a problem.
805static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
806                                   DeclStmt *DS, SourceLocation &Cxx1yLoc) {
807  // C++11 [dcl.constexpr]p3 and p4:
808  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
809  //  contain only
810  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
811         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
812    switch ((*DclIt)->getKind()) {
813    case Decl::StaticAssert:
814    case Decl::Using:
815    case Decl::UsingShadow:
816    case Decl::UsingDirective:
817    case Decl::UnresolvedUsingTypename:
818    case Decl::UnresolvedUsingValue:
819      //   - static_assert-declarations
820      //   - using-declarations,
821      //   - using-directives,
822      continue;
823
824    case Decl::Typedef:
825    case Decl::TypeAlias: {
826      //   - typedef declarations and alias-declarations that do not define
827      //     classes or enumerations,
828      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
829      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
830        // Don't allow variably-modified types in constexpr functions.
831        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
832        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
833          << TL.getSourceRange() << TL.getType()
834          << isa<CXXConstructorDecl>(Dcl);
835        return false;
836      }
837      continue;
838    }
839
840    case Decl::Enum:
841    case Decl::CXXRecord:
842      // C++1y allows types to be defined, not just declared.
843      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition())
844        SemaRef.Diag(DS->getLocStart(),
845                     SemaRef.getLangOpts().CPlusPlus1y
846                       ? diag::warn_cxx11_compat_constexpr_type_definition
847                       : diag::ext_constexpr_type_definition)
848          << isa<CXXConstructorDecl>(Dcl);
849      continue;
850
851    case Decl::EnumConstant:
852    case Decl::IndirectField:
853    case Decl::ParmVar:
854      // These can only appear with other declarations which are banned in
855      // C++11 and permitted in C++1y, so ignore them.
856      continue;
857
858    case Decl::Var: {
859      // C++1y [dcl.constexpr]p3 allows anything except:
860      //   a definition of a variable of non-literal type or of static or
861      //   thread storage duration or for which no initialization is performed.
862      VarDecl *VD = cast<VarDecl>(*DclIt);
863      if (VD->isThisDeclarationADefinition()) {
864        if (VD->isStaticLocal()) {
865          SemaRef.Diag(VD->getLocation(),
866                       diag::err_constexpr_local_var_static)
867            << isa<CXXConstructorDecl>(Dcl)
868            << (VD->getTLSKind() == VarDecl::TLS_Dynamic);
869          return false;
870        }
871        if (!VD->getType()->isDependentType() &&
872            SemaRef.RequireLiteralType(
873              VD->getLocation(), VD->getType(),
874              diag::err_constexpr_local_var_non_literal_type,
875              isa<CXXConstructorDecl>(Dcl)))
876          return false;
877        if (!VD->hasInit()) {
878          SemaRef.Diag(VD->getLocation(),
879                       diag::err_constexpr_local_var_no_init)
880            << isa<CXXConstructorDecl>(Dcl);
881          return false;
882        }
883      }
884      SemaRef.Diag(VD->getLocation(),
885                   SemaRef.getLangOpts().CPlusPlus1y
886                    ? diag::warn_cxx11_compat_constexpr_local_var
887                    : diag::ext_constexpr_local_var)
888        << isa<CXXConstructorDecl>(Dcl);
889      continue;
890    }
891
892    case Decl::NamespaceAlias:
893    case Decl::Function:
894      // These are disallowed in C++11 and permitted in C++1y. Allow them
895      // everywhere as an extension.
896      if (!Cxx1yLoc.isValid())
897        Cxx1yLoc = DS->getLocStart();
898      continue;
899
900    default:
901      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
902        << isa<CXXConstructorDecl>(Dcl);
903      return false;
904    }
905  }
906
907  return true;
908}
909
910/// Check that the given field is initialized within a constexpr constructor.
911///
912/// \param Dcl The constexpr constructor being checked.
913/// \param Field The field being checked. This may be a member of an anonymous
914///        struct or union nested within the class being checked.
915/// \param Inits All declarations, including anonymous struct/union members and
916///        indirect members, for which any initialization was provided.
917/// \param Diagnosed Set to true if an error is produced.
918static void CheckConstexprCtorInitializer(Sema &SemaRef,
919                                          const FunctionDecl *Dcl,
920                                          FieldDecl *Field,
921                                          llvm::SmallSet<Decl*, 16> &Inits,
922                                          bool &Diagnosed) {
923  if (Field->isInvalidDecl())
924    return;
925
926  if (Field->isUnnamedBitfield())
927    return;
928
929  if (Field->isAnonymousStructOrUnion() &&
930      Field->getType()->getAsCXXRecordDecl()->isEmpty())
931    return;
932
933  if (!Inits.count(Field)) {
934    if (!Diagnosed) {
935      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
936      Diagnosed = true;
937    }
938    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
939  } else if (Field->isAnonymousStructOrUnion()) {
940    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
941    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
942         I != E; ++I)
943      // If an anonymous union contains an anonymous struct of which any member
944      // is initialized, all members must be initialized.
945      if (!RD->isUnion() || Inits.count(*I))
946        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
947  }
948}
949
950/// Check the provided statement is allowed in a constexpr function
951/// definition.
952static bool
953CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S,
954                           llvm::SmallVectorImpl<SourceLocation> &ReturnStmts,
955                           SourceLocation &Cxx1yLoc) {
956  // - its function-body shall be [...] a compound-statement that contains only
957  switch (S->getStmtClass()) {
958  case Stmt::NullStmtClass:
959    //   - null statements,
960    return true;
961
962  case Stmt::DeclStmtClass:
963    //   - static_assert-declarations
964    //   - using-declarations,
965    //   - using-directives,
966    //   - typedef declarations and alias-declarations that do not define
967    //     classes or enumerations,
968    if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc))
969      return false;
970    return true;
971
972  case Stmt::ReturnStmtClass:
973    //   - and exactly one return statement;
974    if (isa<CXXConstructorDecl>(Dcl)) {
975      // C++1y allows return statements in constexpr constructors.
976      if (!Cxx1yLoc.isValid())
977        Cxx1yLoc = S->getLocStart();
978      return true;
979    }
980
981    ReturnStmts.push_back(S->getLocStart());
982    return true;
983
984  case Stmt::CompoundStmtClass: {
985    // C++1y allows compound-statements.
986    if (!Cxx1yLoc.isValid())
987      Cxx1yLoc = S->getLocStart();
988
989    CompoundStmt *CompStmt = cast<CompoundStmt>(S);
990    for (CompoundStmt::body_iterator BodyIt = CompStmt->body_begin(),
991           BodyEnd = CompStmt->body_end(); BodyIt != BodyEnd; ++BodyIt) {
992      if (!CheckConstexprFunctionStmt(SemaRef, Dcl, *BodyIt, ReturnStmts,
993                                      Cxx1yLoc))
994        return false;
995    }
996    return true;
997  }
998
999  case Stmt::AttributedStmtClass:
1000    if (!Cxx1yLoc.isValid())
1001      Cxx1yLoc = S->getLocStart();
1002    return true;
1003
1004  case Stmt::IfStmtClass: {
1005    // C++1y allows if-statements.
1006    if (!Cxx1yLoc.isValid())
1007      Cxx1yLoc = S->getLocStart();
1008
1009    IfStmt *If = cast<IfStmt>(S);
1010    if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts,
1011                                    Cxx1yLoc))
1012      return false;
1013    if (If->getElse() &&
1014        !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts,
1015                                    Cxx1yLoc))
1016      return false;
1017    return true;
1018  }
1019
1020  case Stmt::WhileStmtClass:
1021  case Stmt::DoStmtClass:
1022  case Stmt::ForStmtClass:
1023  case Stmt::CXXForRangeStmtClass:
1024  case Stmt::ContinueStmtClass:
1025    // C++1y allows all of these. We don't allow them as extensions in C++11,
1026    // because they don't make sense without variable mutation.
1027    if (!SemaRef.getLangOpts().CPlusPlus1y)
1028      break;
1029    if (!Cxx1yLoc.isValid())
1030      Cxx1yLoc = S->getLocStart();
1031    for (Stmt::child_range Children = S->children(); Children; ++Children)
1032      if (*Children &&
1033          !CheckConstexprFunctionStmt(SemaRef, Dcl, *Children, ReturnStmts,
1034                                      Cxx1yLoc))
1035        return false;
1036    return true;
1037
1038  case Stmt::SwitchStmtClass:
1039  case Stmt::CaseStmtClass:
1040  case Stmt::DefaultStmtClass:
1041  case Stmt::BreakStmtClass:
1042    // C++1y allows switch-statements, and since they don't need variable
1043    // mutation, we can reasonably allow them in C++11 as an extension.
1044    if (!Cxx1yLoc.isValid())
1045      Cxx1yLoc = S->getLocStart();
1046    for (Stmt::child_range Children = S->children(); Children; ++Children)
1047      if (*Children &&
1048          !CheckConstexprFunctionStmt(SemaRef, Dcl, *Children, ReturnStmts,
1049                                      Cxx1yLoc))
1050        return false;
1051    return true;
1052
1053  default:
1054    if (!isa<Expr>(S))
1055      break;
1056
1057    // C++1y allows expression-statements.
1058    if (!Cxx1yLoc.isValid())
1059      Cxx1yLoc = S->getLocStart();
1060    return true;
1061  }
1062
1063  SemaRef.Diag(S->getLocStart(), diag::err_constexpr_body_invalid_stmt)
1064    << isa<CXXConstructorDecl>(Dcl);
1065  return false;
1066}
1067
1068/// Check the body for the given constexpr function declaration only contains
1069/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
1070///
1071/// \return true if the body is OK, false if we have diagnosed a problem.
1072bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
1073  if (isa<CXXTryStmt>(Body)) {
1074    // C++11 [dcl.constexpr]p3:
1075    //  The definition of a constexpr function shall satisfy the following
1076    //  constraints: [...]
1077    // - its function-body shall be = delete, = default, or a
1078    //   compound-statement
1079    //
1080    // C++11 [dcl.constexpr]p4:
1081    //  In the definition of a constexpr constructor, [...]
1082    // - its function-body shall not be a function-try-block;
1083    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
1084      << isa<CXXConstructorDecl>(Dcl);
1085    return false;
1086  }
1087
1088  SmallVector<SourceLocation, 4> ReturnStmts;
1089
1090  // - its function-body shall be [...] a compound-statement that contains only
1091  //   [... list of cases ...]
1092  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
1093  SourceLocation Cxx1yLoc;
1094  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
1095         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
1096    if (!CheckConstexprFunctionStmt(*this, Dcl, *BodyIt, ReturnStmts, Cxx1yLoc))
1097      return false;
1098  }
1099
1100  if (Cxx1yLoc.isValid())
1101    Diag(Cxx1yLoc,
1102         getLangOpts().CPlusPlus1y
1103           ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt
1104           : diag::ext_constexpr_body_invalid_stmt)
1105      << isa<CXXConstructorDecl>(Dcl);
1106
1107  if (const CXXConstructorDecl *Constructor
1108        = dyn_cast<CXXConstructorDecl>(Dcl)) {
1109    const CXXRecordDecl *RD = Constructor->getParent();
1110    // DR1359:
1111    // - every non-variant non-static data member and base class sub-object
1112    //   shall be initialized;
1113    // - if the class is a non-empty union, or for each non-empty anonymous
1114    //   union member of a non-union class, exactly one non-static data member
1115    //   shall be initialized;
1116    if (RD->isUnion()) {
1117      if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
1118        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
1119        return false;
1120      }
1121    } else if (!Constructor->isDependentContext() &&
1122               !Constructor->isDelegatingConstructor()) {
1123      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
1124
1125      // Skip detailed checking if we have enough initializers, and we would
1126      // allow at most one initializer per member.
1127      bool AnyAnonStructUnionMembers = false;
1128      unsigned Fields = 0;
1129      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
1130           E = RD->field_end(); I != E; ++I, ++Fields) {
1131        if (I->isAnonymousStructOrUnion()) {
1132          AnyAnonStructUnionMembers = true;
1133          break;
1134        }
1135      }
1136      if (AnyAnonStructUnionMembers ||
1137          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
1138        // Check initialization of non-static data members. Base classes are
1139        // always initialized so do not need to be checked. Dependent bases
1140        // might not have initializers in the member initializer list.
1141        llvm::SmallSet<Decl*, 16> Inits;
1142        for (CXXConstructorDecl::init_const_iterator
1143               I = Constructor->init_begin(), E = Constructor->init_end();
1144             I != E; ++I) {
1145          if (FieldDecl *FD = (*I)->getMember())
1146            Inits.insert(FD);
1147          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
1148            Inits.insert(ID->chain_begin(), ID->chain_end());
1149        }
1150
1151        bool Diagnosed = false;
1152        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
1153             E = RD->field_end(); I != E; ++I)
1154          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
1155        if (Diagnosed)
1156          return false;
1157      }
1158    }
1159  } else {
1160    if (ReturnStmts.empty()) {
1161      // C++1y doesn't require constexpr functions to contain a 'return'
1162      // statement. We still do, unless the return type is void, because
1163      // otherwise if there's no return statement, the function cannot
1164      // be used in a core constant expression.
1165      bool OK = getLangOpts().CPlusPlus1y && Dcl->getResultType()->isVoidType();
1166      Diag(Dcl->getLocation(),
1167           OK ? diag::warn_cxx11_compat_constexpr_body_no_return
1168              : diag::err_constexpr_body_no_return);
1169      return OK;
1170    }
1171    if (ReturnStmts.size() > 1) {
1172      Diag(ReturnStmts.back(),
1173           getLangOpts().CPlusPlus1y
1174             ? diag::warn_cxx11_compat_constexpr_body_multiple_return
1175             : diag::ext_constexpr_body_multiple_return);
1176      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
1177        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
1178    }
1179  }
1180
1181  // C++11 [dcl.constexpr]p5:
1182  //   if no function argument values exist such that the function invocation
1183  //   substitution would produce a constant expression, the program is
1184  //   ill-formed; no diagnostic required.
1185  // C++11 [dcl.constexpr]p3:
1186  //   - every constructor call and implicit conversion used in initializing the
1187  //     return value shall be one of those allowed in a constant expression.
1188  // C++11 [dcl.constexpr]p4:
1189  //   - every constructor involved in initializing non-static data members and
1190  //     base class sub-objects shall be a constexpr constructor.
1191  SmallVector<PartialDiagnosticAt, 8> Diags;
1192  if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
1193    Diag(Dcl->getLocation(), diag::ext_constexpr_function_never_constant_expr)
1194      << isa<CXXConstructorDecl>(Dcl);
1195    for (size_t I = 0, N = Diags.size(); I != N; ++I)
1196      Diag(Diags[I].first, Diags[I].second);
1197    // Don't return false here: we allow this for compatibility in
1198    // system headers.
1199  }
1200
1201  return true;
1202}
1203
1204/// isCurrentClassName - Determine whether the identifier II is the
1205/// name of the class type currently being defined. In the case of
1206/// nested classes, this will only return true if II is the name of
1207/// the innermost class.
1208bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
1209                              const CXXScopeSpec *SS) {
1210  assert(getLangOpts().CPlusPlus && "No class names in C!");
1211
1212  CXXRecordDecl *CurDecl;
1213  if (SS && SS->isSet() && !SS->isInvalid()) {
1214    DeclContext *DC = computeDeclContext(*SS, true);
1215    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
1216  } else
1217    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1218
1219  if (CurDecl && CurDecl->getIdentifier())
1220    return &II == CurDecl->getIdentifier();
1221  return false;
1222}
1223
1224/// \brief Determine whether the given class is a base class of the given
1225/// class, including looking at dependent bases.
1226static bool findCircularInheritance(const CXXRecordDecl *Class,
1227                                    const CXXRecordDecl *Current) {
1228  SmallVector<const CXXRecordDecl*, 8> Queue;
1229
1230  Class = Class->getCanonicalDecl();
1231  while (true) {
1232    for (CXXRecordDecl::base_class_const_iterator I = Current->bases_begin(),
1233                                                  E = Current->bases_end();
1234         I != E; ++I) {
1235      CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
1236      if (!Base)
1237        continue;
1238
1239      Base = Base->getDefinition();
1240      if (!Base)
1241        continue;
1242
1243      if (Base->getCanonicalDecl() == Class)
1244        return true;
1245
1246      Queue.push_back(Base);
1247    }
1248
1249    if (Queue.empty())
1250      return false;
1251
1252    Current = Queue.back();
1253    Queue.pop_back();
1254  }
1255
1256  return false;
1257}
1258
1259/// \brief Check the validity of a C++ base class specifier.
1260///
1261/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1262/// and returns NULL otherwise.
1263CXXBaseSpecifier *
1264Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1265                         SourceRange SpecifierRange,
1266                         bool Virtual, AccessSpecifier Access,
1267                         TypeSourceInfo *TInfo,
1268                         SourceLocation EllipsisLoc) {
1269  QualType BaseType = TInfo->getType();
1270
1271  // C++ [class.union]p1:
1272  //   A union shall not have base classes.
1273  if (Class->isUnion()) {
1274    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1275      << SpecifierRange;
1276    return 0;
1277  }
1278
1279  if (EllipsisLoc.isValid() &&
1280      !TInfo->getType()->containsUnexpandedParameterPack()) {
1281    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1282      << TInfo->getTypeLoc().getSourceRange();
1283    EllipsisLoc = SourceLocation();
1284  }
1285
1286  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1287
1288  if (BaseType->isDependentType()) {
1289    // Make sure that we don't have circular inheritance among our dependent
1290    // bases. For non-dependent bases, the check for completeness below handles
1291    // this.
1292    if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
1293      if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
1294          ((BaseDecl = BaseDecl->getDefinition()) &&
1295           findCircularInheritance(Class, BaseDecl))) {
1296        Diag(BaseLoc, diag::err_circular_inheritance)
1297          << BaseType << Context.getTypeDeclType(Class);
1298
1299        if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
1300          Diag(BaseDecl->getLocation(), diag::note_previous_decl)
1301            << BaseType;
1302
1303        return 0;
1304      }
1305    }
1306
1307    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1308                                          Class->getTagKind() == TTK_Class,
1309                                          Access, TInfo, EllipsisLoc);
1310  }
1311
1312  // Base specifiers must be record types.
1313  if (!BaseType->isRecordType()) {
1314    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1315    return 0;
1316  }
1317
1318  // C++ [class.union]p1:
1319  //   A union shall not be used as a base class.
1320  if (BaseType->isUnionType()) {
1321    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1322    return 0;
1323  }
1324
1325  // C++ [class.derived]p2:
1326  //   The class-name in a base-specifier shall not be an incompletely
1327  //   defined class.
1328  if (RequireCompleteType(BaseLoc, BaseType,
1329                          diag::err_incomplete_base_class, SpecifierRange)) {
1330    Class->setInvalidDecl();
1331    return 0;
1332  }
1333
1334  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1335  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1336  assert(BaseDecl && "Record type has no declaration");
1337  BaseDecl = BaseDecl->getDefinition();
1338  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1339  CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1340  assert(CXXBaseDecl && "Base type is not a C++ type");
1341
1342  // C++ [class]p3:
1343  //   If a class is marked final and it appears as a base-type-specifier in
1344  //   base-clause, the program is ill-formed.
1345  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1346    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1347      << CXXBaseDecl->getDeclName();
1348    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1349      << CXXBaseDecl->getDeclName();
1350    return 0;
1351  }
1352
1353  if (BaseDecl->isInvalidDecl())
1354    Class->setInvalidDecl();
1355
1356  // Create the base specifier.
1357  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1358                                        Class->getTagKind() == TTK_Class,
1359                                        Access, TInfo, EllipsisLoc);
1360}
1361
1362/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1363/// one entry in the base class list of a class specifier, for
1364/// example:
1365///    class foo : public bar, virtual private baz {
1366/// 'public bar' and 'virtual private baz' are each base-specifiers.
1367BaseResult
1368Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1369                         ParsedAttributes &Attributes,
1370                         bool Virtual, AccessSpecifier Access,
1371                         ParsedType basetype, SourceLocation BaseLoc,
1372                         SourceLocation EllipsisLoc) {
1373  if (!classdecl)
1374    return true;
1375
1376  AdjustDeclIfTemplate(classdecl);
1377  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1378  if (!Class)
1379    return true;
1380
1381  // We do not support any C++11 attributes on base-specifiers yet.
1382  // Diagnose any attributes we see.
1383  if (!Attributes.empty()) {
1384    for (AttributeList *Attr = Attributes.getList(); Attr;
1385         Attr = Attr->getNext()) {
1386      if (Attr->isInvalid() ||
1387          Attr->getKind() == AttributeList::IgnoredAttribute)
1388        continue;
1389      Diag(Attr->getLoc(),
1390           Attr->getKind() == AttributeList::UnknownAttribute
1391             ? diag::warn_unknown_attribute_ignored
1392             : diag::err_base_specifier_attribute)
1393        << Attr->getName();
1394    }
1395  }
1396
1397  TypeSourceInfo *TInfo = 0;
1398  GetTypeFromParser(basetype, &TInfo);
1399
1400  if (EllipsisLoc.isInvalid() &&
1401      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1402                                      UPPC_BaseType))
1403    return true;
1404
1405  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1406                                                      Virtual, Access, TInfo,
1407                                                      EllipsisLoc))
1408    return BaseSpec;
1409  else
1410    Class->setInvalidDecl();
1411
1412  return true;
1413}
1414
1415/// \brief Performs the actual work of attaching the given base class
1416/// specifiers to a C++ class.
1417bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1418                                unsigned NumBases) {
1419 if (NumBases == 0)
1420    return false;
1421
1422  // Used to keep track of which base types we have already seen, so
1423  // that we can properly diagnose redundant direct base types. Note
1424  // that the key is always the unqualified canonical type of the base
1425  // class.
1426  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1427
1428  // Copy non-redundant base specifiers into permanent storage.
1429  unsigned NumGoodBases = 0;
1430  bool Invalid = false;
1431  for (unsigned idx = 0; idx < NumBases; ++idx) {
1432    QualType NewBaseType
1433      = Context.getCanonicalType(Bases[idx]->getType());
1434    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1435
1436    CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
1437    if (KnownBase) {
1438      // C++ [class.mi]p3:
1439      //   A class shall not be specified as a direct base class of a
1440      //   derived class more than once.
1441      Diag(Bases[idx]->getLocStart(),
1442           diag::err_duplicate_base_class)
1443        << KnownBase->getType()
1444        << Bases[idx]->getSourceRange();
1445
1446      // Delete the duplicate base class specifier; we're going to
1447      // overwrite its pointer later.
1448      Context.Deallocate(Bases[idx]);
1449
1450      Invalid = true;
1451    } else {
1452      // Okay, add this new base class.
1453      KnownBase = Bases[idx];
1454      Bases[NumGoodBases++] = Bases[idx];
1455      if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
1456        const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
1457        if (Class->isInterface() &&
1458              (!RD->isInterface() ||
1459               KnownBase->getAccessSpecifier() != AS_public)) {
1460          // The Microsoft extension __interface does not permit bases that
1461          // are not themselves public interfaces.
1462          Diag(KnownBase->getLocStart(), diag::err_invalid_base_in_interface)
1463            << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getName()
1464            << RD->getSourceRange();
1465          Invalid = true;
1466        }
1467        if (RD->hasAttr<WeakAttr>())
1468          Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1469      }
1470    }
1471  }
1472
1473  // Attach the remaining base class specifiers to the derived class.
1474  Class->setBases(Bases, NumGoodBases);
1475
1476  // Delete the remaining (good) base class specifiers, since their
1477  // data has been copied into the CXXRecordDecl.
1478  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1479    Context.Deallocate(Bases[idx]);
1480
1481  return Invalid;
1482}
1483
1484/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1485/// class, after checking whether there are any duplicate base
1486/// classes.
1487void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1488                               unsigned NumBases) {
1489  if (!ClassDecl || !Bases || !NumBases)
1490    return;
1491
1492  AdjustDeclIfTemplate(ClassDecl);
1493  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases, NumBases);
1494}
1495
1496/// \brief Determine whether the type \p Derived is a C++ class that is
1497/// derived from the type \p Base.
1498bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1499  if (!getLangOpts().CPlusPlus)
1500    return false;
1501
1502  CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
1503  if (!DerivedRD)
1504    return false;
1505
1506  CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
1507  if (!BaseRD)
1508    return false;
1509
1510  // If either the base or the derived type is invalid, don't try to
1511  // check whether one is derived from the other.
1512  if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
1513    return false;
1514
1515  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1516  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1517}
1518
1519/// \brief Determine whether the type \p Derived is a C++ class that is
1520/// derived from the type \p Base.
1521bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1522  if (!getLangOpts().CPlusPlus)
1523    return false;
1524
1525  CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
1526  if (!DerivedRD)
1527    return false;
1528
1529  CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
1530  if (!BaseRD)
1531    return false;
1532
1533  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1534}
1535
1536void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1537                              CXXCastPath &BasePathArray) {
1538  assert(BasePathArray.empty() && "Base path array must be empty!");
1539  assert(Paths.isRecordingPaths() && "Must record paths!");
1540
1541  const CXXBasePath &Path = Paths.front();
1542
1543  // We first go backward and check if we have a virtual base.
1544  // FIXME: It would be better if CXXBasePath had the base specifier for
1545  // the nearest virtual base.
1546  unsigned Start = 0;
1547  for (unsigned I = Path.size(); I != 0; --I) {
1548    if (Path[I - 1].Base->isVirtual()) {
1549      Start = I - 1;
1550      break;
1551    }
1552  }
1553
1554  // Now add all bases.
1555  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1556    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1557}
1558
1559/// \brief Determine whether the given base path includes a virtual
1560/// base class.
1561bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1562  for (CXXCastPath::const_iterator B = BasePath.begin(),
1563                                BEnd = BasePath.end();
1564       B != BEnd; ++B)
1565    if ((*B)->isVirtual())
1566      return true;
1567
1568  return false;
1569}
1570
1571/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1572/// conversion (where Derived and Base are class types) is
1573/// well-formed, meaning that the conversion is unambiguous (and
1574/// that all of the base classes are accessible). Returns true
1575/// and emits a diagnostic if the code is ill-formed, returns false
1576/// otherwise. Loc is the location where this routine should point to
1577/// if there is an error, and Range is the source range to highlight
1578/// if there is an error.
1579bool
1580Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1581                                   unsigned InaccessibleBaseID,
1582                                   unsigned AmbigiousBaseConvID,
1583                                   SourceLocation Loc, SourceRange Range,
1584                                   DeclarationName Name,
1585                                   CXXCastPath *BasePath) {
1586  // First, determine whether the path from Derived to Base is
1587  // ambiguous. This is slightly more expensive than checking whether
1588  // the Derived to Base conversion exists, because here we need to
1589  // explore multiple paths to determine if there is an ambiguity.
1590  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1591                     /*DetectVirtual=*/false);
1592  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1593  assert(DerivationOkay &&
1594         "Can only be used with a derived-to-base conversion");
1595  (void)DerivationOkay;
1596
1597  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1598    if (InaccessibleBaseID) {
1599      // Check that the base class can be accessed.
1600      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1601                                   InaccessibleBaseID)) {
1602        case AR_inaccessible:
1603          return true;
1604        case AR_accessible:
1605        case AR_dependent:
1606        case AR_delayed:
1607          break;
1608      }
1609    }
1610
1611    // Build a base path if necessary.
1612    if (BasePath)
1613      BuildBasePathArray(Paths, *BasePath);
1614    return false;
1615  }
1616
1617  if (AmbigiousBaseConvID) {
1618    // We know that the derived-to-base conversion is ambiguous, and
1619    // we're going to produce a diagnostic. Perform the derived-to-base
1620    // search just one more time to compute all of the possible paths so
1621    // that we can print them out. This is more expensive than any of
1622    // the previous derived-to-base checks we've done, but at this point
1623    // performance isn't as much of an issue.
1624    Paths.clear();
1625    Paths.setRecordingPaths(true);
1626    bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1627    assert(StillOkay && "Can only be used with a derived-to-base conversion");
1628    (void)StillOkay;
1629
1630    // Build up a textual representation of the ambiguous paths, e.g.,
1631    // D -> B -> A, that will be used to illustrate the ambiguous
1632    // conversions in the diagnostic. We only print one of the paths
1633    // to each base class subobject.
1634    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1635
1636    Diag(Loc, AmbigiousBaseConvID)
1637    << Derived << Base << PathDisplayStr << Range << Name;
1638  }
1639  return true;
1640}
1641
1642bool
1643Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1644                                   SourceLocation Loc, SourceRange Range,
1645                                   CXXCastPath *BasePath,
1646                                   bool IgnoreAccess) {
1647  return CheckDerivedToBaseConversion(Derived, Base,
1648                                      IgnoreAccess ? 0
1649                                       : diag::err_upcast_to_inaccessible_base,
1650                                      diag::err_ambiguous_derived_to_base_conv,
1651                                      Loc, Range, DeclarationName(),
1652                                      BasePath);
1653}
1654
1655
1656/// @brief Builds a string representing ambiguous paths from a
1657/// specific derived class to different subobjects of the same base
1658/// class.
1659///
1660/// This function builds a string that can be used in error messages
1661/// to show the different paths that one can take through the
1662/// inheritance hierarchy to go from the derived class to different
1663/// subobjects of a base class. The result looks something like this:
1664/// @code
1665/// struct D -> struct B -> struct A
1666/// struct D -> struct C -> struct A
1667/// @endcode
1668std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1669  std::string PathDisplayStr;
1670  std::set<unsigned> DisplayedPaths;
1671  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1672       Path != Paths.end(); ++Path) {
1673    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1674      // We haven't displayed a path to this particular base
1675      // class subobject yet.
1676      PathDisplayStr += "\n    ";
1677      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1678      for (CXXBasePath::const_iterator Element = Path->begin();
1679           Element != Path->end(); ++Element)
1680        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1681    }
1682  }
1683
1684  return PathDisplayStr;
1685}
1686
1687//===----------------------------------------------------------------------===//
1688// C++ class member Handling
1689//===----------------------------------------------------------------------===//
1690
1691/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1692bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1693                                SourceLocation ASLoc,
1694                                SourceLocation ColonLoc,
1695                                AttributeList *Attrs) {
1696  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1697  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1698                                                  ASLoc, ColonLoc);
1699  CurContext->addHiddenDecl(ASDecl);
1700  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1701}
1702
1703/// CheckOverrideControl - Check C++11 override control semantics.
1704void Sema::CheckOverrideControl(Decl *D) {
1705  if (D->isInvalidDecl())
1706    return;
1707
1708  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1709
1710  // Do we know which functions this declaration might be overriding?
1711  bool OverridesAreKnown = !MD ||
1712      (!MD->getParent()->hasAnyDependentBases() &&
1713       !MD->getType()->isDependentType());
1714
1715  if (!MD || !MD->isVirtual()) {
1716    if (OverridesAreKnown) {
1717      if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
1718        Diag(OA->getLocation(),
1719             diag::override_keyword_only_allowed_on_virtual_member_functions)
1720          << "override" << FixItHint::CreateRemoval(OA->getLocation());
1721        D->dropAttr<OverrideAttr>();
1722      }
1723      if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
1724        Diag(FA->getLocation(),
1725             diag::override_keyword_only_allowed_on_virtual_member_functions)
1726          << "final" << FixItHint::CreateRemoval(FA->getLocation());
1727        D->dropAttr<FinalAttr>();
1728      }
1729    }
1730    return;
1731  }
1732
1733  if (!OverridesAreKnown)
1734    return;
1735
1736  // C++11 [class.virtual]p5:
1737  //   If a virtual function is marked with the virt-specifier override and
1738  //   does not override a member function of a base class, the program is
1739  //   ill-formed.
1740  bool HasOverriddenMethods =
1741    MD->begin_overridden_methods() != MD->end_overridden_methods();
1742  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
1743    Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
1744      << MD->getDeclName();
1745}
1746
1747/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1748/// function overrides a virtual member function marked 'final', according to
1749/// C++11 [class.virtual]p4.
1750bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1751                                                  const CXXMethodDecl *Old) {
1752  if (!Old->hasAttr<FinalAttr>())
1753    return false;
1754
1755  Diag(New->getLocation(), diag::err_final_function_overridden)
1756    << New->getDeclName();
1757  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1758  return true;
1759}
1760
1761static bool InitializationHasSideEffects(const FieldDecl &FD) {
1762  const Type *T = FD.getType()->getBaseElementTypeUnsafe();
1763  // FIXME: Destruction of ObjC lifetime types has side-effects.
1764  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
1765    return !RD->isCompleteDefinition() ||
1766           !RD->hasTrivialDefaultConstructor() ||
1767           !RD->hasTrivialDestructor();
1768  return false;
1769}
1770
1771static AttributeList *getMSPropertyAttr(AttributeList *list) {
1772  for (AttributeList* it = list; it != 0; it = it->getNext())
1773    if (it->isDeclspecPropertyAttribute())
1774      return it;
1775  return 0;
1776}
1777
1778/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1779/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1780/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1781/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
1782/// present (but parsing it has been deferred).
1783NamedDecl *
1784Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1785                               MultiTemplateParamsArg TemplateParameterLists,
1786                               Expr *BW, const VirtSpecifiers &VS,
1787                               InClassInitStyle InitStyle) {
1788  const DeclSpec &DS = D.getDeclSpec();
1789  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1790  DeclarationName Name = NameInfo.getName();
1791  SourceLocation Loc = NameInfo.getLoc();
1792
1793  // For anonymous bitfields, the location should point to the type.
1794  if (Loc.isInvalid())
1795    Loc = D.getLocStart();
1796
1797  Expr *BitWidth = static_cast<Expr*>(BW);
1798
1799  assert(isa<CXXRecordDecl>(CurContext));
1800  assert(!DS.isFriendSpecified());
1801
1802  bool isFunc = D.isDeclarationOfFunction();
1803
1804  if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
1805    // The Microsoft extension __interface only permits public member functions
1806    // and prohibits constructors, destructors, operators, non-public member
1807    // functions, static methods and data members.
1808    unsigned InvalidDecl;
1809    bool ShowDeclName = true;
1810    if (!isFunc)
1811      InvalidDecl = (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) ? 0 : 1;
1812    else if (AS != AS_public)
1813      InvalidDecl = 2;
1814    else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
1815      InvalidDecl = 3;
1816    else switch (Name.getNameKind()) {
1817      case DeclarationName::CXXConstructorName:
1818        InvalidDecl = 4;
1819        ShowDeclName = false;
1820        break;
1821
1822      case DeclarationName::CXXDestructorName:
1823        InvalidDecl = 5;
1824        ShowDeclName = false;
1825        break;
1826
1827      case DeclarationName::CXXOperatorName:
1828      case DeclarationName::CXXConversionFunctionName:
1829        InvalidDecl = 6;
1830        break;
1831
1832      default:
1833        InvalidDecl = 0;
1834        break;
1835    }
1836
1837    if (InvalidDecl) {
1838      if (ShowDeclName)
1839        Diag(Loc, diag::err_invalid_member_in_interface)
1840          << (InvalidDecl-1) << Name;
1841      else
1842        Diag(Loc, diag::err_invalid_member_in_interface)
1843          << (InvalidDecl-1) << "";
1844      return 0;
1845    }
1846  }
1847
1848  // C++ 9.2p6: A member shall not be declared to have automatic storage
1849  // duration (auto, register) or with the extern storage-class-specifier.
1850  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1851  // data members and cannot be applied to names declared const or static,
1852  // and cannot be applied to reference members.
1853  switch (DS.getStorageClassSpec()) {
1854  case DeclSpec::SCS_unspecified:
1855  case DeclSpec::SCS_typedef:
1856  case DeclSpec::SCS_static:
1857    break;
1858  case DeclSpec::SCS_mutable:
1859    if (isFunc) {
1860      Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1861
1862      // FIXME: It would be nicer if the keyword was ignored only for this
1863      // declarator. Otherwise we could get follow-up errors.
1864      D.getMutableDeclSpec().ClearStorageClassSpecs();
1865    }
1866    break;
1867  default:
1868    Diag(DS.getStorageClassSpecLoc(),
1869         diag::err_storageclass_invalid_for_member);
1870    D.getMutableDeclSpec().ClearStorageClassSpecs();
1871    break;
1872  }
1873
1874  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1875                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1876                      !isFunc);
1877
1878  if (DS.isConstexprSpecified() && isInstField) {
1879    SemaDiagnosticBuilder B =
1880        Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
1881    SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
1882    if (InitStyle == ICIS_NoInit) {
1883      B << 0 << 0 << FixItHint::CreateReplacement(ConstexprLoc, "const");
1884      D.getMutableDeclSpec().ClearConstexprSpec();
1885      const char *PrevSpec;
1886      unsigned DiagID;
1887      bool Failed = D.getMutableDeclSpec().SetTypeQual(DeclSpec::TQ_const, ConstexprLoc,
1888                                         PrevSpec, DiagID, getLangOpts());
1889      (void)Failed;
1890      assert(!Failed && "Making a constexpr member const shouldn't fail");
1891    } else {
1892      B << 1;
1893      const char *PrevSpec;
1894      unsigned DiagID;
1895      if (D.getMutableDeclSpec().SetStorageClassSpec(
1896          *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID)) {
1897        assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
1898               "This is the only DeclSpec that should fail to be applied");
1899        B << 1;
1900      } else {
1901        B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
1902        isInstField = false;
1903      }
1904    }
1905  }
1906
1907  NamedDecl *Member;
1908  if (isInstField) {
1909    CXXScopeSpec &SS = D.getCXXScopeSpec();
1910
1911    // Data members must have identifiers for names.
1912    if (!Name.isIdentifier()) {
1913      Diag(Loc, diag::err_bad_variable_name)
1914        << Name;
1915      return 0;
1916    }
1917
1918    IdentifierInfo *II = Name.getAsIdentifierInfo();
1919
1920    // Member field could not be with "template" keyword.
1921    // So TemplateParameterLists should be empty in this case.
1922    if (TemplateParameterLists.size()) {
1923      TemplateParameterList* TemplateParams = TemplateParameterLists[0];
1924      if (TemplateParams->size()) {
1925        // There is no such thing as a member field template.
1926        Diag(D.getIdentifierLoc(), diag::err_template_member)
1927            << II
1928            << SourceRange(TemplateParams->getTemplateLoc(),
1929                TemplateParams->getRAngleLoc());
1930      } else {
1931        // There is an extraneous 'template<>' for this member.
1932        Diag(TemplateParams->getTemplateLoc(),
1933            diag::err_template_member_noparams)
1934            << II
1935            << SourceRange(TemplateParams->getTemplateLoc(),
1936                TemplateParams->getRAngleLoc());
1937      }
1938      return 0;
1939    }
1940
1941    if (SS.isSet() && !SS.isInvalid()) {
1942      // The user provided a superfluous scope specifier inside a class
1943      // definition:
1944      //
1945      // class X {
1946      //   int X::member;
1947      // };
1948      if (DeclContext *DC = computeDeclContext(SS, false))
1949        diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
1950      else
1951        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1952          << Name << SS.getRange();
1953
1954      SS.clear();
1955    }
1956
1957    AttributeList *MSPropertyAttr =
1958      getMSPropertyAttr(D.getDeclSpec().getAttributes().getList());
1959    if (MSPropertyAttr) {
1960      Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D,
1961                                BitWidth, InitStyle, AS, MSPropertyAttr);
1962      if (!Member)
1963        return 0;
1964      isInstField = false;
1965    } else {
1966      Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D,
1967                                BitWidth, InitStyle, AS);
1968      assert(Member && "HandleField never returns null");
1969    }
1970  } else {
1971    assert(InitStyle == ICIS_NoInit || D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static);
1972
1973    Member = HandleDeclarator(S, D, TemplateParameterLists);
1974    if (!Member)
1975      return 0;
1976
1977    // Non-instance-fields can't have a bitfield.
1978    if (BitWidth) {
1979      if (Member->isInvalidDecl()) {
1980        // don't emit another diagnostic.
1981      } else if (isa<VarDecl>(Member)) {
1982        // C++ 9.6p3: A bit-field shall not be a static member.
1983        // "static member 'A' cannot be a bit-field"
1984        Diag(Loc, diag::err_static_not_bitfield)
1985          << Name << BitWidth->getSourceRange();
1986      } else if (isa<TypedefDecl>(Member)) {
1987        // "typedef member 'x' cannot be a bit-field"
1988        Diag(Loc, diag::err_typedef_not_bitfield)
1989          << Name << BitWidth->getSourceRange();
1990      } else {
1991        // A function typedef ("typedef int f(); f a;").
1992        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1993        Diag(Loc, diag::err_not_integral_type_bitfield)
1994          << Name << cast<ValueDecl>(Member)->getType()
1995          << BitWidth->getSourceRange();
1996      }
1997
1998      BitWidth = 0;
1999      Member->setInvalidDecl();
2000    }
2001
2002    Member->setAccess(AS);
2003
2004    // If we have declared a member function template or static data member
2005    // template, set the access of the templated declaration as well.
2006    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
2007      FunTmpl->getTemplatedDecl()->setAccess(AS);
2008    else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member))
2009      VarTmpl->getTemplatedDecl()->setAccess(AS);
2010  }
2011
2012  if (VS.isOverrideSpecified())
2013    Member->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
2014  if (VS.isFinalSpecified())
2015    Member->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
2016
2017  if (VS.getLastLocation().isValid()) {
2018    // Update the end location of a method that has a virt-specifiers.
2019    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
2020      MD->setRangeEnd(VS.getLastLocation());
2021  }
2022
2023  CheckOverrideControl(Member);
2024
2025  assert((Name || isInstField) && "No identifier for non-field ?");
2026
2027  if (isInstField) {
2028    FieldDecl *FD = cast<FieldDecl>(Member);
2029    FieldCollector->Add(FD);
2030
2031    if (Diags.getDiagnosticLevel(diag::warn_unused_private_field,
2032                                 FD->getLocation())
2033          != DiagnosticsEngine::Ignored) {
2034      // Remember all explicit private FieldDecls that have a name, no side
2035      // effects and are not part of a dependent type declaration.
2036      if (!FD->isImplicit() && FD->getDeclName() &&
2037          FD->getAccess() == AS_private &&
2038          !FD->hasAttr<UnusedAttr>() &&
2039          !FD->getParent()->isDependentContext() &&
2040          !InitializationHasSideEffects(*FD))
2041        UnusedPrivateFields.insert(FD);
2042    }
2043  }
2044
2045  return Member;
2046}
2047
2048namespace {
2049  class UninitializedFieldVisitor
2050      : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
2051    Sema &S;
2052    ValueDecl *VD;
2053  public:
2054    typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
2055    UninitializedFieldVisitor(Sema &S, ValueDecl *VD) : Inherited(S.Context),
2056                                                        S(S) {
2057      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(VD))
2058        this->VD = IFD->getAnonField();
2059      else
2060        this->VD = VD;
2061    }
2062
2063    void HandleExpr(Expr *E) {
2064      if (!E) return;
2065
2066      // Expressions like x(x) sometimes lack the surrounding expressions
2067      // but need to be checked anyways.
2068      HandleValue(E);
2069      Visit(E);
2070    }
2071
2072    void HandleValue(Expr *E) {
2073      E = E->IgnoreParens();
2074
2075      if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
2076        if (isa<EnumConstantDecl>(ME->getMemberDecl()))
2077          return;
2078
2079        // FieldME is the inner-most MemberExpr that is not an anonymous struct
2080        // or union.
2081        MemberExpr *FieldME = ME;
2082
2083        Expr *Base = E;
2084        while (isa<MemberExpr>(Base)) {
2085          ME = cast<MemberExpr>(Base);
2086
2087          if (isa<VarDecl>(ME->getMemberDecl()))
2088            return;
2089
2090          if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2091            if (!FD->isAnonymousStructOrUnion())
2092              FieldME = ME;
2093
2094          Base = ME->getBase();
2095        }
2096
2097        if (VD == FieldME->getMemberDecl() && isa<CXXThisExpr>(Base)) {
2098          unsigned diag = VD->getType()->isReferenceType()
2099              ? diag::warn_reference_field_is_uninit
2100              : diag::warn_field_is_uninit;
2101          S.Diag(FieldME->getExprLoc(), diag) << VD;
2102        }
2103        return;
2104      }
2105
2106      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
2107        HandleValue(CO->getTrueExpr());
2108        HandleValue(CO->getFalseExpr());
2109        return;
2110      }
2111
2112      if (BinaryConditionalOperator *BCO =
2113              dyn_cast<BinaryConditionalOperator>(E)) {
2114        HandleValue(BCO->getCommon());
2115        HandleValue(BCO->getFalseExpr());
2116        return;
2117      }
2118
2119      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2120        switch (BO->getOpcode()) {
2121        default:
2122          return;
2123        case(BO_PtrMemD):
2124        case(BO_PtrMemI):
2125          HandleValue(BO->getLHS());
2126          return;
2127        case(BO_Comma):
2128          HandleValue(BO->getRHS());
2129          return;
2130        }
2131      }
2132    }
2133
2134    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
2135      if (E->getCastKind() == CK_LValueToRValue)
2136        HandleValue(E->getSubExpr());
2137
2138      Inherited::VisitImplicitCastExpr(E);
2139    }
2140
2141    void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2142      Expr *Callee = E->getCallee();
2143      if (isa<MemberExpr>(Callee))
2144        HandleValue(Callee);
2145
2146      Inherited::VisitCXXMemberCallExpr(E);
2147    }
2148  };
2149  static void CheckInitExprContainsUninitializedFields(Sema &S, Expr *E,
2150                                                       ValueDecl *VD) {
2151    UninitializedFieldVisitor(S, VD).HandleExpr(E);
2152  }
2153} // namespace
2154
2155/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
2156/// in-class initializer for a non-static C++ class member, and after
2157/// instantiating an in-class initializer in a class template. Such actions
2158/// are deferred until the class is complete.
2159void
2160Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation InitLoc,
2161                                       Expr *InitExpr) {
2162  FieldDecl *FD = cast<FieldDecl>(D);
2163  assert(FD->getInClassInitStyle() != ICIS_NoInit &&
2164         "must set init style when field is created");
2165
2166  if (!InitExpr) {
2167    FD->setInvalidDecl();
2168    FD->removeInClassInitializer();
2169    return;
2170  }
2171
2172  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
2173    FD->setInvalidDecl();
2174    FD->removeInClassInitializer();
2175    return;
2176  }
2177
2178  if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit, InitLoc)
2179      != DiagnosticsEngine::Ignored) {
2180    CheckInitExprContainsUninitializedFields(*this, InitExpr, FD);
2181  }
2182
2183  ExprResult Init = InitExpr;
2184  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
2185    InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
2186    InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit
2187        ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
2188        : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
2189    InitializationSequence Seq(*this, Entity, Kind, InitExpr);
2190    Init = Seq.Perform(*this, Entity, Kind, InitExpr);
2191    if (Init.isInvalid()) {
2192      FD->setInvalidDecl();
2193      return;
2194    }
2195  }
2196
2197  // C++11 [class.base.init]p7:
2198  //   The initialization of each base and member constitutes a
2199  //   full-expression.
2200  Init = ActOnFinishFullExpr(Init.take(), InitLoc);
2201  if (Init.isInvalid()) {
2202    FD->setInvalidDecl();
2203    return;
2204  }
2205
2206  InitExpr = Init.release();
2207
2208  FD->setInClassInitializer(InitExpr);
2209}
2210
2211/// \brief Find the direct and/or virtual base specifiers that
2212/// correspond to the given base type, for use in base initialization
2213/// within a constructor.
2214static bool FindBaseInitializer(Sema &SemaRef,
2215                                CXXRecordDecl *ClassDecl,
2216                                QualType BaseType,
2217                                const CXXBaseSpecifier *&DirectBaseSpec,
2218                                const CXXBaseSpecifier *&VirtualBaseSpec) {
2219  // First, check for a direct base class.
2220  DirectBaseSpec = 0;
2221  for (CXXRecordDecl::base_class_const_iterator Base
2222         = ClassDecl->bases_begin();
2223       Base != ClassDecl->bases_end(); ++Base) {
2224    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
2225      // We found a direct base of this type. That's what we're
2226      // initializing.
2227      DirectBaseSpec = &*Base;
2228      break;
2229    }
2230  }
2231
2232  // Check for a virtual base class.
2233  // FIXME: We might be able to short-circuit this if we know in advance that
2234  // there are no virtual bases.
2235  VirtualBaseSpec = 0;
2236  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
2237    // We haven't found a base yet; search the class hierarchy for a
2238    // virtual base class.
2239    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2240                       /*DetectVirtual=*/false);
2241    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
2242                              BaseType, Paths)) {
2243      for (CXXBasePaths::paths_iterator Path = Paths.begin();
2244           Path != Paths.end(); ++Path) {
2245        if (Path->back().Base->isVirtual()) {
2246          VirtualBaseSpec = Path->back().Base;
2247          break;
2248        }
2249      }
2250    }
2251  }
2252
2253  return DirectBaseSpec || VirtualBaseSpec;
2254}
2255
2256/// \brief Handle a C++ member initializer using braced-init-list syntax.
2257MemInitResult
2258Sema::ActOnMemInitializer(Decl *ConstructorD,
2259                          Scope *S,
2260                          CXXScopeSpec &SS,
2261                          IdentifierInfo *MemberOrBase,
2262                          ParsedType TemplateTypeTy,
2263                          const DeclSpec &DS,
2264                          SourceLocation IdLoc,
2265                          Expr *InitList,
2266                          SourceLocation EllipsisLoc) {
2267  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2268                             DS, IdLoc, InitList,
2269                             EllipsisLoc);
2270}
2271
2272/// \brief Handle a C++ member initializer using parentheses syntax.
2273MemInitResult
2274Sema::ActOnMemInitializer(Decl *ConstructorD,
2275                          Scope *S,
2276                          CXXScopeSpec &SS,
2277                          IdentifierInfo *MemberOrBase,
2278                          ParsedType TemplateTypeTy,
2279                          const DeclSpec &DS,
2280                          SourceLocation IdLoc,
2281                          SourceLocation LParenLoc,
2282                          ArrayRef<Expr *> Args,
2283                          SourceLocation RParenLoc,
2284                          SourceLocation EllipsisLoc) {
2285  Expr *List = new (Context) ParenListExpr(Context, LParenLoc,
2286                                           Args, RParenLoc);
2287  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2288                             DS, IdLoc, List, EllipsisLoc);
2289}
2290
2291namespace {
2292
2293// Callback to only accept typo corrections that can be a valid C++ member
2294// intializer: either a non-static field member or a base class.
2295class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
2296public:
2297  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
2298      : ClassDecl(ClassDecl) {}
2299
2300  bool ValidateCandidate(const TypoCorrection &candidate) LLVM_OVERRIDE {
2301    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
2302      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
2303        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
2304      return isa<TypeDecl>(ND);
2305    }
2306    return false;
2307  }
2308
2309private:
2310  CXXRecordDecl *ClassDecl;
2311};
2312
2313}
2314
2315/// \brief Handle a C++ member initializer.
