1//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for Objective C declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprObjC.h"
21#include "clang/Basic/SourceManager.h"
22#include "clang/Lex/Preprocessor.h"
23#include "clang/Sema/DeclSpec.h"
24#include "clang/Sema/ExternalSemaSource.h"
25#include "clang/Sema/Lookup.h"
26#include "clang/Sema/Scope.h"
27#include "clang/Sema/ScopeInfo.h"
28#include "llvm/ADT/DenseSet.h"
29
30using namespace clang;
31
32/// Check whether the given method, which must be in the 'init'
33/// family, is a valid member of that family.
34///
35/// \param receiverTypeIfCall - if null, check this as if declaring it;
36///   if non-null, check this as if making a call to it with the given
37///   receiver type
38///
39/// \return true to indicate that there was an error and appropriate
40///   actions were taken
41bool Sema::checkInitMethod(ObjCMethodDecl *method,
42                           QualType receiverTypeIfCall) {
43  if (method->isInvalidDecl()) return true;
44
45  // This castAs is safe: methods that don't return an object
46  // pointer won't be inferred as inits and will reject an explicit
47  // objc_method_family(init).
48
49  // We ignore protocols here.  Should we?  What about Class?
50
51  const ObjCObjectType *result = method->getResultType()
52    ->castAs<ObjCObjectPointerType>()->getObjectType();
53
54  if (result->isObjCId()) {
55    return false;
56  } else if (result->isObjCClass()) {
57    // fall through: always an error
58  } else {
59    ObjCInterfaceDecl *resultClass = result->getInterface();
60    assert(resultClass && "unexpected object type!");
61
62    // It's okay for the result type to still be a forward declaration
63    // if we're checking an interface declaration.
64    if (!resultClass->hasDefinition()) {
65      if (receiverTypeIfCall.isNull() &&
66          !isa<ObjCImplementationDecl>(method->getDeclContext()))
67        return false;
68
69    // Otherwise, we try to compare class types.
70    } else {
71      // If this method was declared in a protocol, we can't check
72      // anything unless we have a receiver type that's an interface.
73      const ObjCInterfaceDecl *receiverClass = 0;
74      if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
75        if (receiverTypeIfCall.isNull())
76          return false;
77
78        receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
79          ->getInterfaceDecl();
80
81        // This can be null for calls to e.g. id<Foo>.
82        if (!receiverClass) return false;
83      } else {
84        receiverClass = method->getClassInterface();
85        assert(receiverClass && "method not associated with a class!");
86      }
87
88      // If either class is a subclass of the other, it's fine.
89      if (receiverClass->isSuperClassOf(resultClass) ||
90          resultClass->isSuperClassOf(receiverClass))
91        return false;
92    }
93  }
94
95  SourceLocation loc = method->getLocation();
96
97  // If we're in a system header, and this is not a call, just make
98  // the method unusable.
99  if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
100    method->addAttr(new (Context) UnavailableAttr(loc, Context,
101                "init method returns a type unrelated to its receiver type"));
102    return true;
103  }
104
105  // Otherwise, it's an error.
106  Diag(loc, diag::err_arc_init_method_unrelated_result_type);
107  method->setInvalidDecl();
108  return true;
109}
110
111void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
112                                   const ObjCMethodDecl *Overridden) {
113  if (Overridden->hasRelatedResultType() &&
114      !NewMethod->hasRelatedResultType()) {
115    // This can only happen when the method follows a naming convention that
116    // implies a related result type, and the original (overridden) method has
117    // a suitable return type, but the new (overriding) method does not have
118    // a suitable return type.
119    QualType ResultType = NewMethod->getResultType();
120    SourceRange ResultTypeRange;
121    if (const TypeSourceInfo *ResultTypeInfo
122                                        = NewMethod->getResultTypeSourceInfo())
123      ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange();
124
125    // Figure out which class this method is part of, if any.
126    ObjCInterfaceDecl *CurrentClass
127      = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
128    if (!CurrentClass) {
129      DeclContext *DC = NewMethod->getDeclContext();
130      if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
131        CurrentClass = Cat->getClassInterface();
132      else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
133        CurrentClass = Impl->getClassInterface();
134      else if (ObjCCategoryImplDecl *CatImpl
135               = dyn_cast<ObjCCategoryImplDecl>(DC))
136        CurrentClass = CatImpl->getClassInterface();
137    }
138
139    if (CurrentClass) {
140      Diag(NewMethod->getLocation(),
141           diag::warn_related_result_type_compatibility_class)
142        << Context.getObjCInterfaceType(CurrentClass)
143        << ResultType
144        << ResultTypeRange;
145    } else {
146      Diag(NewMethod->getLocation(),
147           diag::warn_related_result_type_compatibility_protocol)
148        << ResultType
149        << ResultTypeRange;
150    }
151
152    if (ObjCMethodFamily Family = Overridden->getMethodFamily())
153      Diag(Overridden->getLocation(),
154           diag::note_related_result_type_family)
155        << /*overridden method*/ 0
156        << Family;
157    else
158      Diag(Overridden->getLocation(),
159           diag::note_related_result_type_overridden);
160  }
161  if (getLangOpts().ObjCAutoRefCount) {
162    if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
163         Overridden->hasAttr<NSReturnsRetainedAttr>())) {
164        Diag(NewMethod->getLocation(),
165             diag::err_nsreturns_retained_attribute_mismatch) << 1;
166        Diag(Overridden->getLocation(), diag::note_previous_decl)
167        << "method";
168    }
169    if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
170              Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
171        Diag(NewMethod->getLocation(),
172             diag::err_nsreturns_retained_attribute_mismatch) << 0;
173        Diag(Overridden->getLocation(), diag::note_previous_decl)
174        << "method";
175    }
176    ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(),
177                                         oe = Overridden->param_end();
178    for (ObjCMethodDecl::param_iterator
179           ni = NewMethod->param_begin(), ne = NewMethod->param_end();
180         ni != ne && oi != oe; ++ni, ++oi) {
181      const ParmVarDecl *oldDecl = (*oi);
182      ParmVarDecl *newDecl = (*ni);
183      if (newDecl->hasAttr<NSConsumedAttr>() !=
184          oldDecl->hasAttr<NSConsumedAttr>()) {
185        Diag(newDecl->getLocation(),
186             diag::err_nsconsumed_attribute_mismatch);
187        Diag(oldDecl->getLocation(), diag::note_previous_decl)
188          << "parameter";
189      }
190    }
191  }
192}
193
194/// \brief Check a method declaration for compatibility with the Objective-C
195/// ARC conventions.
196bool Sema::CheckARCMethodDecl(ObjCMethodDecl *method) {
197  ObjCMethodFamily family = method->getMethodFamily();
198  switch (family) {
199  case OMF_None:
200  case OMF_finalize:
201  case OMF_retain:
202  case OMF_release:
203  case OMF_autorelease:
204  case OMF_retainCount:
205  case OMF_self:
206  case OMF_performSelector:
207    return false;
208
209  case OMF_dealloc:
210    if (!Context.hasSameType(method->getResultType(), Context.VoidTy)) {
211      SourceRange ResultTypeRange;
212      if (const TypeSourceInfo *ResultTypeInfo
213          = method->getResultTypeSourceInfo())
214        ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange();
215      if (ResultTypeRange.isInvalid())
216        Diag(method->getLocation(), diag::error_dealloc_bad_result_type)
217          << method->getResultType()
218          << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
219      else
220        Diag(method->getLocation(), diag::error_dealloc_bad_result_type)
221          << method->getResultType()
222          << FixItHint::CreateReplacement(ResultTypeRange, "void");
223      return true;
224    }
225    return false;
226
227  case OMF_init:
228    // If the method doesn't obey the init rules, don't bother annotating it.
229    if (checkInitMethod(method, QualType()))
230      return true;
231
232    method->addAttr(new (Context) NSConsumesSelfAttr(SourceLocation(),
233                                                     Context));
234
235    // Don't add a second copy of this attribute, but otherwise don't
236    // let it be suppressed.
237    if (method->hasAttr<NSReturnsRetainedAttr>())
238      return false;
239    break;
240
241  case OMF_alloc:
242  case OMF_copy:
243  case OMF_mutableCopy:
244  case OMF_new:
245    if (method->hasAttr<NSReturnsRetainedAttr>() ||
246        method->hasAttr<NSReturnsNotRetainedAttr>() ||
247        method->hasAttr<NSReturnsAutoreleasedAttr>())
248      return false;
249    break;
250  }
251
252  method->addAttr(new (Context) NSReturnsRetainedAttr(SourceLocation(),
253                                                      Context));
254  return false;
255}
256
257static void DiagnoseObjCImplementedDeprecations(Sema &S,
258                                                NamedDecl *ND,
259                                                SourceLocation ImplLoc,
260                                                int select) {
261  if (ND && ND->isDeprecated()) {
262    S.Diag(ImplLoc, diag::warn_deprecated_def) << select;
263    if (select == 0)
264      S.Diag(ND->getLocation(), diag::note_method_declared_at)
265        << ND->getDeclName();
266    else
267      S.Diag(ND->getLocation(), diag::note_previous_decl) << "class";
268  }
269}
270
271/// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
272/// pool.
273void Sema::AddAnyMethodToGlobalPool(Decl *D) {
274  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
275
276  // If we don't have a valid method decl, simply return.
277  if (!MDecl)
278    return;
279  if (MDecl->isInstanceMethod())
280    AddInstanceMethodToGlobalPool(MDecl, true);
281  else
282    AddFactoryMethodToGlobalPool(MDecl, true);
283}
284
285/// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
286/// has explicit ownership attribute; false otherwise.
287static bool
288HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) {
289  QualType T = Param->getType();
290
291  if (const PointerType *PT = T->getAs<PointerType>()) {
292    T = PT->getPointeeType();
293  } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
294    T = RT->getPointeeType();
295  } else {
296    return true;
297  }
298
299  // If we have a lifetime qualifier, but it's local, we must have
300  // inferred it. So, it is implicit.