2316MemInitResult
2317Sema::BuildMemInitializer(Decl *ConstructorD,
2318                          Scope *S,
2319                          CXXScopeSpec &SS,
2320                          IdentifierInfo *MemberOrBase,
2321                          ParsedType TemplateTypeTy,
2322                          const DeclSpec &DS,
2323                          SourceLocation IdLoc,
2324                          Expr *Init,
2325                          SourceLocation EllipsisLoc) {
2326  if (!ConstructorD)
2327    return true;
2328
2329  AdjustDeclIfTemplate(ConstructorD);
2330
2331  CXXConstructorDecl *Constructor
2332    = dyn_cast<CXXConstructorDecl>(ConstructorD);
2333  if (!Constructor) {
2334    // The user wrote a constructor initializer on a function that is
2335    // not a C++ constructor. Ignore the error for now, because we may
2336    // have more member initializers coming; we'll diagnose it just
2337    // once in ActOnMemInitializers.
2338    return true;
2339  }
2340
2341  CXXRecordDecl *ClassDecl = Constructor->getParent();
2342
2343  // C++ [class.base.init]p2:
2344  //   Names in a mem-initializer-id are looked up in the scope of the
2345  //   constructor's class and, if not found in that scope, are looked
2346  //   up in the scope containing the constructor's definition.
2347  //   [Note: if the constructor's class contains a member with the
2348  //   same name as a direct or virtual base class of the class, a
2349  //   mem-initializer-id naming the member or base class and composed
2350  //   of a single identifier refers to the class member. A
2351  //   mem-initializer-id for the hidden base class may be specified
2352  //   using a qualified name. ]
2353  if (!SS.getScopeRep() && !TemplateTypeTy) {
2354    // Look for a member, first.
2355    DeclContext::lookup_result Result
2356      = ClassDecl->lookup(MemberOrBase);
2357    if (!Result.empty()) {
2358      ValueDecl *Member;
2359      if ((Member = dyn_cast<FieldDecl>(Result.front())) ||
2360          (Member = dyn_cast<IndirectFieldDecl>(Result.front()))) {
2361        if (EllipsisLoc.isValid())
2362          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
2363            << MemberOrBase
2364            << SourceRange(IdLoc, Init->getSourceRange().getEnd());
2365
2366        return BuildMemberInitializer(Member, Init, IdLoc);
2367      }
2368    }
2369  }
2370  // It didn't name a member, so see if it names a class.
2371  QualType BaseType;
2372  TypeSourceInfo *TInfo = 0;
2373
2374  if (TemplateTypeTy) {
2375    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
2376  } else if (DS.getTypeSpecType() == TST_decltype) {
2377    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
2378  } else {
2379    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
2380    LookupParsedName(R, S, &SS);
2381
2382    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
2383    if (!TyD) {
2384      if (R.isAmbiguous()) return true;
2385
2386      // We don't want access-control diagnostics here.
2387      R.suppressDiagnostics();
2388
2389      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
2390        bool NotUnknownSpecialization = false;
2391        DeclContext *DC = computeDeclContext(SS, false);
2392        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
2393          NotUnknownSpecialization = !Record->hasAnyDependentBases();
2394
2395        if (!NotUnknownSpecialization) {
2396          // When the scope specifier can refer to a member of an unknown
2397          // specialization, we take it as a type name.
2398          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
2399                                       SS.getWithLocInContext(Context),
2400                                       *MemberOrBase, IdLoc);
2401          if (BaseType.isNull())
2402            return true;
2403
2404          R.clear();
2405          R.setLookupName(MemberOrBase);
2406        }
2407      }
2408
2409      // If no results were found, try to correct typos.
2410      TypoCorrection Corr;
2411      MemInitializerValidatorCCC Validator(ClassDecl);
2412      if (R.empty() && BaseType.isNull() &&
2413          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
2414                              Validator, ClassDecl))) {
2415        std::string CorrectedStr(Corr.getAsString(getLangOpts()));
2416        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOpts()));
2417        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
2418          // We have found a non-static data member with a similar
2419          // name to what was typed; complain and initialize that
2420          // member.
2421          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
2422            << MemberOrBase << true << CorrectedQuotedStr
2423            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
2424          Diag(Member->getLocation(), diag::note_previous_decl)
2425            << CorrectedQuotedStr;
2426
2427          return BuildMemberInitializer(Member, Init, IdLoc);
2428        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
2429          const CXXBaseSpecifier *DirectBaseSpec;
2430          const CXXBaseSpecifier *VirtualBaseSpec;
2431          if (FindBaseInitializer(*this, ClassDecl,
2432                                  Context.getTypeDeclType(Type),
2433                                  DirectBaseSpec, VirtualBaseSpec)) {
2434            // We have found a direct or virtual base class with a
2435            // similar name to what was typed; complain and initialize
2436            // that base class.
2437            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
2438              << MemberOrBase << false << CorrectedQuotedStr
2439              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
2440
2441            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
2442                                                             : VirtualBaseSpec;
2443            Diag(BaseSpec->getLocStart(),
2444                 diag::note_base_class_specified_here)
2445              << BaseSpec->getType()
2446              << BaseSpec->getSourceRange();
2447
2448            TyD = Type;
2449          }
2450        }
2451      }
2452
2453      if (!TyD && BaseType.isNull()) {
2454        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
2455          << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
2456        return true;
2457      }
2458    }
2459
2460    if (BaseType.isNull()) {
2461      BaseType = Context.getTypeDeclType(TyD);
2462      if (SS.isSet()) {
2463        NestedNameSpecifier *Qualifier =
2464          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2465
2466        // FIXME: preserve source range information
2467        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
2468      }
2469    }
2470  }
2471
2472  if (!TInfo)
2473    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
2474
2475  return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
2476}
2477
2478/// Checks a member initializer expression for cases where reference (or
2479/// pointer) members are bound to by-value parameters (or their addresses).
2480static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
2481                                               Expr *Init,
2482                                               SourceLocation IdLoc) {
2483  QualType MemberTy = Member->getType();
2484
2485  // We only handle pointers and references currently.
2486  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
2487  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
2488    return;
2489
2490  const bool IsPointer = MemberTy->isPointerType();
2491  if (IsPointer) {
2492    if (const UnaryOperator *Op
2493          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
2494      // The only case we're worried about with pointers requires taking the
2495      // address.
2496      if (Op->getOpcode() != UO_AddrOf)
2497        return;
2498
2499      Init = Op->getSubExpr();
2500    } else {
2501      // We only handle address-of expression initializers for pointers.
2502      return;
2503    }
2504  }
2505
2506  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
2507    // We only warn when referring to a non-reference parameter declaration.
2508    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
2509    if (!Parameter || Parameter->getType()->isReferenceType())
2510      return;
2511
2512    S.Diag(Init->getExprLoc(),
2513           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
2514                     : diag::warn_bind_ref_member_to_parameter)
2515      << Member << Parameter << Init->getSourceRange();
2516  } else {
2517    // Other initializers are fine.
2518    return;
2519  }
2520
2521  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
2522    << (unsigned)IsPointer;
2523}
2524
2525MemInitResult
2526Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
2527                             SourceLocation IdLoc) {
2528  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2529  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2530  assert((DirectMember || IndirectMember) &&
2531         "Member must be a FieldDecl or IndirectFieldDecl");
2532
2533  if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2534    return true;
2535
2536  if (Member->isInvalidDecl())
2537    return true;
2538
2539  // Diagnose value-uses of fields to initialize themselves, e.g.
2540  //   foo(foo)
2541  // where foo is not also a parameter to the constructor.
2542  // TODO: implement -Wuninitialized and fold this into that framework.
2543  MultiExprArg Args;
2544  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2545    Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
2546  } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
2547    Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
2548  } else {
2549    // Template instantiation doesn't reconstruct ParenListExprs for us.
2550    Args = Init;
2551  }
2552
2553  if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit, IdLoc)
2554        != DiagnosticsEngine::Ignored)
2555    for (unsigned i = 0, e = Args.size(); i != e; ++i)
2556      // FIXME: Warn about the case when other fields are used before being
2557      // initialized. For example, let this field be the i'th field. When
2558      // initializing the i'th field, throw a warning if any of the >= i'th
2559      // fields are used, as they are not yet initialized.
2560      // Right now we are only handling the case where the i'th field uses
2561      // itself in its initializer.
2562      // Also need to take into account that some fields may be initialized by
2563      // in-class initializers, see C++11 [class.base.init]p9.
2564      CheckInitExprContainsUninitializedFields(*this, Args[i], Member);
2565
2566  SourceRange InitRange = Init->getSourceRange();
2567
2568  if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
2569    // Can't check initialization for a member of dependent type or when
2570    // any of the arguments are type-dependent expressions.
2571    DiscardCleanupsInEvaluationContext();
2572  } else {
2573    bool InitList = false;
2574    if (isa<InitListExpr>(Init)) {
2575      InitList = true;
2576      Args = Init;
2577    }
2578
2579    // Initialize the member.
2580    InitializedEntity MemberEntity =
2581      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2582                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2583    InitializationKind Kind =
2584      InitList ? InitializationKind::CreateDirectList(IdLoc)
2585               : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
2586                                                  InitRange.getEnd());
2587
2588    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args);
2589    ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args, 0);
2590    if (MemberInit.isInvalid())
2591      return true;
2592
2593    CheckForDanglingReferenceOrPointer(*this, Member, MemberInit.get(), IdLoc);
2594
2595    // C++11 [class.base.init]p7:
2596    //   The initialization of each base and member constitutes a
2597    //   full-expression.
2598    MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin());
2599    if (MemberInit.isInvalid())
2600      return true;
2601
2602    Init = MemberInit.get();
2603  }
2604
2605  if (DirectMember) {
2606    return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
2607                                            InitRange.getBegin(), Init,
2608                                            InitRange.getEnd());
2609  } else {
2610    return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
2611                                            InitRange.getBegin(), Init,
2612                                            InitRange.getEnd());
2613  }
2614}
2615
2616MemInitResult
2617Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
2618                                 CXXRecordDecl *ClassDecl) {
2619  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2620  if (!LangOpts.CPlusPlus11)
2621    return Diag(NameLoc, diag::err_delegating_ctor)
2622      << TInfo->getTypeLoc().getLocalSourceRange();
2623  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2624
2625  bool InitList = true;
2626  MultiExprArg Args = Init;
2627  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2628    InitList = false;
2629    Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
2630  }
2631
2632  SourceRange InitRange = Init->getSourceRange();
2633  // Initialize the object.
2634  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2635                                     QualType(ClassDecl->getTypeForDecl(), 0));
2636  InitializationKind Kind =
2637    InitList ? InitializationKind::CreateDirectList(NameLoc)
2638             : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
2639                                                InitRange.getEnd());
2640  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args);
2641  ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
2642                                              Args, 0);
2643  if (DelegationInit.isInvalid())
2644    return true;
2645
2646  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2647         "Delegating constructor with no target?");
2648
2649  // C++11 [class.base.init]p7:
2650  //   The initialization of each base and member constitutes a
2651  //   full-expression.
2652  DelegationInit = ActOnFinishFullExpr(DelegationInit.get(),
2653                                       InitRange.getBegin());
2654  if (DelegationInit.isInvalid())
2655    return true;
2656
2657  // If we are in a dependent context, template instantiation will
2658  // perform this type-checking again. Just save the arguments that we
2659  // received in a ParenListExpr.
2660  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2661  // of the information that we have about the base
2662  // initializer. However, deconstructing the ASTs is a dicey process,
2663  // and this approach is far more likely to get the corner cases right.
2664  if (CurContext->isDependentContext())
2665    DelegationInit = Owned(Init);
2666
2667  return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
2668                                          DelegationInit.takeAs<Expr>(),
2669                                          InitRange.getEnd());
2670}
2671
2672MemInitResult
2673Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2674                           Expr *Init, CXXRecordDecl *ClassDecl,
2675                           SourceLocation EllipsisLoc) {
2676  SourceLocation BaseLoc
2677    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2678
2679  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2680    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2681             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2682
2683  // C++ [class.base.init]p2:
2684  //   [...] Unless the mem-initializer-id names a nonstatic data
2685  //   member of the constructor's class or a direct or virtual base
2686  //   of that class, the mem-initializer is ill-formed. A
2687  //   mem-initializer-list can initialize a base class using any
2688  //   name that denotes that base class type.
2689  bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
2690
2691  SourceRange InitRange = Init->getSourceRange();
2692  if (EllipsisLoc.isValid()) {
2693    // This is a pack expansion.
2694    if (!BaseType->containsUnexpandedParameterPack())  {
2695      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2696        << SourceRange(BaseLoc, InitRange.getEnd());
2697
2698      EllipsisLoc = SourceLocation();
2699    }
2700  } else {
2701    // Check for any unexpanded parameter packs.
2702    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2703      return true;
2704
2705    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2706      return true;
2707  }
2708
2709  // Check for direct and virtual base classes.
2710  const CXXBaseSpecifier *DirectBaseSpec = 0;
2711  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2712  if (!Dependent) {
2713    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2714                                       BaseType))
2715      return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
2716
2717    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2718                        VirtualBaseSpec);
2719
2720    // C++ [base.class.init]p2:
2721    // Unless the mem-initializer-id names a nonstatic data member of the
2722    // constructor's class or a direct or virtual base of that class, the
2723    // mem-initializer is ill-formed.
2724    if (!DirectBaseSpec && !VirtualBaseSpec) {
2725      // If the class has any dependent bases, then it's possible that
2726      // one of those types will resolve to the same type as
2727      // BaseType. Therefore, just treat this as a dependent base
2728      // class initialization.  FIXME: Should we try to check the
2729      // initialization anyway? It seems odd.
2730      if (ClassDecl->hasAnyDependentBases())
2731        Dependent = true;
2732      else
2733        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2734          << BaseType << Context.getTypeDeclType(ClassDecl)
2735          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2736    }
2737  }
2738
2739  if (Dependent) {
2740    DiscardCleanupsInEvaluationContext();
2741
2742    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2743                                            /*IsVirtual=*/false,
2744                                            InitRange.getBegin(), Init,
2745                                            InitRange.getEnd(), EllipsisLoc);
2746  }
2747
2748  // C++ [base.class.init]p2:
2749  //   If a mem-initializer-id is ambiguous because it designates both
2750  //   a direct non-virtual base class and an inherited virtual base
2751  //   class, the mem-initializer is ill-formed.
2752  if (DirectBaseSpec && VirtualBaseSpec)
2753    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2754      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2755
2756  const CXXBaseSpecifier *BaseSpec = DirectBaseSpec;
2757  if (!BaseSpec)
2758    BaseSpec = VirtualBaseSpec;
2759
2760  // Initialize the base.
2761  bool InitList = true;
2762  MultiExprArg Args = Init;
2763  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2764    InitList = false;
2765    Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
2766  }
2767
2768  InitializedEntity BaseEntity =
2769    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2770  InitializationKind Kind =
2771    InitList ? InitializationKind::CreateDirectList(BaseLoc)
2772             : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
2773                                                InitRange.getEnd());
2774  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args);
2775  ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, 0);
2776  if (BaseInit.isInvalid())
2777    return true;
2778
2779  // C++11 [class.base.init]p7:
2780  //   The initialization of each base and member constitutes a
2781  //   full-expression.
2782  BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin());
2783  if (BaseInit.isInvalid())
2784    return true;
2785
2786  // If we are in a dependent context, template instantiation will
2787  // perform this type-checking again. Just save the arguments that we
2788  // received in a ParenListExpr.
2789  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2790  // of the information that we have about the base
2791  // initializer. However, deconstructing the ASTs is a dicey process,
2792  // and this approach is far more likely to get the corner cases right.
2793  if (CurContext->isDependentContext())
2794    BaseInit = Owned(Init);
2795
2796  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2797                                          BaseSpec->isVirtual(),
2798                                          InitRange.getBegin(),
2799                                          BaseInit.takeAs<Expr>(),
2800                                          InitRange.getEnd(), EllipsisLoc);
2801}
2802
2803// Create a static_cast\<T&&>(expr).
2804static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) {
2805  if (T.isNull()) T = E->getType();
2806  QualType TargetType = SemaRef.BuildReferenceType(
2807      T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName());
2808  SourceLocation ExprLoc = E->getLocStart();
2809  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2810      TargetType, ExprLoc);
2811
2812  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2813                                   SourceRange(ExprLoc, ExprLoc),
2814                                   E->getSourceRange()).take();
2815}
2816
2817/// ImplicitInitializerKind - How an implicit base or member initializer should
2818/// initialize its base or member.
2819enum ImplicitInitializerKind {
2820  IIK_Default,
2821  IIK_Copy,
2822  IIK_Move,
2823  IIK_Inherit
2824};
2825
2826static bool
2827BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2828                             ImplicitInitializerKind ImplicitInitKind,
2829                             CXXBaseSpecifier *BaseSpec,
2830                             bool IsInheritedVirtualBase,
2831                             CXXCtorInitializer *&CXXBaseInit) {
2832  InitializedEntity InitEntity
2833    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2834                                        IsInheritedVirtualBase);
2835
2836  ExprResult BaseInit;
2837
2838  switch (ImplicitInitKind) {
2839  case IIK_Inherit: {
2840    const CXXRecordDecl *Inherited =
2841        Constructor->getInheritedConstructor()->getParent();
2842    const CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
2843    if (Base && Inherited->getCanonicalDecl() == Base->getCanonicalDecl()) {
2844      // C++11 [class.inhctor]p8:
2845      //   Each expression in the expression-list is of the form
2846      //   static_cast<T&&>(p), where p is the name of the corresponding
2847      //   constructor parameter and T is the declared type of p.
2848      SmallVector<Expr*, 16> Args;
2849      for (unsigned I = 0, E = Constructor->getNumParams(); I != E; ++I) {
2850        ParmVarDecl *PD = Constructor->getParamDecl(I);
2851        ExprResult ArgExpr =
2852            SemaRef.BuildDeclRefExpr(PD, PD->getType().getNonReferenceType(),
2853                                     VK_LValue, SourceLocation());
2854        if (ArgExpr.isInvalid())
2855          return true;
2856        Args.push_back(CastForMoving(SemaRef, ArgExpr.take(), PD->getType()));
2857      }
2858
2859      InitializationKind InitKind = InitializationKind::CreateDirect(
2860          Constructor->getLocation(), SourceLocation(), SourceLocation());
2861      InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, Args);
2862      BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, Args);
2863      break;
2864    }
2865  }
2866  // Fall through.
2867  case IIK_Default: {
2868    InitializationKind InitKind
2869      = InitializationKind::CreateDefault(Constructor->getLocation());
2870    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
2871    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
2872    break;
2873  }
2874
2875  case IIK_Move:
2876  case IIK_Copy: {
2877    bool Moving = ImplicitInitKind == IIK_Move;
2878    ParmVarDecl *Param = Constructor->getParamDecl(0);
2879    QualType ParamType = Param->getType().getNonReferenceType();
2880
2881    Expr *CopyCtorArg =
2882      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2883                          SourceLocation(), Param, false,
2884                          Constructor->getLocation(), ParamType,
2885                          VK_LValue, 0);
2886
2887    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
2888
2889    // Cast to the base class to avoid ambiguities.
2890    QualType ArgTy =
2891      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2892                                       ParamType.getQualifiers());
2893
2894    if (Moving) {
2895      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2896    }
2897
2898    CXXCastPath BasePath;
2899    BasePath.push_back(BaseSpec);
2900    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2901                                            CK_UncheckedDerivedToBase,
2902                                            Moving ? VK_XValue : VK_LValue,
2903                                            &BasePath).take();
2904
2905    InitializationKind InitKind
2906      = InitializationKind::CreateDirect(Constructor->getLocation(),
2907                                         SourceLocation(), SourceLocation());
2908    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg);
2909    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg);
2910    break;
2911  }
2912  }
2913
2914  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2915  if (BaseInit.isInvalid())
2916    return true;
2917
2918  CXXBaseInit =
2919    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2920               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2921                                                        SourceLocation()),
2922                                             BaseSpec->isVirtual(),
2923                                             SourceLocation(),
2924                                             BaseInit.takeAs<Expr>(),
2925                                             SourceLocation(),
2926                                             SourceLocation());
2927
2928  return false;
2929}
2930
2931static bool RefersToRValueRef(Expr *MemRef) {
2932  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2933  return Referenced->getType()->isRValueReferenceType();
2934}
2935
2936static bool
2937BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2938                               ImplicitInitializerKind ImplicitInitKind,
2939                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2940                               CXXCtorInitializer *&CXXMemberInit) {
2941  if (Field->isInvalidDecl())
2942    return true;
2943
2944  SourceLocation Loc = Constructor->getLocation();
2945
2946  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2947    bool Moving = ImplicitInitKind == IIK_Move;
2948    ParmVarDecl *Param = Constructor->getParamDecl(0);
2949    QualType ParamType = Param->getType().getNonReferenceType();
2950
2951    // Suppress copying zero-width bitfields.
2952    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2953      return false;
2954
2955    Expr *MemberExprBase =
2956      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2957                          SourceLocation(), Param, false,
2958                          Loc, ParamType, VK_LValue, 0);
2959
2960    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
2961
2962    if (Moving) {
2963      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2964    }
2965
2966    // Build a reference to this field within the parameter.
2967    CXXScopeSpec SS;
2968    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2969                              Sema::LookupMemberName);
2970    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2971                                  : cast<ValueDecl>(Field), AS_public);
2972    MemberLookup.resolveKind();
2973    ExprResult CtorArg
2974      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2975                                         ParamType, Loc,
2976                                         /*IsArrow=*/false,
2977                                         SS,
2978                                         /*TemplateKWLoc=*/SourceLocation(),
2979                                         /*FirstQualifierInScope=*/0,
2980                                         MemberLookup,
2981                                         /*TemplateArgs=*/0);
2982    if (CtorArg.isInvalid())
2983      return true;
2984
2985    // C++11 [class.copy]p15:
2986    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2987    //     with static_cast<T&&>(x.m);
2988    if (RefersToRValueRef(CtorArg.get())) {
2989      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2990    }
2991
2992    // When the field we are copying is an array, create index variables for
2993    // each dimension of the array. We use these index variables to subscript
2994    // the source array, and other clients (e.g., CodeGen) will perform the
2995    // necessary iteration with these index variables.
2996    SmallVector<VarDecl *, 4> IndexVariables;
2997    QualType BaseType = Field->getType();
2998    QualType SizeType = SemaRef.Context.getSizeType();
2999    bool InitializingArray = false;
3000    while (const ConstantArrayType *Array
3001                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
3002      InitializingArray = true;
3003      // Create the iteration variable for this array index.
3004      IdentifierInfo *IterationVarName = 0;
3005      {
3006        SmallString<8> Str;
3007        llvm::raw_svector_ostream OS(Str);
3008        OS << "__i" << IndexVariables.size();
3009        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
3010      }
3011      VarDecl *IterationVar
3012        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
3013                          IterationVarName, SizeType,
3014                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
3015                          SC_None);
3016      IndexVariables.push_back(IterationVar);
3017
3018      // Create a reference to the iteration variable.
3019      ExprResult IterationVarRef
3020        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
3021      assert(!IterationVarRef.isInvalid() &&
3022             "Reference to invented variable cannot fail!");
3023      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
3024      assert(!IterationVarRef.isInvalid() &&
3025             "Conversion of invented variable cannot fail!");
3026
3027      // Subscript the array with this iteration variable.
3028      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
3029                                                        IterationVarRef.take(),
3030                                                        Loc);
3031      if (CtorArg.isInvalid())
3032        return true;
3033
3034      BaseType = Array->getElementType();
3035    }
3036
3037    // The array subscript expression is an lvalue, which is wrong for moving.
3038    if (Moving && InitializingArray)
3039      CtorArg = CastForMoving(SemaRef, CtorArg.take());
3040
3041    // Construct the entity that we will be initializing. For an array, this
3042    // will be first element in the array, which may require several levels
3043    // of array-subscript entities.
3044    SmallVector<InitializedEntity, 4> Entities;
3045    Entities.reserve(1 + IndexVariables.size());
3046    if (Indirect)
3047      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
3048    else
3049      Entities.push_back(InitializedEntity::InitializeMember(Field));
3050    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
3051      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
3052                                                              0,
3053                                                              Entities.back()));
3054
3055    // Direct-initialize to use the copy constructor.
3056    InitializationKind InitKind =
3057      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
3058
3059    Expr *CtorArgE = CtorArg.takeAs<Expr>();
3060    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind, CtorArgE);
3061
3062    ExprResult MemberInit
3063      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
3064                        MultiExprArg(&CtorArgE, 1));
3065    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
3066    if (MemberInit.isInvalid())
3067      return true;
3068
3069    if (Indirect) {
3070      assert(IndexVariables.size() == 0 &&
3071             "Indirect field improperly initialized");
3072      CXXMemberInit
3073        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
3074                                                   Loc, Loc,
3075                                                   MemberInit.takeAs<Expr>(),
3076                                                   Loc);
3077    } else
3078      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
3079                                                 Loc, MemberInit.takeAs<Expr>(),
3080                                                 Loc,
3081                                                 IndexVariables.data(),
3082                                                 IndexVariables.size());
3083    return false;
3084  }
3085
3086  assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&
3087         "Unhandled implicit init kind!");
3088
3089  QualType FieldBaseElementType =
3090    SemaRef.Context.getBaseElementType(Field->getType());
3091
3092  if (FieldBaseElementType->isRecordType()) {
3093    InitializedEntity InitEntity
3094      = Indirect? InitializedEntity::InitializeMember(Indirect)
3095                : InitializedEntity::InitializeMember(Field);
3096    InitializationKind InitKind =
3097      InitializationKind::CreateDefault(Loc);
3098
3099    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
3100    ExprResult MemberInit =
3101      InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
3102
3103    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
3104    if (MemberInit.isInvalid())
3105      return true;
3106
3107    if (Indirect)
3108      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
3109                                                               Indirect, Loc,
3110                                                               Loc,
3111                                                               MemberInit.get(),
3112                                                               Loc);
3113    else
3114      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
3115                                                               Field, Loc, Loc,
3116                                                               MemberInit.get(),
3117                                                               Loc);
3118    return false;
3119  }
3120
3121  if (!Field->getParent()->isUnion()) {
3122    if (FieldBaseElementType->isReferenceType()) {
3123      SemaRef.Diag(Constructor->getLocation(),
3124                   diag::err_uninitialized_member_in_ctor)
3125      << (int)Constructor->isImplicit()
3126      << SemaRef.Context.getTagDeclType(Constructor->getParent())
3127      << 0 << Field->getDeclName();
3128      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
3129      return true;
3130    }
3131
3132    if (FieldBaseElementType.isConstQualified()) {
3133      SemaRef.Diag(Constructor->getLocation(),
3134                   diag::err_uninitialized_member_in_ctor)
3135      << (int)Constructor->isImplicit()
3136      << SemaRef.Context.getTagDeclType(Constructor->getParent())
3137      << 1 << Field->getDeclName();
3138      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
3139      return true;
3140    }
3141  }
3142
3143  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
3144      FieldBaseElementType->isObjCRetainableType() &&
3145      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
3146      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
3147    // ARC:
3148    //   Default-initialize Objective-C pointers to NULL.
3149    CXXMemberInit
3150      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
3151                                                 Loc, Loc,
3152                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
3153                                                 Loc);
3154    return false;
3155  }
3156
3157  // Nothing to initialize.
3158  CXXMemberInit = 0;
3159  return false;
3160}
3161
3162namespace {
3163struct BaseAndFieldInfo {
3164  Sema &S;
3165  CXXConstructorDecl *Ctor;
3166  bool AnyErrorsInInits;
3167  ImplicitInitializerKind IIK;
3168  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
3169  SmallVector<CXXCtorInitializer*, 8> AllToInit;
3170
3171  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
3172    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
3173    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
3174    if (Generated && Ctor->isCopyConstructor())
3175      IIK = IIK_Copy;
3176    else if (Generated && Ctor->isMoveConstructor())
3177      IIK = IIK_Move;
3178    else if (Ctor->getInheritedConstructor())
3179      IIK = IIK_Inherit;
3180    else
3181      IIK = IIK_Default;
3182  }
3183
3184  bool isImplicitCopyOrMove() const {
3185    switch (IIK) {
3186    case IIK_Copy:
3187    case IIK_Move:
3188      return true;
3189
3190    case IIK_Default:
3191    case IIK_Inherit:
3192      return false;
3193    }
3194
3195    llvm_unreachable("Invalid ImplicitInitializerKind!");
3196  }
3197
3198  bool addFieldInitializer(CXXCtorInitializer *Init) {
3199    AllToInit.push_back(Init);
3200
3201    // Check whether this initializer makes the field "used".
3202    if (Init->getInit()->HasSideEffects(S.Context))
3203      S.UnusedPrivateFields.remove(Init->getAnyMember());
3204
3205    return false;
3206  }
3207};
3208}
3209
3210/// \brief Determine whether the given indirect field declaration is somewhere
3211/// within an anonymous union.
3212static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
3213  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
3214                                      CEnd = F->chain_end();
3215       C != CEnd; ++C)
3216    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
3217      if (Record->isUnion())
3218        return true;
3219
3220  return false;
3221}
3222
3223/// \brief Determine whether the given type is an incomplete or zero-lenfgth
3224/// array type.
3225static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
3226  if (T->isIncompleteArrayType())
3227    return true;
3228
3229  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
3230    if (!ArrayT->getSize())
3231      return true;
3232
3233    T = ArrayT->getElementType();
3234  }
3235
3236  return false;
3237}
3238
3239static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
3240                                    FieldDecl *Field,
3241                                    IndirectFieldDecl *Indirect = 0) {
3242  if (Field->isInvalidDecl())
3243    return false;
3244
3245  // Overwhelmingly common case: we have a direct initializer for this field.
3246  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field))
3247    return Info.addFieldInitializer(Init);
3248
3249  // C++11 [class.base.init]p8: if the entity is a non-static data member that
3250  // has a brace-or-equal-initializer, the entity is initialized as specified
3251  // in [dcl.init].
3252  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
3253    Expr *DIE = CXXDefaultInitExpr::Create(SemaRef.Context,
3254                                           Info.Ctor->getLocation(), Field);
3255    CXXCtorInitializer *Init;
3256    if (Indirect)
3257      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
3258                                                      SourceLocation(),
3259                                                      SourceLocation(), DIE,
3260                                                      SourceLocation());
3261    else
3262      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
3263                                                      SourceLocation(),
3264                                                      SourceLocation(), DIE,
3265                                                      SourceLocation());
3266    return Info.addFieldInitializer(Init);
3267  }
3268
3269  // Don't build an implicit initializer for union members if none was
3270  // explicitly specified.
3271  if (Field->getParent()->isUnion() ||
3272      (Indirect && isWithinAnonymousUnion(Indirect)))
3273    return false;
3274
3275  // Don't initialize incomplete or zero-length arrays.
3276  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
3277    return false;
3278
3279  // Don't try to build an implicit initializer if there were semantic
3280  // errors in any of the initializers (and therefore we might be
3281  // missing some that the user actually wrote).
3282  if (Info.AnyErrorsInInits)
3283    return false;
3284
3285  CXXCtorInitializer *Init = 0;
3286  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
3287                                     Indirect, Init))
3288    return true;
3289
3290  if (!Init)
3291    return false;
3292
3293  return Info.addFieldInitializer(Init);
3294}
3295
3296bool
3297Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
3298                               CXXCtorInitializer *Initializer) {
3299  assert(Initializer->isDelegatingInitializer());
3300  Constructor->setNumCtorInitializers(1);
3301  CXXCtorInitializer **initializer =
3302    new (Context) CXXCtorInitializer*[1];
3303  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
3304  Constructor->setCtorInitializers(initializer);
3305
3306  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
3307    MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
3308    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
3309  }
3310
3311  DelegatingCtorDecls.push_back(Constructor);
3312
3313  return false;
3314}
3315
3316bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
3317                               ArrayRef<CXXCtorInitializer *> Initializers) {
3318  if (Constructor->isDependentContext()) {
3319    // Just store the initializers as written, they will be checked during
3320    // instantiation.
3321    if (!Initializers.empty()) {
3322      Constructor->setNumCtorInitializers(Initializers.size());
3323      CXXCtorInitializer **baseOrMemberInitializers =
3324        new (Context) CXXCtorInitializer*[Initializers.size()];
3325      memcpy(baseOrMemberInitializers, Initializers.data(),
3326             Initializers.size() * sizeof(CXXCtorInitializer*));
3327      Constructor->setCtorInitializers(baseOrMemberInitializers);
3328    }
3329
3330    // Let template instantiation know whether we had errors.
3331    if (AnyErrors)
3332      Constructor->setInvalidDecl();
3333
3334    return false;
3335  }
3336
3337  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
3338
3339  // We need to build the initializer AST according to order of construction
3340  // and not what user specified in the Initializers list.
3341  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
3342  if (!ClassDecl)
3343    return true;
3344
3345  bool HadError = false;
3346
3347  for (unsigned i = 0; i < Initializers.size(); i++) {
3348    CXXCtorInitializer *Member = Initializers[i];
3349
3350    if (Member->isBaseInitializer())
3351      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
3352    else
3353      Info.AllBaseFields[Member->getAnyMember()] = Member;
3354  }
3355
3356  // Keep track of the direct virtual bases.
3357  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
3358  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
3359       E = ClassDecl->bases_end(); I != E; ++I) {
3360    if (I->isVirtual())
3361      DirectVBases.insert(I);
3362  }
3363
3364  // Push virtual bases before others.
3365  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3366       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3367
3368    if (CXXCtorInitializer *Value
3369        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
3370      // [class.base.init]p7, per DR257:
3371      //   A mem-initializer where the mem-initializer-id names a virtual base
3372      //   class is ignored during execution of a constructor of any class that
3373      //   is not the most derived class.
3374      if (ClassDecl->isAbstract()) {
3375        // FIXME: Provide a fixit to remove the base specifier. This requires
3376        // tracking the location of the associated comma for a base specifier.
3377        Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored)
3378          << VBase->getType() << ClassDecl;
3379        DiagnoseAbstractType(ClassDecl);
3380      }
3381
3382      Info.AllToInit.push_back(Value);
3383    } else if (!AnyErrors && !ClassDecl->isAbstract()) {
3384      // [class.base.init]p8, per DR257:
3385      //   If a given [...] base class is not named by a mem-initializer-id
3386      //   [...] and the entity is not a virtual base class of an abstract
3387      //   class, then [...] the entity is default-initialized.
3388      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
3389      CXXCtorInitializer *CXXBaseInit;
3390      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3391                                       VBase, IsInheritedVirtualBase,
3392                                       CXXBaseInit)) {
3393        HadError = true;
3394        continue;
3395      }
3396
3397      Info.AllToInit.push_back(CXXBaseInit);
3398    }
3399  }
3400
3401  // Non-virtual bases.
3402  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3403       E = ClassDecl->bases_end(); Base != E; ++Base) {
3404    // Virtuals are in the virtual base list and already constructed.
3405    if (Base->isVirtual())
3406      continue;
3407
3408    if (CXXCtorInitializer *Value
3409          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
3410      Info.AllToInit.push_back(Value);
3411    } else if (!AnyErrors) {
3412      CXXCtorInitializer *CXXBaseInit;
3413      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3414                                       Base, /*IsInheritedVirtualBase=*/false,
3415                                       CXXBaseInit)) {
3416        HadError = true;
3417        continue;
3418      }
3419
3420      Info.AllToInit.push_back(CXXBaseInit);
3421    }
3422  }
3423
3424  // Fields.
3425  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
3426                               MemEnd = ClassDecl->decls_end();
3427       Mem != MemEnd; ++Mem) {
3428    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
3429      // C++ [class.bit]p2:
3430      //   A declaration for a bit-field that omits the identifier declares an
3431      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
3432      //   initialized.
3433      if (F->isUnnamedBitfield())
3434        continue;
3435
3436      // If we're not generating the implicit copy/move constructor, then we'll
3437      // handle anonymous struct/union fields based on their individual
3438      // indirect fields.
3439      if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
3440        continue;
3441
3442      if (CollectFieldInitializer(*this, Info, F))
3443        HadError = true;
3444      continue;
3445    }
3446
3447    // Beyond this point, we only consider default initialization.
3448    if (Info.isImplicitCopyOrMove())
3449      continue;
3450
3451    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
3452      if (F->getType()->isIncompleteArrayType()) {
3453        assert(ClassDecl->hasFlexibleArrayMember() &&
3454               "Incomplete array type is not valid");
3455        continue;
3456      }
3457
3458      // Initialize each field of an anonymous struct individually.
3459      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
3460        HadError = true;
3461
3462      continue;
3463    }
3464  }
3465
3466  unsigned NumInitializers = Info.AllToInit.size();
3467  if (NumInitializers > 0) {
3468    Constructor->setNumCtorInitializers(NumInitializers);
3469    CXXCtorInitializer **baseOrMemberInitializers =
3470      new (Context) CXXCtorInitializer*[NumInitializers];
3471    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
3472           NumInitializers * sizeof(CXXCtorInitializer*));
3473    Constructor->setCtorInitializers(baseOrMemberInitializers);
3474
3475    // Constructors implicitly reference the base and member
3476    // destructors.
3477    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
3478                                           Constructor->getParent());
3479  }
3480
3481  return HadError;
3482}
3483
3484static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
3485  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
3486    const RecordDecl *RD = RT->getDecl();
3487    if (RD->isAnonymousStructOrUnion()) {
3488      for (RecordDecl::field_iterator Field = RD->field_begin(),
3489          E = RD->field_end(); Field != E; ++Field)
3490        PopulateKeysForFields(*Field, IdealInits);
3491      return;
3492    }
3493  }
3494  IdealInits.push_back(Field);
3495}
3496
3497static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
3498  return Context.getCanonicalType(BaseType).getTypePtr();
3499}
3500
3501static const void *GetKeyForMember(ASTContext &Context,
3502                                   CXXCtorInitializer *Member) {
3503  if (!Member->isAnyMemberInitializer())
3504    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
3505
3506  return Member->getAnyMember();
3507}
3508
3509static void DiagnoseBaseOrMemInitializerOrder(
3510    Sema &SemaRef, const CXXConstructorDecl *Constructor,
3511    ArrayRef<CXXCtorInitializer *> Inits) {
3512  if (Constructor->getDeclContext()->isDependentContext())
3513    return;
3514
3515  // Don't check initializers order unless the warning is enabled at the
3516  // location of at least one initializer.
3517  bool ShouldCheckOrder = false;
3518  for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
3519    CXXCtorInitializer *Init = Inits[InitIndex];
3520    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3521                                         Init->getSourceLocation())
3522          != DiagnosticsEngine::Ignored) {
3523      ShouldCheckOrder = true;
3524      break;
3525    }
3526  }
3527  if (!ShouldCheckOrder)
3528    return;
3529
3530  // Build the list of bases and members in the order that they'll
3531  // actually be initialized.  The explicit initializers should be in
3532  // this same order but may be missing things.
3533  SmallVector<const void*, 32> IdealInitKeys;
3534
3535  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3536
3537  // 1. Virtual bases.
3538  for (CXXRecordDecl::base_class_const_iterator VBase =
3539       ClassDecl->vbases_begin(),
3540       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3541    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3542
3543  // 2. Non-virtual bases.
3544  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3545       E = ClassDecl->bases_end(); Base != E; ++Base) {
3546    if (Base->isVirtual())
3547      continue;
3548    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3549  }
3550
3551  // 3. Direct fields.
3552  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3553       E = ClassDecl->field_end(); Field != E; ++Field) {
3554    if (Field->isUnnamedBitfield())
3555      continue;
3556
3557    PopulateKeysForFields(*Field, IdealInitKeys);
3558  }
3559
3560  unsigned NumIdealInits = IdealInitKeys.size();
3561  unsigned IdealIndex = 0;
3562
3563  CXXCtorInitializer *PrevInit = 0;
3564  for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
3565    CXXCtorInitializer *Init = Inits[InitIndex];
3566    const void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3567
3568    // Scan forward to try to find this initializer in the idealized
3569    // initializers list.
3570    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3571      if (InitKey == IdealInitKeys[IdealIndex])
3572        break;
3573
3574    // If we didn't find this initializer, it must be because we
3575    // scanned past it on a previous iteration.  That can only
3576    // happen if we're out of order;  emit a warning.
3577    if (IdealIndex == NumIdealInits && PrevInit) {
3578      Sema::SemaDiagnosticBuilder D =
3579        SemaRef.Diag(PrevInit->getSourceLocation(),
3580                     diag::warn_initializer_out_of_order);
3581
3582      if (PrevInit->isAnyMemberInitializer())
3583        D << 0 << PrevInit->getAnyMember()->getDeclName();
3584      else
3585        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3586
3587      if (Init->isAnyMemberInitializer())
3588        D << 0 << Init->getAnyMember()->getDeclName();
3589      else
3590        D << 1 << Init->getTypeSourceInfo()->getType();
3591
3592      // Move back to the initializer's location in the ideal list.
3593      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3594        if (InitKey == IdealInitKeys[IdealIndex])
3595          break;
3596
3597      assert(IdealIndex != NumIdealInits &&
3598             "initializer not found in initializer list");
3599    }
3600
3601    PrevInit = Init;
3602  }
3603}
3604
3605namespace {
3606bool CheckRedundantInit(Sema &S,
3607                        CXXCtorInitializer *Init,
3608                        CXXCtorInitializer *&PrevInit) {
3609  if (!PrevInit) {
3610    PrevInit = Init;
3611    return false;
3612  }
3613
3614  if (FieldDecl *Field = Init->getAnyMember())
3615    S.Diag(Init->getSourceLocation(),
3616           diag::err_multiple_mem_initialization)
3617      << Field->getDeclName()
3618      << Init->getSourceRange();
3619  else {
3620    const Type *BaseClass = Init->getBaseClass();
3621    assert(BaseClass && "neither field nor base");
3622    S.Diag(Init->getSourceLocation(),
3623           diag::err_multiple_base_initialization)
3624      << QualType(BaseClass, 0)
3625      << Init->getSourceRange();
3626  }
3627  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3628    << 0 << PrevInit->getSourceRange();
3629
3630  return true;
3631}
3632
3633typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3634typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3635
3636bool CheckRedundantUnionInit(Sema &S,
3637                             CXXCtorInitializer *Init,
3638                             RedundantUnionMap &Unions) {
3639  FieldDecl *Field = Init->getAnyMember();
3640  RecordDecl *Parent = Field->getParent();
3641  NamedDecl *Child = Field;
3642
3643  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3644    if (Parent->isUnion()) {
3645      UnionEntry &En = Unions[Parent];
3646      if (En.first && En.first != Child) {
3647        S.Diag(Init->getSourceLocation(),
3648               diag::err_multiple_mem_union_initialization)
3649          << Field->getDeclName()
3650          << Init->getSourceRange();
3651        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3652          << 0 << En.second->getSourceRange();
3653        return true;
3654      }
3655      if (!En.first) {
3656        En.first = Child;
3657        En.second = Init;
3658      }
3659      if (!Parent->isAnonymousStructOrUnion())
3660        return false;
3661    }
3662
3663    Child = Parent;
3664    Parent = cast<RecordDecl>(Parent->getDeclContext());
3665  }
3666
3667  return false;
3668}
3669}
3670
3671/// ActOnMemInitializers - Handle the member initializers for a constructor.
3672void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3673                                SourceLocation ColonLoc,
3674                                ArrayRef<CXXCtorInitializer*> MemInits,
3675                                bool AnyErrors) {
3676  if (!ConstructorDecl)
3677    return;
3678
3679  AdjustDeclIfTemplate(ConstructorDecl);
3680
3681  CXXConstructorDecl *Constructor
3682    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3683
3684  if (!Constructor) {
3685    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3686    return;
3687  }
3688
3689  // Mapping for the duplicate initializers check.
3690  // For member initializers, this is keyed with a FieldDecl*.
3691  // For base initializers, this is keyed with a Type*.
3692  llvm::DenseMap<const void *, CXXCtorInitializer *> Members;
3693
3694  // Mapping for the inconsistent anonymous-union initializers check.
3695  RedundantUnionMap MemberUnions;
3696
3697  bool HadError = false;
3698  for (unsigned i = 0; i < MemInits.size(); i++) {
3699    CXXCtorInitializer *Init = MemInits[i];
3700
3701    // Set the source order index.
3702    Init->setSourceOrder(i);
3703
3704    if (Init->isAnyMemberInitializer()) {
3705      FieldDecl *Field = Init->getAnyMember();
3706      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3707          CheckRedundantUnionInit(*this, Init, MemberUnions))
3708        HadError = true;
3709    } else if (Init->isBaseInitializer()) {
3710      const void *Key =
3711          GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3712      if (CheckRedundantInit(*this, Init, Members[Key]))
3713        HadError = true;
3714    } else {
3715      assert(Init->isDelegatingInitializer());
3716      // This must be the only initializer
3717      if (MemInits.size() != 1) {
3718        Diag(Init->getSourceLocation(),
3719             diag::err_delegating_initializer_alone)
3720          << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
3721        // We will treat this as being the only initializer.
3722      }
3723      SetDelegatingInitializer(Constructor, MemInits[i]);
3724      // Return immediately as the initializer is set.
3725      return;
3726    }
3727  }
3728
3729  if (HadError)
3730    return;
3731
3732  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
3733
3734  SetCtorInitializers(Constructor, AnyErrors, MemInits);
3735}
3736
3737void
3738Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3739                                             CXXRecordDecl *ClassDecl) {
3740  // Ignore dependent contexts. Also ignore unions, since their members never
3741  // have destructors implicitly called.
3742  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3743    return;
3744
3745  // FIXME: all the access-control diagnostics are positioned on the
3746  // field/base declaration.  That's probably good; that said, the
3747  // user might reasonably want to know why the destructor is being
3748  // emitted, and we currently don't say.
3749
3750  // Non-static data members.
3751  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3752       E = ClassDecl->field_end(); I != E; ++I) {
3753    FieldDecl *Field = *I;
3754    if (Field->isInvalidDecl())
3755      continue;
3756
3757    // Don't destroy incomplete or zero-length arrays.
3758    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3759      continue;
3760
3761    QualType FieldType = Context.getBaseElementType(Field->getType());
3762
3763    const RecordType* RT = FieldType->getAs<RecordType>();
3764    if (!RT)
3765      continue;
3766
3767    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3768    if (FieldClassDecl->isInvalidDecl())
3769      continue;
3770    if (FieldClassDecl->hasIrrelevantDestructor())
3771      continue;
3772    // The destructor for an implicit anonymous union member is never invoked.
3773    if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
3774      continue;
3775
3776    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3777    assert(Dtor && "No dtor found for FieldClassDecl!");
3778    CheckDestructorAccess(Field->getLocation(), Dtor,
3779                          PDiag(diag::err_access_dtor_field)
3780                            << Field->getDeclName()
3781                            << FieldType);
3782
3783    MarkFunctionReferenced(Location, Dtor);
3784    DiagnoseUseOfDecl(Dtor, Location);
3785  }
3786
3787  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3788
3789  // Bases.
3790  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3791       E = ClassDecl->bases_end(); Base != E; ++Base) {
3792    // Bases are always records in a well-formed non-dependent class.
3793    const RecordType *RT = Base->getType()->getAs<RecordType>();
3794
3795    // Remember direct virtual bases.
3796    if (Base->isVirtual())
3797      DirectVirtualBases.insert(RT);
3798
3799    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3800    // If our base class is invalid, we probably can't get its dtor anyway.
3801    if (BaseClassDecl->isInvalidDecl())
3802      continue;
3803    if (BaseClassDecl->hasIrrelevantDestructor())
3804      continue;
3805
3806    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3807    assert(Dtor && "No dtor found for BaseClassDecl!");
3808
3809    // FIXME: caret should be on the start of the class name
3810    CheckDestructorAccess(Base->getLocStart(), Dtor,
3811                          PDiag(diag::err_access_dtor_base)
3812                            << Base->getType()
3813                            << Base->getSourceRange(),
3814                          Context.getTypeDeclType(ClassDecl));
3815
3816    MarkFunctionReferenced(Location, Dtor);
3817    DiagnoseUseOfDecl(Dtor, Location);
3818  }
3819
3820  // Virtual bases.
3821  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3822       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3823
3824    // Bases are always records in a well-formed non-dependent class.
3825    const RecordType *RT = VBase->getType()->castAs<RecordType>();
3826
3827    // Ignore direct virtual bases.
3828    if (DirectVirtualBases.count(RT))
3829      continue;
3830
3831    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3832    // If our base class is invalid, we probably can't get its dtor anyway.
3833    if (BaseClassDecl->isInvalidDecl())
3834      continue;
3835    if (BaseClassDecl->hasIrrelevantDestructor())
3836      continue;
3837
3838    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3839    assert(Dtor && "No dtor found for BaseClassDecl!");
3840    if (CheckDestructorAccess(
3841            ClassDecl->getLocation(), Dtor,
3842            PDiag(diag::err_access_dtor_vbase)
3843                << Context.getTypeDeclType(ClassDecl) << VBase->getType(),
3844            Context.getTypeDeclType(ClassDecl)) ==
3845        AR_accessible) {
3846      CheckDerivedToBaseConversion(
3847          Context.getTypeDeclType(ClassDecl), VBase->getType(),
3848          diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(),
3849          SourceRange(), DeclarationName(), 0);
3850    }
3851
3852    MarkFunctionReferenced(Location, Dtor);
3853    DiagnoseUseOfDecl(Dtor, Location);
3854  }
3855}
3856
3857void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3858  if (!CDtorDecl)
3859    return;
3860
3861  if (CXXConstructorDecl *Constructor
3862      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3863    SetCtorInitializers(Constructor, /*AnyErrors=*/false);
3864}
3865
3866bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3867                                  unsigned DiagID, AbstractDiagSelID SelID) {
3868  class NonAbstractTypeDiagnoser : public TypeDiagnoser {
3869    unsigned DiagID;
3870    AbstractDiagSelID SelID;
3871
3872  public:
3873    NonAbstractTypeDiagnoser(unsigned DiagID, AbstractDiagSelID SelID)
3874      : TypeDiagnoser(DiagID == 0), DiagID(DiagID), SelID(SelID) { }
3875
3876    void diagnose(Sema &S, SourceLocation Loc, QualType T) LLVM_OVERRIDE {
3877      if (Suppressed) return;
3878      if (SelID == -1)
3879        S.Diag(Loc, DiagID) << T;
3880      else
3881        S.Diag(Loc, DiagID) << SelID << T;
3882    }
3883  } Diagnoser(DiagID, SelID);
3884
3885  return RequireNonAbstractType(Loc, T, Diagnoser);
3886}
3887
3888bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3889                                  TypeDiagnoser &Diagnoser) {
3890  if (!getLangOpts().CPlusPlus)
3891    return false;
3892
3893  if (const ArrayType *AT = Context.getAsArrayType(T))
3894    return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3895
3896  if (const PointerType *PT = T->getAs<PointerType>()) {
3897    // Find the innermost pointer type.
3898    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3899      PT = T;
3900
3901    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3902      return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3903  }
3904
3905  const RecordType *RT = T->getAs<RecordType>();
3906  if (!RT)
3907    return false;
3908
3909  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3910
3911  // We can't answer whether something is abstract until it has a
3912  // definition.  If it's currently being defined, we'll walk back
3913  // over all the declarations when we have a full definition.