301  return !T.getLocalQualifiers().hasObjCLifetime();
302}
303
304/// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
305/// and user declared, in the method definition's AST.
306void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
307  assert((getCurMethodDecl() == 0) && "Methodparsing confused");
308  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
309
310  // If we don't have a valid method decl, simply return.
311  if (!MDecl)
312    return;
313
314  // Allow all of Sema to see that we are entering a method definition.
315  PushDeclContext(FnBodyScope, MDecl);
316  PushFunctionScope();
317
318  // Create Decl objects for each parameter, entrring them in the scope for
319  // binding to their use.
320
321  // Insert the invisible arguments, self and _cmd!
322  MDecl->createImplicitParams(Context, MDecl->getClassInterface());
323
324  PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
325  PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
326
327  // The ObjC parser requires parameter names so there's no need to check.
328  CheckParmsForFunctionDef(MDecl->param_begin(), MDecl->param_end(),
329                           /*CheckParameterNames=*/false);
330
331  // Introduce all of the other parameters into this scope.
332  for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(),
333       E = MDecl->param_end(); PI != E; ++PI) {
334    ParmVarDecl *Param = (*PI);
335    if (!Param->isInvalidDecl() &&
336        getLangOpts().ObjCAutoRefCount &&
337        !HasExplicitOwnershipAttr(*this, Param))
338      Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
339            Param->getType();
340
341    if ((*PI)->getIdentifier())
342      PushOnScopeChains(*PI, FnBodyScope);
343  }
344
345  // In ARC, disallow definition of retain/release/autorelease/retainCount
346  if (getLangOpts().ObjCAutoRefCount) {
347    switch (MDecl->getMethodFamily()) {
348    case OMF_retain:
349    case OMF_retainCount:
350    case OMF_release:
351    case OMF_autorelease:
352      Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
353        << 0 << MDecl->getSelector();
354      break;
355
356    case OMF_None:
357    case OMF_dealloc:
358    case OMF_finalize:
359    case OMF_alloc:
360    case OMF_init:
361    case OMF_mutableCopy:
362    case OMF_copy:
363    case OMF_new:
364    case OMF_self:
365    case OMF_performSelector:
366      break;
367    }
368  }
369
370  // Warn on deprecated methods under -Wdeprecated-implementations,
371  // and prepare for warning on missing super calls.
372  if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
373    ObjCMethodDecl *IMD =
374      IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
375
376    if (IMD) {
377      ObjCImplDecl *ImplDeclOfMethodDef =
378        dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
379      ObjCContainerDecl *ContDeclOfMethodDecl =
380        dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
381      ObjCImplDecl *ImplDeclOfMethodDecl = 0;
382      if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl))
383        ImplDeclOfMethodDecl = OID->getImplementation();
384      else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl))
385        ImplDeclOfMethodDecl = CD->getImplementation();
386      // No need to issue deprecated warning if deprecated mehod in class/category
387      // is being implemented in its own implementation (no overriding is involved).
388      if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
389        DiagnoseObjCImplementedDeprecations(*this,
390                                          dyn_cast<NamedDecl>(IMD),
391                                          MDecl->getLocation(), 0);
392    }
393
394    // If this is "dealloc" or "finalize", set some bit here.
395    // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
396    // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
397    // Only do this if the current class actually has a superclass.
398    if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
399      ObjCMethodFamily Family = MDecl->getMethodFamily();
400      if (Family == OMF_dealloc) {
401        if (!(getLangOpts().ObjCAutoRefCount ||
402              getLangOpts().getGC() == LangOptions::GCOnly))
403          getCurFunction()->ObjCShouldCallSuper = true;
404
405      } else if (Family == OMF_finalize) {
406        if (Context.getLangOpts().getGC() != LangOptions::NonGC)
407          getCurFunction()->ObjCShouldCallSuper = true;
408
409      } else if (MDecl->hasAttr<ObjCRequiresSuperAttr>())
410        getCurFunction()->ObjCShouldCallSuper = true;
411      else {
412        const ObjCMethodDecl *SuperMethod =
413          SuperClass->lookupMethod(MDecl->getSelector(),
414                                   MDecl->isInstanceMethod());
415        getCurFunction()->ObjCShouldCallSuper =
416          (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
417      }
418    }
419  }
420}
421
422namespace {
423
424// Callback to only accept typo corrections that are Objective-C classes.
425// If an ObjCInterfaceDecl* is given to the constructor, then the validation
426// function will reject corrections to that class.
427class ObjCInterfaceValidatorCCC : public CorrectionCandidateCallback {
428 public:
429  ObjCInterfaceValidatorCCC() : CurrentIDecl(0) {}
430  explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
431      : CurrentIDecl(IDecl) {}
432
433  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
434    ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
435    return ID && !declaresSameEntity(ID, CurrentIDecl);
436  }
437
438 private:
439  ObjCInterfaceDecl *CurrentIDecl;
440};
441
442}
443
444Decl *Sema::
445ActOnStartClassInterface(SourceLocation AtInterfaceLoc,
446                         IdentifierInfo *ClassName, SourceLocation ClassLoc,
447                         IdentifierInfo *SuperName, SourceLocation SuperLoc,
448                         Decl * const *ProtoRefs, unsigned NumProtoRefs,
449                         const SourceLocation *ProtoLocs,
450                         SourceLocation EndProtoLoc, AttributeList *AttrList) {
451  assert(ClassName && "Missing class identifier");
452
453  // Check for another declaration kind with the same name.
454  NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc,
455                                         LookupOrdinaryName, ForRedeclaration);
456
457  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
458    Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
459    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
460  }
461
462  // Create a declaration to describe this @interface.
463  ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
464
465  if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
466    // A previous decl with a different name is because of
467    // @compatibility_alias, for example:
468    // \code
469    //   @class NewImage;
470    //   @compatibility_alias OldImage NewImage;
471    // \endcode
472    // A lookup for 'OldImage' will return the 'NewImage' decl.
473    //
474    // In such a case use the real declaration name, instead of the alias one,
475    // otherwise we will break IdentifierResolver and redecls-chain invariants.
476    // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
477    // has been aliased.
478    ClassName = PrevIDecl->getIdentifier();
479  }
480
481  ObjCInterfaceDecl *IDecl
482    = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
483                                PrevIDecl, ClassLoc);
484
485  if (PrevIDecl) {
486    // Class already seen. Was it a definition?
487    if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
488      Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
489        << PrevIDecl->getDeclName();
490      Diag(Def->getLocation(), diag::note_previous_definition);
491      IDecl->setInvalidDecl();
492    }
493  }
494
495  if (AttrList)
496    ProcessDeclAttributeList(TUScope, IDecl, AttrList);
497  PushOnScopeChains(IDecl, TUScope);
498
499  // Start the definition of this class. If we're in a redefinition case, there
500  // may already be a definition, so we'll end up adding to it.
501  if (!IDecl->hasDefinition())
502    IDecl->startDefinition();
503
504  if (SuperName) {
505    // Check if a different kind of symbol declared in this scope.
506    PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
507                                LookupOrdinaryName);
508
509    if (!PrevDecl) {
510      // Try to correct for a typo in the superclass name without correcting
511      // to the class we're defining.
512      ObjCInterfaceValidatorCCC Validator(IDecl);
513      if (TypoCorrection Corrected = CorrectTypo(
514          DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName, TUScope,
515          NULL, Validator)) {
516        PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
517        Diag(SuperLoc, diag::err_undef_superclass_suggest)
518          << SuperName << ClassName << PrevDecl->getDeclName();
519        Diag(PrevDecl->getLocation(), diag::note_previous_decl)
520          << PrevDecl->getDeclName();
521      }
522    }
523
524    if (declaresSameEntity(PrevDecl, IDecl)) {
525      Diag(SuperLoc, diag::err_recursive_superclass)
526        << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
527      IDecl->setEndOfDefinitionLoc(ClassLoc);
528    } else {
529      ObjCInterfaceDecl *SuperClassDecl =
530                                dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
531
532      // Diagnose classes that inherit from deprecated classes.
533      if (SuperClassDecl)
534        (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
535
536      if (PrevDecl && SuperClassDecl == 0) {
537        // The previous declaration was not a class decl. Check if we have a
538        // typedef. If we do, get the underlying class type.
539        if (const TypedefNameDecl *TDecl =
540              dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
541          QualType T = TDecl->getUnderlyingType();
542          if (T->isObjCObjectType()) {
543            if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
544              SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
545              // This handles the following case:
546              // @interface NewI @end
547              // typedef NewI DeprI __attribute__((deprecated("blah")))
548              // @interface SI : DeprI /* warn here */ @end
549              (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc);
550            }
551          }
552        }
553
554        // This handles the following case:
555        //
556        // typedef int SuperClass;
557        // @interface MyClass : SuperClass {} @end
558        //
559        if (!SuperClassDecl) {
560          Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
561          Diag(PrevDecl->getLocation(), diag::note_previous_definition);
562        }
563      }
564
565      if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
566        if (!SuperClassDecl)
567          Diag(SuperLoc, diag::err_undef_superclass)
568            << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
569        else if (RequireCompleteType(SuperLoc,
570                                  Context.getObjCInterfaceType(SuperClassDecl),
571                                     diag::err_forward_superclass,
572                                     SuperClassDecl->getDeclName(),
573                                     ClassName,
574                                     SourceRange(AtInterfaceLoc, ClassLoc))) {
575          SuperClassDecl = 0;
576        }
577      }
578      IDecl->setSuperClass(SuperClassDecl);
579      IDecl->setSuperClassLoc(SuperLoc);
580      IDecl->setEndOfDefinitionLoc(SuperLoc);
581    }
582  } else { // we have a root class.
583    IDecl->setEndOfDefinitionLoc(ClassLoc);
584  }
585
586  // Check then save referenced protocols.