3914  const CXXRecordDecl *Def = RD->getDefinition();
3915  if (!Def || Def->isBeingDefined())
3916    return false;
3917
3918  if (!RD->isAbstract())
3919    return false;
3920
3921  Diagnoser.diagnose(*this, Loc, T);
3922  DiagnoseAbstractType(RD);
3923
3924  return true;
3925}
3926
3927void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3928  // Check if we've already emitted the list of pure virtual functions
3929  // for this class.
3930  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3931    return;
3932
3933  // If the diagnostic is suppressed, don't emit the notes. We're only
3934  // going to emit them once, so try to attach them to a diagnostic we're
3935  // actually going to show.
3936  if (Diags.isLastDiagnosticIgnored())
3937    return;
3938
3939  CXXFinalOverriderMap FinalOverriders;
3940  RD->getFinalOverriders(FinalOverriders);
3941
3942  // Keep a set of seen pure methods so we won't diagnose the same method
3943  // more than once.
3944  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3945
3946  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3947                                   MEnd = FinalOverriders.end();
3948       M != MEnd;
3949       ++M) {
3950    for (OverridingMethods::iterator SO = M->second.begin(),
3951                                  SOEnd = M->second.end();
3952         SO != SOEnd; ++SO) {
3953      // C++ [class.abstract]p4:
3954      //   A class is abstract if it contains or inherits at least one
3955      //   pure virtual function for which the final overrider is pure
3956      //   virtual.
3957
3958      //
3959      if (SO->second.size() != 1)
3960        continue;
3961
3962      if (!SO->second.front().Method->isPure())
3963        continue;
3964
3965      if (!SeenPureMethods.insert(SO->second.front().Method))
3966        continue;
3967
3968      Diag(SO->second.front().Method->getLocation(),
3969           diag::note_pure_virtual_function)
3970        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3971    }
3972  }
3973
3974  if (!PureVirtualClassDiagSet)
3975    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3976  PureVirtualClassDiagSet->insert(RD);
3977}
3978
3979namespace {
3980struct AbstractUsageInfo {
3981  Sema &S;
3982  CXXRecordDecl *Record;
3983  CanQualType AbstractType;
3984  bool Invalid;
3985
3986  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3987    : S(S), Record(Record),
3988      AbstractType(S.Context.getCanonicalType(
3989                   S.Context.getTypeDeclType(Record))),
3990      Invalid(false) {}
3991
3992  void DiagnoseAbstractType() {
3993    if (Invalid) return;
3994    S.DiagnoseAbstractType(Record);
3995    Invalid = true;
3996  }
3997
3998  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3999};
4000
4001struct CheckAbstractUsage {
4002  AbstractUsageInfo &Info;
4003  const NamedDecl *Ctx;
4004
4005  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
4006    : Info(Info), Ctx(Ctx) {}
4007
4008  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
4009    switch (TL.getTypeLocClass()) {
4010#define ABSTRACT_TYPELOC(CLASS, PARENT)
4011#define TYPELOC(CLASS, PARENT) \
4012    case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
4013#include "clang/AST/TypeLocNodes.def"
4014    }
4015  }
4016
4017  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
4018    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
4019    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
4020      if (!TL.getArg(I))
4021        continue;
4022
4023      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
4024      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
4025    }
4026  }
4027
4028  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
4029    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
4030  }
4031
4032  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
4033    // Visit the type parameters from a permissive context.
4034    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
4035      TemplateArgumentLoc TAL = TL.getArgLoc(I);
4036      if (TAL.getArgument().getKind() == TemplateArgument::Type)
4037        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
4038          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
4039      // TODO: other template argument types?
4040    }
4041  }
4042
4043  // Visit pointee types from a permissive context.
4044#define CheckPolymorphic(Type) \
4045  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
4046    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
4047  }
4048  CheckPolymorphic(PointerTypeLoc)
4049  CheckPolymorphic(ReferenceTypeLoc)
4050  CheckPolymorphic(MemberPointerTypeLoc)
4051  CheckPolymorphic(BlockPointerTypeLoc)
4052  CheckPolymorphic(AtomicTypeLoc)
4053
4054  /// Handle all the types we haven't given a more specific
4055  /// implementation for above.
4056  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
4057    // Every other kind of type that we haven't called out already
4058    // that has an inner type is either (1) sugar or (2) contains that
4059    // inner type in some way as a subobject.
4060    if (TypeLoc Next = TL.getNextTypeLoc())
4061      return Visit(Next, Sel);
4062
4063    // If there's no inner type and we're in a permissive context,
4064    // don't diagnose.
4065    if (Sel == Sema::AbstractNone) return;
4066
4067    // Check whether the type matches the abstract type.
4068    QualType T = TL.getType();
4069    if (T->isArrayType()) {
4070      Sel = Sema::AbstractArrayType;
4071      T = Info.S.Context.getBaseElementType(T);
4072    }
4073    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
4074    if (CT != Info.AbstractType) return;
4075
4076    // It matched; do some magic.
4077    if (Sel == Sema::AbstractArrayType) {
4078      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
4079        << T << TL.getSourceRange();
4080    } else {
4081      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
4082        << Sel << T << TL.getSourceRange();
4083    }
4084    Info.DiagnoseAbstractType();
4085  }
4086};
4087
4088void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
4089                                  Sema::AbstractDiagSelID Sel) {
4090  CheckAbstractUsage(*this, D).Visit(TL, Sel);
4091}
4092
4093}
4094
4095/// Check for invalid uses of an abstract type in a method declaration.
4096static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
4097                                    CXXMethodDecl *MD) {
4098  // No need to do the check on definitions, which require that
4099  // the return/param types be complete.
4100  if (MD->doesThisDeclarationHaveABody())
4101    return;
4102
4103  // For safety's sake, just ignore it if we don't have type source
4104  // information.  This should never happen for non-implicit methods,
4105  // but...
4106  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
4107    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
4108}
4109
4110/// Check for invalid uses of an abstract type within a class definition.
4111static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
4112                                    CXXRecordDecl *RD) {
4113  for (CXXRecordDecl::decl_iterator
4114         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
4115    Decl *D = *I;
4116    if (D->isImplicit()) continue;
4117
4118    // Methods and method templates.
4119    if (isa<CXXMethodDecl>(D)) {
4120      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
4121    } else if (isa<FunctionTemplateDecl>(D)) {
4122      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
4123      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
4124
4125    // Fields and static variables.
4126    } else if (isa<FieldDecl>(D)) {
4127      FieldDecl *FD = cast<FieldDecl>(D);
4128      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
4129        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
4130    } else if (isa<VarDecl>(D)) {
4131      VarDecl *VD = cast<VarDecl>(D);
4132      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
4133        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
4134
4135    // Nested classes and class templates.
4136    } else if (isa<CXXRecordDecl>(D)) {
4137      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
4138    } else if (isa<ClassTemplateDecl>(D)) {
4139      CheckAbstractClassUsage(Info,
4140                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
4141    }
4142  }
4143}
4144
4145/// \brief Perform semantic checks on a class definition that has been
4146/// completing, introducing implicitly-declared members, checking for
4147/// abstract types, etc.
4148void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
4149  if (!Record)
4150    return;
4151
4152  if (Record->isAbstract() && !Record->isInvalidDecl()) {
4153    AbstractUsageInfo Info(*this, Record);
4154    CheckAbstractClassUsage(Info, Record);
4155  }
4156
4157  // If this is not an aggregate type and has no user-declared constructor,
4158  // complain about any non-static data members of reference or const scalar
4159  // type, since they will never get initializers.
4160  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
4161      !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
4162      !Record->isLambda()) {
4163    bool Complained = false;
4164    for (RecordDecl::field_iterator F = Record->field_begin(),
4165                                 FEnd = Record->field_end();
4166         F != FEnd; ++F) {
4167      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
4168        continue;
4169
4170      if (F->getType()->isReferenceType() ||
4171          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
4172        if (!Complained) {
4173          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
4174            << Record->getTagKind() << Record;
4175          Complained = true;
4176        }
4177
4178        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
4179          << F->getType()->isReferenceType()
4180          << F->getDeclName();
4181      }
4182    }
4183  }
4184
4185  if (Record->isDynamicClass() && !Record->isDependentType())
4186    DynamicClasses.push_back(Record);
4187
4188  if (Record->getIdentifier()) {
4189    // C++ [class.mem]p13:
4190    //   If T is the name of a class, then each of the following shall have a
4191    //   name different from T:
4192    //     - every member of every anonymous union that is a member of class T.
4193    //
4194    // C++ [class.mem]p14:
4195    //   In addition, if class T has a user-declared constructor (12.1), every
4196    //   non-static data member of class T shall have a name different from T.
4197    DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
4198    for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
4199         ++I) {
4200      NamedDecl *D = *I;
4201      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
4202          isa<IndirectFieldDecl>(D)) {
4203        Diag(D->getLocation(), diag::err_member_name_of_class)
4204          << D->getDeclName();
4205        break;
4206      }
4207    }
4208  }
4209
4210  // Warn if the class has virtual methods but non-virtual public destructor.
4211  if (Record->isPolymorphic() && !Record->isDependentType()) {
4212    CXXDestructorDecl *dtor = Record->getDestructor();
4213    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
4214      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
4215           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
4216  }
4217
4218  if (Record->isAbstract() && Record->hasAttr<FinalAttr>()) {
4219    Diag(Record->getLocation(), diag::warn_abstract_final_class);
4220    DiagnoseAbstractType(Record);
4221  }
4222
4223  if (!Record->isDependentType()) {
4224    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
4225                                     MEnd = Record->method_end();
4226         M != MEnd; ++M) {
4227      // See if a method overloads virtual methods in a base
4228      // class without overriding any.
4229      if (!M->isStatic())
4230        DiagnoseHiddenVirtualMethods(Record, *M);
4231
4232      // Check whether the explicitly-defaulted special members are valid.
4233      if (!M->isInvalidDecl() && M->isExplicitlyDefaulted())
4234        CheckExplicitlyDefaultedSpecialMember(*M);
4235
4236      // For an explicitly defaulted or deleted special member, we defer
4237      // determining triviality until the class is complete. That time is now!
4238      if (!M->isImplicit() && !M->isUserProvided()) {
4239        CXXSpecialMember CSM = getSpecialMember(*M);
4240        if (CSM != CXXInvalid) {
4241          M->setTrivial(SpecialMemberIsTrivial(*M, CSM));
4242
4243          // Inform the class that we've finished declaring this member.
4244          Record->finishedDefaultedOrDeletedMember(*M);
4245        }
4246      }
4247    }
4248  }
4249
4250  // C++11 [dcl.constexpr]p8: A constexpr specifier for a non-static member
4251  // function that is not a constructor declares that member function to be
4252  // const. [...] The class of which that function is a member shall be
4253  // a literal type.
4254  //
4255  // If the class has virtual bases, any constexpr members will already have
4256  // been diagnosed by the checks performed on the member declaration, so
4257  // suppress this (less useful) diagnostic.
4258  //
4259  // We delay this until we know whether an explicitly-defaulted (or deleted)
4260  // destructor for the class is trivial.
4261  if (LangOpts.CPlusPlus11 && !Record->isDependentType() &&
4262      !Record->isLiteral() && !Record->getNumVBases()) {
4263    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
4264                                     MEnd = Record->method_end();
4265         M != MEnd; ++M) {
4266      if (M->isConstexpr() && M->isInstance() && !isa<CXXConstructorDecl>(*M)) {
4267        switch (Record->getTemplateSpecializationKind()) {
4268        case TSK_ImplicitInstantiation:
4269        case TSK_ExplicitInstantiationDeclaration:
4270        case TSK_ExplicitInstantiationDefinition:
4271          // If a template instantiates to a non-literal type, but its members
4272          // instantiate to constexpr functions, the template is technically
4273          // ill-formed, but we allow it for sanity.
4274          continue;
4275
4276        case TSK_Undeclared:
4277        case TSK_ExplicitSpecialization:
4278          RequireLiteralType(M->getLocation(), Context.getRecordType(Record),
4279                             diag::err_constexpr_method_non_literal);
4280          break;
4281        }
4282
4283        // Only produce one error per class.
4284        break;
4285      }
4286    }
4287  }
4288
4289  // Declare inheriting constructors. We do this eagerly here because:
4290  // - The standard requires an eager diagnostic for conflicting inheriting
4291  //   constructors from different classes.
4292  // - The lazy declaration of the other implicit constructors is so as to not
4293  //   waste space and performance on classes that are not meant to be
4294  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
4295  //   have inheriting constructors.
4296  DeclareInheritingConstructors(Record);
4297}
4298
4299/// Is the special member function which would be selected to perform the
4300/// specified operation on the specified class type a constexpr constructor?
4301static bool specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
4302                                     Sema::CXXSpecialMember CSM,
4303                                     bool ConstArg) {
4304  Sema::SpecialMemberOverloadResult *SMOR =
4305      S.LookupSpecialMember(ClassDecl, CSM, ConstArg,
4306                            false, false, false, false);
4307  if (!SMOR || !SMOR->getMethod())
4308    // A constructor we wouldn't select can't be "involved in initializing"
4309    // anything.
4310    return true;
4311  return SMOR->getMethod()->isConstexpr();
4312}
4313
4314/// Determine whether the specified special member function would be constexpr
4315/// if it were implicitly defined.
4316static bool defaultedSpecialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
4317                                              Sema::CXXSpecialMember CSM,
4318                                              bool ConstArg) {
4319  if (!S.getLangOpts().CPlusPlus11)
4320    return false;
4321
4322  // C++11 [dcl.constexpr]p4:
4323  // In the definition of a constexpr constructor [...]
4324  bool Ctor = true;
4325  switch (CSM) {
4326  case Sema::CXXDefaultConstructor:
4327    // Since default constructor lookup is essentially trivial (and cannot
4328    // involve, for instance, template instantiation), we compute whether a
4329    // defaulted default constructor is constexpr directly within CXXRecordDecl.
4330    //
4331    // This is important for performance; we need to know whether the default
4332    // constructor is constexpr to determine whether the type is a literal type.
4333    return ClassDecl->defaultedDefaultConstructorIsConstexpr();
4334
4335  case Sema::CXXCopyConstructor:
4336  case Sema::CXXMoveConstructor:
4337    // For copy or move constructors, we need to perform overload resolution.
4338    break;
4339
4340  case Sema::CXXCopyAssignment:
4341  case Sema::CXXMoveAssignment:
4342    if (!S.getLangOpts().CPlusPlus1y)
4343      return false;
4344    // In C++1y, we need to perform overload resolution.
4345    Ctor = false;
4346    break;
4347
4348  case Sema::CXXDestructor:
4349  case Sema::CXXInvalid:
4350    return false;
4351  }
4352
4353  //   -- if the class is a non-empty union, or for each non-empty anonymous
4354  //      union member of a non-union class, exactly one non-static data member
4355  //      shall be initialized; [DR1359]
4356  //
4357  // If we squint, this is guaranteed, since exactly one non-static data member
4358  // will be initialized (if the constructor isn't deleted), we just don't know
4359  // which one.
4360  if (Ctor && ClassDecl->isUnion())
4361    return true;
4362
4363  //   -- the class shall not have any virtual base classes;
4364  if (Ctor && ClassDecl->getNumVBases())
4365    return false;
4366
4367  // C++1y [class.copy]p26:
4368  //   -- [the class] is a literal type, and
4369  if (!Ctor && !ClassDecl->isLiteral())
4370    return false;
4371
4372  //   -- every constructor involved in initializing [...] base class
4373  //      sub-objects shall be a constexpr constructor;
4374  //   -- the assignment operator selected to copy/move each direct base
4375  //      class is a constexpr function, and
4376  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4377                                       BEnd = ClassDecl->bases_end();
4378       B != BEnd; ++B) {
4379    const RecordType *BaseType = B->getType()->getAs<RecordType>();
4380    if (!BaseType) continue;
4381
4382    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4383    if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, ConstArg))
4384      return false;
4385  }
4386
4387  //   -- every constructor involved in initializing non-static data members
4388  //      [...] shall be a constexpr constructor;
4389  //   -- every non-static data member and base class sub-object shall be
4390  //      initialized
4391  //   -- for each non-stastic data member of X that is of class type (or array
4392  //      thereof), the assignment operator selected to copy/move that member is
4393  //      a constexpr function
4394  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4395                               FEnd = ClassDecl->field_end();
4396       F != FEnd; ++F) {
4397    if (F->isInvalidDecl())
4398      continue;
4399    if (const RecordType *RecordTy =
4400            S.Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4401      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4402      if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, ConstArg))
4403        return false;
4404    }
4405  }
4406
4407  // All OK, it's constexpr!
4408  return true;
4409}
4410
4411static Sema::ImplicitExceptionSpecification
4412computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, CXXMethodDecl *MD) {
4413  switch (S.getSpecialMember(MD)) {
4414  case Sema::CXXDefaultConstructor:
4415    return S.ComputeDefaultedDefaultCtorExceptionSpec(Loc, MD);
4416  case Sema::CXXCopyConstructor:
4417    return S.ComputeDefaultedCopyCtorExceptionSpec(MD);
4418  case Sema::CXXCopyAssignment:
4419    return S.ComputeDefaultedCopyAssignmentExceptionSpec(MD);
4420  case Sema::CXXMoveConstructor:
4421    return S.ComputeDefaultedMoveCtorExceptionSpec(MD);
4422  case Sema::CXXMoveAssignment:
4423    return S.ComputeDefaultedMoveAssignmentExceptionSpec(MD);
4424  case Sema::CXXDestructor:
4425    return S.ComputeDefaultedDtorExceptionSpec(MD);
4426  case Sema::CXXInvalid:
4427    break;
4428  }
4429  assert(cast<CXXConstructorDecl>(MD)->getInheritedConstructor() &&
4430         "only special members have implicit exception specs");
4431  return S.ComputeInheritingCtorExceptionSpec(cast<CXXConstructorDecl>(MD));
4432}
4433
4434static void
4435updateExceptionSpec(Sema &S, FunctionDecl *FD, const FunctionProtoType *FPT,
4436                    const Sema::ImplicitExceptionSpecification &ExceptSpec) {
4437  FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4438  ExceptSpec.getEPI(EPI);
4439  FD->setType(S.Context.getFunctionType(FPT->getResultType(),
4440                                        FPT->getArgTypes(), EPI));
4441}
4442
4443void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD) {
4444  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
4445  if (FPT->getExceptionSpecType() != EST_Unevaluated)
4446    return;
4447
4448  // Evaluate the exception specification.
4449  ImplicitExceptionSpecification ExceptSpec =
4450      computeImplicitExceptionSpec(*this, Loc, MD);
4451
4452  // Update the type of the special member to use it.
4453  updateExceptionSpec(*this, MD, FPT, ExceptSpec);
4454
4455  // A user-provided destructor can be defined outside the class. When that
4456  // happens, be sure to update the exception specification on both
4457  // declarations.
4458  const FunctionProtoType *CanonicalFPT =
4459    MD->getCanonicalDecl()->getType()->castAs<FunctionProtoType>();
4460  if (CanonicalFPT->getExceptionSpecType() == EST_Unevaluated)
4461    updateExceptionSpec(*this, MD->getCanonicalDecl(),
4462                        CanonicalFPT, ExceptSpec);
4463}
4464
4465void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
4466  CXXRecordDecl *RD = MD->getParent();
4467  CXXSpecialMember CSM = getSpecialMember(MD);
4468
4469  assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&
4470         "not an explicitly-defaulted special member");
4471
4472  // Whether this was the first-declared instance of the constructor.
4473  // This affects whether we implicitly add an exception spec and constexpr.
4474  bool First = MD == MD->getCanonicalDecl();
4475
4476  bool HadError = false;
4477
4478  // C++11 [dcl.fct.def.default]p1:
4479  //   A function that is explicitly defaulted shall
4480  //     -- be a special member function (checked elsewhere),
4481  //     -- have the same type (except for ref-qualifiers, and except that a
4482  //        copy operation can take a non-const reference) as an implicit
4483  //        declaration, and
4484  //     -- not have default arguments.
4485  unsigned ExpectedParams = 1;
4486  if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
4487    ExpectedParams = 0;
4488  if (MD->getNumParams() != ExpectedParams) {
4489    // This also checks for default arguments: a copy or move constructor with a
4490    // default argument is classified as a default constructor, and assignment
4491    // operations and destructors can't have default arguments.
4492    Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
4493      << CSM << MD->getSourceRange();
4494    HadError = true;
4495  } else if (MD->isVariadic()) {
4496    Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
4497      << CSM << MD->getSourceRange();
4498    HadError = true;
4499  }
4500
4501  const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
4502
4503  bool CanHaveConstParam = false;
4504  if (CSM == CXXCopyConstructor)
4505    CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
4506  else if (CSM == CXXCopyAssignment)
4507    CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();
4508
4509  QualType ReturnType = Context.VoidTy;
4510  if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
4511    // Check for return type matching.
4512    ReturnType = Type->getResultType();
4513    QualType ExpectedReturnType =
4514        Context.getLValueReferenceType(Context.getTypeDeclType(RD));
4515    if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
4516      Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
4517        << (CSM == CXXMoveAssignment) << ExpectedReturnType;
4518      HadError = true;
4519    }
4520
4521    // A defaulted special member cannot have cv-qualifiers.
4522    if (Type->getTypeQuals()) {
4523      Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
4524        << (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus1y;
4525      HadError = true;
4526    }
4527  }
4528
4529  // Check for parameter type matching.
4530  QualType ArgType = ExpectedParams ? Type->getArgType(0) : QualType();
4531  bool HasConstParam = false;
4532  if (ExpectedParams && ArgType->isReferenceType()) {
4533    // Argument must be reference to possibly-const T.
4534    QualType ReferentType = ArgType->getPointeeType();
4535    HasConstParam = ReferentType.isConstQualified();
4536
4537    if (ReferentType.isVolatileQualified()) {
4538      Diag(MD->getLocation(),
4539           diag::err_defaulted_special_member_volatile_param) << CSM;
4540      HadError = true;
4541    }
4542
4543    if (HasConstParam && !CanHaveConstParam) {
4544      if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
4545        Diag(MD->getLocation(),
4546             diag::err_defaulted_special_member_copy_const_param)
4547          << (CSM == CXXCopyAssignment);
4548        // FIXME: Explain why this special member can't be const.
4549      } else {
4550        Diag(MD->getLocation(),
4551             diag::err_defaulted_special_member_move_const_param)
4552          << (CSM == CXXMoveAssignment);
4553      }
4554      HadError = true;
4555    }
4556  } else if (ExpectedParams) {
4557    // A copy assignment operator can take its argument by value, but a
4558    // defaulted one cannot.
4559    assert(CSM == CXXCopyAssignment && "unexpected non-ref argument");
4560    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4561    HadError = true;
4562  }
4563
4564  // C++11 [dcl.fct.def.default]p2:
4565  //   An explicitly-defaulted function may be declared constexpr only if it
4566  //   would have been implicitly declared as constexpr,
4567  // Do not apply this rule to members of class templates, since core issue 1358
4568  // makes such functions always instantiate to constexpr functions. For
4569  // functions which cannot be constexpr (for non-constructors in C++11 and for
4570  // destructors in C++1y), this is checked elsewhere.
4571  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
4572                                                     HasConstParam);
4573  if ((getLangOpts().CPlusPlus1y ? !isa<CXXDestructorDecl>(MD)
4574                                 : isa<CXXConstructorDecl>(MD)) &&
4575      MD->isConstexpr() && !Constexpr &&
4576      MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
4577    Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
4578    // FIXME: Explain why the special member can't be constexpr.
4579    HadError = true;
4580  }
4581
4582  //   and may have an explicit exception-specification only if it is compatible
4583  //   with the exception-specification on the implicit declaration.
4584  if (Type->hasExceptionSpec()) {
4585    // Delay the check if this is the first declaration of the special member,
4586    // since we may not have parsed some necessary in-class initializers yet.
4587    if (First) {
4588      // If the exception specification needs to be instantiated, do so now,
4589      // before we clobber it with an EST_Unevaluated specification below.
4590      if (Type->getExceptionSpecType() == EST_Uninstantiated) {
4591        InstantiateExceptionSpec(MD->getLocStart(), MD);
4592        Type = MD->getType()->getAs<FunctionProtoType>();
4593      }
4594      DelayedDefaultedMemberExceptionSpecs.push_back(std::make_pair(MD, Type));
4595    } else
4596      CheckExplicitlyDefaultedMemberExceptionSpec(MD, Type);
4597  }
4598
4599  //   If a function is explicitly defaulted on its first declaration,
4600  if (First) {
4601    //  -- it is implicitly considered to be constexpr if the implicit
4602    //     definition would be,
4603    MD->setConstexpr(Constexpr);
4604
4605    //  -- it is implicitly considered to have the same exception-specification
4606    //     as if it had been implicitly declared,
4607    FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
4608    EPI.ExceptionSpecType = EST_Unevaluated;
4609    EPI.ExceptionSpecDecl = MD;
4610    MD->setType(Context.getFunctionType(ReturnType,
4611                                        ArrayRef<QualType>(&ArgType,
4612                                                           ExpectedParams),
4613                                        EPI));
4614  }
4615
4616  if (ShouldDeleteSpecialMember(MD, CSM)) {
4617    if (First) {
4618      SetDeclDeleted(MD, MD->getLocation());
4619    } else {
4620      // C++11 [dcl.fct.def.default]p4:
4621      //   [For a] user-provided explicitly-defaulted function [...] if such a
4622      //   function is implicitly defined as deleted, the program is ill-formed.
4623      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
4624      HadError = true;
4625    }
4626  }
4627
4628  if (HadError)
4629    MD->setInvalidDecl();
4630}
4631
4632/// Check whether the exception specification provided for an
4633/// explicitly-defaulted special member matches the exception specification
4634/// that would have been generated for an implicit special member, per
4635/// C++11 [dcl.fct.def.default]p2.
4636void Sema::CheckExplicitlyDefaultedMemberExceptionSpec(
4637    CXXMethodDecl *MD, const FunctionProtoType *SpecifiedType) {
4638  // Compute the implicit exception specification.
4639  FunctionProtoType::ExtProtoInfo EPI;
4640  computeImplicitExceptionSpec(*this, MD->getLocation(), MD).getEPI(EPI);
4641  const FunctionProtoType *ImplicitType = cast<FunctionProtoType>(
4642    Context.getFunctionType(Context.VoidTy, None, EPI));
4643
4644  // Ensure that it matches.
4645  CheckEquivalentExceptionSpec(
4646    PDiag(diag::err_incorrect_defaulted_exception_spec)
4647      << getSpecialMember(MD), PDiag(),
4648    ImplicitType, SourceLocation(),
4649    SpecifiedType, MD->getLocation());
4650}
4651
4652void Sema::CheckDelayedExplicitlyDefaultedMemberExceptionSpecs() {
4653  for (unsigned I = 0, N = DelayedDefaultedMemberExceptionSpecs.size();
4654       I != N; ++I)
4655    CheckExplicitlyDefaultedMemberExceptionSpec(
4656      DelayedDefaultedMemberExceptionSpecs[I].first,
4657      DelayedDefaultedMemberExceptionSpecs[I].second);
4658
4659  DelayedDefaultedMemberExceptionSpecs.clear();
4660}
4661
4662namespace {
4663struct SpecialMemberDeletionInfo {
4664  Sema &S;
4665  CXXMethodDecl *MD;
4666  Sema::CXXSpecialMember CSM;
4667  bool Diagnose;
4668
4669  // Properties of the special member, computed for convenience.
4670  bool IsConstructor, IsAssignment, IsMove, ConstArg, VolatileArg;
4671  SourceLocation Loc;
4672
4673  bool AllFieldsAreConst;
4674
4675  SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
4676                            Sema::CXXSpecialMember CSM, bool Diagnose)
4677    : S(S), MD(MD), CSM(CSM), Diagnose(Diagnose),
4678      IsConstructor(false), IsAssignment(false), IsMove(false),
4679      ConstArg(false), VolatileArg(false), Loc(MD->getLocation()),
4680      AllFieldsAreConst(true) {
4681    switch (CSM) {
4682      case Sema::CXXDefaultConstructor:
4683      case Sema::CXXCopyConstructor:
4684        IsConstructor = true;
4685        break;
4686      case Sema::CXXMoveConstructor:
4687        IsConstructor = true;
4688        IsMove = true;
4689        break;
4690      case Sema::CXXCopyAssignment:
4691        IsAssignment = true;
4692        break;
4693      case Sema::CXXMoveAssignment:
4694        IsAssignment = true;
4695        IsMove = true;
4696        break;
4697      case Sema::CXXDestructor:
4698        break;
4699      case Sema::CXXInvalid:
4700        llvm_unreachable("invalid special member kind");
4701    }
4702
4703    if (MD->getNumParams()) {
4704      ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4705      VolatileArg = MD->getParamDecl(0)->getType().isVolatileQualified();
4706    }
4707  }
4708
4709  bool inUnion() const { return MD->getParent()->isUnion(); }
4710
4711  /// Look up the corresponding special member in the given class.
4712  Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class,
4713                                              unsigned Quals) {
4714    unsigned TQ = MD->getTypeQualifiers();
4715    // cv-qualifiers on class members don't affect default ctor / dtor calls.
4716    if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
4717      Quals = 0;
4718    return S.LookupSpecialMember(Class, CSM,
4719                                 ConstArg || (Quals & Qualifiers::Const),
4720                                 VolatileArg || (Quals & Qualifiers::Volatile),
4721                                 MD->getRefQualifier() == RQ_RValue,
4722                                 TQ & Qualifiers::Const,
4723                                 TQ & Qualifiers::Volatile);
4724  }
4725
4726  typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
4727
4728  bool shouldDeleteForBase(CXXBaseSpecifier *Base);
4729  bool shouldDeleteForField(FieldDecl *FD);
4730  bool shouldDeleteForAllConstMembers();
4731
4732  bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
4733                                     unsigned Quals);
4734  bool shouldDeleteForSubobjectCall(Subobject Subobj,
4735                                    Sema::SpecialMemberOverloadResult *SMOR,
4736                                    bool IsDtorCallInCtor);
4737
4738  bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
4739};
4740}
4741
4742/// Is the given special member inaccessible when used on the given
4743/// sub-object.
4744bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
4745                                             CXXMethodDecl *target) {
4746  /// If we're operating on a base class, the object type is the
4747  /// type of this special member.
4748  QualType objectTy;
4749  AccessSpecifier access = target->getAccess();
4750  if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
4751    objectTy = S.Context.getTypeDeclType(MD->getParent());
4752    access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
4753
4754  // If we're operating on a field, the object type is the type of the field.
4755  } else {
4756    objectTy = S.Context.getTypeDeclType(target->getParent());
4757  }
4758
4759  return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
4760}
4761
4762/// Check whether we should delete a special member due to the implicit
4763/// definition containing a call to a special member of a subobject.
4764bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
4765    Subobject Subobj, Sema::SpecialMemberOverloadResult *SMOR,
4766    bool IsDtorCallInCtor) {
4767  CXXMethodDecl *Decl = SMOR->getMethod();
4768  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4769
4770  int DiagKind = -1;
4771
4772  if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
4773    DiagKind = !Decl ? 0 : 1;
4774  else if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
4775    DiagKind = 2;
4776  else if (!isAccessible(Subobj, Decl))
4777    DiagKind = 3;
4778  else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
4779           !Decl->isTrivial()) {
4780    // A member of a union must have a trivial corresponding special member.
4781    // As a weird special case, a destructor call from a union's constructor
4782    // must be accessible and non-deleted, but need not be trivial. Such a
4783    // destructor is never actually called, but is semantically checked as
4784    // if it were.
4785    DiagKind = 4;
4786  }
4787
4788  if (DiagKind == -1)
4789    return false;
4790
4791  if (Diagnose) {
4792    if (Field) {
4793      S.Diag(Field->getLocation(),
4794             diag::note_deleted_special_member_class_subobject)
4795        << CSM << MD->getParent() << /*IsField*/true
4796        << Field << DiagKind << IsDtorCallInCtor;
4797    } else {
4798      CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
4799      S.Diag(Base->getLocStart(),
4800             diag::note_deleted_special_member_class_subobject)
4801        << CSM << MD->getParent() << /*IsField*/false
4802        << Base->getType() << DiagKind << IsDtorCallInCtor;
4803    }
4804
4805    if (DiagKind == 1)
4806      S.NoteDeletedFunction(Decl);
4807    // FIXME: Explain inaccessibility if DiagKind == 3.
4808  }
4809
4810  return true;
4811}
4812
4813/// Check whether we should delete a special member function due to having a
4814/// direct or virtual base class or non-static data member of class type M.
4815bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
4816    CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
4817  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4818
4819  // C++11 [class.ctor]p5:
4820  // -- any direct or virtual base class, or non-static data member with no
4821  //    brace-or-equal-initializer, has class type M (or array thereof) and
4822  //    either M has no default constructor or overload resolution as applied
4823  //    to M's default constructor results in an ambiguity or in a function
4824  //    that is deleted or inaccessible
4825  // C++11 [class.copy]p11, C++11 [class.copy]p23:
4826  // -- a direct or virtual base class B that cannot be copied/moved because
4827  //    overload resolution, as applied to B's corresponding special member,
4828  //    results in an ambiguity or a function that is deleted or inaccessible
4829  //    from the defaulted special member
4830  // C++11 [class.dtor]p5:
4831  // -- any direct or virtual base class [...] has a type with a destructor
4832  //    that is deleted or inaccessible
4833  if (!(CSM == Sema::CXXDefaultConstructor &&
4834        Field && Field->hasInClassInitializer()) &&
4835      shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals), false))
4836    return true;
4837
4838  // C++11 [class.ctor]p5, C++11 [class.copy]p11:
4839  // -- any direct or virtual base class or non-static data member has a
4840  //    type with a destructor that is deleted or inaccessible
4841  if (IsConstructor) {
4842    Sema::SpecialMemberOverloadResult *SMOR =
4843        S.LookupSpecialMember(Class, Sema::CXXDestructor,
4844                              false, false, false, false, false);
4845    if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
4846      return true;
4847  }
4848
4849  return false;
4850}
4851
4852/// Check whether we should delete a special member function due to the class
4853/// having a particular direct or virtual base class.
4854bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
4855  CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
4856  return shouldDeleteForClassSubobject(BaseClass, Base, 0);
4857}
4858
4859/// Check whether we should delete a special member function due to the class
4860/// having a particular non-static data member.
4861bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
4862  QualType FieldType = S.Context.getBaseElementType(FD->getType());
4863  CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4864
4865  if (CSM == Sema::CXXDefaultConstructor) {
4866    // For a default constructor, all references must be initialized in-class
4867    // and, if a union, it must have a non-const member.
4868    if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
4869      if (Diagnose)
4870        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4871          << MD->getParent() << FD << FieldType << /*Reference*/0;
4872      return true;
4873    }
4874    // C++11 [class.ctor]p5: any non-variant non-static data member of
4875    // const-qualified type (or array thereof) with no
4876    // brace-or-equal-initializer does not have a user-provided default
4877    // constructor.
4878    if (!inUnion() && FieldType.isConstQualified() &&
4879        !FD->hasInClassInitializer() &&
4880        (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
4881      if (Diagnose)
4882        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4883          << MD->getParent() << FD << FD->getType() << /*Const*/1;
4884      return true;
4885    }
4886
4887    if (inUnion() && !FieldType.isConstQualified())
4888      AllFieldsAreConst = false;
4889  } else if (CSM == Sema::CXXCopyConstructor) {
4890    // For a copy constructor, data members must not be of rvalue reference
4891    // type.
4892    if (FieldType->isRValueReferenceType()) {
4893      if (Diagnose)
4894        S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
4895          << MD->getParent() << FD << FieldType;
4896      return true;
4897    }
4898  } else if (IsAssignment) {
4899    // For an assignment operator, data members must not be of reference type.
4900    if (FieldType->isReferenceType()) {
4901      if (Diagnose)
4902        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4903          << IsMove << MD->getParent() << FD << FieldType << /*Reference*/0;
4904      return true;
4905    }
4906    if (!FieldRecord && FieldType.isConstQualified()) {
4907      // C++11 [class.copy]p23:
4908      // -- a non-static data member of const non-class type (or array thereof)
4909      if (Diagnose)
4910        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4911          << IsMove << MD->getParent() << FD << FD->getType() << /*Const*/1;
4912      return true;
4913    }
4914  }
4915
4916  if (FieldRecord) {
4917    // Some additional restrictions exist on the variant members.
4918    if (!inUnion() && FieldRecord->isUnion() &&
4919        FieldRecord->isAnonymousStructOrUnion()) {
4920      bool AllVariantFieldsAreConst = true;
4921
4922      // FIXME: Handle anonymous unions declared within anonymous unions.
4923      for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4924                                         UE = FieldRecord->field_end();
4925           UI != UE; ++UI) {
4926        QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
4927
4928        if (!UnionFieldType.isConstQualified())
4929          AllVariantFieldsAreConst = false;
4930
4931        CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
4932        if (UnionFieldRecord &&
4933            shouldDeleteForClassSubobject(UnionFieldRecord, *UI,
4934                                          UnionFieldType.getCVRQualifiers()))
4935          return true;
4936      }
4937
4938      // At least one member in each anonymous union must be non-const
4939      if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
4940          FieldRecord->field_begin() != FieldRecord->field_end()) {
4941        if (Diagnose)
4942          S.Diag(FieldRecord->getLocation(),
4943                 diag::note_deleted_default_ctor_all_const)
4944            << MD->getParent() << /*anonymous union*/1;
4945        return true;
4946      }
4947
4948      // Don't check the implicit member of the anonymous union type.
4949      // This is technically non-conformant, but sanity demands it.
4950      return false;
4951    }
4952
4953    if (shouldDeleteForClassSubobject(FieldRecord, FD,
4954                                      FieldType.getCVRQualifiers()))
4955      return true;
4956  }
4957
4958  return false;
4959}
4960
4961/// C++11 [class.ctor] p5:
4962///   A defaulted default constructor for a class X is defined as deleted if
4963/// X is a union and all of its variant members are of const-qualified type.
4964bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
4965  // This is a silly definition, because it gives an empty union a deleted
4966  // default constructor. Don't do that.
4967  if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst &&
4968      (MD->getParent()->field_begin() != MD->getParent()->field_end())) {
4969    if (Diagnose)
4970      S.Diag(MD->getParent()->getLocation(),
4971             diag::note_deleted_default_ctor_all_const)
4972        << MD->getParent() << /*not anonymous union*/0;
4973    return true;
4974  }
4975  return false;
4976}
4977
4978/// Determine whether a defaulted special member function should be defined as
4979/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
4980/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
4981bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
4982                                     bool Diagnose) {
4983  if (MD->isInvalidDecl())
4984    return false;
4985  CXXRecordDecl *RD = MD->getParent();
4986  assert(!RD->isDependentType() && "do deletion after instantiation");
4987  if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl())
4988    return false;
4989
4990  // C++11 [expr.lambda.prim]p19:
4991  //   The closure type associated with a lambda-expression has a
4992  //   deleted (8.4.3) default constructor and a deleted copy
4993  //   assignment operator.
4994  if (RD->isLambda() &&
4995      (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
4996    if (Diagnose)
4997      Diag(RD->getLocation(), diag::note_lambda_decl);
4998    return true;
4999  }
5000
5001  // For an anonymous struct or union, the copy and assignment special members
5002  // will never be used, so skip the check. For an anonymous union declared at
5003  // namespace scope, the constructor and destructor are used.
5004  if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
5005      RD->isAnonymousStructOrUnion())
5006    return false;
5007
5008  // C++11 [class.copy]p7, p18:
5009  //   If the class definition declares a move constructor or move assignment
5010  //   operator, an implicitly declared copy constructor or copy assignment
5011  //   operator is defined as deleted.
5012  if (MD->isImplicit() &&
5013      (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
5014    CXXMethodDecl *UserDeclaredMove = 0;
5015
5016    // In Microsoft mode, a user-declared move only causes the deletion of the
5017    // corresponding copy operation, not both copy operations.
5018    if (RD->hasUserDeclaredMoveConstructor() &&
5019        (!getLangOpts().MicrosoftMode || CSM == CXXCopyConstructor)) {
5020      if (!Diagnose) return true;
5021
5022      // Find any user-declared move constructor.
5023      for (CXXRecordDecl::ctor_iterator I = RD->ctor_begin(),
5024                                        E = RD->ctor_end(); I != E; ++I) {
5025        if (I->isMoveConstructor()) {
5026          UserDeclaredMove = *I;
5027          break;
5028        }
5029      }
5030      assert(UserDeclaredMove);
5031    } else if (RD->hasUserDeclaredMoveAssignment() &&
5032               (!getLangOpts().MicrosoftMode || CSM == CXXCopyAssignment)) {
5033      if (!Diagnose) return true;
5034
5035      // Find any user-declared move assignment operator.
5036      for (CXXRecordDecl::method_iterator I = RD->method_begin(),
5037                                          E = RD->method_end(); I != E; ++I) {
5038        if (I->isMoveAssignmentOperator()) {
5039          UserDeclaredMove = *I;
5040          break;
5041        }
5042      }
5043      assert(UserDeclaredMove);
5044    }
5045
5046    if (UserDeclaredMove) {
5047      Diag(UserDeclaredMove->getLocation(),
5048           diag::note_deleted_copy_user_declared_move)
5049        << (CSM == CXXCopyAssignment) << RD
5050        << UserDeclaredMove->isMoveAssignmentOperator();
5051      return true;
5052    }
5053  }
5054
5055  // Do access control from the special member function
5056  ContextRAII MethodContext(*this, MD);
5057
5058  // C++11 [class.dtor]p5:
5059  // -- for a virtual destructor, lookup of the non-array deallocation function
5060  //    results in an ambiguity or in a function that is deleted or inaccessible
5061  if (CSM == CXXDestructor && MD->isVirtual()) {
5062    FunctionDecl *OperatorDelete = 0;
5063    DeclarationName Name =
5064      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5065    if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
5066                                 OperatorDelete, false)) {
5067      if (Diagnose)
5068        Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
5069      return true;
5070    }
5071  }
5072
5073  SpecialMemberDeletionInfo SMI(*this, MD, CSM, Diagnose);
5074
5075  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
5076                                          BE = RD->bases_end(); BI != BE; ++BI)
5077    if (!BI->isVirtual() &&
5078        SMI.shouldDeleteForBase(BI))
5079      return true;
5080
5081  // Per DR1611, do not consider virtual bases of constructors of abstract
5082  // classes, since we are not going to construct them.
5083  if (!RD->isAbstract() || !SMI.IsConstructor) {
5084    for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
5085                                            BE = RD->vbases_end();
5086         BI != BE; ++BI)
5087      if (SMI.shouldDeleteForBase(BI))
5088        return true;
5089  }
5090
5091  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
5092                                     FE = RD->field_end(); FI != FE; ++FI)
5093    if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
5094        SMI.shouldDeleteForField(*FI))
5095      return true;
5096
5097  if (SMI.shouldDeleteForAllConstMembers())
5098    return true;
5099
5100  return false;
5101}
5102
5103/// Perform lookup for a special member of the specified kind, and determine
5104/// whether it is trivial. If the triviality can be determined without the
5105/// lookup, skip it. This is intended for use when determining whether a
5106/// special member of a containing object is trivial, and thus does not ever
5107/// perform overload resolution for default constructors.
5108///
5109/// If \p Selected is not \c NULL, \c *Selected will be filled in with the
5110/// member that was most likely to be intended to be trivial, if any.
5111static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
5112                                     Sema::CXXSpecialMember CSM, unsigned Quals,
5113                                     CXXMethodDecl **Selected) {
5114  if (Selected)
5115    *Selected = 0;
5116
5117  switch (CSM) {
5118  case Sema::CXXInvalid:
5119    llvm_unreachable("not a special member");
5120
5121  case Sema::CXXDefaultConstructor:
5122    // C++11 [class.ctor]p5:
5123    //   A default constructor is trivial if:
5124    //    - all the [direct subobjects] have trivial default constructors
5125    //
5126    // Note, no overload resolution is performed in this case.
5127    if (RD->hasTrivialDefaultConstructor())
5128      return true;
5129
5130    if (Selected) {
5131      // If there's a default constructor which could have been trivial, dig it
5132      // out. Otherwise, if there's any user-provided default constructor, point
5133      // to that as an example of why there's not a trivial one.
5134      CXXConstructorDecl *DefCtor = 0;
5135      if (RD->needsImplicitDefaultConstructor())
5136        S.DeclareImplicitDefaultConstructor(RD);
5137      for (CXXRecordDecl::ctor_iterator CI = RD->ctor_begin(),
5138                                        CE = RD->ctor_end(); CI != CE; ++CI) {
5139        if (!CI->isDefaultConstructor())
5140          continue;
5141        DefCtor = *CI;
5142        if (!DefCtor->isUserProvided())
5143          break;
5144      }
5145
5146      *Selected = DefCtor;
5147    }
5148
5149    return false;
5150
5151  case Sema::CXXDestructor:
5152    // C++11 [class.dtor]p5:
5153    //   A destructor is trivial if:
5154    //    - all the direct [subobjects] have trivial destructors
5155    if (RD->hasTrivialDestructor())
5156      return true;
5157
5158    if (Selected) {
5159      if (RD->needsImplicitDestructor())
5160        S.DeclareImplicitDestructor(RD);
5161      *Selected = RD->getDestructor();
5162    }
5163
5164    return false;
5165
5166  case Sema::CXXCopyConstructor:
5167    // C++11 [class.copy]p12:
5168    //   A copy constructor is trivial if:
5169    //    - the constructor selected to copy each direct [subobject] is trivial
5170    if (RD->hasTrivialCopyConstructor()) {
5171      if (Quals == Qualifiers::Const)
5172        // We must either select the trivial copy constructor or reach an
5173        // ambiguity; no need to actually perform overload resolution.
5174        return true;
5175    } else if (!Selected) {
5176      return false;
5177    }
5178    // In C++98, we are not supposed to perform overload resolution here, but we
5179    // treat that as a language defect, as suggested on cxx-abi-dev, to treat
5180    // cases like B as having a non-trivial copy constructor:
5181    //   struct A { template<typename T> A(T&); };
5182    //   struct B { mutable A a; };
5183    goto NeedOverloadResolution;
5184
5185  case Sema::CXXCopyAssignment:
5186    // C++11 [class.copy]p25:
5187    //   A copy assignment operator is trivial if:
5188    //    - the assignment operator selected to copy each direct [subobject] is
5189    //      trivial
5190    if (RD->hasTrivialCopyAssignment()) {
5191      if (Quals == Qualifiers::Const)
5192        return true;
5193    } else if (!Selected) {
5194      return false;
5195    }
5196    // In C++98, we are not supposed to perform overload resolution here, but we
5197    // treat that as a language defect.
5198    goto NeedOverloadResolution;
5199
5200  case Sema::CXXMoveConstructor:
5201  case Sema::CXXMoveAssignment:
5202  NeedOverloadResolution:
5203    Sema::SpecialMemberOverloadResult *SMOR =
5204      S.LookupSpecialMember(RD, CSM,
5205                            Quals & Qualifiers::Const,
5206                            Quals & Qualifiers::Volatile,
5207                            /*RValueThis*/false, /*ConstThis*/false,
5208                            /*VolatileThis*/false);
5209
5210    // The standard doesn't describe how to behave if the lookup is ambiguous.
5211    // We treat it as not making the member non-trivial, just like the standard
5212    // mandates for the default constructor. This should rarely matter, because
5213    // the member will also be deleted.
5214    if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
5215      return true;
5216
5217    if (!SMOR->getMethod()) {
5218      assert(SMOR->getKind() ==
5219             Sema::SpecialMemberOverloadResult::NoMemberOrDeleted);
5220      return false;
5221    }
5222
5223    // We deliberately don't check if we found a deleted special member. We're
5224    // not supposed to!
5225    if (Selected)
5226      *Selected = SMOR->getMethod();
5227    return SMOR->getMethod()->isTrivial();
5228  }
5229
5230  llvm_unreachable("unknown special method kind");
5231}
5232
5233static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
5234  for (CXXRecordDecl::ctor_iterator CI = RD->ctor_begin(), CE = RD->ctor_end();
5235       CI != CE; ++CI)
5236    if (!CI->isImplicit())
5237      return *CI;
5238
5239  // Look for constructor templates.
5240  typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
5241  for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
5242    if (CXXConstructorDecl *CD =
5243          dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl()))
5244      return CD;
5245  }
5246
5247  return 0;
5248}
5249
5250/// The kind of subobject we are checking for triviality. The values of this
5251/// enumeration are used in diagnostics.
5252enum TrivialSubobjectKind {
5253  /// The subobject is a base class.
5254  TSK_BaseClass,
5255  /// The subobject is a non-static data member.
5256  TSK_Field,
5257  /// The object is actually the complete object.
5258  TSK_CompleteObject
5259};
5260
5261/// Check whether the special member selected for a given type would be trivial.
5262static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
5263                                      QualType SubType,
5264                                      Sema::CXXSpecialMember CSM,
5265                                      TrivialSubobjectKind Kind,
5266                                      bool Diagnose) {
5267  CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
5268  if (!SubRD)
5269    return true;
5270
5271  CXXMethodDecl *Selected;
5272  if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(),
5273                               Diagnose ? &Selected : 0))
5274    return true;
5275
5276  if (Diagnose) {
5277    if (!Selected && CSM == Sema::CXXDefaultConstructor) {
5278      S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
5279        << Kind << SubType.getUnqualifiedType();
5280      if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
5281        S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
5282    } else if (!Selected)
5283      S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
5284        << Kind << SubType.getUnqualifiedType() << CSM << SubType;
5285    else if (Selected->isUserProvided()) {
5286      if (Kind == TSK_CompleteObject)
5287        S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
5288          << Kind << SubType.getUnqualifiedType() << CSM;
5289      else {
5290        S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
5291          << Kind << SubType.getUnqualifiedType() << CSM;
5292        S.Diag(Selected->getLocation(), diag::note_declared_at);
5293      }
5294    } else {
5295      if (Kind != TSK_CompleteObject)
5296        S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
5297          << Kind << SubType.getUnqualifiedType() << CSM;
5298
5299      // Explain why the defaulted or deleted special member isn't trivial.
5300      S.SpecialMemberIsTrivial(Selected, CSM, Diagnose);
5301    }
5302  }
5303
5304  return false;
5305}
5306
5307/// Check whether the members of a class type allow a special member to be
5308/// trivial.
5309static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
5310                                     Sema::CXXSpecialMember CSM,
5311                                     bool ConstArg, bool Diagnose) {
5312  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
5313                                     FE = RD->field_end(); FI != FE; ++FI) {
5314    if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
5315      continue;
5316
5317    QualType FieldType = S.Context.getBaseElementType(FI->getType());
5318
5319    // Pretend anonymous struct or union members are members of this class.
5320    if (FI->isAnonymousStructOrUnion()) {
5321      if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
5322                                    CSM, ConstArg, Diagnose))
5323        return false;
5324      continue;
5325    }
5326
5327    // C++11 [class.ctor]p5:
5328    //   A default constructor is trivial if [...]
5329    //    -- no non-static data member of its class has a
5330    //       brace-or-equal-initializer
5331    if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) {
5332      if (Diagnose)
5333        S.Diag(FI->getLocation(), diag::note_nontrivial_in_class_init) << *FI;
5334      return false;
5335    }
5336
5337    // Objective C ARC 4.3.5:
5338    //   [...] nontrivally ownership-qualified types are [...] not trivially
5339    //   default constructible, copy constructible, move constructible, copy
5340    //   assignable, move assignable, or destructible [...]
5341    if (S.getLangOpts().ObjCAutoRefCount &&
5342        FieldType.hasNonTrivialObjCLifetime()) {
5343      if (Diagnose)
5344        S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
5345          << RD << FieldType.getObjCLifetime();
5346      return false;
5347    }
5348
5349    if (ConstArg && !FI->isMutable())
5350      FieldType.addConst();
5351    if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, CSM,
5352                                   TSK_Field, Diagnose))
5353      return false;
5354  }
5355
5356  return true;
5357}
5358
5359/// Diagnose why the specified class does not have a trivial special member of
5360/// the given kind.
5361void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) {
5362  QualType Ty = Context.getRecordType(RD);
5363  if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)
5364    Ty.addConst();
5365
5366  checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, CSM,
5367                            TSK_CompleteObject, /*Diagnose*/true);
5368}
5369
5370/// Determine whether a defaulted or deleted special member function is trivial,
5371/// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
5372/// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
5373bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
5374                                  bool Diagnose) {
5375  assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough");
5376
5377  CXXRecordDecl *RD = MD->getParent();
5378
5379  bool ConstArg = false;
5380
5381  // C++11 [class.copy]p12, p25:
5382  //   A [special member] is trivial if its declared parameter type is the same
5383  //   as if it had been implicitly declared [...]
5384  switch (CSM) {
5385  case CXXDefaultConstructor:
5386  case CXXDestructor:
5387    // Trivial default constructors and destructors cannot have parameters.
5388    break;
5389
5390  case CXXCopyConstructor:
5391  case CXXCopyAssignment: {
5392    // Trivial copy operations always have const, non-volatile parameter types.
5393    ConstArg = true;
5394    const ParmVarDecl *Param0 = MD->getParamDecl(0);
5395    const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
5396    if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) {
5397      if (Diagnose)
5398        Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
5399          << Param0->getSourceRange() << Param0->getType()
5400          << Context.getLValueReferenceType(
5401               Context.getRecordType(RD).withConst());
5402      return false;
5403    }
5404    break;
5405  }
5406
5407  case CXXMoveConstructor:
5408  case CXXMoveAssignment: {
5409    // Trivial move operations always have non-cv-qualified parameters.
5410    const ParmVarDecl *Param0 = MD->getParamDecl(0);
5411    const RValueReferenceType *RT =
5412      Param0->getType()->getAs<RValueReferenceType>();
5413    if (!RT || RT->getPointeeType().getCVRQualifiers()) {
5414      if (Diagnose)
5415        Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
5416          << Param0->getSourceRange() << Param0->getType()
5417          << Context.getRValueReferenceType(Context.getRecordType(RD));
5418      return false;
5419    }
5420    break;
5421  }
5422
5423  case CXXInvalid:
5424    llvm_unreachable("not a special member");
5425  }
5426
5427  // FIXME: We require that the parameter-declaration-clause is equivalent to
5428  // that of an implicit declaration, not just that the declared parameter type
5429  // matches, in order to prevent absuridities like a function simultaneously
5430  // being a trivial copy constructor and a non-trivial default constructor.
5431  // This issue has not yet been assigned a core issue number.
5432  if (MD->getMinRequiredArguments() < MD->getNumParams()) {
5433    if (Diagnose)
5434      Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
5435           diag::note_nontrivial_default_arg)
5436        << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
5437    return false;
5438  }
5439  if (MD->isVariadic()) {
5440    if (Diagnose)
5441      Diag(MD->getLocation(), diag::note_nontrivial_variadic);
5442    return false;
5443  }
5444
5445  // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
5446  //   A copy/move [constructor or assignment operator] is trivial if
5447  //    -- the [member] selected to copy/move each direct base class subobject
5448  //       is trivial
5449  //
5450  // C++11 [class.copy]p12, C++11 [class.copy]p25:
5451  //   A [default constructor or destructor] is trivial if
5452  //    -- all the direct base classes have trivial [default constructors or
5453  //       destructors]
5454  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
5455                                          BE = RD->bases_end(); BI != BE; ++BI)
5456    if (!checkTrivialSubobjectCall(*this, BI->getLocStart(),
5457                                   ConstArg ? BI->getType().withConst()
5458                                            : BI->getType(),
5459                                   CSM, TSK_BaseClass, Diagnose))
5460      return false;
5461
5462  // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
5463  //   A copy/move [constructor or assignment operator] for a class X is
5464  //   trivial if
5465  //    -- for each non-static data member of X that is of class type (or array
5466  //       thereof), the constructor selected to copy/move that member is
5467  //       trivial
5468  //
5469  // C++11 [class.copy]p12, C++11 [class.copy]p25:
5470  //   A [default constructor or destructor] is trivial if
5471  //    -- for all of the non-static data members of its class that are of class
5472  //       type (or array thereof), each such class has a trivial [default
5473  //       constructor or destructor]
5474  if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, Diagnose))
5475    return false;
5476
5477  // C++11 [class.dtor]p5:
5478  //   A destructor is trivial if [...]
5479  //    -- the destructor is not virtual
5480  if (CSM == CXXDestructor && MD->isVirtual()) {
5481    if (Diagnose)
5482      Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
5483    return false;
5484  }
5485
5486  // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
5487  //   A [special member] for class X is trivial if [...]
5488  //    -- class X has no virtual functions and no virtual base classes
5489  if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) {
5490    if (!Diagnose)
5491      return false;
5492
5493    if (RD->getNumVBases()) {
5494      // Check for virtual bases. We already know that the corresponding
5495      // member in all bases is trivial, so vbases must all be direct.
5496      CXXBaseSpecifier &BS = *RD->vbases_begin();
5497      assert(BS.isVirtual());
5498      Diag(BS.getLocStart(), diag::note_nontrivial_has_virtual) << RD << 1;
5499      return false;
5500    }
5501
5502    // Must have a virtual method.
5503    for (CXXRecordDecl::method_iterator MI = RD->method_begin(),
5504                                        ME = RD->method_end(); MI != ME; ++MI) {
5505      if (MI->isVirtual()) {
5506        SourceLocation MLoc = MI->getLocStart();
5507        Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
5508        return false;
5509      }
5510    }
5511
5512    llvm_unreachable("dynamic class with no vbases and no virtual functions");
5513  }
5514
5515  // Looks like it's trivial!
5516  return true;
5517}
5518
5519/// \brief Data used with FindHiddenVirtualMethod
5520namespace {
5521  struct FindHiddenVirtualMethodData {
5522    Sema *S;
5523    CXXMethodDecl *Method;
5524    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
5525    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
5526  };
5527}
5528
5529/// \brief Check whether any most overriden method from MD in Methods
5530static bool CheckMostOverridenMethods(const CXXMethodDecl *MD,
5531                   const llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
5532  if (MD->size_overridden_methods() == 0)
5533    return Methods.count(MD->getCanonicalDecl());
5534  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5535                                      E = MD->end_overridden_methods();
5536       I != E; ++I)
5537    if (CheckMostOverridenMethods(*I, Methods))
5538      return true;
5539  return false;
5540}
5541
5542/// \brief Member lookup function that determines whether a given C++
5543/// method overloads virtual methods in a base class without overriding any,
5544/// to be used with CXXRecordDecl::lookupInBases().
5545static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
5546                                    CXXBasePath &Path,
5547                                    void *UserData) {
5548  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
5549
5550  FindHiddenVirtualMethodData &Data
5551    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
5552
5553  DeclarationName Name = Data.Method->getDeclName();
5554  assert(Name.getNameKind() == DeclarationName::Identifier);
5555
5556  bool foundSameNameMethod = false;
5557  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
5558  for (Path.Decls = BaseRecord->lookup(Name);
5559       !Path.Decls.empty();
5560       Path.Decls = Path.Decls.slice(1)) {
5561    NamedDecl *D = Path.Decls.front();
5562    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
5563      MD = MD->getCanonicalDecl();
5564      foundSameNameMethod = true;
5565      // Interested only in hidden virtual methods.
5566      if (!MD->isVirtual())
5567        continue;
5568      // If the method we are checking overrides a method from its base
5569      // don't warn about the other overloaded methods.
5570      if (!Data.S->IsOverload(Data.Method, MD, false))
5571        return true;
5572      // Collect the overload only if its hidden.
5573      if (!CheckMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods))
5574        overloadedMethods.push_back(MD);
5575    }
5576  }
5577
5578  if (foundSameNameMethod)
5579    Data.OverloadedMethods.append(overloadedMethods.begin(),
5580                                   overloadedMethods.end());
5581  return foundSameNameMethod;
5582}
5583
5584/// \brief Add the most overriden methods from MD to Methods
5585static void AddMostOverridenMethods(const CXXMethodDecl *MD,
5586                         llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
5587  if (MD->size_overridden_methods() == 0)
5588    Methods.insert(MD->getCanonicalDecl());
5589  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5590                                      E = MD->end_overridden_methods();
5591       I != E; ++I)
5592    AddMostOverridenMethods(*I, Methods);
5593}
5594
5595/// \brief See if a method overloads virtual methods in a base class without
5596/// overriding any.
5597void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
5598  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
5599                               MD->getLocation()) == DiagnosticsEngine::Ignored)
5600    return;
5601  if (!MD->getDeclName().isIdentifier())
5602    return;
5603
5604  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
5605                     /*bool RecordPaths=*/false,
5606                     /*bool DetectVirtual=*/false);
5607  FindHiddenVirtualMethodData Data;
5608  Data.Method = MD;
5609  Data.S = this;
5610
5611  // Keep the base methods that were overriden or introduced in the subclass
5612  // by 'using' in a set. A base method not in this set is hidden.
5613  DeclContext::lookup_result R = DC->lookup(MD->getDeclName());
5614  for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
5615    NamedDecl *ND = *I;
5616    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I))
5617      ND = shad->getTargetDecl();
5618    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
5619      AddMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods);
5620  }
5621
5622  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
5623      !Data.OverloadedMethods.empty()) {
5624    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
5625      << MD << (Data.OverloadedMethods.size() > 1);
5626
5627    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
5628      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
5629      PartialDiagnostic PD = PDiag(
5630           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
5631      HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType());
5632      Diag(overloadedMD->getLocation(), PD);
5633    }
5634  }
5635}
5636
5637void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
5638                                             Decl *TagDecl,
5639                                             SourceLocation LBrac,
5640                                             SourceLocation RBrac,
5641                                             AttributeList *AttrList) {
5642  if (!TagDecl)
5643    return;
5644
5645  AdjustDeclIfTemplate(TagDecl);
5646
5647  for (const AttributeList* l = AttrList; l; l = l->getNext()) {
5648    if (l->getKind() != AttributeList::AT_Visibility)
5649      continue;
5650    l->setInvalid();
5651    Diag(l->getLoc(), diag::warn_attribute_after_definition_ignored) <<
5652      l->getName();
5653  }
5654
5655  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
5656              // strict aliasing violation!
5657              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
5658              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
5659
5660  CheckCompletedCXXClass(
5661                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
5662}
5663
5664/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
5665/// special functions, such as the default constructor, copy
5666/// constructor, or destructor, to the given C++ class (C++
5667/// [special]p1).  This routine can only be executed just before the
5668/// definition of the class is complete.
5669void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
5670  if (!ClassDecl->hasUserDeclaredConstructor())
5671    ++ASTContext::NumImplicitDefaultConstructors;
5672
5673  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
5674    ++ASTContext::NumImplicitCopyConstructors;
5675
5676    // If the properties or semantics of the copy constructor couldn't be
5677    // determined while the class was being declared, force a declaration
5678    // of it now.
5679    if (ClassDecl->needsOverloadResolutionForCopyConstructor())
5680      DeclareImplicitCopyConstructor(ClassDecl);
5681  }
5682
5683  if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveConstructor()) {
5684    ++ASTContext::NumImplicitMoveConstructors;
5685
5686    if (ClassDecl->needsOverloadResolutionForMoveConstructor())
5687      DeclareImplicitMoveConstructor(ClassDecl);
5688  }
5689
5690  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
5691    ++ASTContext::NumImplicitCopyAssignmentOperators;
5692
5693    // If we have a dynamic class, then the copy assignment operator may be
5694    // virtual, so we have to declare it immediately. This ensures that, e.g.,
5695    // it shows up in the right place in the vtable and that we diagnose
5696    // problems with the implicit exception specification.
5697    if (ClassDecl->isDynamicClass() ||
5698        ClassDecl->needsOverloadResolutionForCopyAssignment())
5699      DeclareImplicitCopyAssignment(ClassDecl);
5700  }
5701
5702  if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) {
5703    ++ASTContext::NumImplicitMoveAssignmentOperators;
5704
5705    // Likewise for the move assignment operator.
5706    if (ClassDecl->isDynamicClass() ||
5707        ClassDecl->needsOverloadResolutionForMoveAssignment())
5708      DeclareImplicitMoveAssignment(ClassDecl);
5709  }
5710
5711  if (!ClassDecl->hasUserDeclaredDestructor()) {
5712    ++ASTContext::NumImplicitDestructors;
5713
5714    // If we have a dynamic class, then the destructor may be virtual, so we
5715    // have to declare the destructor immediately. This ensures that, e.g., it
5716    // shows up in the right place in the vtable and that we diagnose problems
5717    // with the implicit exception specification.
5718    if (ClassDecl->isDynamicClass() ||
5719        ClassDecl->needsOverloadResolutionForDestructor())
5720      DeclareImplicitDestructor(ClassDecl);
5721  }
5722}
5723
5724void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
5725  if (!D)
5726    return;
5727
5728  int NumParamList = D->getNumTemplateParameterLists();
5729  for (int i = 0; i < NumParamList; i++) {
5730    TemplateParameterList* Params = D->getTemplateParameterList(i);
5731    for (TemplateParameterList::iterator Param = Params->begin(),
5732                                      ParamEnd = Params->end();
5733          Param != ParamEnd; ++Param) {
5734      NamedDecl *Named = cast<NamedDecl>(*Param);
5735      if (Named->getDeclName()) {
5736        S->AddDecl(Named);
5737        IdResolver.AddDecl(Named);
5738      }
5739    }
5740  }
5741}
5742
5743void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
5744  if (!D)
5745    return;
5746
5747  TemplateParameterList *Params = 0;
5748  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
5749    Params = Template->getTemplateParameters();
5750  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
5751           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
5752    Params = PartialSpec->getTemplateParameters();
5753  else
5754    return;
5755
5756  for (TemplateParameterList::iterator Param = Params->begin(),
5757                                    ParamEnd = Params->end();
5758       Param != ParamEnd; ++Param) {
5759    NamedDecl *Named = cast<NamedDecl>(*Param);
5760    if (Named->getDeclName()) {
5761      S->AddDecl(Named);
5762      IdResolver.AddDecl(Named);
5763    }
5764  }
5765}
5766
5767void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5768  if (!RecordD) return;
5769  AdjustDeclIfTemplate(RecordD);
5770  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
5771  PushDeclContext(S, Record);
5772}
5773
5774void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5775  if (!RecordD) return;
5776  PopDeclContext();
5777}
5778
5779/// ActOnStartDelayedCXXMethodDeclaration - We have completed
5780/// parsing a top-level (non-nested) C++ class, and we are now
5781/// parsing those parts of the given Method declaration that could
5782/// not be parsed earlier (C++ [class.mem]p2), such as default
5783/// arguments. This action should enter the scope of the given
5784/// Method declaration as if we had just parsed the qualified method
5785/// name. However, it should not bring the parameters into scope;
5786/// that will be performed by ActOnDelayedCXXMethodParameter.
5787void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5788}
5789
5790/// ActOnDelayedCXXMethodParameter - We've already started a delayed
5791/// C++ method declaration. We're (re-)introducing the given
5792/// function parameter into scope for use in parsing later parts of
5793/// the method declaration. For example, we could see an
5794/// ActOnParamDefaultArgument event for this parameter.
5795void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
5796  if (!ParamD)
5797    return;
5798
5799  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
5800
5801  // If this parameter has an unparsed default argument, clear it out
5802  // to make way for the parsed default argument.
5803  if (Param->hasUnparsedDefaultArg())
5804    Param->setDefaultArg(0);
5805
5806  S->AddDecl(Param);
5807  if (Param->getDeclName())
5808    IdResolver.AddDecl(Param);
5809}
5810
5811/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
5812/// processing the delayed method declaration for Method. The method
5813/// declaration is now considered finished. There may be a separate
5814/// ActOnStartOfFunctionDef action later (not necessarily
5815/// immediately!) for this method, if it was also defined inside the
5816/// class body.
5817void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5818  if (!MethodD)
5819    return;
5820
5821  AdjustDeclIfTemplate(MethodD);
5822
5823  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
5824
5825  // Now that we have our default arguments, check the constructor
5826  // again. It could produce additional diagnostics or affect whether
5827  // the class has implicitly-declared destructors, among other
5828  // things.
5829  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
5830    CheckConstructor(Constructor);
5831
5832  // Check the default arguments, which we may have added.
5833  if (!Method->isInvalidDecl())
5834    CheckCXXDefaultArguments(Method);
5835}
5836
5837/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
5838/// the well-formedness of the constructor declarator @p D with type @p
5839/// R. If there are any errors in the declarator, this routine will
5840/// emit diagnostics and set the invalid bit to true.  In any case, the type
5841/// will be updated to reflect a well-formed type for the constructor and
5842/// returned.
5843QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
5844                                          StorageClass &SC) {
5845  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5846
5847  // C++ [class.ctor]p3:
5848  //   A constructor shall not be virtual (10.3) or static (9.4). A
5849  //   constructor can be invoked for a const, volatile or const
5850  //   volatile object. A constructor shall not be declared const,
5851  //   volatile, or const volatile (9.3.2).
5852  if (isVirtual) {
5853    if (!D.isInvalidType())
5854      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5855        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
5856        << SourceRange(D.getIdentifierLoc());
5857    D.setInvalidType();
5858  }
5859  if (SC == SC_Static) {
5860    if (!D.isInvalidType())
5861      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5862        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5863        << SourceRange(D.getIdentifierLoc());
5864    D.setInvalidType();
5865    SC = SC_None;
5866  }
5867
5868  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5869  if (FTI.TypeQuals != 0) {
5870    if (FTI.TypeQuals & Qualifiers::Const)
5871      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5872        << "const" << SourceRange(D.getIdentifierLoc());
5873    if (FTI.TypeQuals & Qualifiers::Volatile)
5874      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5875        << "volatile" << SourceRange(D.getIdentifierLoc());
5876    if (FTI.TypeQuals & Qualifiers::Restrict)
5877      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5878        << "restrict" << SourceRange(D.getIdentifierLoc());
5879    D.setInvalidType();
5880  }
5881
5882  // C++0x [class.ctor]p4:
5883  //   A constructor shall not be declared with a ref-qualifier.
5884  if (FTI.hasRefQualifier()) {
5885    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5886      << FTI.RefQualifierIsLValueRef
5887      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5888    D.setInvalidType();
5889  }
5890
5891  // Rebuild the function type "R" without any type qualifiers (in
5892  // case any of the errors above fired) and with "void" as the
5893  // return type, since constructors don't have return types.
5894  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5895  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5896    return R;
5897
5898  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5899  EPI.TypeQuals = 0;
5900  EPI.RefQualifier = RQ_None;
5901
5902  return Context.getFunctionType(Context.VoidTy, Proto->getArgTypes(), EPI);
5903}
5904
5905/// CheckConstructor - Checks a fully-formed constructor for
5906/// well-formedness, issuing any diagnostics required. Returns true if
5907/// the constructor declarator is invalid.
5908void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5909  CXXRecordDecl *ClassDecl
5910    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5911  if (!ClassDecl)
5912    return Constructor->setInvalidDecl();
5913
5914  // C++ [class.copy]p3:
5915  //   A declaration of a constructor for a class X is ill-formed if
5916  //   its first parameter is of type (optionally cv-qualified) X and
5917  //   either there are no other parameters or else all other
5918  //   parameters have default arguments.
5919  if (!Constructor->isInvalidDecl() &&
5920      ((Constructor->getNumParams() == 1) ||
5921       (Constructor->getNumParams() > 1 &&
5922        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5923      Constructor->getTemplateSpecializationKind()
5924                                              != TSK_ImplicitInstantiation) {
5925    QualType ParamType = Constructor->getParamDecl(0)->getType();
5926    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5927    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5928      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5929      const char *ConstRef
5930        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5931                                                        : " const &";
5932      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5933        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5934
5935      // FIXME: Rather that making the constructor invalid, we should endeavor
5936      // to fix the type.
5937      Constructor->setInvalidDecl();
5938    }
5939  }
5940}
5941
5942/// CheckDestructor - Checks a fully-formed destructor definition for
5943/// well-formedness, issuing any diagnostics required.  Returns true
5944/// on error.
5945bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5946  CXXRecordDecl *RD = Destructor->getParent();
5947
5948  if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) {
5949    SourceLocation Loc;
5950
5951    if (!Destructor->isImplicit())
5952      Loc = Destructor->getLocation();
5953    else
5954      Loc = RD->getLocation();
5955
5956    // If we have a virtual destructor, look up the deallocation function
5957    FunctionDecl *OperatorDelete = 0;
5958    DeclarationName Name =
5959    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5960    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5961      return true;
5962
5963    MarkFunctionReferenced(Loc, OperatorDelete);
5964
5965    Destructor->setOperatorDelete(OperatorDelete);
5966  }
5967
5968  return false;
5969}
5970
5971static inline bool
5972FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5973  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5974          FTI.ArgInfo[0].Param &&
5975          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5976}
5977
5978/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5979/// the well-formednes of the destructor declarator @p D with type @p
5980/// R. If there are any errors in the declarator, this routine will
5981/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5982/// will be updated to reflect a well-formed type for the destructor and
5983/// returned.
5984QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5985                                         StorageClass& SC) {
5986  // C++ [class.dtor]p1:
5987  //   [...] A typedef-name that names a class is a class-name
5988  //   (7.1.3); however, a typedef-name that names a class shall not
5989  //   be used as the identifier in the declarator for a destructor
5990  //   declaration.
5991  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5992  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5993    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5994      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5995  else if (const TemplateSpecializationType *TST =
5996             DeclaratorType->getAs<TemplateSpecializationType>())
5997    if (TST->isTypeAlias())
5998      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5999        << DeclaratorType << 1;
6000
6001  // C++ [class.dtor]p2:
6002  //   A destructor is used to destroy objects of its class type. A
6003  //   destructor takes no parameters, and no return type can be
6004  //   specified for it (not even void). The address of a destructor
6005  //   shall not be taken. A destructor shall not be static. A
6006  //   destructor can be invoked for a const, volatile or const
6007  //   volatile object. A destructor shall not be declared const,
6008  //   volatile or const volatile (9.3.2).
6009  if (SC == SC_Static) {
6010    if (!D.isInvalidType())
6011      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
6012        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
6013        << SourceRange(D.getIdentifierLoc())
6014        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6015
6016    SC = SC_None;
6017  }
6018  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
6019    // Destructors don't have return types, but the parser will
6020    // happily parse something like:
6021    //
6022    //   class X {
6023    //     float ~X();
6024    //   };
6025    //
6026    // The return type will be eliminated later.
6027    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
6028      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
6029      << SourceRange(D.getIdentifierLoc());
6030  }
6031
6032  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6033  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
6034    if (FTI.TypeQuals & Qualifiers::Const)
6035      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
6036        << "const" << SourceRange(D.getIdentifierLoc());
6037    if (FTI.TypeQuals & Qualifiers::Volatile)
6038      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
6039        << "volatile" << SourceRange(D.getIdentifierLoc());
6040    if (FTI.TypeQuals & Qualifiers::Restrict)
6041      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
6042        << "restrict" << SourceRange(D.getIdentifierLoc());
6043    D.setInvalidType();
6044  }
6045
6046  // C++0x [class.dtor]p2:
6047  //   A destructor shall not be declared with a ref-qualifier.
6048  if (FTI.hasRefQualifier()) {
6049    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
6050      << FTI.RefQualifierIsLValueRef
6051      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
6052    D.setInvalidType();
6053  }
6054
6055  // Make sure we don't have any parameters.
6056  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
6057    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
6058
6059    // Delete the parameters.
6060    FTI.freeArgs();
6061    D.setInvalidType();
6062  }
6063
6064  // Make sure the destructor isn't variadic.
6065  if (FTI.isVariadic) {
6066    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
6067    D.setInvalidType();
6068  }
6069
6070  // Rebuild the function type "R" without any type qualifiers or
6071  // parameters (in case any of the errors above fired) and with
6072  // "void" as the return type, since destructors don't have return
6073  // types.
6074  if (!D.isInvalidType())
6075    return R;
6076
6077  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
6078  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
6079  EPI.Variadic = false;
6080  EPI.TypeQuals = 0;
6081  EPI.RefQualifier = RQ_None;
6082  return Context.getFunctionType(Context.VoidTy, None, EPI);
6083}
6084
6085/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
6086/// well-formednes of the conversion function declarator @p D with
6087/// type @p R. If there are any errors in the declarator, this routine
6088/// will emit diagnostics and return true. Otherwise, it will return
6089/// false. Either way, the type @p R will be updated to reflect a
6090/// well-formed type for the conversion operator.
6091void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
6092                                     StorageClass& SC) {
6093  // C++ [class.conv.fct]p1:
6094  //   Neither parameter types nor return type can be specified. The
6095  //   type of a conversion function (8.3.5) is "function taking no
6096  //   parameter returning conversion-type-id."
6097  if (SC == SC_Static) {
6098    if (!D.isInvalidType())
6099      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
6100        << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
6101        << D.getName().getSourceRange();
6102    D.setInvalidType();
6103    SC = SC_None;
6104  }
6105
6106  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
6107
6108  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
6109    // Conversion functions don't have return types, but the parser will
6110    // happily parse something like:
6111    //
6112    //   class X {
6113    //     float operator bool();
6114    //   };
6115    //
6116    // The return type will be changed later anyway.
6117    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
6118      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
6119      << SourceRange(D.getIdentifierLoc());
6120    D.setInvalidType();
6121  }
6122
6123  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
6124
6125  // Make sure we don't have any parameters.
6126  if (Proto->getNumArgs() > 0) {
6127    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
6128
6129    // Delete the parameters.
6130    D.getFunctionTypeInfo().freeArgs();
6131    D.setInvalidType();
6132  } else if (Proto->isVariadic()) {
6133    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
6134    D.setInvalidType();
6135  }
6136
6137  // Diagnose "&operator bool()" and other such nonsense.  This
6138  // is actually a gcc extension which we don't support.
6139  if (Proto->getResultType() != ConvType) {
6140    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
6141      << Proto->getResultType();
6142    D.setInvalidType();
6143    ConvType = Proto->getResultType();
6144  }
6145
6146  // C++ [class.conv.fct]p4:
6147  //   The conversion-type-id shall not represent a function type nor
6148  //   an array type.
6149  if (ConvType->isArrayType()) {
6150    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
6151    ConvType = Context.getPointerType(ConvType);
6152    D.setInvalidType();
6153  } else if (ConvType->isFunctionType()) {
6154    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
6155    ConvType = Context.getPointerType(ConvType);
6156    D.setInvalidType();
6157  }
6158
6159  // Rebuild the function type "R" without any parameters (in case any
6160  // of the errors above fired) and with the conversion type as the
6161  // return type.
6162  if (D.isInvalidType())
6163    R = Context.getFunctionType(ConvType, None, Proto->getExtProtoInfo());
6164
6165  // C++0x explicit conversion operators.
6166  if (D.getDeclSpec().isExplicitSpecified())
6167    Diag(D.getDeclSpec().getExplicitSpecLoc(),
6168         getLangOpts().CPlusPlus11 ?
6169           diag::warn_cxx98_compat_explicit_conversion_functions :
6170           diag::ext_explicit_conversion_functions)
6171      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
6172}
6173
6174/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
6175/// the declaration of the given C++ conversion function. This routine
6176/// is responsible for recording the conversion function in the C++
6177/// class, if possible.
6178Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
6179  assert(Conversion && "Expected to receive a conversion function declaration");
6180
6181  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
6182
6183  // Make sure we aren't redeclaring the conversion function.
6184  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
6185
6186  // C++ [class.conv.fct]p1:
6187  //   [...] A conversion function is never used to convert a
6188  //   (possibly cv-qualified) object to the (possibly cv-qualified)
6189  //   same object type (or a reference to it), to a (possibly
6190  //   cv-qualified) base class of that type (or a reference to it),
6191  //   or to (possibly cv-qualified) void.
6192  // FIXME: Suppress this warning if the conversion function ends up being a
6193  // virtual function that overrides a virtual function in a base class.
6194  QualType ClassType
6195    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6196  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
6197    ConvType = ConvTypeRef->getPointeeType();
6198  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
6199      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
6200    /* Suppress diagnostics for instantiations. */;
6201  else if (ConvType->isRecordType()) {
6202    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
6203    if (ConvType == ClassType)
6204      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
6205        << ClassType;
6206    else if (IsDerivedFrom(ClassType, ConvType))
6207      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
6208        <<  ClassType << ConvType;
6209  } else if (ConvType->isVoidType()) {
6210    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
6211      << ClassType << ConvType;
6212  }
6213
6214  if (FunctionTemplateDecl *ConversionTemplate
6215                                = Conversion->getDescribedFunctionTemplate())
6216    return ConversionTemplate;
6217
6218  return Conversion;
6219}
6220
6221//===----------------------------------------------------------------------===//
6222// Namespace Handling
6223//===----------------------------------------------------------------------===//
6224
6225/// \brief Diagnose a mismatch in 'inline' qualifiers when a namespace is
6226/// reopened.
6227static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc,
6228                                            SourceLocation Loc,
6229                                            IdentifierInfo *II, bool *IsInline,
6230                                            NamespaceDecl *PrevNS) {
6231  assert(*IsInline != PrevNS->isInline());
6232
6233  // HACK: Work around a bug in libstdc++4.6's <atomic>, where
6234  // std::__atomic[0,1,2] are defined as non-inline namespaces, then reopened as
6235  // inline namespaces, with the intention of bringing names into namespace std.
6236  //
6237  // We support this just well enough to get that case working; this is not
6238  // sufficient to support reopening namespaces as inline in general.
6239  if (*IsInline && II && II->getName().startswith("__atomic") &&
6240      S.getSourceManager().isInSystemHeader(Loc)) {
6241    // Mark all prior declarations of the namespace as inline.
6242    for (NamespaceDecl *NS = PrevNS->getMostRecentDecl(); NS;
6243         NS = NS->getPreviousDecl())
6244      NS->setInline(*IsInline);
6245    // Patch up the lookup table for the containing namespace. This isn't really
6246    // correct, but it's good enough for this particular case.
6247    for (DeclContext::decl_iterator I = PrevNS->decls_begin(),
6248                                    E = PrevNS->decls_end(); I != E; ++I)
6249      if (NamedDecl *ND = dyn_cast<NamedDecl>(*I))
6250        PrevNS->getParent()->makeDeclVisibleInContext(ND);
6251    return;
6252  }
6253
6254  if (PrevNS->isInline())
6255    // The user probably just forgot the 'inline', so suggest that it
6256    // be added back.
6257    S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
6258      << FixItHint::CreateInsertion(KeywordLoc, "inline ");
6259  else
6260    S.Diag(Loc, diag::err_inline_namespace_mismatch)
6261      << IsInline;
6262
6263  S.Diag(PrevNS->getLocation(), diag::note_previous_definition);
6264  *IsInline = PrevNS->isInline();
6265}
6266
6267/// ActOnStartNamespaceDef - This is called at the start of a namespace
6268/// definition.
6269Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
6270                                   SourceLocation InlineLoc,
6271                                   SourceLocation NamespaceLoc,
6272                                   SourceLocation IdentLoc,
6273                                   IdentifierInfo *II,
6274                                   SourceLocation LBrace,
6275                                   AttributeList *AttrList) {
6276  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
6277  // For anonymous namespace, take the location of the left brace.
6278  SourceLocation Loc = II ? IdentLoc : LBrace;
6279  bool IsInline = InlineLoc.isValid();
6280  bool IsInvalid = false;
6281  bool IsStd = false;
6282  bool AddToKnown = false;
6283  Scope *DeclRegionScope = NamespcScope->getParent();
6284
6285  NamespaceDecl *PrevNS = 0;
6286  if (II) {
6287    // C++ [namespace.def]p2:
6288    //   The identifier in an original-namespace-definition shall not
6289    //   have been previously defined in the declarative region in
6290    //   which the original-namespace-definition appears. The
6291    //   identifier in an original-namespace-definition is the name of
6292    //   the namespace. Subsequently in that declarative region, it is
6293    //   treated as an original-namespace-name.
6294    //
6295    // Since namespace names are unique in their scope, and we don't
6296    // look through using directives, just look for any ordinary names.
6297
6298    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
6299    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
6300    Decl::IDNS_Namespace;
6301    NamedDecl *PrevDecl = 0;
6302    DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
6303    for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
6304         ++I) {
6305      if ((*I)->getIdentifierNamespace() & IDNS) {
6306        PrevDecl = *I;
6307        break;
6308      }
6309    }
6310
6311    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
6312
6313    if (PrevNS) {
6314      // This is an extended namespace definition.
6315      if (IsInline != PrevNS->isInline())
6316        DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II,
6317                                        &IsInline, PrevNS);
6318    } else if (PrevDecl) {
6319      // This is an invalid name redefinition.
6320      Diag(Loc, diag::err_redefinition_different_kind)
6321        << II;
6322      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6323      IsInvalid = true;
6324      // Continue on to push Namespc as current DeclContext and return it.
6325    } else if (II->isStr("std") &&
6326               CurContext->getRedeclContext()->isTranslationUnit()) {
6327      // This is the first "real" definition of the namespace "std", so update
6328      // our cache of the "std" namespace to point at this definition.
6329      PrevNS = getStdNamespace();
6330      IsStd = true;
6331      AddToKnown = !IsInline;
6332    } else {
6333      // We've seen this namespace for the first time.
6334      AddToKnown = !IsInline;
6335    }
6336  } else {
6337    // Anonymous namespaces.
6338
6339    // Determine whether the parent already has an anonymous namespace.
6340    DeclContext *Parent = CurContext->getRedeclContext();
6341    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
6342      PrevNS = TU->getAnonymousNamespace();
6343    } else {
6344      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
6345      PrevNS = ND->getAnonymousNamespace();
6346    }
6347
6348    if (PrevNS && IsInline != PrevNS->isInline())
6349      DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II,
6350                                      &IsInline, PrevNS);
6351  }
6352
6353  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
6354                                                 StartLoc, Loc, II, PrevNS);
6355  if (IsInvalid)
6356    Namespc->setInvalidDecl();
6357
6358  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
6359
6360  // FIXME: Should we be merging attributes?
6361  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
6362    PushNamespaceVisibilityAttr(Attr, Loc);
6363
6364  if (IsStd)
6365    StdNamespace = Namespc;
6366  if (AddToKnown)
6367    KnownNamespaces[Namespc] = false;
6368
6369  if (II) {
6370    PushOnScopeChains(Namespc, DeclRegionScope);
6371  } else {
6372    // Link the anonymous namespace into its parent.
6373    DeclContext *Parent = CurContext->getRedeclContext();
6374    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
6375      TU->setAnonymousNamespace(Namespc);
6376    } else {
6377      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
6378    }
6379
6380    CurContext->addDecl(Namespc);
6381
6382    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
6383    //   behaves as if it were replaced by
6384    //     namespace unique { /* empty body */ }
6385    //     using namespace unique;
6386    //     namespace unique { namespace-body }
6387    //   where all occurrences of 'unique' in a translation unit are
6388    //   replaced by the same identifier and this identifier differs
6389    //   from all other identifiers in the entire program.
6390
6391    // We just create the namespace with an empty name and then add an
6392    // implicit using declaration, just like the standard suggests.
6393    //
6394    // CodeGen enforces the "universally unique" aspect by giving all
6395    // declarations semantically contained within an anonymous
6396    // namespace internal linkage.
6397
6398    if (!PrevNS) {
6399      UsingDirectiveDecl* UD
6400        = UsingDirectiveDecl::Create(Context, Parent,
6401                                     /* 'using' */ LBrace,
6402                                     /* 'namespace' */ SourceLocation(),
6403                                     /* qualifier */ NestedNameSpecifierLoc(),
6404                                     /* identifier */ SourceLocation(),
6405                                     Namespc,
6406                                     /* Ancestor */ Parent);
6407      UD->setImplicit();
6408      Parent->addDecl(UD);
6409    }
6410  }
6411
6412  ActOnDocumentableDecl(Namespc);
6413
6414  // Although we could have an invalid decl (i.e. the namespace name is a
6415  // redefinition), push it as current DeclContext and try to continue parsing.
6416  // FIXME: We should be able to push Namespc here, so that the each DeclContext
6417  // for the namespace has the declarations that showed up in that particular
6418  // namespace definition.
6419  PushDeclContext(NamespcScope, Namespc);
6420  return Namespc;
6421}
6422
6423/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
6424/// is a namespace alias, returns the namespace it points to.
6425static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
6426  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
6427    return AD->getNamespace();
6428  return dyn_cast_or_null<NamespaceDecl>(D);
6429}
6430
6431/// ActOnFinishNamespaceDef - This callback is called after a namespace is
6432/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
6433void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
6434  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
6435  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
6436  Namespc->setRBraceLoc(RBrace);
6437  PopDeclContext();
6438  if (Namespc->hasAttr<VisibilityAttr>())
6439    PopPragmaVisibility(true, RBrace);
6440}
6441
6442CXXRecordDecl *Sema::getStdBadAlloc() const {
6443  return cast_or_null<CXXRecordDecl>(
6444                                  StdBadAlloc.get(Context.getExternalSource()));
6445}
6446
6447NamespaceDecl *Sema::getStdNamespace() const {
6448  return cast_or_null<NamespaceDecl>(
6449                                 StdNamespace.get(Context.getExternalSource()));
6450}
6451
6452/// \brief Retrieve the special "std" namespace, which may require us to
6453/// implicitly define the namespace.
6454NamespaceDecl *Sema::getOrCreateStdNamespace() {
6455  if (!StdNamespace) {
6456    // The "std" namespace has not yet been defined, so build one implicitly.
6457    StdNamespace = NamespaceDecl::Create(Context,
6458                                         Context.getTranslationUnitDecl(),
6459                                         /*Inline=*/false,
6460                                         SourceLocation(), SourceLocation(),
6461                                         &PP.getIdentifierTable().get("std"),
6462                                         /*PrevDecl=*/0);
6463    getStdNamespace()->setImplicit(true);
6464  }
6465
6466  return getStdNamespace();
6467}
6468
6469bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
6470  assert(getLangOpts().CPlusPlus &&
6471         "Looking for std::initializer_list outside of C++.");
6472
6473  // We're looking for implicit instantiations of
6474  // template <typename E> class std::initializer_list.
6475
6476  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
6477    return false;
6478
6479  ClassTemplateDecl *Template = 0;
6480  const TemplateArgument *Arguments = 0;
6481
6482  if (const RecordType *RT = Ty->getAs<RecordType>()) {
6483
6484    ClassTemplateSpecializationDecl *Specialization =
6485        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
6486    if (!Specialization)
6487      return false;
6488
6489    Template = Specialization->getSpecializedTemplate();
6490    Arguments = Specialization->getTemplateArgs().data();
6491  } else if (const TemplateSpecializationType *TST =
6492                 Ty->getAs<TemplateSpecializationType>()) {
6493    Template = dyn_cast_or_null<ClassTemplateDecl>(
6494        TST->getTemplateName().getAsTemplateDecl());
6495    Arguments = TST->getArgs();
6496  }
6497  if (!Template)
6498    return false;
6499
6500  if (!StdInitializerList) {
6501    // Haven't recognized std::initializer_list yet, maybe this is it.
6502    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
6503    if (TemplateClass->getIdentifier() !=
6504            &PP.getIdentifierTable().get("initializer_list") ||
6505        !getStdNamespace()->InEnclosingNamespaceSetOf(
6506            TemplateClass->getDeclContext()))
6507      return false;
6508    // This is a template called std::initializer_list, but is it the right
6509    // template?
6510    TemplateParameterList *Params = Template->getTemplateParameters();
6511    if (Params->getMinRequiredArguments() != 1)
6512      return false;
6513    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
6514      return false;
6515
6516    // It's the right template.
6517    StdInitializerList = Template;
6518  }
6519
6520  if (Template != StdInitializerList)
6521    return false;
6522
6523  // This is an instance of std::initializer_list. Find the argument type.
6524  if (Element)
6525    *Element = Arguments[0].getAsType();
6526  return true;
6527}
6528
6529static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
6530  NamespaceDecl *Std = S.getStdNamespace();
6531  if (!Std) {
6532    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
6533    return 0;
6534  }
6535
6536  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
6537                      Loc, Sema::LookupOrdinaryName);
6538  if (!S.LookupQualifiedName(Result, Std)) {
6539    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
6540    return 0;
6541  }
6542  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
6543  if (!Template) {
6544    Result.suppressDiagnostics();
6545    // We found something weird. Complain about the first thing we found.
6546    NamedDecl *Found = *Result.begin();
6547    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
6548    return 0;
6549  }
6550
6551  // We found some template called std::initializer_list. Now verify that it's
6552  // correct.
6553  TemplateParameterList *Params = Template->getTemplateParameters();
6554  if (Params->getMinRequiredArguments() != 1 ||
6555      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
6556    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
6557    return 0;
6558  }
6559
6560  return Template;
6561}
6562
6563QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
6564  if (!StdInitializerList) {
6565    StdInitializerList = LookupStdInitializerList(*this, Loc);
6566    if (!StdInitializerList)
6567      return QualType();
6568  }
6569
6570  TemplateArgumentListInfo Args(Loc, Loc);
6571  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
6572                                       Context.getTrivialTypeSourceInfo(Element,
6573                                                                        Loc)));
6574  return Context.getCanonicalType(
6575      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
6576}
6577
6578bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
6579  // C++ [dcl.init.list]p2:
6580  //   A constructor is an initializer-list constructor if its first parameter
6581  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
6582  //   std::initializer_list<E> for some type E, and either there are no other
6583  //   parameters or else all other parameters have default arguments.
6584  if (Ctor->getNumParams() < 1 ||
6585      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
6586    return false;
6587
6588  QualType ArgType = Ctor->getParamDecl(0)->getType();
6589  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
6590    ArgType = RT->getPointeeType().getUnqualifiedType();
6591
6592  return isStdInitializerList(ArgType, 0);
6593}
6594
6595/// \brief Determine whether a using statement is in a context where it will be
6596/// apply in all contexts.
6597static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
6598  switch (CurContext->getDeclKind()) {
6599    case Decl::TranslationUnit:
6600      return true;
6601    case Decl::LinkageSpec:
6602      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
6603    default:
6604      return false;
6605  }
6606}
6607
6608namespace {
6609
6610// Callback to only accept typo corrections that are namespaces.
6611class NamespaceValidatorCCC : public CorrectionCandidateCallback {
6612public:
6613  bool ValidateCandidate(const TypoCorrection &candidate) LLVM_OVERRIDE {
6614    if (NamedDecl *ND = candidate.getCorrectionDecl())
6615      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
6616    return false;
6617  }
6618};
6619
6620}
6621
6622static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
6623                                       CXXScopeSpec &SS,
6624                                       SourceLocation IdentLoc,
6625                                       IdentifierInfo *Ident) {
6626  NamespaceValidatorCCC Validator;
6627  R.clear();
6628  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
6629                                               R.getLookupKind(), Sc, &SS,
6630                                               Validator)) {
6631    std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
6632    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOpts()));
6633    if (DeclContext *DC = S.computeDeclContext(SS, false)) {
6634      bool droppedSpecifier = Corrected.WillReplaceSpecifier() &&
6635                              Ident->getName().equals(CorrectedStr);
6636      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
6637          << Ident << DC << droppedSpecifier << CorrectedQuotedStr
6638          << SS.getRange() << FixItHint::CreateReplacement(
6639                                  Corrected.getCorrectionRange(), CorrectedStr);
6640    } else {
6641      S.Diag(IdentLoc, diag::err_using_directive_suggest)
6642        << Ident << CorrectedQuotedStr
6643        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
6644    }
6645
6646    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
6647         diag::note_namespace_defined_here) << CorrectedQuotedStr;
6648
6649    R.addDecl(Corrected.getCorrectionDecl());
6650    return true;
6651  }
6652  return false;
6653}
6654
6655Decl *Sema::ActOnUsingDirective(Scope *S,
6656                                          SourceLocation UsingLoc,
6657                                          SourceLocation NamespcLoc,
6658                                          CXXScopeSpec &SS,
6659                                          SourceLocation IdentLoc,
6660                                          IdentifierInfo *NamespcName,
6661                                          AttributeList *AttrList) {
6662  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6663  assert(NamespcName && "Invalid NamespcName.");
6664  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
6665
6666  // This can only happen along a recovery path.
6667  while (S->getFlags() & Scope::TemplateParamScope)
6668    S = S->getParent();
6669  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6670
6671  UsingDirectiveDecl *UDir = 0;
6672  NestedNameSpecifier *Qualifier = 0;
6673  if (SS.isSet())
6674    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6675
6676  // Lookup namespace name.
6677  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
6678  LookupParsedName(R, S, &SS);
6679  if (R.isAmbiguous())
6680    return 0;
6681
6682  if (R.empty()) {
6683    R.clear();
6684    // Allow "using namespace std;" or "using namespace ::std;" even if
6685    // "std" hasn't been defined yet, for GCC compatibility.
6686    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
6687        NamespcName->isStr("std")) {
6688      Diag(IdentLoc, diag::ext_using_undefined_std);
6689      R.addDecl(getOrCreateStdNamespace());
6690      R.resolveKind();
6691    }
6692    // Otherwise, attempt typo correction.
6693    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
6694  }
6695
6696  if (!R.empty()) {
6697    NamedDecl *Named = R.getFoundDecl();
6698    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
6699        && "expected namespace decl");
6700    // C++ [namespace.udir]p1:
6701    //   A using-directive specifies that the names in the nominated
6702    //   namespace can be used in the scope in which the
6703    //   using-directive appears after the using-directive. During
6704    //   unqualified name lookup (3.4.1), the names appear as if they
6705    //   were declared in the nearest enclosing namespace which
6706    //   contains both the using-directive and the nominated
6707    //   namespace. [Note: in this context, "contains" means "contains
6708    //   directly or indirectly". ]
6709
6710    // Find enclosing context containing both using-directive and
6711    // nominated namespace.
6712    NamespaceDecl *NS = getNamespaceDecl(Named);
6713    DeclContext *CommonAncestor = cast<DeclContext>(NS);
6714    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
6715      CommonAncestor = CommonAncestor->getParent();
6716
6717    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
6718                                      SS.getWithLocInContext(Context),
6719                                      IdentLoc, Named, CommonAncestor);
6720
6721    if (IsUsingDirectiveInToplevelContext(CurContext) &&
6722        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
6723      Diag(IdentLoc, diag::warn_using_directive_in_header);
6724    }
6725
6726    PushUsingDirective(S, UDir);
6727  } else {
6728    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6729  }
6730
6731  if (UDir)
6732    ProcessDeclAttributeList(S, UDir, AttrList);
6733
6734  return UDir;
6735}
6736
6737void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
6738  // If the scope has an associated entity and the using directive is at
6739  // namespace or translation unit scope, add the UsingDirectiveDecl into
6740  // its lookup structure so qualified name lookup can find it.
6741  DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
6742  if (Ctx && !Ctx->isFunctionOrMethod())
6743    Ctx->addDecl(UDir);
6744  else
6745    // Otherwise, it is at block sope. The using-directives will affect lookup
6746    // only to the end of the scope.
6747    S->PushUsingDirective(UDir);
6748}
6749
6750
6751Decl *Sema::ActOnUsingDeclaration(Scope *S,
6752                                  AccessSpecifier AS,
6753                                  bool HasUsingKeyword,
6754                                  SourceLocation UsingLoc,
6755                                  CXXScopeSpec &SS,
6756                                  UnqualifiedId &Name,
6757                                  AttributeList *AttrList,
6758                                  bool HasTypenameKeyword,
6759                                  SourceLocation TypenameLoc) {
6760  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6761
6762  switch (Name.getKind()) {
6763  case UnqualifiedId::IK_ImplicitSelfParam:
6764  case UnqualifiedId::IK_Identifier:
6765  case UnqualifiedId::IK_OperatorFunctionId:
6766  case UnqualifiedId::IK_LiteralOperatorId:
6767  case UnqualifiedId::IK_ConversionFunctionId:
6768    break;
6769
6770  case UnqualifiedId::IK_ConstructorName:
6771  case UnqualifiedId::IK_ConstructorTemplateId:
6772    // C++11 inheriting constructors.
6773    Diag(Name.getLocStart(),
6774         getLangOpts().CPlusPlus11 ?
6775           diag::warn_cxx98_compat_using_decl_constructor :
6776           diag::err_using_decl_constructor)
6777      << SS.getRange();
6778
6779    if (getLangOpts().CPlusPlus11) break;
6780
6781    return 0;
6782
6783  case UnqualifiedId::IK_DestructorName:
6784    Diag(Name.getLocStart(), diag::err_using_decl_destructor)
6785      << SS.getRange();
6786    return 0;
6787
6788  case UnqualifiedId::IK_TemplateId:
6789    Diag(Name.getLocStart(), diag::err_using_decl_template_id)
6790      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
6791    return 0;
6792  }
6793
6794  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
6795  DeclarationName TargetName = TargetNameInfo.getName();
6796  if (!TargetName)
6797    return 0;
6798
6799  // Warn about access declarations.
6800  if (!HasUsingKeyword) {
6801    Diag(Name.getLocStart(),
6802         getLangOpts().CPlusPlus11 ? diag::err_access_decl
6803                                   : diag::warn_access_decl_deprecated)
6804      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
6805  }
6806
6807  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
6808      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
6809    return 0;
6810
6811  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
6812                                        TargetNameInfo, AttrList,
6813                                        /* IsInstantiation */ false,
6814                                        HasTypenameKeyword, TypenameLoc);
6815  if (UD)
6816    PushOnScopeChains(UD, S, /*AddToContext*/ false);
6817
6818  return UD;
6819}
6820
6821/// \brief Determine whether a using declaration considers the given
6822/// declarations as "equivalent", e.g., if they are redeclarations of
6823/// the same entity or are both typedefs of the same type.
6824static bool
6825IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
6826                         bool &SuppressRedeclaration) {
6827  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
6828    SuppressRedeclaration = false;
6829    return true;
6830  }
6831
6832  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
6833    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
6834      SuppressRedeclaration = true;
6835      return Context.hasSameType(TD1->getUnderlyingType(),
6836                                 TD2->getUnderlyingType());
6837    }
6838
6839  return false;
6840}
6841
6842
6843/// Determines whether to create a using shadow decl for a particular
6844/// decl, given the set of decls existing prior to this using lookup.