587  if (NumProtoRefs) {
588    IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
589                           ProtoLocs, Context);
590    IDecl->setEndOfDefinitionLoc(EndProtoLoc);
591  }
592
593  CheckObjCDeclScope(IDecl);
594  return ActOnObjCContainerStartDefinition(IDecl);
595}
596
597/// ActOnCompatibilityAlias - this action is called after complete parsing of
598/// a \@compatibility_alias declaration. It sets up the alias relationships.
599Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc,
600                                    IdentifierInfo *AliasName,
601                                    SourceLocation AliasLocation,
602                                    IdentifierInfo *ClassName,
603                                    SourceLocation ClassLocation) {
604  // Look for previous declaration of alias name
605  NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation,
606                                      LookupOrdinaryName, ForRedeclaration);
607  if (ADecl) {
608    Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
609    Diag(ADecl->getLocation(), diag::note_previous_declaration);
610    return 0;
611  }
612  // Check for class declaration
613  NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
614                                       LookupOrdinaryName, ForRedeclaration);
615  if (const TypedefNameDecl *TDecl =
616        dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
617    QualType T = TDecl->getUnderlyingType();
618    if (T->isObjCObjectType()) {
619      if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
620        ClassName = IDecl->getIdentifier();
621        CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
622                                  LookupOrdinaryName, ForRedeclaration);
623      }
624    }
625  }
626  ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
627  if (CDecl == 0) {
628    Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
629    if (CDeclU)
630      Diag(CDeclU->getLocation(), diag::note_previous_declaration);
631    return 0;
632  }
633
634  // Everything checked out, instantiate a new alias declaration AST.
635  ObjCCompatibleAliasDecl *AliasDecl =
636    ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
637
638  if (!CheckObjCDeclScope(AliasDecl))
639    PushOnScopeChains(AliasDecl, TUScope);
640
641  return AliasDecl;
642}
643
644bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
645  IdentifierInfo *PName,
646  SourceLocation &Ploc, SourceLocation PrevLoc,
647  const ObjCList<ObjCProtocolDecl> &PList) {
648
649  bool res = false;
650  for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
651       E = PList.end(); I != E; ++I) {
652    if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
653                                                 Ploc)) {
654      if (PDecl->getIdentifier() == PName) {
655        Diag(Ploc, diag::err_protocol_has_circular_dependency);
656        Diag(PrevLoc, diag::note_previous_definition);
657        res = true;
658      }
659
660      if (!PDecl->hasDefinition())
661        continue;
662
663      if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
664            PDecl->getLocation(), PDecl->getReferencedProtocols()))
665        res = true;
666    }
667  }
668  return res;
669}
670
671Decl *
672Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,
673                                  IdentifierInfo *ProtocolName,
674                                  SourceLocation ProtocolLoc,
675                                  Decl * const *ProtoRefs,
676                                  unsigned NumProtoRefs,
677                                  const SourceLocation *ProtoLocs,
678                                  SourceLocation EndProtoLoc,
679                                  AttributeList *AttrList) {
680  bool err = false;
681  // FIXME: Deal with AttrList.
682  assert(ProtocolName && "Missing protocol identifier");
683  ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
684                                              ForRedeclaration);
685  ObjCProtocolDecl *PDecl = 0;
686  if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : 0) {
687    // If we already have a definition, complain.
688    Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
689    Diag(Def->getLocation(), diag::note_previous_definition);
690
691    // Create a new protocol that is completely distinct from previous
692    // declarations, and do not make this protocol available for name lookup.
693    // That way, we'll end up completely ignoring the duplicate.
694    // FIXME: Can we turn this into an error?
695    PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
696                                     ProtocolLoc, AtProtoInterfaceLoc,
697                                     /*PrevDecl=*/0);
698    PDecl->startDefinition();
699  } else {
700    if (PrevDecl) {
701      // Check for circular dependencies among protocol declarations. This can
702      // only happen if this protocol was forward-declared.
703      ObjCList<ObjCProtocolDecl> PList;
704      PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
705      err = CheckForwardProtocolDeclarationForCircularDependency(
706              ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
707    }
708
709    // Create the new declaration.
710    PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
711                                     ProtocolLoc, AtProtoInterfaceLoc,
712                                     /*PrevDecl=*/PrevDecl);
713
714    PushOnScopeChains(PDecl, TUScope);
715    PDecl->startDefinition();
716  }
717
718  if (AttrList)
719    ProcessDeclAttributeList(TUScope, PDecl, AttrList);
720
721  // Merge attributes from previous declarations.
722  if (PrevDecl)
723    mergeDeclAttributes(PDecl, PrevDecl);
724
725  if (!err && NumProtoRefs ) {
726    /// Check then save referenced protocols.
727    PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
728                           ProtoLocs, Context);
729  }
730
731  CheckObjCDeclScope(PDecl);
732  return ActOnObjCContainerStartDefinition(PDecl);
733}
734
735/// FindProtocolDeclaration - This routine looks up protocols and
736/// issues an error if they are not declared. It returns list of
737/// protocol declarations in its 'Protocols' argument.
738void
739Sema::FindProtocolDeclaration(bool WarnOnDeclarations,
740                              const IdentifierLocPair *ProtocolId,
741                              unsigned NumProtocols,
742                              SmallVectorImpl<Decl *> &Protocols) {
743  for (unsigned i = 0; i != NumProtocols; ++i) {
744    ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first,
745                                             ProtocolId[i].second);
746    if (!PDecl) {
747      DeclFilterCCC<ObjCProtocolDecl> Validator;
748      TypoCorrection Corrected = CorrectTypo(
749          DeclarationNameInfo(ProtocolId[i].first, ProtocolId[i].second),
750          LookupObjCProtocolName, TUScope, NULL, Validator);
751      if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>())) {
752        Diag(ProtocolId[i].second, diag::err_undeclared_protocol_suggest)
753          << ProtocolId[i].first << Corrected.getCorrection();
754        Diag(PDecl->getLocation(), diag::note_previous_decl)
755          << PDecl->getDeclName();
756      }
757    }
758
759    if (!PDecl) {
760      Diag(ProtocolId[i].second, diag::err_undeclared_protocol)
761        << ProtocolId[i].first;
762      continue;
763    }
764    // If this is a forward protocol declaration, get its definition.
765    if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
766      PDecl = PDecl->getDefinition();
767
768    (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second);
769
770    // If this is a forward declaration and we are supposed to warn in this
771    // case, do it.
772    // FIXME: Recover nicely in the hidden case.
773    if (WarnOnDeclarations &&
774        (!PDecl->hasDefinition() || PDecl->getDefinition()->isHidden()))
775      Diag(ProtocolId[i].second, diag::warn_undef_protocolref)
776        << ProtocolId[i].first;
777    Protocols.push_back(PDecl);
778  }
779}
780
781/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
782/// a class method in its extension.
783///
784void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
785                                            ObjCInterfaceDecl *ID) {
786  if (!ID)
787    return;  // Possibly due to previous error
788
789  llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
790  for (ObjCInterfaceDecl::method_iterator i = ID->meth_begin(),
791       e =  ID->meth_end(); i != e; ++i) {
792    ObjCMethodDecl *MD = *i;
793    MethodMap[MD->getSelector()] = MD;
794  }
795
796  if (MethodMap.empty())
797    return;
798  for (ObjCCategoryDecl::method_iterator i = CAT->meth_begin(),
799       e =  CAT->meth_end(); i != e; ++i) {
800    ObjCMethodDecl *Method = *i;
801    const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
802    if (PrevMethod && !MatchTwoMethodDeclarations(Method, PrevMethod)) {
803      Diag(Method->getLocation(), diag::err_duplicate_method_decl)
804            << Method->getDeclName();
805      Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
806    }
807  }
808}
809
810/// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
811Sema::DeclGroupPtrTy
812Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
813                                      const IdentifierLocPair *IdentList,
814                                      unsigned NumElts,
815                                      AttributeList *attrList) {
816  SmallVector<Decl *, 8> DeclsInGroup;
817  for (unsigned i = 0; i != NumElts; ++i) {
818    IdentifierInfo *Ident = IdentList[i].first;
819    ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentList[i].second,
820                                                ForRedeclaration);
821    ObjCProtocolDecl *PDecl
822      = ObjCProtocolDecl::Create(Context, CurContext, Ident,
823                                 IdentList[i].second, AtProtocolLoc,
824                                 PrevDecl);
825
826    PushOnScopeChains(PDecl, TUScope);
827    CheckObjCDeclScope(PDecl);
828
829    if (attrList)
830      ProcessDeclAttributeList(TUScope, PDecl, attrList);
831
832    if (PrevDecl)
833      mergeDeclAttributes(PDecl, PrevDecl);
834
835    DeclsInGroup.push_back(PDecl);
836  }
837
838  return BuildDeclaratorGroup(DeclsInGroup, false);
839}
840
841Decl *Sema::
842ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
843                            IdentifierInfo *ClassName, SourceLocation ClassLoc,
844                            IdentifierInfo *CategoryName,
845                            SourceLocation CategoryLoc,
846                            Decl * const *ProtoRefs,
847                            unsigned NumProtoRefs,
848                            const SourceLocation *ProtoLocs,
849                            SourceLocation EndProtoLoc) {
850  ObjCCategoryDecl *CDecl;
851  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
852
853  /// Check that class of this category is already completely declared.
854
855  if (!IDecl
856      || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
857                             diag::err_category_forward_interface,
858                             CategoryName == 0)) {
859    // Create an invalid ObjCCategoryDecl to serve as context for
860    // the enclosing method declarations.  We mark the decl invalid
861    // to make it clear that this isn't a valid AST.
862    CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
863                                     ClassLoc, CategoryLoc, CategoryName,IDecl);
864    CDecl->setInvalidDecl();
865    CurContext->addDecl(CDecl);
866
867    if (!IDecl)
868      Diag(ClassLoc, diag::err_undef_interface) << ClassName;
869    return ActOnObjCContainerStartDefinition(CDecl);
870  }
871
872  if (!CategoryName && IDecl->getImplementation()) {
873    Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
874    Diag(IDecl->getImplementation()->getLocation(),
875          diag::note_implementation_declared);
876  }
877
878  if (CategoryName) {
879    /// Check for duplicate interface declaration for this category
880    if (ObjCCategoryDecl *Previous
881          = IDecl->FindCategoryDeclaration(CategoryName)) {
882      // Class extensions can be declared multiple times, categories cannot.