6845bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
6846                                const LookupResult &Previous) {
6847  // Diagnose finding a decl which is not from a base class of the
6848  // current class.  We do this now because there are cases where this
6849  // function will silently decide not to build a shadow decl, which
6850  // will pre-empt further diagnostics.
6851  //
6852  // We don't need to do this in C++0x because we do the check once on
6853  // the qualifier.
6854  //
6855  // FIXME: diagnose the following if we care enough:
6856  //   struct A { int foo; };
6857  //   struct B : A { using A::foo; };
6858  //   template <class T> struct C : A {};
6859  //   template <class T> struct D : C<T> { using B::foo; } // <---
6860  // This is invalid (during instantiation) in C++03 because B::foo
6861  // resolves to the using decl in B, which is not a base class of D<T>.
6862  // We can't diagnose it immediately because C<T> is an unknown
6863  // specialization.  The UsingShadowDecl in D<T> then points directly
6864  // to A::foo, which will look well-formed when we instantiate.
6865  // The right solution is to not collapse the shadow-decl chain.
6866  if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) {
6867    DeclContext *OrigDC = Orig->getDeclContext();
6868
6869    // Handle enums and anonymous structs.
6870    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
6871    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
6872    while (OrigRec->isAnonymousStructOrUnion())
6873      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
6874
6875    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
6876      if (OrigDC == CurContext) {
6877        Diag(Using->getLocation(),
6878             diag::err_using_decl_nested_name_specifier_is_current_class)
6879          << Using->getQualifierLoc().getSourceRange();
6880        Diag(Orig->getLocation(), diag::note_using_decl_target);
6881        return true;
6882      }
6883
6884      Diag(Using->getQualifierLoc().getBeginLoc(),
6885           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6886        << Using->getQualifier()
6887        << cast<CXXRecordDecl>(CurContext)
6888        << Using->getQualifierLoc().getSourceRange();
6889      Diag(Orig->getLocation(), diag::note_using_decl_target);
6890      return true;
6891    }
6892  }
6893
6894  if (Previous.empty()) return false;
6895
6896  NamedDecl *Target = Orig;
6897  if (isa<UsingShadowDecl>(Target))
6898    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6899
6900  // If the target happens to be one of the previous declarations, we
6901  // don't have a conflict.
6902  //
6903  // FIXME: but we might be increasing its access, in which case we
6904  // should redeclare it.
6905  NamedDecl *NonTag = 0, *Tag = 0;
6906  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6907         I != E; ++I) {
6908    NamedDecl *D = (*I)->getUnderlyingDecl();
6909    bool Result;
6910    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
6911      return Result;
6912
6913    (isa<TagDecl>(D) ? Tag : NonTag) = D;
6914  }
6915
6916  if (Target->isFunctionOrFunctionTemplate()) {
6917    FunctionDecl *FD;
6918    if (isa<FunctionTemplateDecl>(Target))
6919      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
6920    else
6921      FD = cast<FunctionDecl>(Target);
6922
6923    NamedDecl *OldDecl = 0;
6924    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
6925    case Ovl_Overload:
6926      return false;
6927
6928    case Ovl_NonFunction:
6929      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6930      break;
6931
6932    // We found a decl with the exact signature.
6933    case Ovl_Match:
6934      // If we're in a record, we want to hide the target, so we
6935      // return true (without a diagnostic) to tell the caller not to
6936      // build a shadow decl.
6937      if (CurContext->isRecord())
6938        return true;
6939
6940      // If we're not in a record, this is an error.
6941      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6942      break;
6943    }
6944
6945    Diag(Target->getLocation(), diag::note_using_decl_target);
6946    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6947    return true;
6948  }
6949
6950  // Target is not a function.
6951
6952  if (isa<TagDecl>(Target)) {
6953    // No conflict between a tag and a non-tag.
6954    if (!Tag) return false;
6955
6956    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6957    Diag(Target->getLocation(), diag::note_using_decl_target);
6958    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6959    return true;
6960  }
6961
6962  // No conflict between a tag and a non-tag.
6963  if (!NonTag) return false;
6964
6965  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6966  Diag(Target->getLocation(), diag::note_using_decl_target);
6967  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6968  return true;
6969}
6970
6971/// Builds a shadow declaration corresponding to a 'using' declaration.
6972UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6973                                            UsingDecl *UD,
6974                                            NamedDecl *Orig) {
6975
6976  // If we resolved to another shadow declaration, just coalesce them.
6977  NamedDecl *Target = Orig;
6978  if (isa<UsingShadowDecl>(Target)) {
6979    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6980    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6981  }
6982
6983  UsingShadowDecl *Shadow
6984    = UsingShadowDecl::Create(Context, CurContext,
6985                              UD->getLocation(), UD, Target);
6986  UD->addShadowDecl(Shadow);
6987
6988  Shadow->setAccess(UD->getAccess());
6989  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6990    Shadow->setInvalidDecl();
6991
6992  if (S)
6993    PushOnScopeChains(Shadow, S);
6994  else
6995    CurContext->addDecl(Shadow);
6996
6997
6998  return Shadow;
6999}
7000
7001/// Hides a using shadow declaration.  This is required by the current
7002/// using-decl implementation when a resolvable using declaration in a
7003/// class is followed by a declaration which would hide or override
7004/// one or more of the using decl's targets; for example:
7005///
7006///   struct Base { void foo(int); };
7007///   struct Derived : Base {
7008///     using Base::foo;
7009///     void foo(int);
7010///   };
7011///
7012/// The governing language is C++03 [namespace.udecl]p12:
7013///
7014///   When a using-declaration brings names from a base class into a
7015///   derived class scope, member functions in the derived class
7016///   override and/or hide member functions with the same name and
7017///   parameter types in a base class (rather than conflicting).
7018///
7019/// There are two ways to implement this:
7020///   (1) optimistically create shadow decls when they're not hidden
7021///       by existing declarations, or
7022///   (2) don't create any shadow decls (or at least don't make them
7023///       visible) until we've fully parsed/instantiated the class.
7024/// The problem with (1) is that we might have to retroactively remove
7025/// a shadow decl, which requires several O(n) operations because the
7026/// decl structures are (very reasonably) not designed for removal.
7027/// (2) avoids this but is very fiddly and phase-dependent.
7028void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
7029  if (Shadow->getDeclName().getNameKind() ==
7030        DeclarationName::CXXConversionFunctionName)
7031    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
7032
7033  // Remove it from the DeclContext...
7034  Shadow->getDeclContext()->removeDecl(Shadow);
7035
7036  // ...and the scope, if applicable...
7037  if (S) {
7038    S->RemoveDecl(Shadow);
7039    IdResolver.RemoveDecl(Shadow);
7040  }
7041
7042  // ...and the using decl.
7043  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
7044
7045  // TODO: complain somehow if Shadow was used.  It shouldn't
7046  // be possible for this to happen, because...?
7047}
7048
7049namespace {
7050class UsingValidatorCCC : public CorrectionCandidateCallback {
7051public:
7052  UsingValidatorCCC(bool HasTypenameKeyword, bool IsInstantiation)
7053      : HasTypenameKeyword(HasTypenameKeyword),
7054        IsInstantiation(IsInstantiation) {}
7055
7056  bool ValidateCandidate(const TypoCorrection &Candidate) LLVM_OVERRIDE {
7057    NamedDecl *ND = Candidate.getCorrectionDecl();
7058
7059    // Keywords are not valid here.
7060    if (!ND || isa<NamespaceDecl>(ND))
7061      return false;
7062
7063    // Completely unqualified names are invalid for a 'using' declaration.
7064    if (Candidate.WillReplaceSpecifier() && !Candidate.getCorrectionSpecifier())
7065      return false;
7066
7067    if (isa<TypeDecl>(ND))
7068      return HasTypenameKeyword || !IsInstantiation;
7069
7070    return !HasTypenameKeyword;
7071  }
7072
7073private:
7074  bool HasTypenameKeyword;
7075  bool IsInstantiation;
7076};
7077} // end anonymous namespace
7078
7079/// Builds a using declaration.
7080///
7081/// \param IsInstantiation - Whether this call arises from an
7082///   instantiation of an unresolved using declaration.  We treat
7083///   the lookup differently for these declarations.
7084NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
7085                                       SourceLocation UsingLoc,
7086                                       CXXScopeSpec &SS,
7087                                       const DeclarationNameInfo &NameInfo,
7088                                       AttributeList *AttrList,
7089                                       bool IsInstantiation,
7090                                       bool HasTypenameKeyword,
7091                                       SourceLocation TypenameLoc) {
7092  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
7093  SourceLocation IdentLoc = NameInfo.getLoc();
7094  assert(IdentLoc.isValid() && "Invalid TargetName location.");
7095
7096  // FIXME: We ignore attributes for now.
7097
7098  if (SS.isEmpty()) {
7099    Diag(IdentLoc, diag::err_using_requires_qualname);
7100    return 0;
7101  }
7102
7103  // Do the redeclaration lookup in the current scope.
7104  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
7105                        ForRedeclaration);
7106  Previous.setHideTags(false);
7107  if (S) {
7108    LookupName(Previous, S);
7109
7110    // It is really dumb that we have to do this.
7111    LookupResult::Filter F = Previous.makeFilter();
7112    while (F.hasNext()) {
7113      NamedDecl *D = F.next();
7114      if (!isDeclInScope(D, CurContext, S))
7115        F.erase();
7116    }
7117    F.done();
7118  } else {
7119    assert(IsInstantiation && "no scope in non-instantiation");
7120    assert(CurContext->isRecord() && "scope not record in instantiation");
7121    LookupQualifiedName(Previous, CurContext);
7122  }
7123
7124  // Check for invalid redeclarations.
7125  if (CheckUsingDeclRedeclaration(UsingLoc, HasTypenameKeyword,
7126                                  SS, IdentLoc, Previous))
7127    return 0;
7128
7129  // Check for bad qualifiers.
7130  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
7131    return 0;
7132
7133  DeclContext *LookupContext = computeDeclContext(SS);
7134  NamedDecl *D;
7135  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
7136  if (!LookupContext) {
7137    if (HasTypenameKeyword) {
7138      // FIXME: not all declaration name kinds are legal here
7139      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
7140                                              UsingLoc, TypenameLoc,
7141                                              QualifierLoc,
7142                                              IdentLoc, NameInfo.getName());
7143    } else {
7144      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
7145                                           QualifierLoc, NameInfo);
7146    }
7147  } else {
7148    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
7149                          NameInfo, HasTypenameKeyword);
7150  }
7151  D->setAccess(AS);
7152  CurContext->addDecl(D);
7153
7154  if (!LookupContext) return D;
7155  UsingDecl *UD = cast<UsingDecl>(D);
7156
7157  if (RequireCompleteDeclContext(SS, LookupContext)) {
7158    UD->setInvalidDecl();
7159    return UD;
7160  }
7161
7162  // The normal rules do not apply to inheriting constructor declarations.
7163  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
7164    if (CheckInheritingConstructorUsingDecl(UD))
7165      UD->setInvalidDecl();
7166    return UD;
7167  }
7168
7169  // Otherwise, look up the target name.
7170
7171  LookupResult R(*this, NameInfo, LookupOrdinaryName);
7172
7173  // Unlike most lookups, we don't always want to hide tag
7174  // declarations: tag names are visible through the using declaration
7175  // even if hidden by ordinary names, *except* in a dependent context
7176  // where it's important for the sanity of two-phase lookup.
7177  if (!IsInstantiation)
7178    R.setHideTags(false);
7179
7180  // For the purposes of this lookup, we have a base object type
7181  // equal to that of the current context.
7182  if (CurContext->isRecord()) {
7183    R.setBaseObjectType(
7184                   Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
7185  }
7186
7187  LookupQualifiedName(R, LookupContext);
7188
7189  // Try to correct typos if possible.
7190  if (R.empty()) {
7191    UsingValidatorCCC CCC(HasTypenameKeyword, IsInstantiation);
7192    if (TypoCorrection Corrected = CorrectTypo(R.getLookupNameInfo(),
7193                                               R.getLookupKind(), S, &SS, CCC)){
7194      // We reject any correction for which ND would be NULL.
7195      NamedDecl *ND = Corrected.getCorrectionDecl();
7196      std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
7197      std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
7198      R.setLookupName(Corrected.getCorrection());
7199      R.addDecl(ND);
7200      // We reject candidates where droppedSpecifier == true, hence the
7201      // literal '0' below.
7202      Diag(R.getNameLoc(), diag::err_no_member_suggest)
7203        << NameInfo.getName() << LookupContext << 0
7204        << CorrectedQuotedStr << SS.getRange()
7205        << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
7206                                        CorrectedStr);
7207      Diag(ND->getLocation(), diag::note_previous_decl)
7208        << CorrectedQuotedStr;
7209    } else {
7210      Diag(IdentLoc, diag::err_no_member)
7211        << NameInfo.getName() << LookupContext << SS.getRange();
7212      UD->setInvalidDecl();
7213      return UD;
7214    }
7215  }
7216
7217  if (R.isAmbiguous()) {
7218    UD->setInvalidDecl();
7219    return UD;
7220  }
7221
7222  if (HasTypenameKeyword) {
7223    // If we asked for a typename and got a non-type decl, error out.
7224    if (!R.getAsSingle<TypeDecl>()) {
7225      Diag(IdentLoc, diag::err_using_typename_non_type);
7226      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
7227        Diag((*I)->getUnderlyingDecl()->getLocation(),
7228             diag::note_using_decl_target);
7229      UD->setInvalidDecl();
7230      return UD;
7231    }
7232  } else {
7233    // If we asked for a non-typename and we got a type, error out,
7234    // but only if this is an instantiation of an unresolved using
7235    // decl.  Otherwise just silently find the type name.
7236    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
7237      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
7238      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
7239      UD->setInvalidDecl();
7240      return UD;
7241    }
7242  }
7243
7244  // C++0x N2914 [namespace.udecl]p6:
7245  // A using-declaration shall not name a namespace.
7246  if (R.getAsSingle<NamespaceDecl>()) {
7247    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
7248      << SS.getRange();
7249    UD->setInvalidDecl();
7250    return UD;
7251  }
7252
7253  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
7254    if (!CheckUsingShadowDecl(UD, *I, Previous))
7255      BuildUsingShadowDecl(S, UD, *I);
7256  }
7257
7258  return UD;
7259}
7260
7261/// Additional checks for a using declaration referring to a constructor name.
7262bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
7263  assert(!UD->hasTypename() && "expecting a constructor name");
7264
7265  const Type *SourceType = UD->getQualifier()->getAsType();
7266  assert(SourceType &&
7267         "Using decl naming constructor doesn't have type in scope spec.");
7268  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
7269
7270  // Check whether the named type is a direct base class.
7271  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
7272  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
7273  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
7274       BaseIt != BaseE; ++BaseIt) {
7275    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
7276    if (CanonicalSourceType == BaseType)
7277      break;
7278    if (BaseIt->getType()->isDependentType())
7279      break;
7280  }
7281
7282  if (BaseIt == BaseE) {
7283    // Did not find SourceType in the bases.
7284    Diag(UD->getUsingLoc(),
7285         diag::err_using_decl_constructor_not_in_direct_base)
7286      << UD->getNameInfo().getSourceRange()
7287      << QualType(SourceType, 0) << TargetClass;
7288    return true;
7289  }
7290
7291  if (!CurContext->isDependentContext())
7292    BaseIt->setInheritConstructors();
7293
7294  return false;
7295}
7296
7297/// Checks that the given using declaration is not an invalid
7298/// redeclaration.  Note that this is checking only for the using decl
7299/// itself, not for any ill-formedness among the UsingShadowDecls.
7300bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
7301                                       bool HasTypenameKeyword,
7302                                       const CXXScopeSpec &SS,
7303                                       SourceLocation NameLoc,
7304                                       const LookupResult &Prev) {
7305  // C++03 [namespace.udecl]p8:
7306  // C++0x [namespace.udecl]p10:
7307  //   A using-declaration is a declaration and can therefore be used
7308  //   repeatedly where (and only where) multiple declarations are
7309  //   allowed.
7310  //
7311  // That's in non-member contexts.
7312  if (!CurContext->getRedeclContext()->isRecord())
7313    return false;
7314
7315  NestedNameSpecifier *Qual
7316    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
7317
7318  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
7319    NamedDecl *D = *I;
7320
7321    bool DTypename;
7322    NestedNameSpecifier *DQual;
7323    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
7324      DTypename = UD->hasTypename();
7325      DQual = UD->getQualifier();
7326    } else if (UnresolvedUsingValueDecl *UD
7327                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
7328      DTypename = false;
7329      DQual = UD->getQualifier();
7330    } else if (UnresolvedUsingTypenameDecl *UD
7331                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
7332      DTypename = true;
7333      DQual = UD->getQualifier();
7334    } else continue;
7335
7336    // using decls differ if one says 'typename' and the other doesn't.
7337    // FIXME: non-dependent using decls?
7338    if (HasTypenameKeyword != DTypename) continue;
7339
7340    // using decls differ if they name different scopes (but note that
7341    // template instantiation can cause this check to trigger when it
7342    // didn't before instantiation).
7343    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
7344        Context.getCanonicalNestedNameSpecifier(DQual))
7345      continue;
7346
7347    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
7348    Diag(D->getLocation(), diag::note_using_decl) << 1;
7349    return true;
7350  }
7351
7352  return false;
7353}
7354
7355
7356/// Checks that the given nested-name qualifier used in a using decl
7357/// in the current context is appropriately related to the current
7358/// scope.  If an error is found, diagnoses it and returns true.
7359bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
7360                                   const CXXScopeSpec &SS,
7361                                   SourceLocation NameLoc) {
7362  DeclContext *NamedContext = computeDeclContext(SS);
7363
7364  if (!CurContext->isRecord()) {
7365    // C++03 [namespace.udecl]p3:
7366    // C++0x [namespace.udecl]p8:
7367    //   A using-declaration for a class member shall be a member-declaration.
7368
7369    // If we weren't able to compute a valid scope, it must be a
7370    // dependent class scope.
7371    if (!NamedContext || NamedContext->isRecord()) {
7372      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
7373        << SS.getRange();
7374      return true;
7375    }
7376
7377    // Otherwise, everything is known to be fine.
7378    return false;
7379  }
7380
7381  // The current scope is a record.
7382
7383  // If the named context is dependent, we can't decide much.
7384  if (!NamedContext) {
7385    // FIXME: in C++0x, we can diagnose if we can prove that the
7386    // nested-name-specifier does not refer to a base class, which is
7387    // still possible in some cases.
7388
7389    // Otherwise we have to conservatively report that things might be
7390    // okay.
7391    return false;
7392  }
7393
7394  if (!NamedContext->isRecord()) {
7395    // Ideally this would point at the last name in the specifier,
7396    // but we don't have that level of source info.
7397    Diag(SS.getRange().getBegin(),
7398         diag::err_using_decl_nested_name_specifier_is_not_class)
7399      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
7400    return true;
7401  }
7402
7403  if (!NamedContext->isDependentContext() &&
7404      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
7405    return true;
7406
7407  if (getLangOpts().CPlusPlus11) {
7408    // C++0x [namespace.udecl]p3:
7409    //   In a using-declaration used as a member-declaration, the
7410    //   nested-name-specifier shall name a base class of the class
7411    //   being defined.
7412
7413    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
7414                                 cast<CXXRecordDecl>(NamedContext))) {
7415      if (CurContext == NamedContext) {
7416        Diag(NameLoc,
7417             diag::err_using_decl_nested_name_specifier_is_current_class)
7418          << SS.getRange();
7419        return true;
7420      }
7421
7422      Diag(SS.getRange().getBegin(),
7423           diag::err_using_decl_nested_name_specifier_is_not_base_class)
7424        << (NestedNameSpecifier*) SS.getScopeRep()
7425        << cast<CXXRecordDecl>(CurContext)
7426        << SS.getRange();
7427      return true;
7428    }
7429
7430    return false;
7431  }
7432
7433  // C++03 [namespace.udecl]p4:
7434  //   A using-declaration used as a member-declaration shall refer
7435  //   to a member of a base class of the class being defined [etc.].
7436
7437  // Salient point: SS doesn't have to name a base class as long as
7438  // lookup only finds members from base classes.  Therefore we can
7439  // diagnose here only if we can prove that that can't happen,
7440  // i.e. if the class hierarchies provably don't intersect.
7441
7442  // TODO: it would be nice if "definitely valid" results were cached
7443  // in the UsingDecl and UsingShadowDecl so that these checks didn't
7444  // need to be repeated.
7445
7446  struct UserData {
7447    llvm::SmallPtrSet<const CXXRecordDecl*, 4> Bases;
7448
7449    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
7450      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
7451      Data->Bases.insert(Base);
7452      return true;
7453    }
7454
7455    bool hasDependentBases(const CXXRecordDecl *Class) {
7456      return !Class->forallBases(collect, this);
7457    }
7458
7459    /// Returns true if the base is dependent or is one of the
7460    /// accumulated base classes.
7461    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
7462      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
7463      return !Data->Bases.count(Base);
7464    }
7465
7466    bool mightShareBases(const CXXRecordDecl *Class) {
7467      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
7468    }
7469  };
7470
7471  UserData Data;
7472
7473  // Returns false if we find a dependent base.
7474  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
7475    return false;
7476
7477  // Returns false if the class has a dependent base or if it or one
7478  // of its bases is present in the base set of the current context.
7479  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
7480    return false;
7481
7482  Diag(SS.getRange().getBegin(),
7483       diag::err_using_decl_nested_name_specifier_is_not_base_class)
7484    << (NestedNameSpecifier*) SS.getScopeRep()
7485    << cast<CXXRecordDecl>(CurContext)
7486    << SS.getRange();
7487
7488  return true;
7489}
7490
7491Decl *Sema::ActOnAliasDeclaration(Scope *S,
7492                                  AccessSpecifier AS,
7493                                  MultiTemplateParamsArg TemplateParamLists,
7494                                  SourceLocation UsingLoc,
7495                                  UnqualifiedId &Name,
7496                                  AttributeList *AttrList,
7497                                  TypeResult Type) {
7498  // Skip up to the relevant declaration scope.
7499  while (S->getFlags() & Scope::TemplateParamScope)
7500    S = S->getParent();
7501  assert((S->getFlags() & Scope::DeclScope) &&
7502         "got alias-declaration outside of declaration scope");
7503
7504  if (Type.isInvalid())
7505    return 0;
7506
7507  bool Invalid = false;
7508  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
7509  TypeSourceInfo *TInfo = 0;
7510  GetTypeFromParser(Type.get(), &TInfo);
7511
7512  if (DiagnoseClassNameShadow(CurContext, NameInfo))
7513    return 0;
7514
7515  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
7516                                      UPPC_DeclarationType)) {
7517    Invalid = true;
7518    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
7519                                             TInfo->getTypeLoc().getBeginLoc());
7520  }
7521
7522  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
7523  LookupName(Previous, S);
7524
7525  // Warn about shadowing the name of a template parameter.
7526  if (Previous.isSingleResult() &&
7527      Previous.getFoundDecl()->isTemplateParameter()) {
7528    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
7529    Previous.clear();
7530  }
7531
7532  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
7533         "name in alias declaration must be an identifier");
7534  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
7535                                               Name.StartLocation,
7536                                               Name.Identifier, TInfo);
7537
7538  NewTD->setAccess(AS);
7539
7540  if (Invalid)
7541    NewTD->setInvalidDecl();
7542
7543  ProcessDeclAttributeList(S, NewTD, AttrList);
7544
7545  CheckTypedefForVariablyModifiedType(S, NewTD);
7546  Invalid |= NewTD->isInvalidDecl();
7547
7548  bool Redeclaration = false;
7549
7550  NamedDecl *NewND;
7551  if (TemplateParamLists.size()) {
7552    TypeAliasTemplateDecl *OldDecl = 0;
7553    TemplateParameterList *OldTemplateParams = 0;
7554
7555    if (TemplateParamLists.size() != 1) {
7556      Diag(UsingLoc, diag::err_alias_template_extra_headers)
7557        << SourceRange(TemplateParamLists[1]->getTemplateLoc(),
7558         TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc());
7559    }
7560    TemplateParameterList *TemplateParams = TemplateParamLists[0];
7561
7562    // Only consider previous declarations in the same scope.
7563    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
7564                         /*ExplicitInstantiationOrSpecialization*/false);
7565    if (!Previous.empty()) {
7566      Redeclaration = true;
7567
7568      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
7569      if (!OldDecl && !Invalid) {
7570        Diag(UsingLoc, diag::err_redefinition_different_kind)
7571          << Name.Identifier;
7572
7573        NamedDecl *OldD = Previous.getRepresentativeDecl();
7574        if (OldD->getLocation().isValid())
7575          Diag(OldD->getLocation(), diag::note_previous_definition);
7576
7577        Invalid = true;
7578      }
7579
7580      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
7581        if (TemplateParameterListsAreEqual(TemplateParams,
7582                                           OldDecl->getTemplateParameters(),
7583                                           /*Complain=*/true,
7584                                           TPL_TemplateMatch))
7585          OldTemplateParams = OldDecl->getTemplateParameters();
7586        else
7587          Invalid = true;
7588
7589        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
7590        if (!Invalid &&
7591            !Context.hasSameType(OldTD->getUnderlyingType(),
7592                                 NewTD->getUnderlyingType())) {
7593          // FIXME: The C++0x standard does not clearly say this is ill-formed,
7594          // but we can't reasonably accept it.
7595          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
7596            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
7597          if (OldTD->getLocation().isValid())
7598            Diag(OldTD->getLocation(), diag::note_previous_definition);
7599          Invalid = true;
7600        }
7601      }
7602    }
7603
7604    // Merge any previous default template arguments into our parameters,
7605    // and check the parameter list.
7606    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
7607                                   TPC_TypeAliasTemplate))
7608      return 0;
7609
7610    TypeAliasTemplateDecl *NewDecl =
7611      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
7612                                    Name.Identifier, TemplateParams,
7613                                    NewTD);
7614
7615    NewDecl->setAccess(AS);
7616
7617    if (Invalid)
7618      NewDecl->setInvalidDecl();
7619    else if (OldDecl)
7620      NewDecl->setPreviousDeclaration(OldDecl);
7621
7622    NewND = NewDecl;
7623  } else {
7624    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
7625    NewND = NewTD;
7626  }
7627
7628  if (!Redeclaration)
7629    PushOnScopeChains(NewND, S);
7630
7631  ActOnDocumentableDecl(NewND);
7632  return NewND;
7633}
7634
7635Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
7636                                             SourceLocation NamespaceLoc,
7637                                             SourceLocation AliasLoc,
7638                                             IdentifierInfo *Alias,
7639                                             CXXScopeSpec &SS,
7640                                             SourceLocation IdentLoc,
7641                                             IdentifierInfo *Ident) {
7642
7643  // Lookup the namespace name.
7644  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
7645  LookupParsedName(R, S, &SS);
7646
7647  // Check if we have a previous declaration with the same name.
7648  NamedDecl *PrevDecl
7649    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
7650                       ForRedeclaration);
7651  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
7652    PrevDecl = 0;
7653
7654  if (PrevDecl) {
7655    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
7656      // We already have an alias with the same name that points to the same
7657      // namespace, so don't create a new one.
7658      // FIXME: At some point, we'll want to create the (redundant)
7659      // declaration to maintain better source information.
7660      if (!R.isAmbiguous() && !R.empty() &&
7661          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
7662        return 0;
7663    }
7664
7665    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
7666      diag::err_redefinition_different_kind;
7667    Diag(AliasLoc, DiagID) << Alias;
7668    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7669    return 0;
7670  }
7671
7672  if (R.isAmbiguous())
7673    return 0;
7674
7675  if (R.empty()) {
7676    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
7677      Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
7678      return 0;
7679    }
7680  }
7681
7682  NamespaceAliasDecl *AliasDecl =
7683    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
7684                               Alias, SS.getWithLocInContext(Context),
7685                               IdentLoc, R.getFoundDecl());
7686
7687  PushOnScopeChains(AliasDecl, S);
7688  return AliasDecl;
7689}
7690
7691Sema::ImplicitExceptionSpecification
7692Sema::ComputeDefaultedDefaultCtorExceptionSpec(SourceLocation Loc,
7693                                               CXXMethodDecl *MD) {
7694  CXXRecordDecl *ClassDecl = MD->getParent();
7695
7696  // C++ [except.spec]p14:
7697  //   An implicitly declared special member function (Clause 12) shall have an
7698  //   exception-specification. [...]
7699  ImplicitExceptionSpecification ExceptSpec(*this);
7700  if (ClassDecl->isInvalidDecl())
7701    return ExceptSpec;
7702
7703  // Direct base-class constructors.
7704  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7705                                       BEnd = ClassDecl->bases_end();
7706       B != BEnd; ++B) {
7707    if (B->isVirtual()) // Handled below.
7708      continue;
7709
7710    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7711      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7712      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7713      // If this is a deleted function, add it anyway. This might be conformant
7714      // with the standard. This might not. I'm not sure. It might not matter.
7715      if (Constructor)
7716        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7717    }
7718  }
7719
7720  // Virtual base-class constructors.
7721  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7722                                       BEnd = ClassDecl->vbases_end();
7723       B != BEnd; ++B) {
7724    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7725      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7726      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7727      // If this is a deleted function, add it anyway. This might be conformant
7728      // with the standard. This might not. I'm not sure. It might not matter.
7729      if (Constructor)
7730        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7731    }
7732  }
7733
7734  // Field constructors.
7735  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7736                               FEnd = ClassDecl->field_end();
7737       F != FEnd; ++F) {
7738    if (F->hasInClassInitializer()) {
7739      if (Expr *E = F->getInClassInitializer())
7740        ExceptSpec.CalledExpr(E);
7741      else if (!F->isInvalidDecl())
7742        // DR1351:
7743        //   If the brace-or-equal-initializer of a non-static data member
7744        //   invokes a defaulted default constructor of its class or of an
7745        //   enclosing class in a potentially evaluated subexpression, the
7746        //   program is ill-formed.
7747        //
7748        // This resolution is unworkable: the exception specification of the
7749        // default constructor can be needed in an unevaluated context, in
7750        // particular, in the operand of a noexcept-expression, and we can be
7751        // unable to compute an exception specification for an enclosed class.
7752        //
7753        // We do not allow an in-class initializer to require the evaluation
7754        // of the exception specification for any in-class initializer whose
7755        // definition is not lexically complete.
7756        Diag(Loc, diag::err_in_class_initializer_references_def_ctor) << MD;
7757    } else if (const RecordType *RecordTy
7758              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
7759      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7760      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
7761      // If this is a deleted function, add it anyway. This might be conformant
7762      // with the standard. This might not. I'm not sure. It might not matter.
7763      // In particular, the problem is that this function never gets called. It
7764      // might just be ill-formed because this function attempts to refer to
7765      // a deleted function here.
7766      if (Constructor)
7767        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
7768    }
7769  }
7770
7771  return ExceptSpec;
7772}
7773
7774Sema::ImplicitExceptionSpecification
7775Sema::ComputeInheritingCtorExceptionSpec(CXXConstructorDecl *CD) {
7776  CXXRecordDecl *ClassDecl = CD->getParent();
7777
7778  // C++ [except.spec]p14:
7779  //   An inheriting constructor [...] shall have an exception-specification. [...]
7780  ImplicitExceptionSpecification ExceptSpec(*this);
7781  if (ClassDecl->isInvalidDecl())
7782    return ExceptSpec;
7783
7784  // Inherited constructor.
7785  const CXXConstructorDecl *InheritedCD = CD->getInheritedConstructor();
7786  const CXXRecordDecl *InheritedDecl = InheritedCD->getParent();
7787  // FIXME: Copying or moving the parameters could add extra exceptions to the
7788  // set, as could the default arguments for the inherited constructor. This
7789  // will be addressed when we implement the resolution of core issue 1351.
7790  ExceptSpec.CalledDecl(CD->getLocStart(), InheritedCD);
7791
7792  // Direct base-class constructors.
7793  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7794                                       BEnd = ClassDecl->bases_end();
7795       B != BEnd; ++B) {
7796    if (B->isVirtual()) // Handled below.
7797      continue;
7798
7799    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7800      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7801      if (BaseClassDecl == InheritedDecl)
7802        continue;
7803      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7804      if (Constructor)
7805        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7806    }
7807  }
7808
7809  // Virtual base-class constructors.
7810  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7811                                       BEnd = ClassDecl->vbases_end();
7812       B != BEnd; ++B) {
7813    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7814      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7815      if (BaseClassDecl == InheritedDecl)
7816        continue;
7817      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7818      if (Constructor)
7819        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7820    }
7821  }
7822
7823  // Field constructors.
7824  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7825                               FEnd = ClassDecl->field_end();
7826       F != FEnd; ++F) {
7827    if (F->hasInClassInitializer()) {
7828      if (Expr *E = F->getInClassInitializer())
7829        ExceptSpec.CalledExpr(E);
7830      else if (!F->isInvalidDecl())
7831        Diag(CD->getLocation(),
7832             diag::err_in_class_initializer_references_def_ctor) << CD;
7833    } else if (const RecordType *RecordTy
7834              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
7835      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7836      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
7837      if (Constructor)
7838        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
7839    }
7840  }
7841
7842  return ExceptSpec;
7843}
7844
7845namespace {
7846/// RAII object to register a special member as being currently declared.
7847struct DeclaringSpecialMember {
7848  Sema &S;
7849  Sema::SpecialMemberDecl D;
7850  bool WasAlreadyBeingDeclared;
7851
7852  DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM)
7853    : S(S), D(RD, CSM) {
7854    WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D);
7855    if (WasAlreadyBeingDeclared)
7856      // This almost never happens, but if it does, ensure that our cache
7857      // doesn't contain a stale result.
7858      S.SpecialMemberCache.clear();
7859
7860    // FIXME: Register a note to be produced if we encounter an error while
7861    // declaring the special member.
7862  }
7863  ~DeclaringSpecialMember() {
7864    if (!WasAlreadyBeingDeclared)
7865      S.SpecialMembersBeingDeclared.erase(D);
7866  }
7867
7868  /// \brief Are we already trying to declare this special member?
7869  bool isAlreadyBeingDeclared() const {
7870    return WasAlreadyBeingDeclared;
7871  }
7872};
7873}
7874
7875CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
7876                                                     CXXRecordDecl *ClassDecl) {
7877  // C++ [class.ctor]p5:
7878  //   A default constructor for a class X is a constructor of class X
7879  //   that can be called without an argument. If there is no
7880  //   user-declared constructor for class X, a default constructor is
7881  //   implicitly declared. An implicitly-declared default constructor
7882  //   is an inline public member of its class.
7883  assert(ClassDecl->needsImplicitDefaultConstructor() &&
7884         "Should not build implicit default constructor!");
7885
7886  DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor);
7887  if (DSM.isAlreadyBeingDeclared())
7888    return 0;
7889
7890  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
7891                                                     CXXDefaultConstructor,
7892                                                     false);
7893
7894  // Create the actual constructor declaration.
7895  CanQualType ClassType
7896    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7897  SourceLocation ClassLoc = ClassDecl->getLocation();
7898  DeclarationName Name
7899    = Context.DeclarationNames.getCXXConstructorName(ClassType);
7900  DeclarationNameInfo NameInfo(Name, ClassLoc);
7901  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
7902      Context, ClassDecl, ClassLoc, NameInfo, /*Type*/QualType(), /*TInfo=*/0,
7903      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
7904      Constexpr);
7905  DefaultCon->setAccess(AS_public);
7906  DefaultCon->setDefaulted();
7907  DefaultCon->setImplicit();
7908
7909  // Build an exception specification pointing back at this constructor.
7910  FunctionProtoType::ExtProtoInfo EPI;
7911  EPI.ExceptionSpecType = EST_Unevaluated;
7912  EPI.ExceptionSpecDecl = DefaultCon;
7913  DefaultCon->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
7914
7915  // We don't need to use SpecialMemberIsTrivial here; triviality for default
7916  // constructors is easy to compute.
7917  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
7918
7919  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
7920    SetDeclDeleted(DefaultCon, ClassLoc);
7921
7922  // Note that we have declared this constructor.
7923  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
7924
7925  if (Scope *S = getScopeForContext(ClassDecl))
7926    PushOnScopeChains(DefaultCon, S, false);
7927  ClassDecl->addDecl(DefaultCon);
7928
7929  return DefaultCon;
7930}
7931
7932void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
7933                                            CXXConstructorDecl *Constructor) {
7934  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
7935          !Constructor->doesThisDeclarationHaveABody() &&
7936          !Constructor->isDeleted()) &&
7937    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
7938
7939  CXXRecordDecl *ClassDecl = Constructor->getParent();
7940  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
7941
7942  SynthesizedFunctionScope Scope(*this, Constructor);
7943  DiagnosticErrorTrap Trap(Diags);
7944  if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
7945      Trap.hasErrorOccurred()) {
7946    Diag(CurrentLocation, diag::note_member_synthesized_at)
7947      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
7948    Constructor->setInvalidDecl();
7949    return;
7950  }
7951
7952  SourceLocation Loc = Constructor->getLocation();
7953  Constructor->setBody(new (Context) CompoundStmt(Loc));
7954
7955  Constructor->setUsed();
7956  MarkVTableUsed(CurrentLocation, ClassDecl);
7957
7958  if (ASTMutationListener *L = getASTMutationListener()) {
7959    L->CompletedImplicitDefinition(Constructor);
7960  }
7961}
7962
7963void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
7964  // Check that any explicitly-defaulted methods have exception specifications
7965  // compatible with their implicit exception specifications.
7966  CheckDelayedExplicitlyDefaultedMemberExceptionSpecs();
7967}
7968
7969namespace {
7970/// Information on inheriting constructors to declare.
7971class InheritingConstructorInfo {
7972public:
7973  InheritingConstructorInfo(Sema &SemaRef, CXXRecordDecl *Derived)
7974      : SemaRef(SemaRef), Derived(Derived) {
7975    // Mark the constructors that we already have in the derived class.
7976    //
7977    // C++11 [class.inhctor]p3: [...] a constructor is implicitly declared [...]
7978    //   unless there is a user-declared constructor with the same signature in
7979    //   the class where the using-declaration appears.
7980    visitAll(Derived, &InheritingConstructorInfo::noteDeclaredInDerived);
7981  }
7982
7983  void inheritAll(CXXRecordDecl *RD) {
7984    visitAll(RD, &InheritingConstructorInfo::inherit);
7985  }
7986
7987private:
7988  /// Information about an inheriting constructor.
7989  struct InheritingConstructor {
7990    InheritingConstructor()
7991      : DeclaredInDerived(false), BaseCtor(0), DerivedCtor(0) {}
7992
7993    /// If \c true, a constructor with this signature is already declared
7994    /// in the derived class.
7995    bool DeclaredInDerived;
7996
7997    /// The constructor which is inherited.
7998    const CXXConstructorDecl *BaseCtor;
7999
8000    /// The derived constructor we declared.
8001    CXXConstructorDecl *DerivedCtor;
8002  };
8003
8004  /// Inheriting constructors with a given canonical type. There can be at
8005  /// most one such non-template constructor, and any number of templated
8006  /// constructors.
8007  struct InheritingConstructorsForType {
8008    InheritingConstructor NonTemplate;
8009    llvm::SmallVector<
8010      std::pair<TemplateParameterList*, InheritingConstructor>, 4> Templates;
8011
8012    InheritingConstructor &getEntry(Sema &S, const CXXConstructorDecl *Ctor) {
8013      if (FunctionTemplateDecl *FTD = Ctor->getDescribedFunctionTemplate()) {
8014        TemplateParameterList *ParamList = FTD->getTemplateParameters();
8015        for (unsigned I = 0, N = Templates.size(); I != N; ++I)
8016          if (S.TemplateParameterListsAreEqual(ParamList, Templates[I].first,
8017                                               false, S.TPL_TemplateMatch))
8018            return Templates[I].second;
8019        Templates.push_back(std::make_pair(ParamList, InheritingConstructor()));
8020        return Templates.back().second;
8021      }
8022
8023      return NonTemplate;
8024    }
8025  };
8026
8027  /// Get or create the inheriting constructor record for a constructor.
8028  InheritingConstructor &getEntry(const CXXConstructorDecl *Ctor,
8029                                  QualType CtorType) {
8030    return Map[CtorType.getCanonicalType()->castAs<FunctionProtoType>()]
8031        .getEntry(SemaRef, Ctor);
8032  }
8033
8034  typedef void (InheritingConstructorInfo::*VisitFn)(const CXXConstructorDecl*);
8035
8036  /// Process all constructors for a class.
8037  void visitAll(const CXXRecordDecl *RD, VisitFn Callback) {
8038    for (CXXRecordDecl::ctor_iterator CtorIt = RD->ctor_begin(),
8039                                      CtorE = RD->ctor_end();
8040         CtorIt != CtorE; ++CtorIt)
8041      (this->*Callback)(*CtorIt);
8042    for (CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl>
8043             I(RD->decls_begin()), E(RD->decls_end());
8044         I != E; ++I) {
8045      const FunctionDecl *FD = (*I)->getTemplatedDecl();
8046      if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
8047        (this->*Callback)(CD);
8048    }
8049  }
8050
8051  /// Note that a constructor (or constructor template) was declared in Derived.
8052  void noteDeclaredInDerived(const CXXConstructorDecl *Ctor) {
8053    getEntry(Ctor, Ctor->getType()).DeclaredInDerived = true;
8054  }
8055
8056  /// Inherit a single constructor.
8057  void inherit(const CXXConstructorDecl *Ctor) {
8058    const FunctionProtoType *CtorType =
8059        Ctor->getType()->castAs<FunctionProtoType>();
8060    ArrayRef<QualType> ArgTypes(CtorType->getArgTypes());
8061    FunctionProtoType::ExtProtoInfo EPI = CtorType->getExtProtoInfo();
8062
8063    SourceLocation UsingLoc = getUsingLoc(Ctor->getParent());
8064
8065    // Core issue (no number yet): the ellipsis is always discarded.
8066    if (EPI.Variadic) {
8067      SemaRef.Diag(UsingLoc, diag::warn_using_decl_constructor_ellipsis);
8068      SemaRef.Diag(Ctor->getLocation(),
8069                   diag::note_using_decl_constructor_ellipsis);
8070      EPI.Variadic = false;
8071    }
8072
8073    // Declare a constructor for each number of parameters.
8074    //
8075    // C++11 [class.inhctor]p1:
8076    //   The candidate set of inherited constructors from the class X named in
8077    //   the using-declaration consists of [... modulo defects ...] for each
8078    //   constructor or constructor template of X, the set of constructors or
8079    //   constructor templates that results from omitting any ellipsis parameter
8080    //   specification and successively omitting parameters with a default
8081    //   argument from the end of the parameter-type-list
8082    unsigned MinParams = minParamsToInherit(Ctor);
8083    unsigned Params = Ctor->getNumParams();
8084    if (Params >= MinParams) {
8085      do
8086        declareCtor(UsingLoc, Ctor,
8087                    SemaRef.Context.getFunctionType(
8088                        Ctor->getResultType(), ArgTypes.slice(0, Params), EPI));
8089      while (Params > MinParams &&
8090             Ctor->getParamDecl(--Params)->hasDefaultArg());
8091    }
8092  }
8093
8094  /// Find the using-declaration which specified that we should inherit the
8095  /// constructors of \p Base.
8096  SourceLocation getUsingLoc(const CXXRecordDecl *Base) {
8097    // No fancy lookup required; just look for the base constructor name
8098    // directly within the derived class.
8099    ASTContext &Context = SemaRef.Context;
8100    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
8101        Context.getCanonicalType(Context.getRecordType(Base)));
8102    DeclContext::lookup_const_result Decls = Derived->lookup(Name);
8103    return Decls.empty() ? Derived->getLocation() : Decls[0]->getLocation();
8104  }
8105
8106  unsigned minParamsToInherit(const CXXConstructorDecl *Ctor) {
8107    // C++11 [class.inhctor]p3:
8108    //   [F]or each constructor template in the candidate set of inherited
8109    //   constructors, a constructor template is implicitly declared
8110    if (Ctor->getDescribedFunctionTemplate())
8111      return 0;
8112
8113    //   For each non-template constructor in the candidate set of inherited
8114    //   constructors other than a constructor having no parameters or a
8115    //   copy/move constructor having a single parameter, a constructor is
8116    //   implicitly declared [...]
8117    if (Ctor->getNumParams() == 0)
8118      return 1;
8119    if (Ctor->isCopyOrMoveConstructor())
8120      return 2;
8121
8122    // Per discussion on core reflector, never inherit a constructor which
8123    // would become a default, copy, or move constructor of Derived either.
8124    const ParmVarDecl *PD = Ctor->getParamDecl(0);
8125    const ReferenceType *RT = PD->getType()->getAs<ReferenceType>();
8126    return (RT && RT->getPointeeCXXRecordDecl() == Derived) ? 2 : 1;
8127  }
8128
8129  /// Declare a single inheriting constructor, inheriting the specified
8130  /// constructor, with the given type.
8131  void declareCtor(SourceLocation UsingLoc, const CXXConstructorDecl *BaseCtor,
8132                   QualType DerivedType) {
8133    InheritingConstructor &Entry = getEntry(BaseCtor, DerivedType);
8134
8135    // C++11 [class.inhctor]p3:
8136    //   ... a constructor is implicitly declared with the same constructor
8137    //   characteristics unless there is a user-declared constructor with
8138    //   the same signature in the class where the using-declaration appears
8139    if (Entry.DeclaredInDerived)
8140      return;
8141
8142    // C++11 [class.inhctor]p7:
8143    //   If two using-declarations declare inheriting constructors with the
8144    //   same signature, the program is ill-formed
8145    if (Entry.DerivedCtor) {
8146      if (BaseCtor->getParent() != Entry.BaseCtor->getParent()) {
8147        // Only diagnose this once per constructor.
8148        if (Entry.DerivedCtor->isInvalidDecl())
8149          return;
8150        Entry.DerivedCtor->setInvalidDecl();
8151
8152        SemaRef.Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
8153        SemaRef.Diag(BaseCtor->getLocation(),
8154                     diag::note_using_decl_constructor_conflict_current_ctor);
8155        SemaRef.Diag(Entry.BaseCtor->getLocation(),
8156                     diag::note_using_decl_constructor_conflict_previous_ctor);
8157        SemaRef.Diag(Entry.DerivedCtor->getLocation(),
8158                     diag::note_using_decl_constructor_conflict_previous_using);
8159      } else {
8160        // Core issue (no number): if the same inheriting constructor is
8161        // produced by multiple base class constructors from the same base
8162        // class, the inheriting constructor is defined as deleted.
8163        SemaRef.SetDeclDeleted(Entry.DerivedCtor, UsingLoc);
8164      }
8165
8166      return;
8167    }
8168
8169    ASTContext &Context = SemaRef.Context;
8170    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
8171        Context.getCanonicalType(Context.getRecordType(Derived)));
8172    DeclarationNameInfo NameInfo(Name, UsingLoc);
8173
8174    TemplateParameterList *TemplateParams = 0;
8175    if (const FunctionTemplateDecl *FTD =
8176            BaseCtor->getDescribedFunctionTemplate()) {
8177      TemplateParams = FTD->getTemplateParameters();
8178      // We're reusing template parameters from a different DeclContext. This
8179      // is questionable at best, but works out because the template depth in
8180      // both places is guaranteed to be 0.
8181      // FIXME: Rebuild the template parameters in the new context, and
8182      // transform the function type to refer to them.
8183    }
8184
8185    // Build type source info pointing at the using-declaration. This is
8186    // required by template instantiation.
8187    TypeSourceInfo *TInfo =
8188        Context.getTrivialTypeSourceInfo(DerivedType, UsingLoc);
8189    FunctionProtoTypeLoc ProtoLoc =
8190        TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>();
8191
8192    CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create(
8193        Context, Derived, UsingLoc, NameInfo, DerivedType,
8194        TInfo, BaseCtor->isExplicit(), /*Inline=*/true,
8195        /*ImplicitlyDeclared=*/true, /*Constexpr=*/BaseCtor->isConstexpr());
8196
8197    // Build an unevaluated exception specification for this constructor.
8198    const FunctionProtoType *FPT = DerivedType->castAs<FunctionProtoType>();
8199    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8200    EPI.ExceptionSpecType = EST_Unevaluated;
8201    EPI.ExceptionSpecDecl = DerivedCtor;
8202    DerivedCtor->setType(Context.getFunctionType(FPT->getResultType(),
8203                                                 FPT->getArgTypes(), EPI));
8204
8205    // Build the parameter declarations.
8206    SmallVector<ParmVarDecl *, 16> ParamDecls;
8207    for (unsigned I = 0, N = FPT->getNumArgs(); I != N; ++I) {
8208      TypeSourceInfo *TInfo =
8209          Context.getTrivialTypeSourceInfo(FPT->getArgType(I), UsingLoc);
8210      ParmVarDecl *PD = ParmVarDecl::Create(
8211          Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/0,
8212          FPT->getArgType(I), TInfo, SC_None, /*DefaultArg=*/0);
8213      PD->setScopeInfo(0, I);
8214      PD->setImplicit();
8215      ParamDecls.push_back(PD);
8216      ProtoLoc.setArg(I, PD);
8217    }
8218
8219    // Set up the new constructor.
8220    DerivedCtor->setAccess(BaseCtor->getAccess());
8221    DerivedCtor->setParams(ParamDecls);
8222    DerivedCtor->setInheritedConstructor(BaseCtor);
8223    if (BaseCtor->isDeleted())
8224      SemaRef.SetDeclDeleted(DerivedCtor, UsingLoc);
8225
8226    // If this is a constructor template, build the template declaration.
8227    if (TemplateParams) {
8228      FunctionTemplateDecl *DerivedTemplate =
8229          FunctionTemplateDecl::Create(SemaRef.Context, Derived, UsingLoc, Name,
8230                                       TemplateParams, DerivedCtor);
8231      DerivedTemplate->setAccess(BaseCtor->getAccess());
8232      DerivedCtor->setDescribedFunctionTemplate(DerivedTemplate);
8233      Derived->addDecl(DerivedTemplate);
8234    } else {
8235      Derived->addDecl(DerivedCtor);
8236    }
8237
8238    Entry.BaseCtor = BaseCtor;
8239    Entry.DerivedCtor = DerivedCtor;
8240  }
8241
8242  Sema &SemaRef;
8243  CXXRecordDecl *Derived;
8244  typedef llvm::DenseMap<const Type *, InheritingConstructorsForType> MapType;
8245  MapType Map;
8246};
8247}
8248
8249void Sema::DeclareInheritingConstructors(CXXRecordDecl *ClassDecl) {
8250  // Defer declaring the inheriting constructors until the class is
8251  // instantiated.
8252  if (ClassDecl->isDependentContext())
8253    return;
8254
8255  // Find base classes from which we might inherit constructors.
8256  SmallVector<CXXRecordDecl*, 4> InheritedBases;
8257  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
8258                                          BaseE = ClassDecl->bases_end();
8259       BaseIt != BaseE; ++BaseIt)
8260    if (BaseIt->getInheritConstructors())
8261      InheritedBases.push_back(BaseIt->getType()->getAsCXXRecordDecl());
8262
8263  // Go no further if we're not inheriting any constructors.
8264  if (InheritedBases.empty())
8265    return;
8266
8267  // Declare the inherited constructors.
8268  InheritingConstructorInfo ICI(*this, ClassDecl);
8269  for (unsigned I = 0, N = InheritedBases.size(); I != N; ++I)
8270    ICI.inheritAll(InheritedBases[I]);
8271}
8272
8273void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation,
8274                                       CXXConstructorDecl *Constructor) {
8275  CXXRecordDecl *ClassDecl = Constructor->getParent();
8276  assert(Constructor->getInheritedConstructor() &&
8277         !Constructor->doesThisDeclarationHaveABody() &&
8278         !Constructor->isDeleted());
8279
8280  SynthesizedFunctionScope Scope(*this, Constructor);
8281  DiagnosticErrorTrap Trap(Diags);
8282  if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
8283      Trap.hasErrorOccurred()) {
8284    Diag(CurrentLocation, diag::note_inhctor_synthesized_at)
8285      << Context.getTagDeclType(ClassDecl);
8286    Constructor->setInvalidDecl();
8287    return;
8288  }
8289
8290  SourceLocation Loc = Constructor->getLocation();
8291  Constructor->setBody(new (Context) CompoundStmt(Loc));
8292
8293  Constructor->setUsed();
8294  MarkVTableUsed(CurrentLocation, ClassDecl);
8295
8296  if (ASTMutationListener *L = getASTMutationListener()) {
8297    L->CompletedImplicitDefinition(Constructor);
8298  }
8299}
8300
8301
8302Sema::ImplicitExceptionSpecification
8303Sema::ComputeDefaultedDtorExceptionSpec(CXXMethodDecl *MD) {
8304  CXXRecordDecl *ClassDecl = MD->getParent();
8305
8306  // C++ [except.spec]p14:
8307  //   An implicitly declared special member function (Clause 12) shall have
8308  //   an exception-specification.
8309  ImplicitExceptionSpecification ExceptSpec(*this);
8310  if (ClassDecl->isInvalidDecl())
8311    return ExceptSpec;
8312
8313  // Direct base-class destructors.
8314  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8315                                       BEnd = ClassDecl->bases_end();
8316       B != BEnd; ++B) {
8317    if (B->isVirtual()) // Handled below.
8318      continue;
8319
8320    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
8321      ExceptSpec.CalledDecl(B->getLocStart(),
8322                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
8323  }
8324
8325  // Virtual base-class destructors.
8326  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8327                                       BEnd = ClassDecl->vbases_end();
8328       B != BEnd; ++B) {
8329    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
8330      ExceptSpec.CalledDecl(B->getLocStart(),
8331                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
8332  }
8333
8334  // Field destructors.
8335  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8336                               FEnd = ClassDecl->field_end();
8337       F != FEnd; ++F) {
8338    if (const RecordType *RecordTy
8339        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
8340      ExceptSpec.CalledDecl(F->getLocation(),
8341                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
8342  }
8343
8344  return ExceptSpec;
8345}
8346
8347CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
8348  // C++ [class.dtor]p2:
8349  //   If a class has no user-declared destructor, a destructor is
8350  //   declared implicitly. An implicitly-declared destructor is an
8351  //   inline public member of its class.
8352  assert(ClassDecl->needsImplicitDestructor());
8353
8354  DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor);
8355  if (DSM.isAlreadyBeingDeclared())
8356    return 0;
8357
8358  // Create the actual destructor declaration.
8359  CanQualType ClassType
8360    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
8361  SourceLocation ClassLoc = ClassDecl->getLocation();
8362  DeclarationName Name
8363    = Context.DeclarationNames.getCXXDestructorName(ClassType);
8364  DeclarationNameInfo NameInfo(Name, ClassLoc);
8365  CXXDestructorDecl *Destructor
8366      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8367                                  QualType(), 0, /*isInline=*/true,
8368                                  /*isImplicitlyDeclared=*/true);
8369  Destructor->setAccess(AS_public);
8370  Destructor->setDefaulted();
8371  Destructor->setImplicit();
8372
8373  // Build an exception specification pointing back at this destructor.
8374  FunctionProtoType::ExtProtoInfo EPI;
8375  EPI.ExceptionSpecType = EST_Unevaluated;
8376  EPI.ExceptionSpecDecl = Destructor;
8377  Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
8378
8379  AddOverriddenMethods(ClassDecl, Destructor);
8380
8381  // We don't need to use SpecialMemberIsTrivial here; triviality for
8382  // destructors is easy to compute.
8383  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
8384
8385  if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
8386    SetDeclDeleted(Destructor, ClassLoc);
8387
8388  // Note that we have declared this destructor.
8389  ++ASTContext::NumImplicitDestructorsDeclared;
8390
8391  // Introduce this destructor into its scope.
8392  if (Scope *S = getScopeForContext(ClassDecl))
8393    PushOnScopeChains(Destructor, S, false);
8394  ClassDecl->addDecl(Destructor);
8395
8396  return Destructor;
8397}
8398
8399void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
8400                                    CXXDestructorDecl *Destructor) {
8401  assert((Destructor->isDefaulted() &&
8402          !Destructor->doesThisDeclarationHaveABody() &&
8403          !Destructor->isDeleted()) &&
8404         "DefineImplicitDestructor - call it for implicit default dtor");
8405  CXXRecordDecl *ClassDecl = Destructor->getParent();
8406  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
8407
8408  if (Destructor->isInvalidDecl())
8409    return;
8410
8411  SynthesizedFunctionScope Scope(*this, Destructor);
8412
8413  DiagnosticErrorTrap Trap(Diags);
8414  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
8415                                         Destructor->getParent());
8416
8417  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
8418    Diag(CurrentLocation, diag::note_member_synthesized_at)
8419      << CXXDestructor << Context.getTagDeclType(ClassDecl);
8420
8421    Destructor->setInvalidDecl();
8422    return;
8423  }
8424
8425  SourceLocation Loc = Destructor->getLocation();
8426  Destructor->setBody(new (Context) CompoundStmt(Loc));
8427  Destructor->setUsed();
8428  MarkVTableUsed(CurrentLocation, ClassDecl);
8429
8430  if (ASTMutationListener *L = getASTMutationListener()) {
8431    L->CompletedImplicitDefinition(Destructor);
8432  }
8433}
8434
8435/// \brief Perform any semantic analysis which needs to be delayed until all
8436/// pending class member declarations have been parsed.
8437void Sema::ActOnFinishCXXMemberDecls() {
8438  // If the context is an invalid C++ class, just suppress these checks.
8439  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) {
8440    if (Record->isInvalidDecl()) {
8441      DelayedDestructorExceptionSpecChecks.clear();
8442      return;
8443    }
8444  }
8445
8446  // Perform any deferred checking of exception specifications for virtual
8447  // destructors.
8448  for (unsigned i = 0, e = DelayedDestructorExceptionSpecChecks.size();
8449       i != e; ++i) {
8450    const CXXDestructorDecl *Dtor =
8451        DelayedDestructorExceptionSpecChecks[i].first;
8452    assert(!Dtor->getParent()->isDependentType() &&
8453           "Should not ever add destructors of templates into the list.");
8454    CheckOverridingFunctionExceptionSpec(Dtor,
8455        DelayedDestructorExceptionSpecChecks[i].second);
8456  }
8457  DelayedDestructorExceptionSpecChecks.clear();
8458}
8459
8460void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *ClassDecl,
8461                                         CXXDestructorDecl *Destructor) {
8462  assert(getLangOpts().CPlusPlus11 &&
8463         "adjusting dtor exception specs was introduced in c++11");
8464
8465  // C++11 [class.dtor]p3:
8466  //   A declaration of a destructor that does not have an exception-
8467  //   specification is implicitly considered to have the same exception-
8468  //   specification as an implicit declaration.
8469  const FunctionProtoType *DtorType = Destructor->getType()->
8470                                        getAs<FunctionProtoType>();
8471  if (DtorType->hasExceptionSpec())
8472    return;
8473
8474  // Replace the destructor's type, building off the existing one. Fortunately,
8475  // the only thing of interest in the destructor type is its extended info.
8476  // The return and arguments are fixed.
8477  FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
8478  EPI.ExceptionSpecType = EST_Unevaluated;
8479  EPI.ExceptionSpecDecl = Destructor;
8480  Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
8481
8482  // FIXME: If the destructor has a body that could throw, and the newly created
8483  // spec doesn't allow exceptions, we should emit a warning, because this
8484  // change in behavior can break conforming C++03 programs at runtime.
8485  // However, we don't have a body or an exception specification yet, so it
8486  // needs to be done somewhere else.
8487}
8488
8489/// When generating a defaulted copy or move assignment operator, if a field
8490/// should be copied with __builtin_memcpy rather than via explicit assignments,
8491/// do so. This optimization only applies for arrays of scalars, and for arrays
8492/// of class type where the selected copy/move-assignment operator is trivial.
8493static StmtResult
8494buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T,
8495                           Expr *To, Expr *From) {
8496  // Compute the size of the memory buffer to be copied.
8497  QualType SizeType = S.Context.getSizeType();
8498  llvm::APInt Size(S.Context.getTypeSize(SizeType),
8499                   S.Context.getTypeSizeInChars(T).getQuantity());
8500
8501  // Take the address of the field references for "from" and "to". We
8502  // directly construct UnaryOperators here because semantic analysis
8503  // does not permit us to take the address of an xvalue.
8504  From = new (S.Context) UnaryOperator(From, UO_AddrOf,
8505                         S.Context.getPointerType(From->getType()),
8506                         VK_RValue, OK_Ordinary, Loc);
8507  To = new (S.Context) UnaryOperator(To, UO_AddrOf,
8508                       S.Context.getPointerType(To->getType()),
8509                       VK_RValue, OK_Ordinary, Loc);
8510
8511  const Type *E = T->getBaseElementTypeUnsafe();
8512  bool NeedsCollectableMemCpy =
8513    E->isRecordType() && E->getAs<RecordType>()->getDecl()->hasObjectMember();
8514
8515  // Create a reference to the __builtin_objc_memmove_collectable function
8516  StringRef MemCpyName = NeedsCollectableMemCpy ?
8517    "__builtin_objc_memmove_collectable" :
8518    "__builtin_memcpy";
8519  LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc,
8520                 Sema::LookupOrdinaryName);
8521  S.LookupName(R, S.TUScope, true);
8522
8523  FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>();
8524  if (!MemCpy)
8525    // Something went horribly wrong earlier, and we will have complained
8526    // about it.
8527    return StmtError();
8528
8529  ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy,
8530                                            VK_RValue, Loc, 0);
8531  assert(MemCpyRef.isUsable() && "Builtin reference cannot fail");
8532
8533  Expr *CallArgs[] = {
8534    To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc)
8535  };
8536  ExprResult Call = S.ActOnCallExpr(/*Scope=*/0, MemCpyRef.take(),
8537                                    Loc, CallArgs, Loc);
8538
8539  assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8540  return S.Owned(Call.takeAs<Stmt>());
8541}
8542
8543/// \brief Builds a statement that copies/moves the given entity from \p From to
8544/// \c To.
8545///
8546/// This routine is used to copy/move the members of a class with an
8547/// implicitly-declared copy/move assignment operator. When the entities being
8548/// copied are arrays, this routine builds for loops to copy them.
8549///
8550/// \param S The Sema object used for type-checking.
8551///
8552/// \param Loc The location where the implicit copy/move is being generated.
8553///
8554/// \param T The type of the expressions being copied/moved. Both expressions
8555/// must have this type.
8556///
8557/// \param To The expression we are copying/moving to.
8558///
8559/// \param From The expression we are copying/moving from.
8560///
8561/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
8562/// Otherwise, it's a non-static member subobject.
8563///
8564/// \param Copying Whether we're copying or moving.
8565///
8566/// \param Depth Internal parameter recording the depth of the recursion.
8567///
8568/// \returns A statement or a loop that copies the expressions, or StmtResult(0)
8569/// if a memcpy should be used instead.
8570static StmtResult
8571buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T,
8572                                 Expr *To, Expr *From,
8573                                 bool CopyingBaseSubobject, bool Copying,
8574                                 unsigned Depth = 0) {
8575  // C++11 [class.copy]p28:
8576  //   Each subobject is assigned in the manner appropriate to its type:
8577  //
8578  //     - if the subobject is of class type, as if by a call to operator= with
8579  //       the subobject as the object expression and the corresponding
8580  //       subobject of x as a single function argument (as if by explicit
8581  //       qualification; that is, ignoring any possible virtual overriding
8582  //       functions in more derived classes);
8583  //
8584  // C++03 [class.copy]p13:
8585  //     - if the subobject is of class type, the copy assignment operator for
8586  //       the class is used (as if by explicit qualification; that is,
8587  //       ignoring any possible virtual overriding functions in more derived
8588  //       classes);
8589  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
8590    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8591
8592    // Look for operator=.
8593    DeclarationName Name
8594      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8595    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
8596    S.LookupQualifiedName(OpLookup, ClassDecl, false);
8597
8598    // Prior to C++11, filter out any result that isn't a copy/move-assignment
8599    // operator.
8600    if (!S.getLangOpts().CPlusPlus11) {
8601      LookupResult::Filter F = OpLookup.makeFilter();
8602      while (F.hasNext()) {
8603        NamedDecl *D = F.next();
8604        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
8605          if (Method->isCopyAssignmentOperator() ||
8606              (!Copying && Method->isMoveAssignmentOperator()))
8607            continue;
8608
8609        F.erase();
8610      }
8611      F.done();
8612    }
8613
8614    // Suppress the protected check (C++ [class.protected]) for each of the
8615    // assignment operators we found. This strange dance is required when
8616    // we're assigning via a base classes's copy-assignment operator. To
8617    // ensure that we're getting the right base class subobject (without
8618    // ambiguities), we need to cast "this" to that subobject type; to
8619    // ensure that we don't go through the virtual call mechanism, we need
8620    // to qualify the operator= name with the base class (see below). However,
8621    // this means that if the base class has a protected copy assignment
8622    // operator, the protected member access check will fail. So, we
8623    // rewrite "protected" access to "public" access in this case, since we
8624    // know by construction that we're calling from a derived class.
8625    if (CopyingBaseSubobject) {
8626      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
8627           L != LEnd; ++L) {
8628        if (L.getAccess() == AS_protected)
8629          L.setAccess(AS_public);
8630      }
8631    }
8632
8633    // Create the nested-name-specifier that will be used to qualify the
8634    // reference to operator=; this is required to suppress the virtual
8635    // call mechanism.
8636    CXXScopeSpec SS;
8637    const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
8638    SS.MakeTrivial(S.Context,
8639                   NestedNameSpecifier::Create(S.Context, 0, false,
8640                                               CanonicalT),
8641                   Loc);
8642
8643    // Create the reference to operator=.
8644    ExprResult OpEqualRef
8645      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
8646                                   /*TemplateKWLoc=*/SourceLocation(),
8647                                   /*FirstQualifierInScope=*/0,
8648                                   OpLookup,
8649                                   /*TemplateArgs=*/0,
8650                                   /*SuppressQualifierCheck=*/true);
8651    if (OpEqualRef.isInvalid())
8652      return StmtError();
8653
8654    // Build the call to the assignment operator.
8655
8656    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
8657                                                  OpEqualRef.takeAs<Expr>(),
8658                                                  Loc, From, Loc);
8659    if (Call.isInvalid())
8660      return StmtError();
8661
8662    // If we built a call to a trivial 'operator=' while copying an array,
8663    // bail out. We'll replace the whole shebang with a memcpy.
8664    CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get());
8665    if (CE && CE->getMethodDecl()->isTrivial() && Depth)
8666      return StmtResult((Stmt*)0);
8667
8668    // Convert to an expression-statement, and clean up any produced
8669    // temporaries.
8670    return S.ActOnExprStmt(Call);
8671  }
8672
8673  //     - if the subobject is of scalar type, the built-in assignment
8674  //       operator is used.
8675  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
8676  if (!ArrayTy) {
8677    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
8678    if (Assignment.isInvalid())
8679      return StmtError();
8680    return S.ActOnExprStmt(Assignment);
8681  }
8682
8683  //     - if the subobject is an array, each element is assigned, in the
8684  //       manner appropriate to the element type;
8685
8686  // Construct a loop over the array bounds, e.g.,
8687  //
8688  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
8689  //
8690  // that will copy each of the array elements.
8691  QualType SizeType = S.Context.getSizeType();
8692
8693  // Create the iteration variable.
8694  IdentifierInfo *IterationVarName = 0;
8695  {
8696    SmallString<8> Str;
8697    llvm::raw_svector_ostream OS(Str);
8698    OS << "__i" << Depth;
8699    IterationVarName = &S.Context.Idents.get(OS.str());
8700  }
8701  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
8702                                          IterationVarName, SizeType,
8703                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
8704                                          SC_None);
8705
8706  // Initialize the iteration variable to zero.
8707  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
8708  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
8709
8710  // Create a reference to the iteration variable; we'll use this several
8711  // times throughout.
8712  Expr *IterationVarRef
8713    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
8714  assert(IterationVarRef && "Reference to invented variable cannot fail!");
8715  Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
8716  assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
8717
8718  // Create the DeclStmt that holds the iteration variable.
8719  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
8720
8721  // Subscript the "from" and "to" expressions with the iteration variable.
8722  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
8723                                                         IterationVarRefRVal,
8724                                                         Loc));
8725  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
8726                                                       IterationVarRefRVal,
8727                                                       Loc));
8728  if (!Copying) // Cast to rvalue
8729    From = CastForMoving(S, From);
8730
8731  // Build the copy/move for an individual element of the array.
8732  StmtResult Copy =
8733    buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(),
8734                                     To, From, CopyingBaseSubobject,
8735                                     Copying, Depth + 1);
8736  // Bail out if copying fails or if we determined that we should use memcpy.
8737  if (Copy.isInvalid() || !Copy.get())
8738    return Copy;
8739
8740  // Create the comparison against the array bound.
8741  llvm::APInt Upper
8742    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
8743  Expr *Comparison
8744    = new (S.Context) BinaryOperator(IterationVarRefRVal,
8745                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
8746                                     BO_NE, S.Context.BoolTy,
8747                                     VK_RValue, OK_Ordinary, Loc, false);
8748
8749  // Create the pre-increment of the iteration variable.
8750  Expr *Increment
8751    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
8752                                    VK_LValue, OK_Ordinary, Loc);
8753
8754  // Construct the loop that copies all elements of this array.
8755  return S.ActOnForStmt(Loc, Loc, InitStmt,
8756                        S.MakeFullExpr(Comparison),
8757                        0, S.MakeFullDiscardedValueExpr(Increment),
8758                        Loc, Copy.take());
8759}
8760
8761static StmtResult
8762buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
8763                      Expr *To, Expr *From,
8764                      bool CopyingBaseSubobject, bool Copying) {
8765  // Maybe we should use a memcpy?
8766  if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() &&
8767      T.isTriviallyCopyableType(S.Context))
8768    return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
8769
8770  StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From,
8771                                                     CopyingBaseSubobject,
8772                                                     Copying, 0));
8773
8774  // If we ended up picking a trivial assignment operator for an array of a
8775  // non-trivially-copyable class type, just emit a memcpy.
8776  if (!Result.isInvalid() && !Result.get())
8777    return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
8778
8779  return Result;
8780}
8781
8782Sema::ImplicitExceptionSpecification
8783Sema::ComputeDefaultedCopyAssignmentExceptionSpec(CXXMethodDecl *MD) {
8784  CXXRecordDecl *ClassDecl = MD->getParent();
8785
8786  ImplicitExceptionSpecification ExceptSpec(*this);
8787  if (ClassDecl->isInvalidDecl())
8788    return ExceptSpec;
8789
8790  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
8791  assert(T->getNumArgs() == 1 && "not a copy assignment op");
8792  unsigned ArgQuals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
8793
8794  // C++ [except.spec]p14:
8795  //   An implicitly declared special member function (Clause 12) shall have an
8796  //   exception-specification. [...]
8797
8798  // It is unspecified whether or not an implicit copy assignment operator
8799  // attempts to deduplicate calls to assignment operators of virtual bases are
8800  // made. As such, this exception specification is effectively unspecified.
8801  // Based on a similar decision made for constness in C++0x, we're erring on
8802  // the side of assuming such calls to be made regardless of whether they
8803  // actually happen.
8804  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8805                                       BaseEnd = ClassDecl->bases_end();
8806       Base != BaseEnd; ++Base) {
8807    if (Base->isVirtual())
8808      continue;
8809
8810    CXXRecordDecl *BaseClassDecl
8811      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8812    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
8813                                                            ArgQuals, false, 0))
8814      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
8815  }
8816
8817  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8818                                       BaseEnd = ClassDecl->vbases_end();
8819       Base != BaseEnd; ++Base) {
8820    CXXRecordDecl *BaseClassDecl
8821      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8822    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
8823                                                            ArgQuals, false, 0))
8824      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
8825  }
8826
8827  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8828                                  FieldEnd = ClassDecl->field_end();
8829       Field != FieldEnd;
8830       ++Field) {
8831    QualType FieldType = Context.getBaseElementType(Field->getType());
8832    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8833      if (CXXMethodDecl *CopyAssign =
8834          LookupCopyingAssignment(FieldClassDecl,
8835                                  ArgQuals | FieldType.getCVRQualifiers(),
8836                                  false, 0))
8837        ExceptSpec.CalledDecl(Field->getLocation(), CopyAssign);
8838    }
8839  }
8840
8841  return ExceptSpec;
8842}
8843
8844CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
8845  // Note: The following rules are largely analoguous to the copy
8846  // constructor rules. Note that virtual bases are not taken into account
8847  // for determining the argument type of the operator. Note also that
8848  // operators taking an object instead of a reference are allowed.
8849  assert(ClassDecl->needsImplicitCopyAssignment());
8850
8851  DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment);
8852  if (DSM.isAlreadyBeingDeclared())
8853    return 0;
8854
8855  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8856  QualType RetType = Context.getLValueReferenceType(ArgType);
8857  bool Const = ClassDecl->implicitCopyAssignmentHasConstParam();
8858  if (Const)
8859    ArgType = ArgType.withConst();
8860  ArgType = Context.getLValueReferenceType(ArgType);
8861
8862  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
8863                                                     CXXCopyAssignment,
8864                                                     Const);
8865
8866  //   An implicitly-declared copy assignment operator is an inline public
8867  //   member of its class.
8868  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8869  SourceLocation ClassLoc = ClassDecl->getLocation();
8870  DeclarationNameInfo NameInfo(Name, ClassLoc);
8871  CXXMethodDecl *CopyAssignment =
8872      CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
8873                            /*TInfo=*/ 0, /*StorageClass=*/ SC_None,
8874                            /*isInline=*/ true, Constexpr, SourceLocation());
8875  CopyAssignment->setAccess(AS_public);
8876  CopyAssignment->setDefaulted();
8877  CopyAssignment->setImplicit();
8878
8879  // Build an exception specification pointing back at this member.
8880  FunctionProtoType::ExtProtoInfo EPI;
8881  EPI.ExceptionSpecType = EST_Unevaluated;
8882  EPI.ExceptionSpecDecl = CopyAssignment;
8883  CopyAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
8884
8885  // Add the parameter to the operator.
8886  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
8887                                               ClassLoc, ClassLoc, /*Id=*/0,
8888                                               ArgType, /*TInfo=*/0,
8889                                               SC_None, 0);
8890  CopyAssignment->setParams(FromParam);
8891
8892  AddOverriddenMethods(ClassDecl, CopyAssignment);
8893
8894  CopyAssignment->setTrivial(
8895    ClassDecl->needsOverloadResolutionForCopyAssignment()
8896      ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment)
8897      : ClassDecl->hasTrivialCopyAssignment());
8898
8899  // C++11 [class.copy]p19:
8900  //   ....  If the class definition does not explicitly declare a copy
8901  //   assignment operator, there is no user-declared move constructor, and
8902  //   there is no user-declared move assignment operator, a copy assignment
8903  //   operator is implicitly declared as defaulted.
8904  if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
8905    SetDeclDeleted(CopyAssignment, ClassLoc);
8906
8907  // Note that we have added this copy-assignment operator.
8908  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
8909
8910  if (Scope *S = getScopeForContext(ClassDecl))
8911    PushOnScopeChains(CopyAssignment, S, false);
8912  ClassDecl->addDecl(CopyAssignment);
8913
8914  return CopyAssignment;
8915}
8916
8917/// Diagnose an implicit copy operation for a class which is odr-used, but
8918/// which is deprecated because the class has a user-declared copy constructor,
8919/// copy assignment operator, or destructor.
8920static void diagnoseDeprecatedCopyOperation(Sema &S, CXXMethodDecl *CopyOp,
8921                                            SourceLocation UseLoc) {
8922  assert(CopyOp->isImplicit());
8923
8924  CXXRecordDecl *RD = CopyOp->getParent();
8925  CXXMethodDecl *UserDeclaredOperation = 0;
8926
8927  // In Microsoft mode, assignment operations don't affect constructors and
8928  // vice versa.
8929  if (RD->hasUserDeclaredDestructor()) {
8930    UserDeclaredOperation = RD->getDestructor();
8931  } else if (!isa<CXXConstructorDecl>(CopyOp) &&
8932             RD->hasUserDeclaredCopyConstructor() &&
8933             !S.getLangOpts().MicrosoftMode) {
8934    // Find any user-declared copy constructor.
8935    for (CXXRecordDecl::ctor_iterator I = RD->ctor_begin(),
8936                                      E = RD->ctor_end(); I != E; ++I) {
8937      if (I->isCopyConstructor()) {
8938        UserDeclaredOperation = *I;
8939        break;
8940      }
8941    }
8942    assert(UserDeclaredOperation);
8943  } else if (isa<CXXConstructorDecl>(CopyOp) &&
8944             RD->hasUserDeclaredCopyAssignment() &&
8945             !S.getLangOpts().MicrosoftMode) {
8946    // Find any user-declared move assignment operator.
8947    for (CXXRecordDecl::method_iterator I = RD->method_begin(),
8948                                        E = RD->method_end(); I != E; ++I) {
8949      if (I->isCopyAssignmentOperator()) {
8950        UserDeclaredOperation = *I;
8951        break;
8952      }
8953    }
8954    assert(UserDeclaredOperation);
8955  }
8956
8957  if (UserDeclaredOperation) {
8958    S.Diag(UserDeclaredOperation->getLocation(),
8959         diag::warn_deprecated_copy_operation)
8960      << RD << /*copy assignment*/!isa<CXXConstructorDecl>(CopyOp)
8961      << /*destructor*/isa<CXXDestructorDecl>(UserDeclaredOperation);
8962    S.Diag(UseLoc, diag::note_member_synthesized_at)
8963      << (isa<CXXConstructorDecl>(CopyOp) ? Sema::CXXCopyConstructor
8964                                          : Sema::CXXCopyAssignment)
8965      << RD;
8966  }
8967}
8968
8969void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
8970                                        CXXMethodDecl *CopyAssignOperator) {
8971  assert((CopyAssignOperator->isDefaulted() &&
8972          CopyAssignOperator->isOverloadedOperator() &&
8973          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
8974          !CopyAssignOperator->doesThisDeclarationHaveABody() &&
8975          !CopyAssignOperator->isDeleted()) &&
8976         "DefineImplicitCopyAssignment called for wrong function");
8977
8978  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
8979
8980  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
8981    CopyAssignOperator->setInvalidDecl();
8982    return;
8983  }
8984
8985  // C++11 [class.copy]p18:
8986  //   The [definition of an implicitly declared copy assignment operator] is
8987  //   deprecated if the class has a user-declared copy constructor or a
8988  //   user-declared destructor.
8989  if (getLangOpts().CPlusPlus11 && CopyAssignOperator->isImplicit())
8990    diagnoseDeprecatedCopyOperation(*this, CopyAssignOperator, CurrentLocation);
8991
8992  CopyAssignOperator->setUsed();
8993
8994  SynthesizedFunctionScope Scope(*this, CopyAssignOperator);
8995  DiagnosticErrorTrap Trap(Diags);
8996
8997  // C++0x [class.copy]p30:
8998  //   The implicitly-defined or explicitly-defaulted copy assignment operator
8999  //   for a non-union class X performs memberwise copy assignment of its
9000  //   subobjects. The direct base classes of X are assigned first, in the
9001  //   order of their declaration in the base-specifier-list, and then the
9002  //   immediate non-static data members of X are assigned, in the order in
9003  //   which they were declared in the class definition.
9004
9005  // The statements that form the synthesized function body.
9006  SmallVector<Stmt*, 8> Statements;
9007
9008  // The parameter for the "other" object, which we are copying from.
9009  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
9010  Qualifiers OtherQuals = Other->getType().getQualifiers();
9011  QualType OtherRefType = Other->getType();
9012  if (const LValueReferenceType *OtherRef
9013                                = OtherRefType->getAs<LValueReferenceType>()) {
9014    OtherRefType = OtherRef->getPointeeType();
9015    OtherQuals = OtherRefType.getQualifiers();
9016  }
9017
9018  // Our location for everything implicitly-generated.
9019  SourceLocation Loc = CopyAssignOperator->getLocation();
9020
9021  // Construct a reference to the "other" object. We'll be using this
9022  // throughout the generated ASTs.
9023  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
9024  assert(OtherRef && "Reference to parameter cannot fail!");
9025
9026  // Construct the "this" pointer. We'll be using this throughout the generated
9027  // ASTs.
9028  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
9029  assert(This && "Reference to this cannot fail!");
9030
9031  // Assign base classes.
9032  bool Invalid = false;
9033  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9034       E = ClassDecl->bases_end(); Base != E; ++Base) {
9035    // Form the assignment:
9036    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
9037    QualType BaseType = Base->getType().getUnqualifiedType();
9038    if (!BaseType->isRecordType()) {
9039      Invalid = true;
9040      continue;
9041    }
9042
9043    CXXCastPath BasePath;
9044    BasePath.push_back(Base);
9045
9046    // Construct the "from" expression, which is an implicit cast to the
9047    // appropriately-qualified base type.
9048    Expr *From = OtherRef;
9049    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
9050                             CK_UncheckedDerivedToBase,
9051                             VK_LValue, &BasePath).take();
9052
9053    // Dereference "this".
9054    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
9055
9056    // Implicitly cast "this" to the appropriately-qualified base type.
9057    To = ImpCastExprToType(To.take(),
9058                           Context.getCVRQualifiedType(BaseType,
9059                                     CopyAssignOperator->getTypeQualifiers()),
9060                           CK_UncheckedDerivedToBase,
9061                           VK_LValue, &BasePath);
9062
9063    // Build the copy.
9064    StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType,
9065                                            To.get(), From,
9066                                            /*CopyingBaseSubobject=*/true,
9067                                            /*Copying=*/true);
9068    if (Copy.isInvalid()) {
9069      Diag(CurrentLocation, diag::note_member_synthesized_at)
9070        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9071      CopyAssignOperator->setInvalidDecl();
9072      return;
9073    }
9074
9075    // Success! Record the copy.
9076    Statements.push_back(Copy.takeAs<Expr>());
9077  }
9078
9079  // Assign non-static members.
9080  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9081                                  FieldEnd = ClassDecl->field_end();
9082       Field != FieldEnd; ++Field) {
9083    if (Field->isUnnamedBitfield())
9084      continue;
9085
9086    if (Field->isInvalidDecl()) {
9087      Invalid = true;
9088      continue;
9089    }
9090
9091    // Check for members of reference type; we can't copy those.
9092    if (Field->getType()->isReferenceType()) {
9093      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9094        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
9095      Diag(Field->getLocation(), diag::note_declared_at);
9096      Diag(CurrentLocation, diag::note_member_synthesized_at)
9097        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9098      Invalid = true;
9099      continue;
9100    }
9101
9102    // Check for members of const-qualified, non-class type.
9103    QualType BaseType = Context.getBaseElementType(Field->getType());
9104    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
9105      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9106        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
9107      Diag(Field->getLocation(), diag::note_declared_at);
9108      Diag(CurrentLocation, diag::note_member_synthesized_at)
9109        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9110      Invalid = true;
9111      continue;
9112    }
9113
9114    // Suppress assigning zero-width bitfields.
9115    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
9116      continue;
9117
9118    QualType FieldType = Field->getType().getNonReferenceType();
9119    if (FieldType->isIncompleteArrayType()) {
9120      assert(ClassDecl->hasFlexibleArrayMember() &&
9121             "Incomplete array type is not valid");
9122      continue;
9123    }
9124
9125    // Build references to the field in the object we're copying from and to.
9126    CXXScopeSpec SS; // Intentionally empty
9127    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
9128                              LookupMemberName);
9129    MemberLookup.addDecl(*Field);
9130    MemberLookup.resolveKind();
9131    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
9132                                               Loc, /*IsArrow=*/false,
9133                                               SS, SourceLocation(), 0,
9134                                               MemberLookup, 0);
9135    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
9136                                             Loc, /*IsArrow=*/true,
9137                                             SS, SourceLocation(), 0,
9138                                             MemberLookup, 0);
9139    assert(!From.isInvalid() && "Implicit field reference cannot fail");
9140    assert(!To.isInvalid() && "Implicit field reference cannot fail");
9141
9142    // Build the copy of this field.
9143    StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType,
9144                                            To.get(), From.get(),
9145                                            /*CopyingBaseSubobject=*/false,
9146                                            /*Copying=*/true);
9147    if (Copy.isInvalid()) {
9148      Diag(CurrentLocation, diag::note_member_synthesized_at)
9149        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9150      CopyAssignOperator->setInvalidDecl();
9151      return;
9152    }
9153
9154    // Success! Record the copy.
9155    Statements.push_back(Copy.takeAs<Stmt>());
9156  }
9157
9158  if (!Invalid) {
9159    // Add a "return *this;"
9160    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
9161
9162    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
9163    if (Return.isInvalid())
9164      Invalid = true;
9165    else {
9166      Statements.push_back(Return.takeAs<Stmt>());
9167
9168      if (Trap.hasErrorOccurred()) {
9169        Diag(CurrentLocation, diag::note_member_synthesized_at)
9170          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9171        Invalid = true;
9172      }
9173    }
9174  }
9175
9176  if (Invalid) {
9177    CopyAssignOperator->setInvalidDecl();
9178    return;
9179  }
9180
9181  StmtResult Body;
9182  {
9183    CompoundScopeRAII CompoundScope(*this);
9184    Body = ActOnCompoundStmt(Loc, Loc, Statements,
9185                             /*isStmtExpr=*/false);
9186    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
9187  }
9188  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
9189
9190  if (ASTMutationListener *L = getASTMutationListener()) {
9191    L->CompletedImplicitDefinition(CopyAssignOperator);
9192  }
9193}
9194
9195Sema::ImplicitExceptionSpecification
9196Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXMethodDecl *MD) {
9197  CXXRecordDecl *ClassDecl = MD->getParent();
9198
9199  ImplicitExceptionSpecification ExceptSpec(*this);
9200  if (ClassDecl->isInvalidDecl())
9201    return ExceptSpec;
9202
9203  // C++0x [except.spec]p14:
9204  //   An implicitly declared special member function (Clause 12) shall have an
9205  //   exception-specification. [...]
9206
9207  // It is unspecified whether or not an implicit move assignment operator
9208  // attempts to deduplicate calls to assignment operators of virtual bases are
9209  // made. As such, this exception specification is effectively unspecified.
9210  // Based on a similar decision made for constness in C++0x, we're erring on
9211  // the side of assuming such calls to be made regardless of whether they
9212  // actually happen.
9213  // Note that a move constructor is not implicitly declared when there are
9214  // virtual bases, but it can still be user-declared and explicitly defaulted.
9215  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9216                                       BaseEnd = ClassDecl->bases_end();
9217       Base != BaseEnd; ++Base) {
9218    if (Base->isVirtual())
9219      continue;
9220
9221    CXXRecordDecl *BaseClassDecl
9222      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9223    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
9224                                                           0, false, 0))
9225      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
9226  }
9227
9228  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9229                                       BaseEnd = ClassDecl->vbases_end();
9230       Base != BaseEnd; ++Base) {
9231    CXXRecordDecl *BaseClassDecl
9232      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9233    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
9234                                                           0, false, 0))
9235      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
9236  }
9237
9238  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9239                                  FieldEnd = ClassDecl->field_end();
9240       Field != FieldEnd;
9241       ++Field) {
9242    QualType FieldType = Context.getBaseElementType(Field->getType());
9243    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
9244      if (CXXMethodDecl *MoveAssign =
9245              LookupMovingAssignment(FieldClassDecl,
9246                                     FieldType.getCVRQualifiers(),
9247                                     false, 0))
9248        ExceptSpec.CalledDecl(Field->getLocation(), MoveAssign);
9249    }
9250  }
9251
9252  return ExceptSpec;
9253}
9254
9255/// Determine whether the class type has any direct or indirect virtual base
9256/// classes which have a non-trivial move assignment operator.
9257static bool
9258hasVirtualBaseWithNonTrivialMoveAssignment(Sema &S, CXXRecordDecl *ClassDecl) {
9259  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9260                                          BaseEnd = ClassDecl->vbases_end();
9261       Base != BaseEnd; ++Base) {
9262    CXXRecordDecl *BaseClass =
9263        cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9264
9265    // Try to declare the move assignment. If it would be deleted, then the
9266    // class does not have a non-trivial move assignment.
9267    if (BaseClass->needsImplicitMoveAssignment())
9268      S.DeclareImplicitMoveAssignment(BaseClass);
9269
9270    if (BaseClass->hasNonTrivialMoveAssignment())
9271      return true;
9272  }
9273
9274  return false;
9275}
9276
9277/// Determine whether the given type either has a move constructor or is
9278/// trivially copyable.
9279static bool
9280hasMoveOrIsTriviallyCopyable(Sema &S, QualType Type, bool IsConstructor) {
9281  Type = S.Context.getBaseElementType(Type);
9282
9283  // FIXME: Technically, non-trivially-copyable non-class types, such as
9284  // reference types, are supposed to return false here, but that appears
9285  // to be a standard defect.
9286  CXXRecordDecl *ClassDecl = Type->getAsCXXRecordDecl();
9287  if (!ClassDecl || !ClassDecl->getDefinition() || ClassDecl->isInvalidDecl())
9288    return true;
9289
9290  if (Type.isTriviallyCopyableType(S.Context))
9291    return true;
9292
9293  if (IsConstructor) {
9294    // FIXME: Need this because otherwise hasMoveConstructor isn't guaranteed to
9295    // give the right answer.
9296    if (ClassDecl->needsImplicitMoveConstructor())
9297      S.DeclareImplicitMoveConstructor(ClassDecl);
9298    return ClassDecl->hasMoveConstructor();
9299  }
9300
9301  // FIXME: Need this because otherwise hasMoveAssignment isn't guaranteed to
9302  // give the right answer.
9303  if (ClassDecl->needsImplicitMoveAssignment())
9304    S.DeclareImplicitMoveAssignment(ClassDecl);
9305  return ClassDecl->hasMoveAssignment();
9306}
9307
9308/// Determine whether all non-static data members and direct or virtual bases
9309/// of class \p ClassDecl have either a move operation, or are trivially
9310/// copyable.
9311static bool subobjectsHaveMoveOrTrivialCopy(Sema &S, CXXRecordDecl *ClassDecl,
9312                                            bool IsConstructor) {
9313  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9314                                          BaseEnd = ClassDecl->bases_end();
9315       Base != BaseEnd; ++Base) {
9316    if (Base->isVirtual())
9317      continue;
9318
9319    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
9320      return false;
9321  }
9322
9323  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9324                                          BaseEnd = ClassDecl->vbases_end();
9325       Base != BaseEnd; ++Base) {
9326    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
9327      return false;
9328  }
9329
9330  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9331                                     FieldEnd = ClassDecl->field_end();
9332       Field != FieldEnd; ++Field) {
9333    if (!hasMoveOrIsTriviallyCopyable(S, Field->getType(), IsConstructor))
9334      return false;
9335  }
9336
9337  return true;
9338}
9339
9340CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
9341  // C++11 [class.copy]p20:
9342  //   If the definition of a class X does not explicitly declare a move
9343  //   assignment operator, one will be implicitly declared as defaulted
9344  //   if and only if:
9345  //
9346  //   - [first 4 bullets]
9347  assert(ClassDecl->needsImplicitMoveAssignment());
9348
9349  DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment);
9350  if (DSM.isAlreadyBeingDeclared())
9351    return 0;
9352
9353  // [Checked after we build the declaration]
9354  //   - the move assignment operator would not be implicitly defined as
9355  //     deleted,
9356
9357  // [DR1402]:
9358  //   - X has no direct or indirect virtual base class with a non-trivial
9359  //     move assignment operator, and
9360  //   - each of X's non-static data members and direct or virtual base classes
9361  //     has a type that either has a move assignment operator or is trivially
9362  //     copyable.
9363  if (hasVirtualBaseWithNonTrivialMoveAssignment(*this, ClassDecl) ||
9364      !subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl,/*Constructor*/false)) {
9365    ClassDecl->setFailedImplicitMoveAssignment();
9366    return 0;
9367  }
9368
9369  // Note: The following rules are largely analoguous to the move
9370  // constructor rules.
9371
9372  QualType ArgType = Context.getTypeDeclType(ClassDecl);
9373  QualType RetType = Context.getLValueReferenceType(ArgType);
9374  ArgType = Context.getRValueReferenceType(ArgType);
9375
9376  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9377                                                     CXXMoveAssignment,
9378                                                     false);
9379
9380  //   An implicitly-declared move assignment operator is an inline public
9381  //   member of its class.
9382  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
9383  SourceLocation ClassLoc = ClassDecl->getLocation();
9384  DeclarationNameInfo NameInfo(Name, ClassLoc);
9385  CXXMethodDecl *MoveAssignment =
9386      CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
9387                            /*TInfo=*/0, /*StorageClass=*/SC_None,
9388                            /*isInline=*/true, Constexpr, SourceLocation());
9389  MoveAssignment->setAccess(AS_public);
9390  MoveAssignment->setDefaulted();
9391  MoveAssignment->setImplicit();
9392
9393  // Build an exception specification pointing back at this member.
9394  FunctionProtoType::ExtProtoInfo EPI;
9395  EPI.ExceptionSpecType = EST_Unevaluated;
9396  EPI.ExceptionSpecDecl = MoveAssignment;
9397  MoveAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
9398
9399  // Add the parameter to the operator.
9400  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
9401                                               ClassLoc, ClassLoc, /*Id=*/0,
9402                                               ArgType, /*TInfo=*/0,
9403                                               SC_None, 0);
9404  MoveAssignment->setParams(FromParam);
9405
9406  AddOverriddenMethods(ClassDecl, MoveAssignment);
9407
9408  MoveAssignment->setTrivial(
9409    ClassDecl->needsOverloadResolutionForMoveAssignment()
9410      ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment)
9411      : ClassDecl->hasTrivialMoveAssignment());
9412
9413  // C++0x [class.copy]p9:
9414  //   If the definition of a class X does not explicitly declare a move
9415  //   assignment operator, one will be implicitly declared as defaulted if and
9416  //   only if:
9417  //   [...]
9418  //   - the move assignment operator would not be implicitly defined as
9419  //     deleted.
9420  if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
9421    // Cache this result so that we don't try to generate this over and over
9422    // on every lookup, leaking memory and wasting time.
9423    ClassDecl->setFailedImplicitMoveAssignment();
9424    return 0;
9425  }
9426
9427  // Note that we have added this copy-assignment operator.
9428  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
9429
9430  if (Scope *S = getScopeForContext(ClassDecl))
9431    PushOnScopeChains(MoveAssignment, S, false);
9432  ClassDecl->addDecl(MoveAssignment);
9433
9434  return MoveAssignment;
9435}
9436
9437void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
9438                                        CXXMethodDecl *MoveAssignOperator) {
9439  assert((MoveAssignOperator->isDefaulted() &&
9440          MoveAssignOperator->isOverloadedOperator() &&
9441          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
9442          !MoveAssignOperator->doesThisDeclarationHaveABody() &&
9443          !MoveAssignOperator->isDeleted()) &&
9444         "DefineImplicitMoveAssignment called for wrong function");
9445
9446  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
9447
9448  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
9449    MoveAssignOperator->setInvalidDecl();
9450    return;
9451  }
9452
9453  MoveAssignOperator->setUsed();
9454
9455  SynthesizedFunctionScope Scope(*this, MoveAssignOperator);
9456  DiagnosticErrorTrap Trap(Diags);
9457
9458  // C++0x [class.copy]p28:
9459  //   The implicitly-defined or move assignment operator for a non-union class
9460  //   X performs memberwise move assignment of its subobjects. The direct base
9461  //   classes of X are assigned first, in the order of their declaration in the
9462  //   base-specifier-list, and then the immediate non-static data members of X
9463  //   are assigned, in the order in which they were declared in the class
9464  //   definition.
9465
9466  // The statements that form the synthesized function body.
9467  SmallVector<Stmt*, 8> Statements;
9468
9469  // The parameter for the "other" object, which we are move from.
9470  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
9471  QualType OtherRefType = Other->getType()->
9472      getAs<RValueReferenceType>()->getPointeeType();
9473  assert(!OtherRefType.getQualifiers() &&
9474         "Bad argument type of defaulted move assignment");
9475
9476  // Our location for everything implicitly-generated.
9477  SourceLocation Loc = MoveAssignOperator->getLocation();
9478
9479  // Construct a reference to the "other" object. We'll be using this
9480  // throughout the generated ASTs.
9481  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
9482  assert(OtherRef && "Reference to parameter cannot fail!");
9483  // Cast to rvalue.
9484  OtherRef = CastForMoving(*this, OtherRef);
9485
9486  // Construct the "this" pointer. We'll be using this throughout the generated
9487  // ASTs.
9488  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
9489  assert(This && "Reference to this cannot fail!");
9490
9491  // Assign base classes.
9492  bool Invalid = false;
9493  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9494       E = ClassDecl->bases_end(); Base != E; ++Base) {
9495    // Form the assignment:
9496    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
9497    QualType BaseType = Base->getType().getUnqualifiedType();
9498    if (!BaseType->isRecordType()) {
9499      Invalid = true;
9500      continue;
9501    }
9502
9503    CXXCastPath BasePath;
9504    BasePath.push_back(Base);
9505
9506    // Construct the "from" expression, which is an implicit cast to the
9507    // appropriately-qualified base type.
9508    Expr *From = OtherRef;
9509    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
9510                             VK_XValue, &BasePath).take();
9511
9512    // Dereference "this".
9513    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
9514
9515    // Implicitly cast "this" to the appropriately-qualified base type.
9516    To = ImpCastExprToType(To.take(),
9517                           Context.getCVRQualifiedType(BaseType,
9518                                     MoveAssignOperator->getTypeQualifiers()),
9519                           CK_UncheckedDerivedToBase,
9520                           VK_LValue, &BasePath);
9521
9522    // Build the move.
9523    StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType,
9524                                            To.get(), From,
9525                                            /*CopyingBaseSubobject=*/true,
9526                                            /*Copying=*/false);
9527    if (Move.isInvalid()) {
9528      Diag(CurrentLocation, diag::note_member_synthesized_at)
9529        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9530      MoveAssignOperator->setInvalidDecl();
9531      return;
9532    }
9533
9534    // Success! Record the move.
9535    Statements.push_back(Move.takeAs<Expr>());
9536  }
9537
9538  // Assign non-static members.
9539  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9540                                  FieldEnd = ClassDecl->field_end();
9541       Field != FieldEnd; ++Field) {
9542    if (Field->isUnnamedBitfield())
9543      continue;
9544
9545    if (Field->isInvalidDecl()) {
9546      Invalid = true;
9547      continue;
9548    }
9549
9550    // Check for members of reference type; we can't move those.
9551    if (Field->getType()->isReferenceType()) {
9552      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9553        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
9554      Diag(Field->getLocation(), diag::note_declared_at);
9555      Diag(CurrentLocation, diag::note_member_synthesized_at)
9556        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9557      Invalid = true;
9558      continue;
9559    }
9560
9561    // Check for members of const-qualified, non-class type.
9562    QualType BaseType = Context.getBaseElementType(Field->getType());
9563    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
9564      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9565        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
9566      Diag(Field->getLocation(), diag::note_declared_at);
9567      Diag(CurrentLocation, diag::note_member_synthesized_at)
9568        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9569      Invalid = true;
9570      continue;
9571    }
9572
9573    // Suppress assigning zero-width bitfields.
9574    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
9575      continue;
9576
9577    QualType FieldType = Field->getType().getNonReferenceType();
9578    if (FieldType->isIncompleteArrayType()) {
9579      assert(ClassDecl->hasFlexibleArrayMember() &&
9580             "Incomplete array type is not valid");
9581      continue;
9582    }
9583
9584    // Build references to the field in the object we're copying from and to.
9585    CXXScopeSpec SS; // Intentionally empty
9586    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
9587                              LookupMemberName);
9588    MemberLookup.addDecl(*Field);
9589    MemberLookup.resolveKind();
9590    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
9591                                               Loc, /*IsArrow=*/false,
9592                                               SS, SourceLocation(), 0,
9593                                               MemberLookup, 0);
9594    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
9595                                             Loc, /*IsArrow=*/true,
9596                                             SS, SourceLocation(), 0,
9597                                             MemberLookup, 0);
9598    assert(!From.isInvalid() && "Implicit field reference cannot fail");
9599    assert(!To.isInvalid() && "Implicit field reference cannot fail");
9600
9601    assert(!From.get()->isLValue() && // could be xvalue or prvalue
9602        "Member reference with rvalue base must be rvalue except for reference "
9603        "members, which aren't allowed for move assignment.");
9604
9605    // Build the move of this field.
9606    StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType,
9607                                            To.get(), From.get(),
9608                                            /*CopyingBaseSubobject=*/false,
9609                                            /*Copying=*/false);
9610    if (Move.isInvalid()) {
9611      Diag(CurrentLocation, diag::note_member_synthesized_at)
9612        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9613      MoveAssignOperator->setInvalidDecl();
9614      return;
9615    }
9616
9617    // Success! Record the copy.