883      Diag(CategoryLoc, diag::warn_dup_category_def)
884        << ClassName << CategoryName;
885      Diag(Previous->getLocation(), diag::note_previous_definition);
886    }
887  }
888
889  CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
890                                   ClassLoc, CategoryLoc, CategoryName, IDecl);
891  // FIXME: PushOnScopeChains?
892  CurContext->addDecl(CDecl);
893
894  if (NumProtoRefs) {
895    CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
896                           ProtoLocs, Context);
897    // Protocols in the class extension belong to the class.
898    if (CDecl->IsClassExtension())
899     IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs,
900                                            NumProtoRefs, Context);
901  }
902
903  CheckObjCDeclScope(CDecl);
904  return ActOnObjCContainerStartDefinition(CDecl);
905}
906
907/// ActOnStartCategoryImplementation - Perform semantic checks on the
908/// category implementation declaration and build an ObjCCategoryImplDecl
909/// object.
910Decl *Sema::ActOnStartCategoryImplementation(
911                      SourceLocation AtCatImplLoc,
912                      IdentifierInfo *ClassName, SourceLocation ClassLoc,
913                      IdentifierInfo *CatName, SourceLocation CatLoc) {
914  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
915  ObjCCategoryDecl *CatIDecl = 0;
916  if (IDecl && IDecl->hasDefinition()) {
917    CatIDecl = IDecl->FindCategoryDeclaration(CatName);
918    if (!CatIDecl) {
919      // Category @implementation with no corresponding @interface.
920      // Create and install one.
921      CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
922                                          ClassLoc, CatLoc,
923                                          CatName, IDecl);
924      CatIDecl->setImplicit();
925    }
926  }
927
928  ObjCCategoryImplDecl *CDecl =
929    ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
930                                 ClassLoc, AtCatImplLoc, CatLoc);
931  /// Check that class of this category is already completely declared.
932  if (!IDecl) {
933    Diag(ClassLoc, diag::err_undef_interface) << ClassName;
934    CDecl->setInvalidDecl();
935  } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
936                                 diag::err_undef_interface)) {
937    CDecl->setInvalidDecl();
938  }
939
940  // FIXME: PushOnScopeChains?
941  CurContext->addDecl(CDecl);
942
943  // If the interface is deprecated/unavailable, warn/error about it.
944  if (IDecl)
945    DiagnoseUseOfDecl(IDecl, ClassLoc);
946
947  /// Check that CatName, category name, is not used in another implementation.
948  if (CatIDecl) {
949    if (CatIDecl->getImplementation()) {
950      Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
951        << CatName;
952      Diag(CatIDecl->getImplementation()->getLocation(),
953           diag::note_previous_definition);
954      CDecl->setInvalidDecl();
955    } else {
956      CatIDecl->setImplementation(CDecl);
957      // Warn on implementating category of deprecated class under
958      // -Wdeprecated-implementations flag.
959      DiagnoseObjCImplementedDeprecations(*this,
960                                          dyn_cast<NamedDecl>(IDecl),
961                                          CDecl->getLocation(), 2);
962    }
963  }
964
965  CheckObjCDeclScope(CDecl);
966  return ActOnObjCContainerStartDefinition(CDecl);
967}
968
969Decl *Sema::ActOnStartClassImplementation(
970                      SourceLocation AtClassImplLoc,
971                      IdentifierInfo *ClassName, SourceLocation ClassLoc,
972                      IdentifierInfo *SuperClassname,
973                      SourceLocation SuperClassLoc) {
974  ObjCInterfaceDecl* IDecl = 0;
975  // Check for another declaration kind with the same name.
976  NamedDecl *PrevDecl
977    = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
978                       ForRedeclaration);
979  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
980    Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
981    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
982  } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
983    RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
984                        diag::warn_undef_interface);
985  } else {
986    // We did not find anything with the name ClassName; try to correct for
987    // typos in the class name.
988    ObjCInterfaceValidatorCCC Validator;
989    if (TypoCorrection Corrected = CorrectTypo(
990        DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope,
991        NULL, Validator)) {
992      // Suggest the (potentially) correct interface name. However, put the
993      // fix-it hint itself in a separate note, since changing the name in
994      // the warning would make the fix-it change semantics.However, don't
995      // provide a code-modification hint or use the typo name for recovery,
996      // because this is just a warning. The program may actually be correct.
997      IDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
998      DeclarationName CorrectedName = Corrected.getCorrection();
999      Diag(ClassLoc, diag::warn_undef_interface_suggest)
1000        << ClassName << CorrectedName;
1001      Diag(IDecl->getLocation(), diag::note_previous_decl) << CorrectedName
1002        << FixItHint::CreateReplacement(ClassLoc, CorrectedName.getAsString());
1003      IDecl = 0;
1004    } else {
1005      Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
1006    }
1007  }
1008
1009  // Check that super class name is valid class name
1010  ObjCInterfaceDecl* SDecl = 0;
1011  if (SuperClassname) {
1012    // Check if a different kind of symbol declared in this scope.
1013    PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
1014                                LookupOrdinaryName);
1015    if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1016      Diag(SuperClassLoc, diag::err_redefinition_different_kind)
1017        << SuperClassname;
1018      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1019    } else {
1020      SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
1021      if (SDecl && !SDecl->hasDefinition())
1022        SDecl = 0;
1023      if (!SDecl)
1024        Diag(SuperClassLoc, diag::err_undef_superclass)
1025          << SuperClassname << ClassName;
1026      else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
1027        // This implementation and its interface do not have the same
1028        // super class.
1029        Diag(SuperClassLoc, diag::err_conflicting_super_class)
1030          << SDecl->getDeclName();
1031        Diag(SDecl->getLocation(), diag::note_previous_definition);
1032      }
1033    }
1034  }
1035
1036  if (!IDecl) {
1037    // Legacy case of @implementation with no corresponding @interface.
1038    // Build, chain & install the interface decl into the identifier.
1039
1040    // FIXME: Do we support attributes on the @implementation? If so we should
1041    // copy them over.
1042    IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
1043                                      ClassName, /*PrevDecl=*/0, ClassLoc,
1044                                      true);
1045    IDecl->startDefinition();
1046    if (SDecl) {
1047      IDecl->setSuperClass(SDecl);
1048      IDecl->setSuperClassLoc(SuperClassLoc);
1049      IDecl->setEndOfDefinitionLoc(SuperClassLoc);
1050    } else {
1051      IDecl->setEndOfDefinitionLoc(ClassLoc);
1052    }
1053
1054    PushOnScopeChains(IDecl, TUScope);
1055  } else {
1056    // Mark the interface as being completed, even if it was just as
1057    //   @class ....;
1058    // declaration; the user cannot reopen it.
1059    if (!IDecl->hasDefinition())
1060      IDecl->startDefinition();
1061  }
1062
1063  ObjCImplementationDecl* IMPDecl =
1064    ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
1065                                   ClassLoc, AtClassImplLoc, SuperClassLoc);
1066
1067  if (CheckObjCDeclScope(IMPDecl))
1068    return ActOnObjCContainerStartDefinition(IMPDecl);
1069
1070  // Check that there is no duplicate implementation of this class.
1071  if (IDecl->getImplementation()) {
1072    // FIXME: Don't leak everything!
1073    Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
1074    Diag(IDecl->getImplementation()->getLocation(),
1075         diag::note_previous_definition);
1076    IMPDecl->setInvalidDecl();
1077  } else { // add it to the list.
1078    IDecl->setImplementation(IMPDecl);
1079    PushOnScopeChains(IMPDecl, TUScope);
1080    // Warn on implementating deprecated class under
1081    // -Wdeprecated-implementations flag.
1082    DiagnoseObjCImplementedDeprecations(*this,
1083                                        dyn_cast<NamedDecl>(IDecl),
1084                                        IMPDecl->getLocation(), 1);
1085  }
1086  return ActOnObjCContainerStartDefinition(IMPDecl);
1087}
1088
1089Sema::DeclGroupPtrTy
1090Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) {
1091  SmallVector<Decl *, 64> DeclsInGroup;
1092  DeclsInGroup.reserve(Decls.size() + 1);
1093
1094  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
1095    Decl *Dcl = Decls[i];
1096    if (!Dcl)
1097      continue;
1098    if (Dcl->getDeclContext()->isFileContext())
1099      Dcl->setTopLevelDeclInObjCContainer();
1100    DeclsInGroup.push_back(Dcl);
1101  }
1102
1103  DeclsInGroup.push_back(ObjCImpDecl);
1104
1105  return BuildDeclaratorGroup(DeclsInGroup, false);
1106}
1107
1108void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
1109                                    ObjCIvarDecl **ivars, unsigned numIvars,
1110                                    SourceLocation RBrace) {
1111  assert(ImpDecl && "missing implementation decl");
1112  ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
1113  if (!IDecl)
1114    return;
1115  /// Check case of non-existing \@interface decl.
1116  /// (legacy objective-c \@implementation decl without an \@interface decl).
1117  /// Add implementations's ivar to the synthesize class's ivar list.
1118  if (IDecl->isImplicitInterfaceDecl()) {
1119    IDecl->setEndOfDefinitionLoc(RBrace);
1120    // Add ivar's to class's DeclContext.
1121    for (unsigned i = 0, e = numIvars; i != e; ++i) {
1122      ivars[i]->setLexicalDeclContext(ImpDecl);
1123      IDecl->makeDeclVisibleInContext(ivars[i]);
1124      ImpDecl->addDecl(ivars[i]);
1125    }
1126
1127    return;
1128  }
1129  // If implementation has empty ivar list, just return.