9618    Statements.push_back(Move.takeAs<Stmt>());
9619  }
9620
9621  if (!Invalid) {
9622    // Add a "return *this;"
9623    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
9624
9625    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
9626    if (Return.isInvalid())
9627      Invalid = true;
9628    else {
9629      Statements.push_back(Return.takeAs<Stmt>());
9630
9631      if (Trap.hasErrorOccurred()) {
9632        Diag(CurrentLocation, diag::note_member_synthesized_at)
9633          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9634        Invalid = true;
9635      }
9636    }
9637  }
9638
9639  if (Invalid) {
9640    MoveAssignOperator->setInvalidDecl();
9641    return;
9642  }
9643
9644  StmtResult Body;
9645  {
9646    CompoundScopeRAII CompoundScope(*this);
9647    Body = ActOnCompoundStmt(Loc, Loc, Statements,
9648                             /*isStmtExpr=*/false);
9649    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
9650  }
9651  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
9652
9653  if (ASTMutationListener *L = getASTMutationListener()) {
9654    L->CompletedImplicitDefinition(MoveAssignOperator);
9655  }
9656}
9657
9658Sema::ImplicitExceptionSpecification
9659Sema::ComputeDefaultedCopyCtorExceptionSpec(CXXMethodDecl *MD) {
9660  CXXRecordDecl *ClassDecl = MD->getParent();
9661
9662  ImplicitExceptionSpecification ExceptSpec(*this);
9663  if (ClassDecl->isInvalidDecl())
9664    return ExceptSpec;
9665
9666  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
9667  assert(T->getNumArgs() >= 1 && "not a copy ctor");
9668  unsigned Quals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
9669
9670  // C++ [except.spec]p14:
9671  //   An implicitly declared special member function (Clause 12) shall have an
9672  //   exception-specification. [...]
9673  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9674                                       BaseEnd = ClassDecl->bases_end();
9675       Base != BaseEnd;
9676       ++Base) {
9677    // Virtual bases are handled below.
9678    if (Base->isVirtual())
9679      continue;
9680
9681    CXXRecordDecl *BaseClassDecl
9682      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9683    if (CXXConstructorDecl *CopyConstructor =
9684          LookupCopyingConstructor(BaseClassDecl, Quals))
9685      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
9686  }
9687  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9688                                       BaseEnd = ClassDecl->vbases_end();
9689       Base != BaseEnd;
9690       ++Base) {
9691    CXXRecordDecl *BaseClassDecl
9692      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9693    if (CXXConstructorDecl *CopyConstructor =
9694          LookupCopyingConstructor(BaseClassDecl, Quals))
9695      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
9696  }
9697  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9698                                  FieldEnd = ClassDecl->field_end();
9699       Field != FieldEnd;
9700       ++Field) {
9701    QualType FieldType = Context.getBaseElementType(Field->getType());
9702    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
9703      if (CXXConstructorDecl *CopyConstructor =
9704              LookupCopyingConstructor(FieldClassDecl,
9705                                       Quals | FieldType.getCVRQualifiers()))
9706      ExceptSpec.CalledDecl(Field->getLocation(), CopyConstructor);
9707    }
9708  }
9709
9710  return ExceptSpec;
9711}
9712
9713CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
9714                                                    CXXRecordDecl *ClassDecl) {
9715  // C++ [class.copy]p4:
9716  //   If the class definition does not explicitly declare a copy
9717  //   constructor, one is declared implicitly.
9718  assert(ClassDecl->needsImplicitCopyConstructor());
9719
9720  DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor);
9721  if (DSM.isAlreadyBeingDeclared())
9722    return 0;
9723
9724  QualType ClassType = Context.getTypeDeclType(ClassDecl);
9725  QualType ArgType = ClassType;
9726  bool Const = ClassDecl->implicitCopyConstructorHasConstParam();
9727  if (Const)
9728    ArgType = ArgType.withConst();
9729  ArgType = Context.getLValueReferenceType(ArgType);
9730
9731  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9732                                                     CXXCopyConstructor,
9733                                                     Const);
9734
9735  DeclarationName Name
9736    = Context.DeclarationNames.getCXXConstructorName(
9737                                           Context.getCanonicalType(ClassType));
9738  SourceLocation ClassLoc = ClassDecl->getLocation();
9739  DeclarationNameInfo NameInfo(Name, ClassLoc);
9740
9741  //   An implicitly-declared copy constructor is an inline public
9742  //   member of its class.
9743  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
9744      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
9745      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
9746      Constexpr);
9747  CopyConstructor->setAccess(AS_public);
9748  CopyConstructor->setDefaulted();
9749
9750  // Build an exception specification pointing back at this member.
9751  FunctionProtoType::ExtProtoInfo EPI;
9752  EPI.ExceptionSpecType = EST_Unevaluated;
9753  EPI.ExceptionSpecDecl = CopyConstructor;
9754  CopyConstructor->setType(
9755      Context.getFunctionType(Context.VoidTy, ArgType, EPI));
9756
9757  // Add the parameter to the constructor.
9758  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
9759                                               ClassLoc, ClassLoc,
9760                                               /*IdentifierInfo=*/0,
9761                                               ArgType, /*TInfo=*/0,
9762                                               SC_None, 0);
9763  CopyConstructor->setParams(FromParam);
9764
9765  CopyConstructor->setTrivial(
9766    ClassDecl->needsOverloadResolutionForCopyConstructor()
9767      ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor)
9768      : ClassDecl->hasTrivialCopyConstructor());
9769
9770  // C++11 [class.copy]p8:
9771  //   ... If the class definition does not explicitly declare a copy
9772  //   constructor, there is no user-declared move constructor, and there is no
9773  //   user-declared move assignment operator, a copy constructor is implicitly
9774  //   declared as defaulted.
9775  if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
9776    SetDeclDeleted(CopyConstructor, ClassLoc);
9777
9778  // Note that we have declared this constructor.
9779  ++ASTContext::NumImplicitCopyConstructorsDeclared;
9780
9781  if (Scope *S = getScopeForContext(ClassDecl))
9782    PushOnScopeChains(CopyConstructor, S, false);
9783  ClassDecl->addDecl(CopyConstructor);
9784
9785  return CopyConstructor;
9786}
9787
9788void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
9789                                   CXXConstructorDecl *CopyConstructor) {
9790  assert((CopyConstructor->isDefaulted() &&
9791          CopyConstructor->isCopyConstructor() &&
9792          !CopyConstructor->doesThisDeclarationHaveABody() &&
9793          !CopyConstructor->isDeleted()) &&
9794         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
9795
9796  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
9797  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
9798
9799  // C++11 [class.copy]p7:
9800  //   The [definition of an implicitly declared copy constructro] is
9801  //   deprecated if the class has a user-declared copy assignment operator
9802  //   or a user-declared destructor.
9803  if (getLangOpts().CPlusPlus11 && CopyConstructor->isImplicit())
9804    diagnoseDeprecatedCopyOperation(*this, CopyConstructor, CurrentLocation);
9805
9806  SynthesizedFunctionScope Scope(*this, CopyConstructor);
9807  DiagnosticErrorTrap Trap(Diags);
9808
9809  if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false) ||
9810      Trap.hasErrorOccurred()) {
9811    Diag(CurrentLocation, diag::note_member_synthesized_at)
9812      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
9813    CopyConstructor->setInvalidDecl();
9814  }  else {
9815    Sema::CompoundScopeRAII CompoundScope(*this);
9816    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
9817                                               CopyConstructor->getLocation(),
9818                                               MultiStmtArg(),
9819                                               /*isStmtExpr=*/false)
9820                                                              .takeAs<Stmt>());
9821  }
9822
9823  CopyConstructor->setUsed();
9824  if (ASTMutationListener *L = getASTMutationListener()) {
9825    L->CompletedImplicitDefinition(CopyConstructor);
9826  }
9827}
9828
9829Sema::ImplicitExceptionSpecification
9830Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXMethodDecl *MD) {
9831  CXXRecordDecl *ClassDecl = MD->getParent();
9832
9833  // C++ [except.spec]p14:
9834  //   An implicitly declared special member function (Clause 12) shall have an
9835  //   exception-specification. [...]
9836  ImplicitExceptionSpecification ExceptSpec(*this);
9837  if (ClassDecl->isInvalidDecl())
9838    return ExceptSpec;
9839
9840  // Direct base-class constructors.
9841  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
9842                                       BEnd = ClassDecl->bases_end();
9843       B != BEnd; ++B) {
9844    if (B->isVirtual()) // Handled below.
9845      continue;
9846
9847    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
9848      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
9849      CXXConstructorDecl *Constructor =
9850          LookupMovingConstructor(BaseClassDecl, 0);
9851      // If this is a deleted function, add it anyway. This might be conformant
9852      // with the standard. This might not. I'm not sure. It might not matter.
9853      if (Constructor)
9854        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
9855    }
9856  }
9857
9858  // Virtual base-class constructors.
9859  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
9860                                       BEnd = ClassDecl->vbases_end();
9861       B != BEnd; ++B) {
9862    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
9863      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
9864      CXXConstructorDecl *Constructor =
9865          LookupMovingConstructor(BaseClassDecl, 0);
9866      // If this is a deleted function, add it anyway. This might be conformant
9867      // with the standard. This might not. I'm not sure. It might not matter.
9868      if (Constructor)
9869        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
9870    }
9871  }
9872
9873  // Field constructors.
9874  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
9875                               FEnd = ClassDecl->field_end();
9876       F != FEnd; ++F) {
9877    QualType FieldType = Context.getBaseElementType(F->getType());
9878    if (CXXRecordDecl *FieldRecDecl = FieldType->getAsCXXRecordDecl()) {
9879      CXXConstructorDecl *Constructor =
9880          LookupMovingConstructor(FieldRecDecl, FieldType.getCVRQualifiers());
9881      // If this is a deleted function, add it anyway. This might be conformant
9882      // with the standard. This might not. I'm not sure. It might not matter.
9883      // In particular, the problem is that this function never gets called. It
9884      // might just be ill-formed because this function attempts to refer to
9885      // a deleted function here.
9886      if (Constructor)
9887        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
9888    }
9889  }
9890
9891  return ExceptSpec;
9892}
9893
9894CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
9895                                                    CXXRecordDecl *ClassDecl) {
9896  // C++11 [class.copy]p9:
9897  //   If the definition of a class X does not explicitly declare a move
9898  //   constructor, one will be implicitly declared as defaulted if and only if:
9899  //
9900  //   - [first 4 bullets]
9901  assert(ClassDecl->needsImplicitMoveConstructor());
9902
9903  DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor);
9904  if (DSM.isAlreadyBeingDeclared())
9905    return 0;
9906
9907  // [Checked after we build the declaration]
9908  //   - the move assignment operator would not be implicitly defined as
9909  //     deleted,
9910
9911  // [DR1402]:
9912  //   - each of X's non-static data members and direct or virtual base classes
9913  //     has a type that either has a move constructor or is trivially copyable.
9914  if (!subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl, /*Constructor*/true)) {
9915    ClassDecl->setFailedImplicitMoveConstructor();
9916    return 0;
9917  }
9918
9919  QualType ClassType = Context.getTypeDeclType(ClassDecl);
9920  QualType ArgType = Context.getRValueReferenceType(ClassType);
9921
9922  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9923                                                     CXXMoveConstructor,
9924                                                     false);
9925
9926  DeclarationName Name
9927    = Context.DeclarationNames.getCXXConstructorName(
9928                                           Context.getCanonicalType(ClassType));
9929  SourceLocation ClassLoc = ClassDecl->getLocation();
9930  DeclarationNameInfo NameInfo(Name, ClassLoc);
9931
9932  // C++11 [class.copy]p11:
9933  //   An implicitly-declared copy/move constructor is an inline public
9934  //   member of its class.
9935  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
9936      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
9937      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
9938      Constexpr);
9939  MoveConstructor->setAccess(AS_public);
9940  MoveConstructor->setDefaulted();
9941
9942  // Build an exception specification pointing back at this member.
9943  FunctionProtoType::ExtProtoInfo EPI;
9944  EPI.ExceptionSpecType = EST_Unevaluated;
9945  EPI.ExceptionSpecDecl = MoveConstructor;
9946  MoveConstructor->setType(
9947      Context.getFunctionType(Context.VoidTy, ArgType, EPI));
9948
9949  // Add the parameter to the constructor.
9950  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
9951                                               ClassLoc, ClassLoc,
9952                                               /*IdentifierInfo=*/0,
9953                                               ArgType, /*TInfo=*/0,
9954                                               SC_None, 0);
9955  MoveConstructor->setParams(FromParam);
9956
9957  MoveConstructor->setTrivial(
9958    ClassDecl->needsOverloadResolutionForMoveConstructor()
9959      ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor)
9960      : ClassDecl->hasTrivialMoveConstructor());
9961
9962  // C++0x [class.copy]p9:
9963  //   If the definition of a class X does not explicitly declare a move
9964  //   constructor, one will be implicitly declared as defaulted if and only if:
9965  //   [...]
9966  //   - the move constructor would not be implicitly defined as deleted.
9967  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
9968    // Cache this result so that we don't try to generate this over and over
9969    // on every lookup, leaking memory and wasting time.
9970    ClassDecl->setFailedImplicitMoveConstructor();
9971    return 0;
9972  }
9973
9974  // Note that we have declared this constructor.
9975  ++ASTContext::NumImplicitMoveConstructorsDeclared;
9976
9977  if (Scope *S = getScopeForContext(ClassDecl))
9978    PushOnScopeChains(MoveConstructor, S, false);
9979  ClassDecl->addDecl(MoveConstructor);
9980
9981  return MoveConstructor;
9982}
9983
9984void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
9985                                   CXXConstructorDecl *MoveConstructor) {
9986  assert((MoveConstructor->isDefaulted() &&
9987          MoveConstructor->isMoveConstructor() &&
9988          !MoveConstructor->doesThisDeclarationHaveABody() &&
9989          !MoveConstructor->isDeleted()) &&
9990         "DefineImplicitMoveConstructor - call it for implicit move ctor");
9991
9992  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
9993  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
9994
9995  SynthesizedFunctionScope Scope(*this, MoveConstructor);
9996  DiagnosticErrorTrap Trap(Diags);
9997
9998  if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false) ||
9999      Trap.hasErrorOccurred()) {
10000    Diag(CurrentLocation, diag::note_member_synthesized_at)
10001      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
10002    MoveConstructor->setInvalidDecl();
10003  }  else {
10004    Sema::CompoundScopeRAII CompoundScope(*this);
10005    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
10006                                               MoveConstructor->getLocation(),
10007                                               MultiStmtArg(),
10008                                               /*isStmtExpr=*/false)
10009                                                              .takeAs<Stmt>());
10010  }
10011
10012  MoveConstructor->setUsed();
10013
10014  if (ASTMutationListener *L = getASTMutationListener()) {
10015    L->CompletedImplicitDefinition(MoveConstructor);
10016  }
10017}
10018
10019bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
10020  return FD->isDeleted() && FD->isDefaulted() && isa<CXXMethodDecl>(FD);
10021}
10022
10023/// \brief Mark the call operator of the given lambda closure type as "used".
10024static void markLambdaCallOperatorUsed(Sema &S, CXXRecordDecl *Lambda) {
10025  CXXMethodDecl *CallOperator
10026    = cast<CXXMethodDecl>(
10027        Lambda->lookup(
10028          S.Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
10029  CallOperator->setReferenced();
10030  CallOperator->setUsed();
10031}
10032
10033void Sema::DefineImplicitLambdaToFunctionPointerConversion(
10034       SourceLocation CurrentLocation,
10035       CXXConversionDecl *Conv)
10036{
10037  CXXRecordDecl *Lambda = Conv->getParent();
10038
10039  // Make sure that the lambda call operator is marked used.
10040  markLambdaCallOperatorUsed(*this, Lambda);
10041
10042  Conv->setUsed();
10043
10044  SynthesizedFunctionScope Scope(*this, Conv);
10045  DiagnosticErrorTrap Trap(Diags);
10046
10047  // Return the address of the __invoke function.
10048  DeclarationName InvokeName = &Context.Idents.get("__invoke");
10049  CXXMethodDecl *Invoke
10050    = cast<CXXMethodDecl>(Lambda->lookup(InvokeName).front());
10051  Expr *FunctionRef = BuildDeclRefExpr(Invoke, Invoke->getType(),
10052                                       VK_LValue, Conv->getLocation()).take();
10053  assert(FunctionRef && "Can't refer to __invoke function?");
10054  Stmt *Return = ActOnReturnStmt(Conv->getLocation(), FunctionRef).take();
10055  Conv->setBody(new (Context) CompoundStmt(Context, Return,
10056                                           Conv->getLocation(),
10057                                           Conv->getLocation()));
10058
10059  // Fill in the __invoke function with a dummy implementation. IR generation
10060  // will fill in the actual details.
10061  Invoke->setUsed();
10062  Invoke->setReferenced();
10063  Invoke->setBody(new (Context) CompoundStmt(Conv->getLocation()));
10064
10065  if (ASTMutationListener *L = getASTMutationListener()) {
10066    L->CompletedImplicitDefinition(Conv);
10067    L->CompletedImplicitDefinition(Invoke);
10068  }
10069}
10070
10071void Sema::DefineImplicitLambdaToBlockPointerConversion(
10072       SourceLocation CurrentLocation,
10073       CXXConversionDecl *Conv)
10074{
10075  Conv->setUsed();
10076
10077  SynthesizedFunctionScope Scope(*this, Conv);
10078  DiagnosticErrorTrap Trap(Diags);
10079
10080  // Copy-initialize the lambda object as needed to capture it.
10081  Expr *This = ActOnCXXThis(CurrentLocation).take();
10082  Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).take();
10083
10084  ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
10085                                                        Conv->getLocation(),
10086                                                        Conv, DerefThis);
10087
10088  // If we're not under ARC, make sure we still get the _Block_copy/autorelease
10089  // behavior.  Note that only the general conversion function does this
10090  // (since it's unusable otherwise); in the case where we inline the
10091  // block literal, it has block literal lifetime semantics.
10092  if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
10093    BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
10094                                          CK_CopyAndAutoreleaseBlockObject,
10095                                          BuildBlock.get(), 0, VK_RValue);
10096
10097  if (BuildBlock.isInvalid()) {
10098    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
10099    Conv->setInvalidDecl();
10100    return;
10101  }
10102
10103  // Create the return statement that returns the block from the conversion
10104  // function.
10105  StmtResult Return = ActOnReturnStmt(Conv->getLocation(), BuildBlock.get());
10106  if (Return.isInvalid()) {
10107    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
10108    Conv->setInvalidDecl();
10109    return;
10110  }
10111
10112  // Set the body of the conversion function.
10113  Stmt *ReturnS = Return.take();
10114  Conv->setBody(new (Context) CompoundStmt(Context, ReturnS,
10115                                           Conv->getLocation(),
10116                                           Conv->getLocation()));
10117
10118  // We're done; notify the mutation listener, if any.
10119  if (ASTMutationListener *L = getASTMutationListener()) {
10120    L->CompletedImplicitDefinition(Conv);
10121  }
10122}
10123
10124/// \brief Determine whether the given list arguments contains exactly one
10125/// "real" (non-default) argument.
10126static bool hasOneRealArgument(MultiExprArg Args) {
10127  switch (Args.size()) {
10128  case 0:
10129    return false;
10130
10131  default:
10132    if (!Args[1]->isDefaultArgument())
10133      return false;
10134
10135    // fall through
10136  case 1:
10137    return !Args[0]->isDefaultArgument();
10138  }
10139
10140  return false;
10141}
10142
10143ExprResult
10144Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
10145                            CXXConstructorDecl *Constructor,
10146                            MultiExprArg ExprArgs,
10147                            bool HadMultipleCandidates,
10148                            bool IsListInitialization,
10149                            bool RequiresZeroInit,
10150                            unsigned ConstructKind,
10151                            SourceRange ParenRange) {
10152  bool Elidable = false;
10153
10154  // C++0x [class.copy]p34:
10155  //   When certain criteria are met, an implementation is allowed to
10156  //   omit the copy/move construction of a class object, even if the
10157  //   copy/move constructor and/or destructor for the object have
10158  //   side effects. [...]
10159  //     - when a temporary class object that has not been bound to a
10160  //       reference (12.2) would be copied/moved to a class object
10161  //       with the same cv-unqualified type, the copy/move operation
10162  //       can be omitted by constructing the temporary object
10163  //       directly into the target of the omitted copy/move
10164  if (ConstructKind == CXXConstructExpr::CK_Complete &&
10165      Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
10166    Expr *SubExpr = ExprArgs[0];
10167    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
10168  }
10169
10170  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
10171                               Elidable, ExprArgs, HadMultipleCandidates,
10172                               IsListInitialization, RequiresZeroInit,
10173                               ConstructKind, ParenRange);
10174}
10175
10176/// BuildCXXConstructExpr - Creates a complete call to a constructor,
10177/// including handling of its default argument expressions.
10178ExprResult
10179Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
10180                            CXXConstructorDecl *Constructor, bool Elidable,
10181                            MultiExprArg ExprArgs,
10182                            bool HadMultipleCandidates,
10183                            bool IsListInitialization,
10184                            bool RequiresZeroInit,
10185                            unsigned ConstructKind,
10186                            SourceRange ParenRange) {
10187  MarkFunctionReferenced(ConstructLoc, Constructor);
10188  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
10189                                        Constructor, Elidable, ExprArgs,
10190                                        HadMultipleCandidates,
10191                                        IsListInitialization, RequiresZeroInit,
10192              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
10193                                        ParenRange));
10194}
10195
10196void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
10197  if (VD->isInvalidDecl()) return;
10198
10199  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
10200  if (ClassDecl->isInvalidDecl()) return;
10201  if (ClassDecl->hasIrrelevantDestructor()) return;
10202  if (ClassDecl->isDependentContext()) return;
10203
10204  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
10205  MarkFunctionReferenced(VD->getLocation(), Destructor);
10206  CheckDestructorAccess(VD->getLocation(), Destructor,
10207                        PDiag(diag::err_access_dtor_var)
10208                        << VD->getDeclName()
10209                        << VD->getType());
10210  DiagnoseUseOfDecl(Destructor, VD->getLocation());
10211
10212  if (!VD->hasGlobalStorage()) return;
10213
10214  // Emit warning for non-trivial dtor in global scope (a real global,
10215  // class-static, function-static).
10216  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
10217
10218  // TODO: this should be re-enabled for static locals by !CXAAtExit
10219  if (!VD->isStaticLocal())
10220    Diag(VD->getLocation(), diag::warn_global_destructor);
10221}
10222
10223/// \brief Given a constructor and the set of arguments provided for the
10224/// constructor, convert the arguments and add any required default arguments
10225/// to form a proper call to this constructor.
10226///
10227/// \returns true if an error occurred, false otherwise.
10228bool
10229Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
10230                              MultiExprArg ArgsPtr,
10231                              SourceLocation Loc,
10232                              SmallVectorImpl<Expr*> &ConvertedArgs,
10233                              bool AllowExplicit,
10234                              bool IsListInitialization) {
10235  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
10236  unsigned NumArgs = ArgsPtr.size();
10237  Expr **Args = ArgsPtr.data();
10238
10239  const FunctionProtoType *Proto
10240    = Constructor->getType()->getAs<FunctionProtoType>();
10241  assert(Proto && "Constructor without a prototype?");
10242  unsigned NumArgsInProto = Proto->getNumArgs();
10243
10244  // If too few arguments are available, we'll fill in the rest with defaults.
10245  if (NumArgs < NumArgsInProto)
10246    ConvertedArgs.reserve(NumArgsInProto);
10247  else
10248    ConvertedArgs.reserve(NumArgs);
10249
10250  VariadicCallType CallType =
10251    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
10252  SmallVector<Expr *, 8> AllArgs;
10253  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
10254                                        Proto, 0,
10255                                        llvm::makeArrayRef(Args, NumArgs),
10256                                        AllArgs,
10257                                        CallType, AllowExplicit,
10258                                        IsListInitialization);
10259  ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
10260
10261  DiagnoseSentinelCalls(Constructor, Loc, AllArgs);
10262
10263  CheckConstructorCall(Constructor,
10264                       llvm::makeArrayRef<const Expr *>(AllArgs.data(),
10265                                                        AllArgs.size()),
10266                       Proto, Loc);
10267
10268  return Invalid;
10269}
10270
10271static inline bool
10272CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
10273                                       const FunctionDecl *FnDecl) {
10274  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
10275  if (isa<NamespaceDecl>(DC)) {
10276    return SemaRef.Diag(FnDecl->getLocation(),
10277                        diag::err_operator_new_delete_declared_in_namespace)
10278      << FnDecl->getDeclName();
10279  }
10280
10281  if (isa<TranslationUnitDecl>(DC) &&
10282      FnDecl->getStorageClass() == SC_Static) {
10283    return SemaRef.Diag(FnDecl->getLocation(),
10284                        diag::err_operator_new_delete_declared_static)
10285      << FnDecl->getDeclName();
10286  }
10287
10288  return false;
10289}
10290
10291static inline bool
10292CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
10293                            CanQualType ExpectedResultType,
10294                            CanQualType ExpectedFirstParamType,
10295                            unsigned DependentParamTypeDiag,
10296                            unsigned InvalidParamTypeDiag) {
10297  QualType ResultType =
10298    FnDecl->getType()->getAs<FunctionType>()->getResultType();
10299
10300  // Check that the result type is not dependent.
10301  if (ResultType->isDependentType())
10302    return SemaRef.Diag(FnDecl->getLocation(),
10303                        diag::err_operator_new_delete_dependent_result_type)
10304    << FnDecl->getDeclName() << ExpectedResultType;
10305
10306  // Check that the result type is what we expect.
10307  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
10308    return SemaRef.Diag(FnDecl->getLocation(),
10309                        diag::err_operator_new_delete_invalid_result_type)
10310    << FnDecl->getDeclName() << ExpectedResultType;
10311
10312  // A function template must have at least 2 parameters.
10313  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
10314    return SemaRef.Diag(FnDecl->getLocation(),
10315                      diag::err_operator_new_delete_template_too_few_parameters)
10316        << FnDecl->getDeclName();
10317
10318  // The function decl must have at least 1 parameter.
10319  if (FnDecl->getNumParams() == 0)
10320    return SemaRef.Diag(FnDecl->getLocation(),
10321                        diag::err_operator_new_delete_too_few_parameters)
10322      << FnDecl->getDeclName();
10323
10324  // Check the first parameter type is not dependent.
10325  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
10326  if (FirstParamType->isDependentType())
10327    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
10328      << FnDecl->getDeclName() << ExpectedFirstParamType;
10329
10330  // Check that the first parameter type is what we expect.
10331  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
10332      ExpectedFirstParamType)
10333    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
10334    << FnDecl->getDeclName() << ExpectedFirstParamType;
10335
10336  return false;
10337}
10338
10339static bool
10340CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
10341  // C++ [basic.stc.dynamic.allocation]p1:
10342  //   A program is ill-formed if an allocation function is declared in a
10343  //   namespace scope other than global scope or declared static in global
10344  //   scope.
10345  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
10346    return true;
10347
10348  CanQualType SizeTy =
10349    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
10350
10351  // C++ [basic.stc.dynamic.allocation]p1:
10352  //  The return type shall be void*. The first parameter shall have type
10353  //  std::size_t.
10354  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
10355                                  SizeTy,
10356                                  diag::err_operator_new_dependent_param_type,
10357                                  diag::err_operator_new_param_type))
10358    return true;
10359
10360  // C++ [basic.stc.dynamic.allocation]p1:
10361  //  The first parameter shall not have an associated default argument.
10362  if (FnDecl->getParamDecl(0)->hasDefaultArg())
10363    return SemaRef.Diag(FnDecl->getLocation(),
10364                        diag::err_operator_new_default_arg)
10365      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
10366
10367  return false;
10368}
10369
10370static bool
10371CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) {
10372  // C++ [basic.stc.dynamic.deallocation]p1:
10373  //   A program is ill-formed if deallocation functions are declared in a
10374  //   namespace scope other than global scope or declared static in global
10375  //   scope.
10376  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
10377    return true;
10378
10379  // C++ [basic.stc.dynamic.deallocation]p2:
10380  //   Each deallocation function shall return void and its first parameter
10381  //   shall be void*.
10382  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
10383                                  SemaRef.Context.VoidPtrTy,
10384                                 diag::err_operator_delete_dependent_param_type,
10385                                 diag::err_operator_delete_param_type))
10386    return true;
10387
10388  return false;
10389}
10390
10391/// CheckOverloadedOperatorDeclaration - Check whether the declaration
10392/// of this overloaded operator is well-formed. If so, returns false;
10393/// otherwise, emits appropriate diagnostics and returns true.
10394bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
10395  assert(FnDecl && FnDecl->isOverloadedOperator() &&
10396         "Expected an overloaded operator declaration");
10397
10398  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
10399
10400  // C++ [over.oper]p5:
10401  //   The allocation and deallocation functions, operator new,
10402  //   operator new[], operator delete and operator delete[], are
10403  //   described completely in 3.7.3. The attributes and restrictions
10404  //   found in the rest of this subclause do not apply to them unless
10405  //   explicitly stated in 3.7.3.
10406  if (Op == OO_Delete || Op == OO_Array_Delete)
10407    return CheckOperatorDeleteDeclaration(*this, FnDecl);
10408
10409  if (Op == OO_New || Op == OO_Array_New)
10410    return CheckOperatorNewDeclaration(*this, FnDecl);
10411
10412  // C++ [over.oper]p6:
10413  //   An operator function shall either be a non-static member
10414  //   function or be a non-member function and have at least one
10415  //   parameter whose type is a class, a reference to a class, an
10416  //   enumeration, or a reference to an enumeration.
10417  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
10418    if (MethodDecl->isStatic())
10419      return Diag(FnDecl->getLocation(),
10420                  diag::err_operator_overload_static) << FnDecl->getDeclName();
10421  } else {
10422    bool ClassOrEnumParam = false;
10423    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
10424                                   ParamEnd = FnDecl->param_end();
10425         Param != ParamEnd; ++Param) {
10426      QualType ParamType = (*Param)->getType().getNonReferenceType();
10427      if (ParamType->isDependentType() || ParamType->isRecordType() ||
10428          ParamType->isEnumeralType()) {
10429        ClassOrEnumParam = true;
10430        break;
10431      }
10432    }
10433
10434    if (!ClassOrEnumParam)
10435      return Diag(FnDecl->getLocation(),
10436                  diag::err_operator_overload_needs_class_or_enum)
10437        << FnDecl->getDeclName();
10438  }
10439
10440  // C++ [over.oper]p8:
10441  //   An operator function cannot have default arguments (8.3.6),
10442  //   except where explicitly stated below.
10443  //
10444  // Only the function-call operator allows default arguments
10445  // (C++ [over.call]p1).
10446  if (Op != OO_Call) {
10447    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
10448         Param != FnDecl->param_end(); ++Param) {
10449      if ((*Param)->hasDefaultArg())
10450        return Diag((*Param)->getLocation(),
10451                    diag::err_operator_overload_default_arg)
10452          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
10453    }
10454  }
10455
10456  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
10457    { false, false, false }
10458#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
10459    , { Unary, Binary, MemberOnly }
10460#include "clang/Basic/OperatorKinds.def"
10461  };
10462
10463  bool CanBeUnaryOperator = OperatorUses[Op][0];
10464  bool CanBeBinaryOperator = OperatorUses[Op][1];
10465  bool MustBeMemberOperator = OperatorUses[Op][2];
10466
10467  // C++ [over.oper]p8:
10468  //   [...] Operator functions cannot have more or fewer parameters
10469  //   than the number required for the corresponding operator, as
10470  //   described in the rest of this subclause.
10471  unsigned NumParams = FnDecl->getNumParams()
10472                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
10473  if (Op != OO_Call &&
10474      ((NumParams == 1 && !CanBeUnaryOperator) ||
10475       (NumParams == 2 && !CanBeBinaryOperator) ||
10476       (NumParams < 1) || (NumParams > 2))) {
10477    // We have the wrong number of parameters.
10478    unsigned ErrorKind;
10479    if (CanBeUnaryOperator && CanBeBinaryOperator) {
10480      ErrorKind = 2;  // 2 -> unary or binary.
10481    } else if (CanBeUnaryOperator) {
10482      ErrorKind = 0;  // 0 -> unary
10483    } else {
10484      assert(CanBeBinaryOperator &&
10485             "All non-call overloaded operators are unary or binary!");
10486      ErrorKind = 1;  // 1 -> binary
10487    }
10488
10489    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
10490      << FnDecl->getDeclName() << NumParams << ErrorKind;
10491  }
10492
10493  // Overloaded operators other than operator() cannot be variadic.
10494  if (Op != OO_Call &&
10495      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
10496    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
10497      << FnDecl->getDeclName();
10498  }
10499
10500  // Some operators must be non-static member functions.
10501  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
10502    return Diag(FnDecl->getLocation(),
10503                diag::err_operator_overload_must_be_member)
10504      << FnDecl->getDeclName();
10505  }
10506
10507  // C++ [over.inc]p1:
10508  //   The user-defined function called operator++ implements the
10509  //   prefix and postfix ++ operator. If this function is a member
10510  //   function with no parameters, or a non-member function with one
10511  //   parameter of class or enumeration type, it defines the prefix
10512  //   increment operator ++ for objects of that type. If the function
10513  //   is a member function with one parameter (which shall be of type
10514  //   int) or a non-member function with two parameters (the second
10515  //   of which shall be of type int), it defines the postfix
10516  //   increment operator ++ for objects of that type.
10517  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
10518    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
10519    bool ParamIsInt = false;
10520    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
10521      ParamIsInt = BT->getKind() == BuiltinType::Int;
10522
10523    if (!ParamIsInt)
10524      return Diag(LastParam->getLocation(),
10525                  diag::err_operator_overload_post_incdec_must_be_int)
10526        << LastParam->getType() << (Op == OO_MinusMinus);
10527  }
10528
10529  return false;
10530}
10531
10532/// CheckLiteralOperatorDeclaration - Check whether the declaration
10533/// of this literal operator function is well-formed. If so, returns
10534/// false; otherwise, emits appropriate diagnostics and returns true.
10535bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
10536  if (isa<CXXMethodDecl>(FnDecl)) {
10537    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
10538      << FnDecl->getDeclName();
10539    return true;
10540  }
10541
10542  if (FnDecl->isExternC()) {
10543    Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
10544    return true;
10545  }
10546
10547  bool Valid = false;
10548
10549  // This might be the definition of a literal operator template.
10550  FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
10551  // This might be a specialization of a literal operator template.
10552  if (!TpDecl)
10553    TpDecl = FnDecl->getPrimaryTemplate();
10554
10555  // template <char...> type operator "" name() is the only valid template
10556  // signature, and the only valid signature with no parameters.
10557  if (TpDecl) {
10558    if (FnDecl->param_size() == 0) {
10559      // Must have only one template parameter
10560      TemplateParameterList *Params = TpDecl->getTemplateParameters();
10561      if (Params->size() == 1) {
10562        NonTypeTemplateParmDecl *PmDecl =
10563          dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(0));
10564
10565        // The template parameter must be a char parameter pack.
10566        if (PmDecl && PmDecl->isTemplateParameterPack() &&
10567            Context.hasSameType(PmDecl->getType(), Context.CharTy))
10568          Valid = true;
10569      }
10570    }
10571  } else if (FnDecl->param_size()) {
10572    // Check the first parameter
10573    FunctionDecl::param_iterator Param = FnDecl->param_begin();
10574
10575    QualType T = (*Param)->getType().getUnqualifiedType();
10576
10577    // unsigned long long int, long double, and any character type are allowed
10578    // as the only parameters.
10579    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
10580        Context.hasSameType(T, Context.LongDoubleTy) ||
10581        Context.hasSameType(T, Context.CharTy) ||
10582        Context.hasSameType(T, Context.WideCharTy) ||
10583        Context.hasSameType(T, Context.Char16Ty) ||
10584        Context.hasSameType(T, Context.Char32Ty)) {
10585      if (++Param == FnDecl->param_end())
10586        Valid = true;
10587      goto FinishedParams;
10588    }
10589
10590    // Otherwise it must be a pointer to const; let's strip those qualifiers.
10591    const PointerType *PT = T->getAs<PointerType>();
10592    if (!PT)
10593      goto FinishedParams;
10594    T = PT->getPointeeType();
10595    if (!T.isConstQualified() || T.isVolatileQualified())
10596      goto FinishedParams;
10597    T = T.getUnqualifiedType();
10598
10599    // Move on to the second parameter;
10600    ++Param;
10601
10602    // If there is no second parameter, the first must be a const char *
10603    if (Param == FnDecl->param_end()) {
10604      if (Context.hasSameType(T, Context.CharTy))
10605        Valid = true;
10606      goto FinishedParams;
10607    }
10608
10609    // const char *, const wchar_t*, const char16_t*, and const char32_t*
10610    // are allowed as the first parameter to a two-parameter function
10611    if (!(Context.hasSameType(T, Context.CharTy) ||
10612          Context.hasSameType(T, Context.WideCharTy) ||
10613          Context.hasSameType(T, Context.Char16Ty) ||
10614          Context.hasSameType(T, Context.Char32Ty)))
10615      goto FinishedParams;
10616
10617    // The second and final parameter must be an std::size_t
10618    T = (*Param)->getType().getUnqualifiedType();
10619    if (Context.hasSameType(T, Context.getSizeType()) &&
10620        ++Param == FnDecl->param_end())
10621      Valid = true;
10622  }
10623
10624  // FIXME: This diagnostic is absolutely terrible.
10625FinishedParams:
10626  if (!Valid) {
10627    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
10628      << FnDecl->getDeclName();
10629    return true;
10630  }
10631
10632  // A parameter-declaration-clause containing a default argument is not
10633  // equivalent to any of the permitted forms.
10634  for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
10635                                    ParamEnd = FnDecl->param_end();
10636       Param != ParamEnd; ++Param) {
10637    if ((*Param)->hasDefaultArg()) {
10638      Diag((*Param)->getDefaultArgRange().getBegin(),
10639           diag::err_literal_operator_default_argument)
10640        << (*Param)->getDefaultArgRange();
10641      break;
10642    }
10643  }
10644
10645  StringRef LiteralName
10646    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
10647  if (LiteralName[0] != '_') {
10648    // C++11 [usrlit.suffix]p1:
10649    //   Literal suffix identifiers that do not start with an underscore
10650    //   are reserved for future standardization.
10651    Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved)
10652      << NumericLiteralParser::isValidUDSuffix(getLangOpts(), LiteralName);
10653  }
10654
10655  return false;
10656}
10657
10658/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
10659/// linkage specification, including the language and (if present)
10660/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
10661/// the location of the language string literal, which is provided
10662/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
10663/// the '{' brace. Otherwise, this linkage specification does not
10664/// have any braces.
10665Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
10666                                           SourceLocation LangLoc,
10667                                           StringRef Lang,
10668                                           SourceLocation LBraceLoc) {
10669  LinkageSpecDecl::LanguageIDs Language;
10670  if (Lang == "\"C\"")
10671    Language = LinkageSpecDecl::lang_c;
10672  else if (Lang == "\"C++\"")
10673    Language = LinkageSpecDecl::lang_cxx;
10674  else {
10675    Diag(LangLoc, diag::err_bad_language);
10676    return 0;
10677  }
10678
10679  // FIXME: Add all the various semantics of linkage specifications
10680
10681  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
10682                                               ExternLoc, LangLoc, Language,
10683                                               LBraceLoc.isValid());
10684  CurContext->addDecl(D);
10685  PushDeclContext(S, D);
10686  return D;
10687}
10688
10689/// ActOnFinishLinkageSpecification - Complete the definition of
10690/// the C++ linkage specification LinkageSpec. If RBraceLoc is
10691/// valid, it's the position of the closing '}' brace in a linkage
10692/// specification that uses braces.
10693Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
10694                                            Decl *LinkageSpec,
10695                                            SourceLocation RBraceLoc) {
10696  if (LinkageSpec) {
10697    if (RBraceLoc.isValid()) {
10698      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
10699      LSDecl->setRBraceLoc(RBraceLoc);
10700    }
10701    PopDeclContext();
10702  }
10703  return LinkageSpec;
10704}
10705
10706Decl *Sema::ActOnEmptyDeclaration(Scope *S,
10707                                  AttributeList *AttrList,
10708                                  SourceLocation SemiLoc) {
10709  Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc);
10710  // Attribute declarations appertain to empty declaration so we handle
10711  // them here.
10712  if (AttrList)
10713    ProcessDeclAttributeList(S, ED, AttrList);
10714
10715  CurContext->addDecl(ED);
10716  return ED;
10717}
10718
10719/// \brief Perform semantic analysis for the variable declaration that
10720/// occurs within a C++ catch clause, returning the newly-created
10721/// variable.
10722VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
10723                                         TypeSourceInfo *TInfo,
10724                                         SourceLocation StartLoc,
10725                                         SourceLocation Loc,
10726                                         IdentifierInfo *Name) {
10727  bool Invalid = false;
10728  QualType ExDeclType = TInfo->getType();
10729
10730  // Arrays and functions decay.
10731  if (ExDeclType->isArrayType())
10732    ExDeclType = Context.getArrayDecayedType(ExDeclType);
10733  else if (ExDeclType->isFunctionType())
10734    ExDeclType = Context.getPointerType(ExDeclType);
10735
10736  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
10737  // The exception-declaration shall not denote a pointer or reference to an
10738  // incomplete type, other than [cv] void*.
10739  // N2844 forbids rvalue references.
10740  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
10741    Diag(Loc, diag::err_catch_rvalue_ref);
10742    Invalid = true;
10743  }
10744
10745  QualType BaseType = ExDeclType;
10746  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
10747  unsigned DK = diag::err_catch_incomplete;
10748  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
10749    BaseType = Ptr->getPointeeType();
10750    Mode = 1;
10751    DK = diag::err_catch_incomplete_ptr;
10752  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
10753    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
10754    BaseType = Ref->getPointeeType();
10755    Mode = 2;
10756    DK = diag::err_catch_incomplete_ref;
10757  }
10758  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
10759      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
10760    Invalid = true;
10761
10762  if (!Invalid && !ExDeclType->isDependentType() &&
10763      RequireNonAbstractType(Loc, ExDeclType,
10764                             diag::err_abstract_type_in_decl,
10765                             AbstractVariableType))
10766    Invalid = true;
10767
10768  // Only the non-fragile NeXT runtime currently supports C++ catches
10769  // of ObjC types, and no runtime supports catching ObjC types by value.
10770  if (!Invalid && getLangOpts().ObjC1) {
10771    QualType T = ExDeclType;
10772    if (const ReferenceType *RT = T->getAs<ReferenceType>())
10773      T = RT->getPointeeType();
10774
10775    if (T->isObjCObjectType()) {
10776      Diag(Loc, diag::err_objc_object_catch);
10777      Invalid = true;
10778    } else if (T->isObjCObjectPointerType()) {
10779      // FIXME: should this be a test for macosx-fragile specifically?
10780      if (getLangOpts().ObjCRuntime.isFragile())
10781        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
10782    }
10783  }
10784
10785  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
10786                                    ExDeclType, TInfo, SC_None);
10787  ExDecl->setExceptionVariable(true);
10788
10789  // In ARC, infer 'retaining' for variables of retainable type.
10790  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
10791    Invalid = true;
10792
10793  if (!Invalid && !ExDeclType->isDependentType()) {
10794    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
10795      // Insulate this from anything else we might currently be parsing.
10796      EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
10797
10798      // C++ [except.handle]p16:
10799      //   The object declared in an exception-declaration or, if the
10800      //   exception-declaration does not specify a name, a temporary (12.2) is
10801      //   copy-initialized (8.5) from the exception object. [...]
10802      //   The object is destroyed when the handler exits, after the destruction
10803      //   of any automatic objects initialized within the handler.
10804      //
10805      // We just pretend to initialize the object with itself, then make sure
10806      // it can be destroyed later.
10807      QualType initType = ExDeclType;
10808
10809      InitializedEntity entity =
10810        InitializedEntity::InitializeVariable(ExDecl);
10811      InitializationKind initKind =
10812        InitializationKind::CreateCopy(Loc, SourceLocation());
10813
10814      Expr *opaqueValue =
10815        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
10816      InitializationSequence sequence(*this, entity, initKind, opaqueValue);
10817      ExprResult result = sequence.Perform(*this, entity, initKind, opaqueValue);
10818      if (result.isInvalid())
10819        Invalid = true;
10820      else {
10821        // If the constructor used was non-trivial, set this as the
10822        // "initializer".
10823        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
10824        if (!construct->getConstructor()->isTrivial()) {
10825          Expr *init = MaybeCreateExprWithCleanups(construct);
10826          ExDecl->setInit(init);
10827        }
10828
10829        // And make sure it's destructable.
10830        FinalizeVarWithDestructor(ExDecl, recordType);
10831      }
10832    }
10833  }
10834
10835  if (Invalid)
10836    ExDecl->setInvalidDecl();
10837
10838  return ExDecl;
10839}
10840
10841/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
10842/// handler.
10843Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
10844  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10845  bool Invalid = D.isInvalidType();
10846
10847  // Check for unexpanded parameter packs.
10848  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
10849                                      UPPC_ExceptionType)) {
10850    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
10851                                             D.getIdentifierLoc());
10852    Invalid = true;
10853  }
10854
10855  IdentifierInfo *II = D.getIdentifier();
10856  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
10857                                             LookupOrdinaryName,
10858                                             ForRedeclaration)) {
10859    // The scope should be freshly made just for us. There is just no way
10860    // it contains any previous declaration.
10861    assert(!S->isDeclScope(PrevDecl));
10862    if (PrevDecl->isTemplateParameter()) {
10863      // Maybe we will complain about the shadowed template parameter.
10864      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
10865      PrevDecl = 0;
10866    }
10867  }
10868
10869  if (D.getCXXScopeSpec().isSet() && !Invalid) {
10870    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
10871      << D.getCXXScopeSpec().getRange();
10872    Invalid = true;
10873  }
10874
10875  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
10876                                              D.getLocStart(),
10877                                              D.getIdentifierLoc(),
10878                                              D.getIdentifier());
10879  if (Invalid)
10880    ExDecl->setInvalidDecl();
10881
10882  // Add the exception declaration into this scope.
10883  if (II)
10884    PushOnScopeChains(ExDecl, S);
10885  else
10886    CurContext->addDecl(ExDecl);
10887
10888  ProcessDeclAttributes(S, ExDecl, D);
10889  return ExDecl;
10890}
10891
10892Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
10893                                         Expr *AssertExpr,
10894                                         Expr *AssertMessageExpr,
10895                                         SourceLocation RParenLoc) {
10896  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr);
10897
10898  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
10899    return 0;
10900
10901  return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
10902                                      AssertMessage, RParenLoc, false);
10903}
10904
10905Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
10906                                         Expr *AssertExpr,
10907                                         StringLiteral *AssertMessage,
10908                                         SourceLocation RParenLoc,
10909                                         bool Failed) {
10910  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
10911      !Failed) {
10912    // In a static_assert-declaration, the constant-expression shall be a
10913    // constant expression that can be contextually converted to bool.
10914    ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
10915    if (Converted.isInvalid())
10916      Failed = true;
10917
10918    llvm::APSInt Cond;
10919    if (!Failed && VerifyIntegerConstantExpression(Converted.get(), &Cond,
10920          diag::err_static_assert_expression_is_not_constant,
10921          /*AllowFold=*/false).isInvalid())
10922      Failed = true;
10923
10924    if (!Failed && !Cond) {
10925      SmallString<256> MsgBuffer;
10926      llvm::raw_svector_ostream Msg(MsgBuffer);
10927      AssertMessage->printPretty(Msg, 0, getPrintingPolicy());
10928      Diag(StaticAssertLoc, diag::err_static_assert_failed)
10929        << Msg.str() << AssertExpr->getSourceRange();
10930      Failed = true;
10931    }
10932  }
10933
10934  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
10935                                        AssertExpr, AssertMessage, RParenLoc,
10936                                        Failed);
10937
10938  CurContext->addDecl(Decl);
10939  return Decl;
10940}
10941
10942/// \brief Perform semantic analysis of the given friend type declaration.
10943///
10944/// \returns A friend declaration that.
10945FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart,
10946                                      SourceLocation FriendLoc,
10947                                      TypeSourceInfo *TSInfo) {
10948  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
10949
10950  QualType T = TSInfo->getType();
10951  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
10952
10953  // C++03 [class.friend]p2:
10954  //   An elaborated-type-specifier shall be used in a friend declaration
10955  //   for a class.*
10956  //
10957  //   * The class-key of the elaborated-type-specifier is required.
10958  if (!ActiveTemplateInstantiations.empty()) {
10959    // Do not complain about the form of friend template types during
10960    // template instantiation; we will already have complained when the
10961    // template was declared.
10962  } else {
10963    if (!T->isElaboratedTypeSpecifier()) {
10964      // If we evaluated the type to a record type, suggest putting
10965      // a tag in front.
10966      if (const RecordType *RT = T->getAs<RecordType>()) {
10967        RecordDecl *RD = RT->getDecl();
10968
10969        std::string InsertionText = std::string(" ") + RD->getKindName();
10970
10971        Diag(TypeRange.getBegin(),
10972             getLangOpts().CPlusPlus11 ?
10973               diag::warn_cxx98_compat_unelaborated_friend_type :
10974               diag::ext_unelaborated_friend_type)
10975          << (unsigned) RD->getTagKind()
10976          << T
10977          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
10978                                        InsertionText);
10979      } else {
10980        Diag(FriendLoc,
10981             getLangOpts().CPlusPlus11 ?
10982               diag::warn_cxx98_compat_nonclass_type_friend :
10983               diag::ext_nonclass_type_friend)
10984          << T
10985          << TypeRange;
10986      }
10987    } else if (T->getAs<EnumType>()) {
10988      Diag(FriendLoc,
10989           getLangOpts().CPlusPlus11 ?
10990             diag::warn_cxx98_compat_enum_friend :
10991             diag::ext_enum_friend)
10992        << T
10993        << TypeRange;
10994    }
10995
10996    // C++11 [class.friend]p3:
10997    //   A friend declaration that does not declare a function shall have one
10998    //   of the following forms:
10999    //     friend elaborated-type-specifier ;
11000    //     friend simple-type-specifier ;
11001    //     friend typename-specifier ;
11002    if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc)
11003      Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T;
11004  }
11005
11006  //   If the type specifier in a friend declaration designates a (possibly
11007  //   cv-qualified) class type, that class is declared as a friend; otherwise,
11008  //   the friend declaration is ignored.
11009  return FriendDecl::Create(Context, CurContext, LocStart, TSInfo, FriendLoc);
11010}
11011
11012/// Handle a friend tag declaration where the scope specifier was
11013/// templated.
11014Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
11015                                    unsigned TagSpec, SourceLocation TagLoc,
11016                                    CXXScopeSpec &SS,
11017                                    IdentifierInfo *Name,
11018                                    SourceLocation NameLoc,
11019                                    AttributeList *Attr,
11020                                    MultiTemplateParamsArg TempParamLists) {
11021  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
11022
11023  bool isExplicitSpecialization = false;
11024  bool Invalid = false;
11025
11026  if (TemplateParameterList *TemplateParams =
11027          MatchTemplateParametersToScopeSpecifier(
11028              TagLoc, NameLoc, SS, TempParamLists, /*friend*/ true,
11029              isExplicitSpecialization, Invalid)) {
11030    if (TemplateParams->size() > 0) {
11031      // This is a declaration of a class template.
11032      if (Invalid)
11033        return 0;
11034
11035      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
11036                                SS, Name, NameLoc, Attr,
11037                                TemplateParams, AS_public,
11038                                /*ModulePrivateLoc=*/SourceLocation(),
11039                                TempParamLists.size() - 1,
11040                                TempParamLists.data()).take();
11041    } else {
11042      // The "template<>" header is extraneous.
11043      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
11044        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
11045      isExplicitSpecialization = true;
11046    }
11047  }
11048
11049  if (Invalid) return 0;
11050
11051  bool isAllExplicitSpecializations = true;
11052  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
11053    if (TempParamLists[I]->size()) {
11054      isAllExplicitSpecializations = false;
11055      break;
11056    }
11057  }
11058
11059  // FIXME: don't ignore attributes.
11060
11061  // If it's explicit specializations all the way down, just forget
11062  // about the template header and build an appropriate non-templated
11063  // friend.  TODO: for source fidelity, remember the headers.
11064  if (isAllExplicitSpecializations) {
11065    if (SS.isEmpty()) {
11066      bool Owned = false;
11067      bool IsDependent = false;
11068      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
11069                      Attr, AS_public,
11070                      /*ModulePrivateLoc=*/SourceLocation(),
11071                      MultiTemplateParamsArg(), Owned, IsDependent,
11072                      /*ScopedEnumKWLoc=*/SourceLocation(),
11073                      /*ScopedEnumUsesClassTag=*/false,
11074                      /*UnderlyingType=*/TypeResult());
11075    }
11076
11077    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
11078    ElaboratedTypeKeyword Keyword
11079      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
11080    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
11081                                   *Name, NameLoc);
11082    if (T.isNull())
11083      return 0;
11084
11085    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
11086    if (isa<DependentNameType>(T)) {
11087      DependentNameTypeLoc TL =
11088          TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
11089      TL.setElaboratedKeywordLoc(TagLoc);
11090      TL.setQualifierLoc(QualifierLoc);
11091      TL.setNameLoc(NameLoc);
11092    } else {
11093      ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
11094      TL.setElaboratedKeywordLoc(TagLoc);
11095      TL.setQualifierLoc(QualifierLoc);
11096      TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc);
11097    }
11098
11099    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
11100                                            TSI, FriendLoc, TempParamLists);
11101    Friend->setAccess(AS_public);
11102    CurContext->addDecl(Friend);
11103    return Friend;
11104  }
11105
11106  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
11107
11108
11109
11110  // Handle the case of a templated-scope friend class.  e.g.
11111  //   template <class T> class A<T>::B;
11112  // FIXME: we don't support these right now.
11113  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
11114  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
11115  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
11116  DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
11117  TL.setElaboratedKeywordLoc(TagLoc);
11118  TL.setQualifierLoc(SS.getWithLocInContext(Context));
11119  TL.setNameLoc(NameLoc);
11120
11121  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
11122                                          TSI, FriendLoc, TempParamLists);
11123  Friend->setAccess(AS_public);
11124  Friend->setUnsupportedFriend(true);
11125  CurContext->addDecl(Friend);
11126  return Friend;
11127}
11128
11129
11130/// Handle a friend type declaration.  This works in tandem with
11131/// ActOnTag.
11132///
11133/// Notes on friend class templates:
11134///
11135/// We generally treat friend class declarations as if they were
11136/// declaring a class.  So, for example, the elaborated type specifier
11137/// in a friend declaration is required to obey the restrictions of a
11138/// class-head (i.e. no typedefs in the scope chain), template
11139/// parameters are required to match up with simple template-ids, &c.
11140/// However, unlike when declaring a template specialization, it's
11141/// okay to refer to a template specialization without an empty
11142/// template parameter declaration, e.g.
11143///   friend class A<T>::B<unsigned>;
11144/// We permit this as a special case; if there are any template
11145/// parameters present at all, require proper matching, i.e.
11146///   template <> template \<class T> friend class A<int>::B;
11147Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
11148                                MultiTemplateParamsArg TempParams) {
11149  SourceLocation Loc = DS.getLocStart();
11150
11151  assert(DS.isFriendSpecified());
11152  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
11153
11154  // Try to convert the decl specifier to a type.  This works for
11155  // friend templates because ActOnTag never produces a ClassTemplateDecl
11156  // for a TUK_Friend.
11157  Declarator TheDeclarator(DS, Declarator::MemberContext);
11158  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
11159  QualType T = TSI->getType();
11160  if (TheDeclarator.isInvalidType())
11161    return 0;
11162
11163  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
11164    return 0;
11165
11166  // This is definitely an error in C++98.  It's probably meant to
11167  // be forbidden in C++0x, too, but the specification is just
11168  // poorly written.
11169  //
11170  // The problem is with declarations like the following:
11171  //   template <T> friend A<T>::foo;
11172  // where deciding whether a class C is a friend or not now hinges
11173  // on whether there exists an instantiation of A that causes
11174  // 'foo' to equal C.  There are restrictions on class-heads
11175  // (which we declare (by fiat) elaborated friend declarations to
11176  // be) that makes this tractable.
11177  //
11178  // FIXME: handle "template <> friend class A<T>;", which
11179  // is possibly well-formed?  Who even knows?
11180  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
11181    Diag(Loc, diag::err_tagless_friend_type_template)
11182      << DS.getSourceRange();
11183    return 0;
11184  }
11185
11186  // C++98 [class.friend]p1: A friend of a class is a function
11187  //   or class that is not a member of the class . . .
11188  // This is fixed in DR77, which just barely didn't make the C++03
11189  // deadline.  It's also a very silly restriction that seriously
11190  // affects inner classes and which nobody else seems to implement;
11191  // thus we never diagnose it, not even in -pedantic.
11192  //
11193  // But note that we could warn about it: it's always useless to
11194  // friend one of your own members (it's not, however, worthless to
11195  // friend a member of an arbitrary specialization of your template).
11196
11197  Decl *D;
11198  if (unsigned NumTempParamLists = TempParams.size())
11199    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
11200                                   NumTempParamLists,
11201                                   TempParams.data(),
11202                                   TSI,
11203                                   DS.getFriendSpecLoc());
11204  else
11205    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
11206
11207  if (!D)
11208    return 0;
11209
11210  D->setAccess(AS_public);
11211  CurContext->addDecl(D);
11212
11213  return D;
11214}
11215
11216NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
11217                                        MultiTemplateParamsArg TemplateParams) {
11218  const DeclSpec &DS = D.getDeclSpec();
11219
11220  assert(DS.isFriendSpecified());
11221  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
11222
11223  SourceLocation Loc = D.getIdentifierLoc();
11224  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
11225
11226  // C++ [class.friend]p1
11227  //   A friend of a class is a function or class....
11228  // Note that this sees through typedefs, which is intended.
11229  // It *doesn't* see through dependent types, which is correct
11230  // according to [temp.arg.type]p3:
11231  //   If a declaration acquires a function type through a
11232  //   type dependent on a template-parameter and this causes
11233  //   a declaration that does not use the syntactic form of a
11234  //   function declarator to have a function type, the program
11235  //   is ill-formed.
11236  if (!TInfo->getType()->isFunctionType()) {
11237    Diag(Loc, diag::err_unexpected_friend);
11238
11239    // It might be worthwhile to try to recover by creating an
11240    // appropriate declaration.
11241    return 0;
11242  }
11243
11244  // C++ [namespace.memdef]p3
11245  //  - If a friend declaration in a non-local class first declares a
11246  //    class or function, the friend class or function is a member
11247  //    of the innermost enclosing namespace.
11248  //  - The name of the friend is not found by simple name lookup
11249  //    until a matching declaration is provided in that namespace
11250  //    scope (either before or after the class declaration granting
11251  //    friendship).
11252  //  - If a friend function is called, its name may be found by the
11253  //    name lookup that considers functions from namespaces and
11254  //    classes associated with the types of the function arguments.
11255  //  - When looking for a prior declaration of a class or a function
11256  //    declared as a friend, scopes outside the innermost enclosing
11257  //    namespace scope are not considered.
11258
11259  CXXScopeSpec &SS = D.getCXXScopeSpec();
11260  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
11261  DeclarationName Name = NameInfo.getName();
11262  assert(Name);
11263
11264  // Check for unexpanded parameter packs.
11265  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
11266      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
11267      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
11268    return 0;
11269
11270  // The context we found the declaration in, or in which we should
11271  // create the declaration.
11272  DeclContext *DC;
11273  Scope *DCScope = S;
11274  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
11275                        ForRedeclaration);
11276
11277  // FIXME: there are different rules in local classes
11278
11279  // There are four cases here.
11280  //   - There's no scope specifier, in which case we just go to the
11281  //     appropriate scope and look for a function or function template
11282  //     there as appropriate.
11283  // Recover from invalid scope qualifiers as if they just weren't there.
11284  if (SS.isInvalid() || !SS.isSet()) {
11285    // C++0x [namespace.memdef]p3:
11286    //   If the name in a friend declaration is neither qualified nor
11287    //   a template-id and the declaration is a function or an
11288    //   elaborated-type-specifier, the lookup to determine whether
11289    //   the entity has been previously declared shall not consider
11290    //   any scopes outside the innermost enclosing namespace.
11291    // C++0x [class.friend]p11:
11292    //   If a friend declaration appears in a local class and the name
11293    //   specified is an unqualified name, a prior declaration is
11294    //   looked up without considering scopes that are outside the
11295    //   innermost enclosing non-class scope. For a friend function
11296    //   declaration, if there is no prior declaration, the program is
11297    //   ill-formed.
11298    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
11299    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
11300
11301    // Find the appropriate context according to the above.
11302    DC = CurContext;
11303
11304    // Skip class contexts.  If someone can cite chapter and verse
11305    // for this behavior, that would be nice --- it's what GCC and
11306    // EDG do, and it seems like a reasonable intent, but the spec
11307    // really only says that checks for unqualified existing
11308    // declarations should stop at the nearest enclosing namespace,
11309    // not that they should only consider the nearest enclosing
11310    // namespace.
11311    while (DC->isRecord())
11312      DC = DC->getParent();
11313
11314    DeclContext *LookupDC = DC;
11315    while (LookupDC->isTransparentContext())
11316      LookupDC = LookupDC->getParent();
11317
11318    while (true) {
11319      LookupQualifiedName(Previous, LookupDC);
11320
11321      // TODO: decide what we think about using declarations.
11322      if (isLocal)
11323        break;
11324
11325      if (!Previous.empty()) {
11326        DC = LookupDC;
11327        break;
11328      }
11329
11330      if (isTemplateId) {
11331        if (isa<TranslationUnitDecl>(LookupDC)) break;
11332      } else {
11333        if (LookupDC->isFileContext()) break;
11334      }
11335      LookupDC = LookupDC->getParent();
11336    }
11337
11338    DCScope = getScopeForDeclContext(S, DC);
11339
11340    // C++ [class.friend]p6:
11341    //   A function can be defined in a friend declaration of a class if and
11342    //   only if the class is a non-local class (9.8), the function name is
11343    //   unqualified, and the function has namespace scope.
11344    if (isLocal && D.isFunctionDefinition()) {
11345      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
11346    }
11347
11348  //   - There's a non-dependent scope specifier, in which case we
11349  //     compute it and do a previous lookup there for a function
11350  //     or function template.
11351  } else if (!SS.getScopeRep()->isDependent()) {
11352    DC = computeDeclContext(SS);
11353    if (!DC) return 0;
11354
11355    if (RequireCompleteDeclContext(SS, DC)) return 0;
11356
11357    LookupQualifiedName(Previous, DC);
11358
11359    // Ignore things found implicitly in the wrong scope.
11360    // TODO: better diagnostics for this case.  Suggesting the right
11361    // qualified scope would be nice...
11362    LookupResult::Filter F = Previous.makeFilter();
11363    while (F.hasNext()) {
11364      NamedDecl *D = F.next();
11365      if (!DC->InEnclosingNamespaceSetOf(
11366              D->getDeclContext()->getRedeclContext()))
11367        F.erase();
11368    }
11369    F.done();
11370
11371    if (Previous.empty()) {
11372      D.setInvalidType();
11373      Diag(Loc, diag::err_qualified_friend_not_found)
11374          << Name << TInfo->getType();
11375      return 0;
11376    }
11377
11378    // C++ [class.friend]p1: A friend of a class is a function or
11379    //   class that is not a member of the class . . .
11380    if (DC->Equals(CurContext))
11381      Diag(DS.getFriendSpecLoc(),
11382           getLangOpts().CPlusPlus11 ?
11383             diag::warn_cxx98_compat_friend_is_member :
11384             diag::err_friend_is_member);
11385
11386    if (D.isFunctionDefinition()) {
11387      // C++ [class.friend]p6:
11388      //   A function can be defined in a friend declaration of a class if and
11389      //   only if the class is a non-local class (9.8), the function name is
11390      //   unqualified, and the function has namespace scope.
11391      SemaDiagnosticBuilder DB
11392        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
11393
11394      DB << SS.getScopeRep();
11395      if (DC->isFileContext())
11396        DB << FixItHint::CreateRemoval(SS.getRange());
11397      SS.clear();
11398    }
11399
11400  //   - There's a scope specifier that does not match any template
11401  //     parameter lists, in which case we use some arbitrary context,
11402  //     create a method or method template, and wait for instantiation.
11403  //   - There's a scope specifier that does match some template
11404  //     parameter lists, which we don't handle right now.
11405  } else {
11406    if (D.isFunctionDefinition()) {
11407      // C++ [class.friend]p6:
11408      //   A function can be defined in a friend declaration of a class if and
11409      //   only if the class is a non-local class (9.8), the function name is
11410      //   unqualified, and the function has namespace scope.
11411      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
11412        << SS.getScopeRep();
11413    }
11414
11415    DC = CurContext;
11416    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
11417  }
11418
11419  if (!DC->isRecord()) {
11420    // This implies that it has to be an operator or function.
11421    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
11422        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
11423        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
11424      Diag(Loc, diag::err_introducing_special_friend) <<
11425        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
11426         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
11427      return 0;
11428    }
11429  }
11430
11431  // FIXME: This is an egregious hack to cope with cases where the scope stack
11432  // does not contain the declaration context, i.e., in an out-of-line
11433  // definition of a class.
11434  Scope FakeDCScope(S, Scope::DeclScope, Diags);
11435  if (!DCScope) {
11436    FakeDCScope.setEntity(DC);
11437    DCScope = &FakeDCScope;
11438  }
11439
11440  bool AddToScope = true;
11441  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
11442                                          TemplateParams, AddToScope);
11443  if (!ND) return 0;
11444
11445  assert(ND->getDeclContext() == DC);
11446  assert(ND->getLexicalDeclContext() == CurContext);
11447
11448  // Add the function declaration to the appropriate lookup tables,
11449  // adjusting the redeclarations list as necessary.  We don't
11450  // want to do this yet if the friending class is dependent.
11451  //
11452  // Also update the scope-based lookup if the target context's
11453  // lookup context is in lexical scope.
11454  if (!CurContext->isDependentContext()) {
11455    DC = DC->getRedeclContext();
11456    DC->makeDeclVisibleInContext(ND);
11457    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
11458      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
11459  }
11460
11461  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
11462                                       D.getIdentifierLoc(), ND,
11463                                       DS.getFriendSpecLoc());
11464  FrD->setAccess(AS_public);
11465  CurContext->addDecl(FrD);
11466
11467  if (ND->isInvalidDecl()) {
11468    FrD->setInvalidDecl();
11469  } else {
11470    if (DC->isRecord()) CheckFriendAccess(ND);
11471
11472    FunctionDecl *FD;
11473    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
11474      FD = FTD->getTemplatedDecl();
11475    else
11476      FD = cast<FunctionDecl>(ND);
11477
11478    // C++11 [dcl.fct.default]p4: If a friend declaration specifies a
11479    // default argument expression, that declaration shall be a definition
11480    // and shall be the only declaration of the function or function
11481    // template in the translation unit.
11482    if (functionDeclHasDefaultArgument(FD)) {
11483      if (FunctionDecl *OldFD = FD->getPreviousDecl()) {
11484        Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
11485        Diag(OldFD->getLocation(), diag::note_previous_declaration);
11486      } else if (!D.isFunctionDefinition())
11487        Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_must_be_def);
11488    }
11489
11490    // Mark templated-scope function declarations as unsupported.
11491    if (FD->getNumTemplateParameterLists())
11492      FrD->setUnsupportedFriend(true);
11493  }
11494
11495  return ND;
11496}
11497
11498void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
11499  AdjustDeclIfTemplate(Dcl);
11500
11501  FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl);
11502  if (!Fn) {
11503    Diag(DelLoc, diag::err_deleted_non_function);
11504    return;
11505  }
11506
11507  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
11508    // Don't consider the implicit declaration we generate for explicit
11509    // specializations. FIXME: Do not generate these implicit declarations.
11510    if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization
11511        || Prev->getPreviousDecl()) && !Prev->isDefined()) {
11512      Diag(DelLoc, diag::err_deleted_decl_not_first);
11513      Diag(Prev->getLocation(), diag::note_previous_declaration);
11514    }
11515    // If the declaration wasn't the first, we delete the function anyway for
11516    // recovery.
11517    Fn = Fn->getCanonicalDecl();
11518  }
11519
11520  if (Fn->isDeleted())
11521    return;
11522
11523  // See if we're deleting a function which is already known to override a
11524  // non-deleted virtual function.
11525  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn)) {
11526    bool IssuedDiagnostic = false;
11527    for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
11528                                        E = MD->end_overridden_methods();
11529         I != E; ++I) {
11530      if (!(*MD->begin_overridden_methods())->isDeleted()) {
11531        if (!IssuedDiagnostic) {
11532          Diag(DelLoc, diag::err_deleted_override) << MD->getDeclName();
11533          IssuedDiagnostic = true;
11534        }
11535        Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
11536      }
11537    }
11538  }
11539
11540  Fn->setDeletedAsWritten();
11541}
11542
11543void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
11544  CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Dcl);
11545
11546  if (MD) {
11547    if (MD->getParent()->isDependentType()) {
11548      MD->setDefaulted();
11549      MD->setExplicitlyDefaulted();
11550      return;
11551    }
11552
11553    CXXSpecialMember Member = getSpecialMember(MD);
11554    if (Member == CXXInvalid) {
11555      if (!MD->isInvalidDecl())
11556        Diag(DefaultLoc, diag::err_default_special_members);
11557      return;
11558    }
11559
11560    MD->setDefaulted();
11561    MD->setExplicitlyDefaulted();
11562
11563    // If this definition appears within the record, do the checking when
11564    // the record is complete.
11565    const FunctionDecl *Primary = MD;
11566    if (const FunctionDecl *Pattern = MD->getTemplateInstantiationPattern())
11567      // Find the uninstantiated declaration that actually had the '= default'
11568      // on it.
11569      Pattern->isDefined(Primary);
11570
11571    // If the method was defaulted on its first declaration, we will have
11572    // already performed the checking in CheckCompletedCXXClass. Such a
11573    // declaration doesn't trigger an implicit definition.
11574    if (Primary == Primary->getCanonicalDecl())
11575      return;
11576
11577    CheckExplicitlyDefaultedSpecialMember(MD);
11578
11579    // The exception specification is needed because we are defining the
11580    // function.
11581    ResolveExceptionSpec(DefaultLoc,
11582                         MD->getType()->castAs<FunctionProtoType>());
11583
11584    if (MD->isInvalidDecl())
11585      return;
11586
11587    switch (Member) {
11588    case CXXDefaultConstructor:
11589      DefineImplicitDefaultConstructor(DefaultLoc,
11590                                       cast<CXXConstructorDecl>(MD));
11591      break;
11592    case CXXCopyConstructor:
11593      DefineImplicitCopyConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
11594      break;
11595    case CXXCopyAssignment:
11596      DefineImplicitCopyAssignment(DefaultLoc, MD);
11597      break;
11598    case CXXDestructor:
11599      DefineImplicitDestructor(DefaultLoc, cast<CXXDestructorDecl>(MD));
11600      break;
11601    case CXXMoveConstructor:
11602      DefineImplicitMoveConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
11603      break;
11604    case CXXMoveAssignment:
11605      DefineImplicitMoveAssignment(DefaultLoc, MD);
11606      break;
11607    case CXXInvalid:
11608      llvm_unreachable("Invalid special member.");
11609    }
11610  } else {
11611    Diag(DefaultLoc, diag::err_default_special_members);
11612  }
11613}
11614
11615static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
11616  for (Stmt::child_range CI = S->children(); CI; ++CI) {
11617    Stmt *SubStmt = *CI;
11618    if (!SubStmt)
11619      continue;
11620    if (isa<ReturnStmt>(SubStmt))
11621      Self.Diag(SubStmt->getLocStart(),
11622           diag::err_return_in_constructor_handler);
11623    if (!isa<Expr>(SubStmt))
11624      SearchForReturnInStmt(Self, SubStmt);
11625  }
11626}
11627
11628void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
11629  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
11630    CXXCatchStmt *Handler = TryBlock->getHandler(I);
11631    SearchForReturnInStmt(*this, Handler);
11632  }
11633}
11634
11635bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
11636                                             const CXXMethodDecl *Old) {
11637  const FunctionType *NewFT = New->getType()->getAs<FunctionType>();
11638  const FunctionType *OldFT = Old->getType()->getAs<FunctionType>();
11639
11640  CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv();
11641
11642  // If the calling conventions match, everything is fine
11643  if (NewCC == OldCC)
11644    return false;
11645
11646  // If either of the calling conventions are set to "default", we need to pick
11647  // something more sensible based on the target. This supports code where the
11648  // one method explicitly sets thiscall, and another has no explicit calling
11649  // convention.
11650  CallingConv Default =
11651    Context.getTargetInfo().getDefaultCallingConv(TargetInfo::CCMT_Member);
11652  if (NewCC == CC_Default)
11653    NewCC = Default;
11654  if (OldCC == CC_Default)
11655    OldCC = Default;
11656
11657  // If the calling conventions still don't match, then report the error
11658  if (NewCC != OldCC) {
11659    Diag(New->getLocation(),
11660         diag::err_conflicting_overriding_cc_attributes)
11661      << New->getDeclName() << New->getType() << Old->getType();
11662    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11663    return true;
11664  }
11665
11666  return false;
11667}
11668
11669bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
11670                                             const CXXMethodDecl *Old) {
11671  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
11672  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
11673
11674  if (Context.hasSameType(NewTy, OldTy) ||
11675      NewTy->isDependentType() || OldTy->isDependentType())
11676    return false;
11677
11678  // Check if the return types are covariant
11679  QualType NewClassTy, OldClassTy;
11680
11681  /// Both types must be pointers or references to classes.
11682  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
11683    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
11684      NewClassTy = NewPT->getPointeeType();
11685      OldClassTy = OldPT->getPointeeType();
11686    }
11687  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
11688    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
11689      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
11690        NewClassTy = NewRT->getPointeeType();
11691        OldClassTy = OldRT->getPointeeType();
11692      }
11693    }
11694  }
11695
11696  // The return types aren't either both pointers or references to a class type.
11697  if (NewClassTy.isNull()) {
11698    Diag(New->getLocation(),
11699         diag::err_different_return_type_for_overriding_virtual_function)
11700      << New->getDeclName() << NewTy << OldTy;
11701    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11702
11703    return true;
11704  }
11705
11706  // C++ [class.virtual]p6:
11707  //   If the return type of D::f differs from the return type of B::f, the
11708  //   class type in the return type of D::f shall be complete at the point of
11709  //   declaration of D::f or shall be the class type D.
11710  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
11711    if (!RT->isBeingDefined() &&
11712        RequireCompleteType(New->getLocation(), NewClassTy,
11713                            diag::err_covariant_return_incomplete,
11714                            New->getDeclName()))
11715    return true;
11716  }
11717
11718  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
11719    // Check if the new class derives from the old class.
11720    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
11721      Diag(New->getLocation(),
11722           diag::err_covariant_return_not_derived)
11723      << New->getDeclName() << NewTy << OldTy;
11724      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11725      return true;
11726    }
11727
11728    // Check if we the conversion from derived to base is valid.
11729    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
11730                    diag::err_covariant_return_inaccessible_base,
11731                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
11732                    // FIXME: Should this point to the return type?
11733                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
11734      // FIXME: this note won't trigger for delayed access control
11735      // diagnostics, and it's impossible to get an undelayed error
11736      // here from access control during the original parse because
11737      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
11738      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11739      return true;
11740    }
11741  }
11742
11743  // The qualifiers of the return types must be the same.
11744  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
11745    Diag(New->getLocation(),
11746         diag::err_covariant_return_type_different_qualifications)
11747    << New->getDeclName() << NewTy << OldTy;
11748    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11749    return true;
11750  };
11751
11752
11753  // The new class type must have the same or less qualifiers as the old type.
11754  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
11755    Diag(New->getLocation(),
11756         diag::err_covariant_return_type_class_type_more_qualified)
11757    << New->getDeclName() << NewTy << OldTy;
11758    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11759    return true;
11760  };
11761
11762  return false;
11763}
11764
11765/// \brief Mark the given method pure.
11766///
11767/// \param Method the method to be marked pure.
11768///
11769/// \param InitRange the source range that covers the "0" initializer.
11770bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
11771  SourceLocation EndLoc = InitRange.getEnd();
11772  if (EndLoc.isValid())
11773    Method->setRangeEnd(EndLoc);
11774
11775  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
11776    Method->setPure();
11777    return false;
11778  }
11779
11780  if (!Method->isInvalidDecl())
11781    Diag(Method->getLocation(), diag::err_non_virtual_pure)
11782      << Method->getDeclName() << InitRange;
11783  return true;
11784}
11785
11786/// \brief Determine whether the given declaration is a static data member.
11787static bool isStaticDataMember(const Decl *D) {
11788  if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(D))
11789    return Var->isStaticDataMember();
11790
11791  return false;
11792}
11793
11794/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
11795/// an initializer for the out-of-line declaration 'Dcl'.  The scope
11796/// is a fresh scope pushed for just this purpose.
11797///
11798/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
11799/// static data member of class X, names should be looked up in the scope of
11800/// class X.
11801void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
11802  // If there is no declaration, there was an error parsing it.
11803  if (D == 0 || D->isInvalidDecl()) return;
11804
11805  // We should only get called for declarations with scope specifiers, like:
11806  //   int foo::bar;
11807  assert(D->isOutOfLine());
11808  EnterDeclaratorContext(S, D->getDeclContext());
11809
11810  // If we are parsing the initializer for a static data member, push a
11811  // new expression evaluation context that is associated with this static
11812  // data member.
11813  if (isStaticDataMember(D))
11814    PushExpressionEvaluationContext(PotentiallyEvaluated, D);
11815}
11816
11817/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
11818/// initializer for the out-of-line declaration 'D'.
11819void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
11820  // If there is no declaration, there was an error parsing it.
11821  if (D == 0 || D->isInvalidDecl()) return;
11822
11823  if (isStaticDataMember(D))
11824    PopExpressionEvaluationContext();
11825
11826  assert(D->isOutOfLine());
11827  ExitDeclaratorContext(S);
11828}
11829
11830/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
11831/// C++ if/switch/while/for statement.
11832/// e.g: "if (int x = f()) {...}"
11833DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
11834  // C++ 6.4p2:
11835  // The declarator shall not specify a function or an array.
11836  // The type-specifier-seq shall not contain typedef and shall not declare a
11837  // new class or enumeration.
11838  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
11839         "Parser allowed 'typedef' as storage class of condition decl.");
11840
11841  Decl *Dcl = ActOnDeclarator(S, D);
11842  if (!Dcl)
11843    return true;
11844
11845  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
11846    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
11847      << D.getSourceRange();
11848    return true;
11849  }
11850
11851  return Dcl;
11852}
11853
11854void Sema::LoadExternalVTableUses() {
11855  if (!ExternalSource)
11856    return;
11857
11858  SmallVector<ExternalVTableUse, 4> VTables;
11859  ExternalSource->ReadUsedVTables(VTables);
11860  SmallVector<VTableUse, 4> NewUses;
11861  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
11862    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
11863      = VTablesUsed.find(VTables[I].Record);
11864    // Even if a definition wasn't required before, it may be required now.
11865    if (Pos != VTablesUsed.end()) {
11866      if (!Pos->second && VTables[I].DefinitionRequired)
11867        Pos->second = true;
11868      continue;
11869    }
11870
11871    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
11872    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
11873  }
11874
11875  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
11876}
11877
11878void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
11879                          bool DefinitionRequired) {
11880  // Ignore any vtable uses in unevaluated operands or for classes that do
11881  // not have a vtable.
11882  if (!Class->isDynamicClass() || Class->isDependentContext() ||
11883      CurContext->isDependentContext() || isUnevaluatedContext())
11884    return;
11885
11886  // Try to insert this class into the map.
11887  LoadExternalVTableUses();
11888  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
11889  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
11890    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
11891  if (!Pos.second) {
11892    // If we already had an entry, check to see if we are promoting this vtable
11893    // to required a definition. If so, we need to reappend to the VTableUses
11894    // list, since we may have already processed the first entry.
11895    if (DefinitionRequired && !Pos.first->second) {
11896      Pos.first->second = true;
11897    } else {
11898      // Otherwise, we can early exit.
11899      return;
11900    }
11901  }
11902
11903  // Local classes need to have their virtual members marked
11904  // immediately. For all other classes, we mark their virtual members
11905  // at the end of the translation unit.
11906  if (Class->isLocalClass())
11907    MarkVirtualMembersReferenced(Loc, Class);
11908  else
11909    VTableUses.push_back(std::make_pair(Class, Loc));
11910}
11911
11912bool Sema::DefineUsedVTables() {
11913  LoadExternalVTableUses();
11914  if (VTableUses.empty())
11915    return false;
11916
11917  // Note: The VTableUses vector could grow as a result of marking
11918  // the members of a class as "used", so we check the size each
11919  // time through the loop and prefer indices (which are stable) to
11920  // iterators (which are not).
11921  bool DefinedAnything = false;
11922  for (unsigned I = 0; I != VTableUses.size(); ++I) {
11923    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
11924    if (!Class)
11925      continue;
11926
11927    SourceLocation Loc = VTableUses[I].second;
11928
11929    bool DefineVTable = true;
11930
11931    // If this class has a key function, but that key function is
11932    // defined in another translation unit, we don't need to emit the
11933    // vtable even though we're using it.
11934    const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class);
11935    if (KeyFunction && !KeyFunction->hasBody()) {
11936      switch (KeyFunction->getTemplateSpecializationKind()) {
11937      case TSK_Undeclared:
11938      case TSK_ExplicitSpecialization:
11939      case TSK_ExplicitInstantiationDeclaration:
11940        // The key function is in another translation unit.
11941        DefineVTable = false;
11942        break;
11943
11944      case TSK_ExplicitInstantiationDefinition:
11945      case TSK_ImplicitInstantiation:
11946        // We will be instantiating the key function.
11947        break;
11948      }
11949    } else if (!KeyFunction) {
11950      // If we have a class with no key function that is the subject
11951      // of an explicit instantiation declaration, suppress the
11952      // vtable; it will live with the explicit instantiation
11953      // definition.
11954      bool IsExplicitInstantiationDeclaration
11955        = Class->getTemplateSpecializationKind()
11956                                      == TSK_ExplicitInstantiationDeclaration;
11957      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
11958                                 REnd = Class->redecls_end();
11959           R != REnd; ++R) {
11960        TemplateSpecializationKind TSK
11961          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
11962        if (TSK == TSK_ExplicitInstantiationDeclaration)
11963          IsExplicitInstantiationDeclaration = true;
11964        else if (TSK == TSK_ExplicitInstantiationDefinition) {
11965          IsExplicitInstantiationDeclaration = false;
11966          break;
11967        }
11968      }
11969
11970      if (IsExplicitInstantiationDeclaration)
11971        DefineVTable = false;
11972    }
11973
11974    // The exception specifications for all virtual members may be needed even
11975    // if we are not providing an authoritative form of the vtable in this TU.
11976    // We may choose to emit it available_externally anyway.
11977    if (!DefineVTable) {
11978      MarkVirtualMemberExceptionSpecsNeeded(Loc, Class);
11979      continue;
11980    }
11981
11982    // Mark all of the virtual members of this class as referenced, so
11983    // that we can build a vtable. Then, tell the AST consumer that a
11984    // vtable for this class is required.
11985    DefinedAnything = true;
11986    MarkVirtualMembersReferenced(Loc, Class);
11987    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
11988    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
11989
11990    // Optionally warn if we're emitting a weak vtable.
11991    if (Class->isExternallyVisible() &&
11992        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
11993      const FunctionDecl *KeyFunctionDef = 0;
11994      if (!KeyFunction ||
11995          (KeyFunction->hasBody(KeyFunctionDef) &&
11996           KeyFunctionDef->isInlined()))
11997        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
11998             TSK_ExplicitInstantiationDefinition
11999             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
12000          << Class;
12001    }
12002  }
12003  VTableUses.clear();
12004
12005  return DefinedAnything;
12006}
12007
12008void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
12009                                                 const CXXRecordDecl *RD) {
12010  for (CXXRecordDecl::method_iterator I = RD->method_begin(),
12011                                      E = RD->method_end(); I != E; ++I)
12012    if ((*I)->isVirtual() && !(*I)->isPure())
12013      ResolveExceptionSpec(Loc, (*I)->getType()->castAs<FunctionProtoType>());
12014}
12015
12016void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
12017                                        const CXXRecordDecl *RD) {
12018  // Mark all functions which will appear in RD's vtable as used.
12019  CXXFinalOverriderMap FinalOverriders;
12020  RD->getFinalOverriders(FinalOverriders);
12021  for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
12022                                            E = FinalOverriders.end();
12023       I != E; ++I) {
12024    for (OverridingMethods::const_iterator OI = I->second.begin(),
12025                                           OE = I->second.end();
12026         OI != OE; ++OI) {
12027      assert(OI->second.size() > 0 && "no final overrider");
12028      CXXMethodDecl *Overrider = OI->second.front().Method;
12029
12030      // C++ [basic.def.odr]p2:
12031      //   [...] A virtual member function is used if it is not pure. [...]
12032      if (!Overrider->isPure())
12033        MarkFunctionReferenced(Loc, Overrider);
12034    }
12035  }
12036
12037  // Only classes that have virtual bases need a VTT.
12038  if (RD->getNumVBases() == 0)
12039    return;
12040
12041  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
12042           e = RD->bases_end(); i != e; ++i) {
12043    const CXXRecordDecl *Base =
12044        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
12045    if (Base->getNumVBases() == 0)
12046      continue;
12047    MarkVirtualMembersReferenced(Loc, Base);
12048  }
12049}
12050
12051/// SetIvarInitializers - This routine builds initialization ASTs for the
12052/// Objective-C implementation whose ivars need be initialized.
12053void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
12054  if (!getLangOpts().CPlusPlus)
12055    return;
12056  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
12057    SmallVector<ObjCIvarDecl*, 8> ivars;
12058    CollectIvarsToConstructOrDestruct(OID, ivars);
12059    if (ivars.empty())
12060      return;
12061    SmallVector<CXXCtorInitializer*, 32> AllToInit;
12062    for (unsigned i = 0; i < ivars.size(); i++) {
12063      FieldDecl *Field = ivars[i];
12064      if (Field->isInvalidDecl())
12065        continue;
12066
12067      CXXCtorInitializer *Member;
12068      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
12069      InitializationKind InitKind =
12070        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
12071
12072      InitializationSequence InitSeq(*this, InitEntity, InitKind, None);
12073      ExprResult MemberInit =
12074        InitSeq.Perform(*this, InitEntity, InitKind, None);
12075      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
12076      // Note, MemberInit could actually come back empty if no initialization
12077      // is required (e.g., because it would call a trivial default constructor)
12078      if (!MemberInit.get() || MemberInit.isInvalid())
12079        continue;
12080
12081      Member =
12082        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
12083                                         SourceLocation(),
12084                                         MemberInit.takeAs<Expr>(),
12085                                         SourceLocation());
12086      AllToInit.push_back(Member);
12087
12088      // Be sure that the destructor is accessible and is marked as referenced.
12089      if (const RecordType *RecordTy
12090                  = Context.getBaseElementType(Field->getType())
12091                                                        ->getAs<RecordType>()) {
12092                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
12093        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
12094          MarkFunctionReferenced(Field->getLocation(), Destructor);
12095          CheckDestructorAccess(Field->getLocation(), Destructor,
12096                            PDiag(diag::err_access_dtor_ivar)
12097                              << Context.getBaseElementType(Field->getType()));
12098        }
12099      }
12100    }
12101    ObjCImplementation->setIvarInitializers(Context,
12102                                            AllToInit.data(), AllToInit.size());
12103  }
12104}
12105
12106static
12107void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
12108                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
12109                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
12110                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
12111                           Sema &S) {
12112  if (Ctor->isInvalidDecl())
12113    return;
12114
12115  CXXConstructorDecl *Target = Ctor->getTargetConstructor();
12116
12117  // Target may not be determinable yet, for instance if this is a dependent
12118  // call in an uninstantiated template.
12119  if (Target) {
12120    const FunctionDecl *FNTarget = 0;
12121    (void)Target->hasBody(FNTarget);
12122    Target = const_cast<CXXConstructorDecl*>(
12123      cast_or_null<CXXConstructorDecl>(FNTarget));
12124  }
12125
12126  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
12127                     // Avoid dereferencing a null pointer here.
12128                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
12129
12130  if (!Current.insert(Canonical))
12131    return;
12132
12133  // We know that beyond here, we aren't chaining into a cycle.
12134  if (!Target || !Target->isDelegatingConstructor() ||
12135      Target->isInvalidDecl() || Valid.count(TCanonical)) {
12136    Valid.insert(Current.begin(), Current.end());
12137    Current.clear();
12138  // We've hit a cycle.
12139  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
12140             Current.count(TCanonical)) {
12141    // If we haven't diagnosed this cycle yet, do so now.
12142    if (!Invalid.count(TCanonical)) {
12143      S.Diag((*Ctor->init_begin())->getSourceLocation(),
12144             diag::warn_delegating_ctor_cycle)
12145        << Ctor;
12146
12147      // Don't add a note for a function delegating directly to itself.
12148      if (TCanonical != Canonical)
12149        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
12150
12151      CXXConstructorDecl *C = Target;
12152      while (C->getCanonicalDecl() != Canonical) {
12153        const FunctionDecl *FNTarget = 0;
12154        (void)C->getTargetConstructor()->hasBody(FNTarget);
12155        assert(FNTarget && "Ctor cycle through bodiless function");
12156
12157        C = const_cast<CXXConstructorDecl*>(
12158          cast<CXXConstructorDecl>(FNTarget));
12159        S.Diag(C->getLocation(), diag::note_which_delegates_to);
12160      }
12161    }
12162
12163    Invalid.insert(Current.begin(), Current.end());
12164    Current.clear();
12165  } else {
12166    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
12167  }
12168}
12169
12170
12171void Sema::CheckDelegatingCtorCycles() {
12172  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
12173
12174  for (DelegatingCtorDeclsType::iterator
12175         I = DelegatingCtorDecls.begin(ExternalSource),
12176         E = DelegatingCtorDecls.end();
12177       I != E; ++I)
12178    DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
12179
12180  for (llvm::SmallSet<CXXConstructorDecl *, 4>::iterator CI = Invalid.begin(),
12181                                                         CE = Invalid.end();
12182       CI != CE; ++CI)
12183    (*CI)->setInvalidDecl();
12184}
12185
12186namespace {
12187  /// \brief AST visitor that finds references to the 'this' expression.
12188  class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
12189    Sema &S;
12190
12191  public:
12192    explicit FindCXXThisExpr(Sema &S) : S(S) { }
12193
12194    bool VisitCXXThisExpr(CXXThisExpr *E) {
12195      S.Diag(E->getLocation(), diag::err_this_static_member_func)
12196        << E->isImplicit();
12197      return false;
12198    }
12199  };
12200}
12201
12202bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
12203  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
12204  if (!TSInfo)
12205    return false;
12206
12207  TypeLoc TL = TSInfo->getTypeLoc();
12208  FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
12209  if (!ProtoTL)
12210    return false;
12211
12212  // C++11 [expr.prim.general]p3:
12213  //   [The expression this] shall not appear before the optional
12214  //   cv-qualifier-seq and it shall not appear within the declaration of a
12215  //   static member function (although its type and value category are defined
12216  //   within a static member function as they are within a non-static member
12217  //   function). [ Note: this is because declaration matching does not occur
12218  //  until the complete declarator is known. - end note ]
12219  const FunctionProtoType *Proto = ProtoTL.getTypePtr();
12220  FindCXXThisExpr Finder(*this);
12221
12222  // If the return type came after the cv-qualifier-seq, check it now.
12223  if (Proto->hasTrailingReturn() &&
12224      !Finder.TraverseTypeLoc(ProtoTL.getResultLoc()))
12225    return true;
12226
12227  // Check the exception specification.
12228  if (checkThisInStaticMemberFunctionExceptionSpec(Method))
12229    return true;
12230
12231  return checkThisInStaticMemberFunctionAttributes(Method);
12232}
12233
12234bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
12235  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
12236  if (!TSInfo)
12237    return false;
12238
12239  TypeLoc TL = TSInfo->getTypeLoc();
12240  FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
12241  if (!ProtoTL)
12242    return false;
12243
12244  const FunctionProtoType *Proto = ProtoTL.getTypePtr();
12245  FindCXXThisExpr Finder(*this);
12246
12247  switch (Proto->getExceptionSpecType()) {
12248  case EST_Uninstantiated:
12249  case EST_Unevaluated:
12250  case EST_BasicNoexcept:
12251  case EST_DynamicNone:
12252  case EST_MSAny:
12253  case EST_None:
12254    break;
12255
12256  case EST_ComputedNoexcept:
12257    if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
12258      return true;
12259
12260  case EST_Dynamic:
12261    for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
12262         EEnd = Proto->exception_end();
12263         E != EEnd; ++E) {
12264      if (!Finder.TraverseType(*E))
12265        return true;
12266    }
12267    break;
12268  }
12269
12270  return false;
12271}
12272
12273bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
12274  FindCXXThisExpr Finder(*this);
12275
12276  // Check attributes.
12277  for (Decl::attr_iterator A = Method->attr_begin(), AEnd = Method->attr_end();
12278       A != AEnd; ++A) {
12279    // FIXME: This should be emitted by tblgen.
12280    Expr *Arg = 0;
12281    ArrayRef<Expr *> Args;
12282    if (GuardedByAttr *G = dyn_cast<GuardedByAttr>(*A))
12283      Arg = G->getArg();
12284    else if (PtGuardedByAttr *G = dyn_cast<PtGuardedByAttr>(*A))
12285      Arg = G->getArg();
12286    else if (AcquiredAfterAttr *AA = dyn_cast<AcquiredAfterAttr>(*A))
12287      Args = ArrayRef<Expr *>(AA->args_begin(), AA->args_size());
12288    else if (AcquiredBeforeAttr *AB = dyn_cast<AcquiredBeforeAttr>(*A))
12289      Args = ArrayRef<Expr *>(AB->args_begin(), AB->args_size());
12290    else if (ExclusiveLockFunctionAttr *ELF
12291               = dyn_cast<ExclusiveLockFunctionAttr>(*A))
12292      Args = ArrayRef<Expr *>(ELF->args_begin(), ELF->args_size());
12293    else if (SharedLockFunctionAttr *SLF
12294               = dyn_cast<SharedLockFunctionAttr>(*A))
12295      Args = ArrayRef<Expr *>(SLF->args_begin(), SLF->args_size());
12296    else if (ExclusiveTrylockFunctionAttr *ETLF
12297               = dyn_cast<ExclusiveTrylockFunctionAttr>(*A)) {
12298      Arg = ETLF->getSuccessValue();
12299      Args = ArrayRef<Expr *>(ETLF->args_begin(), ETLF->args_size());
12300    } else if (SharedTrylockFunctionAttr *STLF
12301                 = dyn_cast<SharedTrylockFunctionAttr>(*A)) {
12302      Arg = STLF->getSuccessValue();
12303      Args = ArrayRef<Expr *>(STLF->args_begin(), STLF->args_size());
12304    } else if (UnlockFunctionAttr *UF = dyn_cast<UnlockFunctionAttr>(*A))
12305      Args = ArrayRef<Expr *>(UF->args_begin(), UF->args_size());
12306    else if (LockReturnedAttr *LR = dyn_cast<LockReturnedAttr>(*A))
12307      Arg = LR->getArg();
12308    else if (LocksExcludedAttr *LE = dyn_cast<LocksExcludedAttr>(*A))
12309      Args = ArrayRef<Expr *>(LE->args_begin(), LE->args_size());
12310    else if (ExclusiveLocksRequiredAttr *ELR
12311               = dyn_cast<ExclusiveLocksRequiredAttr>(*A))
12312      Args = ArrayRef<Expr *>(ELR->args_begin(), ELR->args_size());
12313    else if (SharedLocksRequiredAttr *SLR
12314               = dyn_cast<SharedLocksRequiredAttr>(*A))
12315      Args = ArrayRef<Expr *>(SLR->args_begin(), SLR->args_size());
12316
12317    if (Arg && !Finder.TraverseStmt(Arg))
12318      return true;
12319
12320    for (unsigned I = 0, N = Args.size(); I != N; ++I) {
12321      if (!Finder.TraverseStmt(Args[I]))
12322        return true;
12323    }
12324  }
12325
12326  return false;
12327}
12328
12329void
12330Sema::checkExceptionSpecification(ExceptionSpecificationType EST,
12331                                  ArrayRef<ParsedType> DynamicExceptions,
12332                                  ArrayRef<SourceRange> DynamicExceptionRanges,
12333                                  Expr *NoexceptExpr,
12334                                  SmallVectorImpl<QualType> &Exceptions,
12335                                  FunctionProtoType::ExtProtoInfo &EPI) {
12336  Exceptions.clear();
12337  EPI.ExceptionSpecType = EST;
12338  if (EST == EST_Dynamic) {
12339    Exceptions.reserve(DynamicExceptions.size());
12340    for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
12341      // FIXME: Preserve type source info.
12342      QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
12343
12344      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
12345      collectUnexpandedParameterPacks(ET, Unexpanded);
12346      if (!Unexpanded.empty()) {
12347        DiagnoseUnexpandedParameterPacks(DynamicExceptionRanges[ei].getBegin(),
12348                                         UPPC_ExceptionType,
12349                                         Unexpanded);
12350        continue;
12351      }
12352
12353      // Check that the type is valid for an exception spec, and
12354      // drop it if not.
12355      if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
12356        Exceptions.push_back(ET);
12357    }
12358    EPI.NumExceptions = Exceptions.size();
12359    EPI.Exceptions = Exceptions.data();
12360    return;
12361  }
12362
12363  if (EST == EST_ComputedNoexcept) {
12364    // If an error occurred, there's no expression here.
12365    if (NoexceptExpr) {
12366      assert((NoexceptExpr->isTypeDependent() ||
12367              NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
12368              Context.BoolTy) &&
12369             "Parser should have made sure that the expression is boolean");
12370      if (NoexceptExpr && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
12371        EPI.ExceptionSpecType = EST_BasicNoexcept;
12372        return;
12373      }
12374
12375      if (!NoexceptExpr->isValueDependent())
12376        NoexceptExpr = VerifyIntegerConstantExpression(NoexceptExpr, 0,
12377                         diag::err_noexcept_needs_constant_expression,
12378                         /*AllowFold*/ false).take();
12379      EPI.NoexceptExpr = NoexceptExpr;
12380    }
12381    return;
12382  }
12383}
12384
12385/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
12386Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
12387  // Implicitly declared functions (e.g. copy constructors) are
12388  // __host__ __device__
12389  if (D->isImplicit())
12390    return CFT_HostDevice;
12391
12392  if (D->hasAttr<CUDAGlobalAttr>())
12393    return CFT_Global;
12394
12395  if (D->hasAttr<CUDADeviceAttr>()) {
12396    if (D->hasAttr<CUDAHostAttr>())
12397      return CFT_HostDevice;
12398    return CFT_Device;
12399  }
12400
12401  return CFT_Host;
12402}
12403
12404bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
12405                           CUDAFunctionTarget CalleeTarget) {
12406  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
12407  // Callable from the device only."
12408  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
12409    return true;
12410
12411  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
12412  // Callable from the host only."
12413  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
12414  // Callable from the host only."
12415  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
12416      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
12417    return true;
12418
12419  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
12420    return true;
12421
12422  return false;
12423}
12424
12425/// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class.
12426///
12427MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record,
12428                                       SourceLocation DeclStart,
12429                                       Declarator &D, Expr *BitWidth,
12430                                       InClassInitStyle InitStyle,
12431                                       AccessSpecifier AS,
12432                                       AttributeList *MSPropertyAttr) {
12433  IdentifierInfo *II = D.getIdentifier();
12434  if (!II) {
12435    Diag(DeclStart, diag::err_anonymous_property);
12436    return NULL;
12437  }
12438  SourceLocation Loc = D.getIdentifierLoc();
12439
12440  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
12441  QualType T = TInfo->getType();
12442  if (getLangOpts().CPlusPlus) {
12443    CheckExtraCXXDefaultArguments(D);
12444
12445    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
12446                                        UPPC_DataMemberType)) {
12447      D.setInvalidType();
12448      T = Context.IntTy;
12449      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
12450    }
12451  }
12452
12453  DiagnoseFunctionSpecifiers(D.getDeclSpec());
12454
12455  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
12456    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
12457         diag::err_invalid_thread)
12458      << DeclSpec::getSpecifierName(TSCS);
12459
12460  // Check to see if this name was declared as a member previously
12461  NamedDecl *PrevDecl = 0;
12462  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
12463  LookupName(Previous, S);
12464  switch (Previous.getResultKind()) {
12465  case LookupResult::Found:
12466  case LookupResult::FoundUnresolvedValue:
12467    PrevDecl = Previous.getAsSingle<NamedDecl>();
12468    break;
12469
12470  case LookupResult::FoundOverloaded:
12471    PrevDecl = Previous.getRepresentativeDecl();
12472    break;
12473
12474  case LookupResult::NotFound:
12475  case LookupResult::NotFoundInCurrentInstantiation:
12476  case LookupResult::Ambiguous:
12477    break;
12478  }
12479
12480  if (PrevDecl && PrevDecl->isTemplateParameter()) {
12481    // Maybe we will complain about the shadowed template parameter.
12482    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
12483    // Just pretend that we didn't see the previous declaration.
12484    PrevDecl = 0;
12485  }
12486
12487  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
12488    PrevDecl = 0;
12489
12490  SourceLocation TSSL = D.getLocStart();
12491  MSPropertyDecl *NewPD;
12492  const AttributeList::PropertyData &Data = MSPropertyAttr->getPropertyData();
12493  NewPD = new (Context) MSPropertyDecl(Record, Loc,
12494                                       II, T, TInfo, TSSL,
12495                                       Data.GetterId, Data.SetterId);
12496  ProcessDeclAttributes(TUScope, NewPD, D);
12497  NewPD->setAccess(AS);
12498
12499  if (NewPD->isInvalidDecl())
12500    Record->setInvalidDecl();
12501
12502  if (D.getDeclSpec().isModulePrivateSpecified())
12503    NewPD->setModulePrivate();
12504
12505  if (NewPD->isInvalidDecl() && PrevDecl) {
12506    // Don't introduce NewFD into scope; there's already something
12507    // with the same name in the same scope.
12508  } else if (II) {
12509    PushOnScopeChains(NewPD, S);
12510  } else
12511    Record->addDecl(NewPD);
12512
12513  return NewPD;
12514}
12515