1130  if (numIvars == 0)
1131    return;
1132
1133  assert(ivars && "missing @implementation ivars");
1134  if (LangOpts.ObjCRuntime.isNonFragile()) {
1135    if (ImpDecl->getSuperClass())
1136      Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
1137    for (unsigned i = 0; i < numIvars; i++) {
1138      ObjCIvarDecl* ImplIvar = ivars[i];
1139      if (const ObjCIvarDecl *ClsIvar =
1140            IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
1141        Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
1142        Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1143        continue;
1144      }
1145      // Check class extensions (unnamed categories) for duplicate ivars.
1146      for (ObjCInterfaceDecl::visible_extensions_iterator
1147           Ext = IDecl->visible_extensions_begin(),
1148           ExtEnd = IDecl->visible_extensions_end();
1149         Ext != ExtEnd; ++Ext) {
1150        ObjCCategoryDecl *CDecl = *Ext;
1151        if (const ObjCIvarDecl *ClsExtIvar =
1152            CDecl->getIvarDecl(ImplIvar->getIdentifier())) {
1153          Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
1154          Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
1155          continue;
1156        }
1157      }
1158      // Instance ivar to Implementation's DeclContext.
1159      ImplIvar->setLexicalDeclContext(ImpDecl);
1160      IDecl->makeDeclVisibleInContext(ImplIvar);
1161      ImpDecl->addDecl(ImplIvar);
1162    }
1163    return;
1164  }
1165  // Check interface's Ivar list against those in the implementation.
1166  // names and types must match.
1167  //
1168  unsigned j = 0;
1169  ObjCInterfaceDecl::ivar_iterator
1170    IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
1171  for (; numIvars > 0 && IVI != IVE; ++IVI) {
1172    ObjCIvarDecl* ImplIvar = ivars[j++];
1173    ObjCIvarDecl* ClsIvar = *IVI;
1174    assert (ImplIvar && "missing implementation ivar");
1175    assert (ClsIvar && "missing class ivar");
1176
1177    // First, make sure the types match.
1178    if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
1179      Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
1180        << ImplIvar->getIdentifier()
1181        << ImplIvar->getType() << ClsIvar->getType();
1182      Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1183    } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
1184               ImplIvar->getBitWidthValue(Context) !=
1185               ClsIvar->getBitWidthValue(Context)) {
1186      Diag(ImplIvar->getBitWidth()->getLocStart(),
1187           diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier();
1188      Diag(ClsIvar->getBitWidth()->getLocStart(),
1189           diag::note_previous_definition);
1190    }
1191    // Make sure the names are identical.
1192    if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
1193      Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
1194        << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
1195      Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1196    }
1197    --numIvars;
1198  }
1199
1200  if (numIvars > 0)
1201    Diag(ivars[j]->getLocation(), diag::err_inconsistant_ivar_count);
1202  else if (IVI != IVE)
1203    Diag(IVI->getLocation(), diag::err_inconsistant_ivar_count);
1204}
1205
1206void Sema::WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method,
1207                               bool &IncompleteImpl, unsigned DiagID) {
1208  // No point warning no definition of method which is 'unavailable'.
1209  switch (method->getAvailability()) {
1210  case AR_Available:
1211  case AR_Deprecated:
1212    break;
1213
1214      // Don't warn about unavailable or not-yet-introduced methods.
1215  case AR_NotYetIntroduced:
1216  case AR_Unavailable:
1217    return;
1218  }
1219
1220  // FIXME: For now ignore 'IncompleteImpl'.
1221  // Previously we grouped all unimplemented methods under a single
1222  // warning, but some users strongly voiced that they would prefer
1223  // separate warnings.  We will give that approach a try, as that
1224  // matches what we do with protocols.
1225
1226  Diag(ImpLoc, DiagID) << method->getDeclName();
1227
1228  // Issue a note to the original declaration.
1229  SourceLocation MethodLoc = method->getLocStart();
1230  if (MethodLoc.isValid())
1231    Diag(MethodLoc, diag::note_method_declared_at) << method;
1232}
1233
1234/// Determines if type B can be substituted for type A.  Returns true if we can
1235/// guarantee that anything that the user will do to an object of type A can
1236/// also be done to an object of type B.  This is trivially true if the two
1237/// types are the same, or if B is a subclass of A.  It becomes more complex
1238/// in cases where protocols are involved.
1239///
1240/// Object types in Objective-C describe the minimum requirements for an
1241/// object, rather than providing a complete description of a type.  For
1242/// example, if A is a subclass of B, then B* may refer to an instance of A.
1243/// The principle of substitutability means that we may use an instance of A
1244/// anywhere that we may use an instance of B - it will implement all of the
1245/// ivars of B and all of the methods of B.
1246///
1247/// This substitutability is important when type checking methods, because
1248/// the implementation may have stricter type definitions than the interface.
1249/// The interface specifies minimum requirements, but the implementation may
1250/// have more accurate ones.  For example, a method may privately accept
1251/// instances of B, but only publish that it accepts instances of A.  Any
1252/// object passed to it will be type checked against B, and so will implicitly
1253/// by a valid A*.  Similarly, a method may return a subclass of the class that
1254/// it is declared as returning.
1255///
1256/// This is most important when considering subclassing.  A method in a
1257/// subclass must accept any object as an argument that its superclass's
1258/// implementation accepts.  It may, however, accept a more general type
1259/// without breaking substitutability (i.e. you can still use the subclass
1260/// anywhere that you can use the superclass, but not vice versa).  The
1261/// converse requirement applies to return types: the return type for a
1262/// subclass method must be a valid object of the kind that the superclass
1263/// advertises, but it may be specified more accurately.  This avoids the need
1264/// for explicit down-casting by callers.
1265///
1266/// Note: This is a stricter requirement than for assignment.
1267static bool isObjCTypeSubstitutable(ASTContext &Context,
1268                                    const ObjCObjectPointerType *A,
1269                                    const ObjCObjectPointerType *B,
1270                                    bool rejectId) {
1271  // Reject a protocol-unqualified id.
1272  if (rejectId && B->isObjCIdType()) return false;
1273
1274  // If B is a qualified id, then A must also be a qualified id and it must
1275  // implement all of the protocols in B.  It may not be a qualified class.
1276  // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
1277  // stricter definition so it is not substitutable for id<A>.
1278  if (B->isObjCQualifiedIdType()) {
1279    return A->isObjCQualifiedIdType() &&
1280           Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
1281                                                     QualType(B,0),
1282                                                     false);
1283  }
1284
1285  /*
1286  // id is a special type that bypasses type checking completely.  We want a
1287  // warning when it is used in one place but not another.
1288  if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
1289
1290
1291  // If B is a qualified id, then A must also be a qualified id (which it isn't
1292  // if we've got this far)
1293  if (B->isObjCQualifiedIdType()) return false;
1294  */
1295
1296  // Now we know that A and B are (potentially-qualified) class types.  The
1297  // normal rules for assignment apply.
1298  return Context.canAssignObjCInterfaces(A, B);
1299}
1300
1301static SourceRange getTypeRange(TypeSourceInfo *TSI) {
1302  return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
1303}
1304
1305static bool CheckMethodOverrideReturn(Sema &S,
1306                                      ObjCMethodDecl *MethodImpl,
1307                                      ObjCMethodDecl *MethodDecl,
1308                                      bool IsProtocolMethodDecl,
1309                                      bool IsOverridingMode,
1310                                      bool Warn) {
1311  if (IsProtocolMethodDecl &&
1312      (MethodDecl->getObjCDeclQualifier() !=
1313       MethodImpl->getObjCDeclQualifier())) {
1314    if (Warn) {
1315        S.Diag(MethodImpl->getLocation(),
1316               (IsOverridingMode ?
1317                 diag::warn_conflicting_overriding_ret_type_modifiers
1318                 : diag::warn_conflicting_ret_type_modifiers))
1319          << MethodImpl->getDeclName()
1320          << getTypeRange(MethodImpl->getResultTypeSourceInfo());
1321        S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
1322          << getTypeRange(MethodDecl->getResultTypeSourceInfo());
1323    }
1324    else
1325      return false;
1326  }
1327
1328  if (S.Context.hasSameUnqualifiedType(MethodImpl->getResultType(),
1329                                       MethodDecl->getResultType()))
1330    return true;
1331  if (!Warn)
1332    return false;
1333
1334  unsigned DiagID =
1335    IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
1336                     : diag::warn_conflicting_ret_types;
1337
1338  // Mismatches between ObjC pointers go into a different warning
1339  // category, and sometimes they're even completely whitelisted.
1340  if (const ObjCObjectPointerType *ImplPtrTy =
1341        MethodImpl->getResultType()->getAs<ObjCObjectPointerType>()) {
1342    if (const ObjCObjectPointerType *IfacePtrTy =
1343          MethodDecl->getResultType()->getAs<ObjCObjectPointerType>()) {
1344      // Allow non-matching return types as long as they don't violate
1345      // the principle of substitutability.  Specifically, we permit
1346      // return types that are subclasses of the declared return type,
1347      // or that are more-qualified versions of the declared type.
1348      if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
1349        return false;
1350
1351      DiagID =
1352        IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
1353                          : diag::warn_non_covariant_ret_types;
1354    }
1355  }
1356
1357  S.Diag(MethodImpl->getLocation(), DiagID)
1358    << MethodImpl->getDeclName()
1359    << MethodDecl->getResultType()
1360    << MethodImpl->getResultType()
1361    << getTypeRange(MethodImpl->getResultTypeSourceInfo());
1362  S.Diag(MethodDecl->getLocation(),
1363         IsOverridingMode ? diag::note_previous_declaration
1364                          : diag::note_previous_definition)
1365    << getTypeRange(MethodDecl->getResultTypeSourceInfo());
1366  return false;
1367}
1368
1369static bool CheckMethodOverrideParam(Sema &S,
1370                                     ObjCMethodDecl *MethodImpl,
1371                                     ObjCMethodDecl *MethodDecl,
1372                                     ParmVarDecl *ImplVar,
1373                                     ParmVarDecl *IfaceVar,
1374                                     bool IsProtocolMethodDecl,
1375                                     bool IsOverridingMode,
1376                                     bool Warn) {
1377  if (IsProtocolMethodDecl &&
1378      (ImplVar->getObjCDeclQualifier() !=
1379       IfaceVar->getObjCDeclQualifier())) {
1380    if (Warn) {
1381      if (IsOverridingMode)
1382        S.Diag(ImplVar->getLocation(),
1383               diag::warn_conflicting_overriding_param_modifiers)
1384            << getTypeRange(ImplVar->getTypeSourceInfo())
1385            << MethodImpl->getDeclName();
1386      else S.Diag(ImplVar->getLocation(),
1387             diag::warn_conflicting_param_modifiers)
1388          << getTypeRange(ImplVar->getTypeSourceInfo())
1389          << MethodImpl->getDeclName();
1390      S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
1391          << getTypeRange(IfaceVar->getTypeSourceInfo());
1392    }
1393    else
1394      return false;
1395  }
1396
1397  QualType ImplTy = ImplVar->getType();
1398  QualType IfaceTy = IfaceVar->getType();
1399
1400  if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
1401    return true;
1402
1403  if (!Warn)
1404    return false;
1405  unsigned DiagID =
1406    IsOverridingMode ? diag::warn_conflicting_overriding_param_types
1407                     : diag::warn_conflicting_param_types;
1408
1409  // Mismatches between ObjC pointers go into a different warning
1410  // category, and sometimes they're even completely whitelisted.
1411  if (const ObjCObjectPointerType *ImplPtrTy =
1412        ImplTy->getAs<ObjCObjectPointerType>()) {
1413    if (const ObjCObjectPointerType *IfacePtrTy =
1414          IfaceTy->getAs<ObjCObjectPointerType>()) {
1415      // Allow non-matching argument types as long as they don't
1416      // violate the principle of substitutability.  Specifically, the
1417      // implementation must accept any objects that the superclass
1418      // accepts, however it may also accept others.
1419      if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
1420        return false;
1421
1422      DiagID =
1423      IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
1424                       :  diag::warn_non_contravariant_param_types;
1425    }
1426  }
1427
1428  S.Diag(ImplVar->getLocation(), DiagID)
1429    << getTypeRange(ImplVar->getTypeSourceInfo())
1430    << MethodImpl->getDeclName() << IfaceTy << ImplTy;
1431  S.Diag(IfaceVar->getLocation(),
1432         (IsOverridingMode ? diag::note_previous_declaration
1433                        : diag::note_previous_definition))
1434    << getTypeRange(IfaceVar->getTypeSourceInfo());
1435  return false;
1436}
1437
1438/// In ARC, check whether the conventional meanings of the two methods
1439/// match.  If they don't, it's a hard error.
1440static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
1441                                      ObjCMethodDecl *decl) {
1442  ObjCMethodFamily implFamily = impl->getMethodFamily();
1443  ObjCMethodFamily declFamily = decl->getMethodFamily();
1444  if (implFamily == declFamily) return false;
1445
1446  // Since conventions are sorted by selector, the only possibility is
1447  // that the types differ enough to cause one selector or the other
1448  // to fall out of the family.
1449  assert(implFamily == OMF_None || declFamily == OMF_None);
1450
1451  // No further diagnostics required on invalid declarations.
1452  if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
1453
1454  const ObjCMethodDecl *unmatched = impl;
1455  ObjCMethodFamily family = declFamily;
1456  unsigned errorID = diag::err_arc_lost_method_convention;
1457  unsigned noteID = diag::note_arc_lost_method_convention;
1458  if (declFamily == OMF_None) {
1459    unmatched = decl;
1460    family = implFamily;
1461    errorID = diag::err_arc_gained_method_convention;
1462    noteID = diag::note_arc_gained_method_convention;
1463  }
1464
1465  // Indexes into a %select clause in the diagnostic.
1466  enum FamilySelector {
1467    F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
1468  };
1469  FamilySelector familySelector = FamilySelector();
1470
1471  switch (family) {
1472  case OMF_None: llvm_unreachable("logic error, no method convention");
1473  case OMF_retain:
1474  case OMF_release:
1475  case OMF_autorelease:
1476  case OMF_dealloc:
1477  case OMF_finalize:
1478  case OMF_retainCount:
1479  case OMF_self:
1480  case OMF_performSelector:
1481    // Mismatches for these methods don't change ownership
1482    // conventions, so we don't care.
1483    return false;
1484
1485  case OMF_init: familySelector = F_init; break;
1486  case OMF_alloc: familySelector = F_alloc; break;
1487  case OMF_copy: familySelector = F_copy; break;
1488  case OMF_mutableCopy: familySelector = F_mutableCopy; break;
1489  case OMF_new: familySelector = F_new; break;
1490  }
1491
1492  enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
1493  ReasonSelector reasonSelector;
1494
1495  // The only reason these methods don't fall within their families is
1496  // due to unusual result types.
1497  if (unmatched->getResultType()->isObjCObjectPointerType()) {
1498    reasonSelector = R_UnrelatedReturn;
1499  } else {
1500    reasonSelector = R_NonObjectReturn;
1501  }
1502
1503  S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector);
1504  S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector);
1505
1506  return true;
1507}
1508
1509void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
1510                                       ObjCMethodDecl *MethodDecl,
1511                                       bool IsProtocolMethodDecl) {
1512  if (getLangOpts().ObjCAutoRefCount &&
1513      checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
1514    return;
1515
1516  CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
1517                            IsProtocolMethodDecl, false,
1518                            true);
1519
1520  for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
1521       IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
1522       EF = MethodDecl->param_end();
1523       IM != EM && IF != EF; ++IM, ++IF) {
1524    CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
1525                             IsProtocolMethodDecl, false, true);
1526  }
1527
1528  if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
1529    Diag(ImpMethodDecl->getLocation(),
1530         diag::warn_conflicting_variadic);
1531    Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
1532  }
1533}
1534
1535void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
1536                                       ObjCMethodDecl *Overridden,
1537                                       bool IsProtocolMethodDecl) {
1538
1539  CheckMethodOverrideReturn(*this, Method, Overridden,
1540                            IsProtocolMethodDecl, true,
1541                            true);
1542
1543  for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
1544       IF = Overridden->param_begin(), EM = Method->param_end(),
1545       EF = Overridden->param_end();
1546       IM != EM && IF != EF; ++IM, ++IF) {
1547    CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
1548                             IsProtocolMethodDecl, true, true);
1549  }
1550
1551  if (Method->isVariadic() != Overridden->isVariadic()) {
1552    Diag(Method->getLocation(),
1553         diag::warn_conflicting_overriding_variadic);
1554    Diag(Overridden->getLocation(), diag::note_previous_declaration);
1555  }
1556}
1557
1558/// WarnExactTypedMethods - This routine issues a warning if method
1559/// implementation declaration matches exactly that of its declaration.
1560void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
1561                                 ObjCMethodDecl *MethodDecl,
1562                                 bool IsProtocolMethodDecl) {
1563  // don't issue warning when protocol method is optional because primary
1564  // class is not required to implement it and it is safe for protocol
1565  // to implement it.
1566  if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
1567    return;
1568  // don't issue warning when primary class's method is
1569  // depecated/unavailable.
1570  if (MethodDecl->hasAttr<UnavailableAttr>() ||
1571      MethodDecl->hasAttr<DeprecatedAttr>())
1572    return;
1573
1574  bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
1575                                      IsProtocolMethodDecl, false, false);
1576  if (match)
1577    for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
1578         IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
1579         EF = MethodDecl->param_end();
1580         IM != EM && IF != EF; ++IM, ++IF) {
1581      match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
1582                                       *IM, *IF,
1583                                       IsProtocolMethodDecl, false, false);
1584      if (!match)
1585        break;
1586    }
1587  if (match)
1588    match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
1589  if (match)
1590    match = !(MethodDecl->isClassMethod() &&
1591              MethodDecl->getSelector() == GetNullarySelector("load", Context));
1592
1593  if (match) {
1594    Diag(ImpMethodDecl->getLocation(),
1595         diag::warn_category_method_impl_match);
1596    Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
1597      << MethodDecl->getDeclName();
1598  }
1599}
1600
1601/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
1602/// improve the efficiency of selector lookups and type checking by associating
1603/// with each protocol / interface / category the flattened instance tables. If
1604/// we used an immutable set to keep the table then it wouldn't add significant
1605/// memory cost and it would be handy for lookups.
1606
1607/// CheckProtocolMethodDefs - This routine checks unimplemented methods
1608/// Declared in protocol, and those referenced by it.
1609void Sema::CheckProtocolMethodDefs(SourceLocation ImpLoc,
1610                                   ObjCProtocolDecl *PDecl,
1611                                   bool& IncompleteImpl,
1612                                   const SelectorSet &InsMap,
1613                                   const SelectorSet &ClsMap,
1614                                   ObjCContainerDecl *CDecl) {
1615  ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
1616  ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
1617                               : dyn_cast<ObjCInterfaceDecl>(CDecl);
1618  assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
1619
1620  ObjCInterfaceDecl *Super = IDecl->getSuperClass();
1621  ObjCInterfaceDecl *NSIDecl = 0;
1622  if (getLangOpts().ObjCRuntime.isNeXTFamily()) {
1623    // check to see if class implements forwardInvocation method and objects
1624    // of this class are derived from 'NSProxy' so that to forward requests
1625    // from one object to another.
1626    // Under such conditions, which means that every method possible is
1627    // implemented in the class, we should not issue "Method definition not
1628    // found" warnings.
1629    // FIXME: Use a general GetUnarySelector method for this.
1630    IdentifierInfo* II = &Context.Idents.get("forwardInvocation");
1631    Selector fISelector = Context.Selectors.getSelector(1, &II);
1632    if (InsMap.count(fISelector))
1633      // Is IDecl derived from 'NSProxy'? If so, no instance methods
1634      // need be implemented in the implementation.
1635      NSIDecl = IDecl->lookupInheritedClass(&Context.Idents.get("NSProxy"));
1636  }
1637
1638  // If this is a forward protocol declaration, get its definition.
1639  if (!PDecl->isThisDeclarationADefinition() &&
1640      PDecl->getDefinition())
1641    PDecl = PDecl->getDefinition();
1642
1643  // If a method lookup fails locally we still need to look and see if
1644  // the method was implemented by a base class or an inherited
1645  // protocol. This lookup is slow, but occurs rarely in correct code
1646  // and otherwise would terminate in a warning.
1647
1648  // check unimplemented instance methods.
1649  if (!NSIDecl)
1650    for (ObjCProtocolDecl::instmeth_iterator I = PDecl->instmeth_begin(),
1651         E = PDecl->instmeth_end(); I != E; ++I) {
1652      ObjCMethodDecl *method = *I;
1653      if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
1654          !method->isPropertyAccessor() &&
1655          !InsMap.count(method->getSelector()) &&
1656          (!Super || !Super->lookupInstanceMethod(method->getSelector()))) {
1657            // If a method is not implemented in the category implementation but
1658            // has been declared in its primary class, superclass,
1659            // or in one of their protocols, no need to issue the warning.
1660            // This is because method will be implemented in the primary class
1661            // or one of its super class implementation.
1662
1663            // Ugly, but necessary. Method declared in protcol might have
1664            // have been synthesized due to a property declared in the class which
1665            // uses the protocol.
1666            if (ObjCMethodDecl *MethodInClass =
1667                  IDecl->lookupInstanceMethod(method->getSelector(),
1668                                              true /*shallowCategoryLookup*/))
1669              if (C || MethodInClass->isPropertyAccessor())
1670                continue;
1671            unsigned DIAG = diag::warn_unimplemented_protocol_method;
1672            if (Diags.getDiagnosticLevel(DIAG, ImpLoc)
1673                != DiagnosticsEngine::Ignored) {
1674              WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
1675              Diag(CDecl->getLocation(), diag::note_required_for_protocol_at)
1676                << PDecl->getDeclName();
1677            }
1678          }
1679    }
1680  // check unimplemented class methods
1681  for (ObjCProtocolDecl::classmeth_iterator
1682         I = PDecl->classmeth_begin(), E = PDecl->classmeth_end();
1683       I != E; ++I) {
1684    ObjCMethodDecl *method = *I;
1685    if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
1686        !ClsMap.count(method->getSelector()) &&
1687        (!Super || !Super->lookupClassMethod(method->getSelector()))) {
1688      // See above comment for instance method lookups.
1689      if (C && IDecl->lookupClassMethod(method->getSelector(),
1690                                        true /*shallowCategoryLookup*/))
1691        continue;
1692      unsigned DIAG = diag::warn_unimplemented_protocol_method;
1693      if (Diags.getDiagnosticLevel(DIAG, ImpLoc) !=
1694            DiagnosticsEngine::Ignored) {
1695        WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
1696        Diag(IDecl->getLocation(), diag::note_required_for_protocol_at) <<
1697          PDecl->getDeclName();
1698      }
1699    }
1700  }
1701  // Check on this protocols's referenced protocols, recursively.
1702  for (ObjCProtocolDecl::protocol_iterator PI = PDecl->protocol_begin(),
1703       E = PDecl->protocol_end(); PI != E; ++PI)
1704    CheckProtocolMethodDefs(ImpLoc, *PI, IncompleteImpl, InsMap, ClsMap, CDecl);
1705}
1706
1707/// MatchAllMethodDeclarations - Check methods declared in interface
1708/// or protocol against those declared in their implementations.
1709///
1710void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap,
1711                                      const SelectorSet &ClsMap,
1712                                      SelectorSet &InsMapSeen,
1713                                      SelectorSet &ClsMapSeen,
1714                                      ObjCImplDecl* IMPDecl,
1715                                      ObjCContainerDecl* CDecl,
1716                                      bool &IncompleteImpl,
1717                                      bool ImmediateClass,
1718                                      bool WarnCategoryMethodImpl) {
1719  // Check and see if instance methods in class interface have been
1720  // implemented in the implementation class. If so, their types match.
1721  for (ObjCInterfaceDecl::instmeth_iterator I = CDecl->instmeth_begin(),
1722       E = CDecl->instmeth_end(); I != E; ++I) {
1723    if (InsMapSeen.count((*I)->getSelector()))
1724        continue;
1725    InsMapSeen.insert((*I)->getSelector());
1726    if (!(*I)->isPropertyAccessor() &&
1727        !InsMap.count((*I)->getSelector())) {
1728      if (ImmediateClass)
1729        WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
1730                            diag::warn_undef_method_impl);
1731      continue;
1732    } else {
1733      ObjCMethodDecl *ImpMethodDecl =
1734        IMPDecl->getInstanceMethod((*I)->getSelector());
1735      assert(CDecl->getInstanceMethod((*I)->getSelector()) &&
1736             "Expected to find the method through lookup as well");
1737      ObjCMethodDecl *MethodDecl = *I;
1738      // ImpMethodDecl may be null as in a @dynamic property.
1739      if (ImpMethodDecl) {
1740        if (!WarnCategoryMethodImpl)
1741          WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl,
1742                                      isa<ObjCProtocolDecl>(CDecl));
1743        else if (!MethodDecl->isPropertyAccessor())
1744          WarnExactTypedMethods(ImpMethodDecl, MethodDecl,
1745                                isa<ObjCProtocolDecl>(CDecl));
1746      }
1747    }
1748  }
1749
1750  // Check and see if class methods in class interface have been
1751  // implemented in the implementation class. If so, their types match.
1752   for (ObjCInterfaceDecl::classmeth_iterator
1753       I = CDecl->classmeth_begin(), E = CDecl->classmeth_end(); I != E; ++I) {
1754     if (ClsMapSeen.count((*I)->getSelector()))
1755       continue;
1756     ClsMapSeen.insert((*I)->getSelector());
1757    if (!ClsMap.count((*I)->getSelector())) {
1758      if (ImmediateClass)
1759        WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
1760                            diag::warn_undef_method_impl);
1761    } else {
1762      ObjCMethodDecl *ImpMethodDecl =
1763        IMPDecl->getClassMethod((*I)->getSelector());
1764      assert(CDecl->getClassMethod((*I)->getSelector()) &&
1765             "Expected to find the method through lookup as well");
1766      ObjCMethodDecl *MethodDecl = *I;
1767      if (!WarnCategoryMethodImpl)
1768        WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl,
1769                                    isa<ObjCProtocolDecl>(CDecl));
1770      else
1771        WarnExactTypedMethods(ImpMethodDecl, MethodDecl,
1772                              isa<ObjCProtocolDecl>(CDecl));
1773    }
1774  }
1775
1776  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
1777    // when checking that methods in implementation match their declaration,
1778    // i.e. when WarnCategoryMethodImpl is false, check declarations in class
1779    // extension; as well as those in categories.
1780    if (!WarnCategoryMethodImpl) {
1781      for (ObjCInterfaceDecl::visible_categories_iterator
1782             Cat = I->visible_categories_begin(),
1783           CatEnd = I->visible_categories_end();
1784           Cat != CatEnd; ++Cat) {
1785        MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1786                                   IMPDecl, *Cat, IncompleteImpl, false,
1787                                   WarnCategoryMethodImpl);
1788      }
1789    } else {
1790      // Also methods in class extensions need be looked at next.
1791      for (ObjCInterfaceDecl::visible_extensions_iterator
1792             Ext = I->visible_extensions_begin(),
1793             ExtEnd = I->visible_extensions_end();
1794           Ext != ExtEnd; ++Ext) {
1795        MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1796                                   IMPDecl, *Ext, IncompleteImpl, false,
1797                                   WarnCategoryMethodImpl);
1798      }
1799    }
1800
1801    // Check for any implementation of a methods declared in protocol.
1802    for (ObjCInterfaceDecl::all_protocol_iterator
1803          PI = I->all_referenced_protocol_begin(),
1804          E = I->all_referenced_protocol_end(); PI != E; ++PI)
1805      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1806                                 IMPDecl,
1807                                 (*PI), IncompleteImpl, false,
1808                                 WarnCategoryMethodImpl);
1809
1810    // FIXME. For now, we are not checking for extact match of methods
1811    // in category implementation and its primary class's super class.
1812    if (!WarnCategoryMethodImpl && I->getSuperClass())
1813      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1814                                 IMPDecl,
1815                                 I->getSuperClass(), IncompleteImpl, false);
1816  }
1817}
1818
1819/// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
1820/// category matches with those implemented in its primary class and
1821/// warns each time an exact match is found.
1822void Sema::CheckCategoryVsClassMethodMatches(
1823                                  ObjCCategoryImplDecl *CatIMPDecl) {
1824  SelectorSet InsMap, ClsMap;
1825
1826  for (ObjCImplementationDecl::instmeth_iterator
1827       I = CatIMPDecl->instmeth_begin(),
1828       E = CatIMPDecl->instmeth_end(); I!=E; ++I)
1829    InsMap.insert((*I)->getSelector());
1830
1831  for (ObjCImplementationDecl::classmeth_iterator
1832       I = CatIMPDecl->classmeth_begin(),
1833       E = CatIMPDecl->classmeth_end(); I != E; ++I)
1834    ClsMap.insert((*I)->getSelector());
1835  if (InsMap.empty() && ClsMap.empty())
1836    return;
1837
1838  // Get category's primary class.
1839  ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
1840  if (!CatDecl)
1841    return;
1842  ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
1843  if (!IDecl)
1844    return;
1845  SelectorSet InsMapSeen, ClsMapSeen;
1846  bool IncompleteImpl = false;
1847  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1848                             CatIMPDecl, IDecl,
1849                             IncompleteImpl, false,
1850                             true /*WarnCategoryMethodImpl*/);
1851}
1852
1853void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
1854                                     ObjCContainerDecl* CDecl,
1855                                     bool IncompleteImpl) {
1856  SelectorSet InsMap;
1857  // Check and see if instance methods in class interface have been
1858  // implemented in the implementation class.
1859  for (ObjCImplementationDecl::instmeth_iterator
1860         I = IMPDecl->instmeth_begin(), E = IMPDecl->instmeth_end(); I!=E; ++I)
1861    InsMap.insert((*I)->getSelector());
1862
1863  // Check and see if properties declared in the interface have either 1)
1864  // an implementation or 2) there is a @synthesize/@dynamic implementation
1865  // of the property in the @implementation.
1866  if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl))
1867    if  (!(LangOpts.ObjCDefaultSynthProperties &&
1868           LangOpts.ObjCRuntime.isNonFragile()) ||
1869         IDecl->isObjCRequiresPropertyDefs())
1870      DiagnoseUnimplementedProperties(S, IMPDecl, CDecl);
1871
1872  SelectorSet ClsMap;
1873  for (ObjCImplementationDecl::classmeth_iterator
1874       I = IMPDecl->classmeth_begin(),
1875       E = IMPDecl->classmeth_end(); I != E; ++I)
1876    ClsMap.insert((*I)->getSelector());
1877
1878  // Check for type conflict of methods declared in a class/protocol and
1879  // its implementation; if any.
1880  SelectorSet InsMapSeen, ClsMapSeen;
1881  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1882                             IMPDecl, CDecl,
1883                             IncompleteImpl, true);
1884
1885  // check all methods implemented in category against those declared
1886  // in its primary class.
1887  if (ObjCCategoryImplDecl *CatDecl =
1888        dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
1889    CheckCategoryVsClassMethodMatches(CatDecl);
1890
1891  // Check the protocol list for unimplemented methods in the @implementation
1892  // class.
1893  // Check and see if class methods in class interface have been
1894  // implemented in the implementation class.
1895
1896  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
1897    for (ObjCInterfaceDecl::all_protocol_iterator
1898          PI = I->all_referenced_protocol_begin(),
1899          E = I->all_referenced_protocol_end(); PI != E; ++PI)
1900      CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
1901                              InsMap, ClsMap, I);
1902    // Check class extensions (unnamed categories)
1903    for (ObjCInterfaceDecl::visible_extensions_iterator
1904           Ext = I->visible_extensions_begin(),
1905           ExtEnd = I->visible_extensions_end();
1906         Ext != ExtEnd; ++Ext) {
1907      ImplMethodsVsClassMethods(S, IMPDecl, *Ext, IncompleteImpl);
1908    }
1909  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1910    // For extended class, unimplemented methods in its protocols will
1911    // be reported in the primary class.
1912    if (!C->IsClassExtension()) {
1913      for (ObjCCategoryDecl::protocol_iterator PI = C->protocol_begin(),
1914           E = C->protocol_end(); PI != E; ++PI)
1915        CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
1916                                InsMap, ClsMap, CDecl);
1917      DiagnoseUnimplementedProperties(S, IMPDecl, CDecl);
1918    }
1919  } else
1920    llvm_unreachable("invalid ObjCContainerDecl type.");
1921}
1922
1923/// ActOnForwardClassDeclaration -
1924Sema::DeclGroupPtrTy
1925Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
1926                                   IdentifierInfo **IdentList,
1927                                   SourceLocation *IdentLocs,
1928                                   unsigned NumElts) {
1929  SmallVector<Decl *, 8> DeclsInGroup;
1930  for (unsigned i = 0; i != NumElts; ++i) {
1931    // Check for another declaration kind with the same name.
1932    NamedDecl *PrevDecl
1933      = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
1934                         LookupOrdinaryName, ForRedeclaration);
1935    if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1936      // GCC apparently allows the following idiom:
1937      //
1938      // typedef NSObject < XCElementTogglerP > XCElementToggler;
1939      // @class XCElementToggler;
1940      //
1941      // Here we have chosen to ignore the forward class declaration
1942      // with a warning. Since this is the implied behavior.
1943      TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
1944      if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
1945        Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
1946        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1947      } else {
1948        // a forward class declaration matching a typedef name of a class refers
1949        // to the underlying class. Just ignore the forward class with a warning
1950        // as this will force the intended behavior which is to lookup the typedef
1951        // name.
1952        if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
1953          Diag(AtClassLoc, diag::warn_forward_class_redefinition) << IdentList[i];
1954          Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1955          continue;
1956        }
1957      }
1958    }
1959
1960    // Create a declaration to describe this forward declaration.
1961    ObjCInterfaceDecl *PrevIDecl
1962      = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
1963
1964    IdentifierInfo *ClassName = IdentList[i];
1965    if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
1966      // A previous decl with a different name is because of
1967      // @compatibility_alias, for example:
1968      // \code
1969      //   @class NewImage;
1970      //   @compatibility_alias OldImage NewImage;
1971      // \endcode
1972      // A lookup for 'OldImage' will return the 'NewImage' decl.
1973      //
1974      // In such a case use the real declaration name, instead of the alias one,
1975      // otherwise we will break IdentifierResolver and redecls-chain invariants.
1976      // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
1977      // has been aliased.
1978      ClassName = PrevIDecl->getIdentifier();
1979    }
1980
1981    ObjCInterfaceDecl *IDecl
1982      = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
1983                                  ClassName, PrevIDecl, IdentLocs[i]);
1984    IDecl->setAtEndRange(IdentLocs[i]);
1985
1986    PushOnScopeChains(IDecl, TUScope);
1987    CheckObjCDeclScope(IDecl);
1988    DeclsInGroup.push_back(IDecl);
1989  }
1990
1991  return BuildDeclaratorGroup(DeclsInGroup, false);
1992}
1993
1994static bool tryMatchRecordTypes(ASTContext &Context,
1995                                Sema::MethodMatchStrategy strategy,
1996                                const Type *left, const Type *right);
1997
1998static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
1999                       QualType leftQT, QualType rightQT) {
2000  const Type *left =
2001    Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
2002  const Type *right =
2003    Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
2004
2005  if (left == right) return true;
2006
2007  // If we're doing a strict match, the types have to match exactly.
2008  if (strategy == Sema::MMS_strict) return false;
2009
2010  if (left->isIncompleteType() || right->isIncompleteType()) return false;
2011
2012  // Otherwise, use this absurdly complicated algorithm to try to
2013  // validate the basic, low-level compatibility of the two types.
2014
2015  // As a minimum, require the sizes and alignments to match.
2016  if (Context.getTypeInfo(left) != Context.getTypeInfo(right))
2017    return false;
2018
2019  // Consider all the kinds of non-dependent canonical types:
2020  // - functions and arrays aren't possible as return and parameter types
2021
2022  // - vector types of equal size can be arbitrarily mixed
2023  if (isa<VectorType>(left)) return isa<VectorType>(right);
2024  if (isa<VectorType>(right)) return false;
2025
2026  // - references should only match references of identical type
2027  // - structs, unions, and Objective-C objects must match more-or-less
2028  //   exactly
2029  // - everything else should be a scalar
2030  if (!left->isScalarType() || !right->isScalarType())
2031    return tryMatchRecordTypes(Context, strategy, left, right);
2032
2033  // Make scalars agree in kind, except count bools as chars, and group
2034  // all non-member pointers together.
2035  Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
2036  Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
2037  if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
2038  if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
2039  if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
2040    leftSK = Type::STK_ObjCObjectPointer;
2041  if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
2042    rightSK = Type::STK_ObjCObjectPointer;
2043
2044  // Note that data member pointers and function member pointers don't
2045  // intermix because of the size differences.
2046
2047  return (leftSK == rightSK);
2048}
2049
2050static bool tryMatchRecordTypes(ASTContext &Context,
2051                                Sema::MethodMatchStrategy strategy,
2052                                const Type *lt, const Type *rt) {
2053  assert(lt && rt && lt != rt);
2054
2055  if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
2056  RecordDecl *left = cast<RecordType>(lt)->getDecl();
2057  RecordDecl *right = cast<RecordType>(rt)->getDecl();
2058
2059  // Require union-hood to match.
2060  if (left->isUnion() != right->isUnion()) return false;
2061
2062  // Require an exact match if either is non-POD.
2063  if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
2064      (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
2065    return false;
2066
2067  // Require size and alignment to match.
2068  if (Context.getTypeInfo(lt) != Context.getTypeInfo(rt)) return false;
2069
2070  // Require fields to match.
2071  RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
2072  RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
2073  for (; li != le && ri != re; ++li, ++ri) {
2074    if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
2075      return false;
2076  }
2077  return (li == le && ri == re);
2078}
2079
2080/// MatchTwoMethodDeclarations - Checks that two methods have matching type and
2081/// returns true, or false, accordingly.
2082/// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
2083bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
2084                                      const ObjCMethodDecl *right,
2085                                      MethodMatchStrategy strategy) {
2086  if (!matchTypes(Context, strategy,
2087                  left->getResultType(), right->getResultType()))
2088    return false;
2089
2090  // If either is hidden, it is not considered to match.
2091  if (left->isHidden() || right->isHidden())
2092    return false;
2093
2094  if (getLangOpts().ObjCAutoRefCount &&
2095      (left->hasAttr<NSReturnsRetainedAttr>()
2096         != right->hasAttr<NSReturnsRetainedAttr>() ||
2097       left->hasAttr<NSConsumesSelfAttr>()
2098         != right->hasAttr<NSConsumesSelfAttr>()))
2099    return false;
2100
2101  ObjCMethodDecl::param_const_iterator
2102    li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
2103    re = right->param_end();
2104
2105  for (; li != le && ri != re; ++li, ++ri) {
2106    assert(ri != right->param_end() && "Param mismatch");
2107    const ParmVarDecl *lparm = *li, *rparm = *ri;
2108
2109    if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
2110      return false;
2111
2112    if (getLangOpts().ObjCAutoRefCount &&
2113        lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
2114      return false;
2115  }
2116  return true;
2117}
2118
2119void Sema::addMethodToGlobalList(ObjCMethodList *List, ObjCMethodDecl *Method) {
2120  // Record at the head of the list whether there were 0, 1, or >= 2 methods
2121  // inside categories.
2122  if (ObjCCategoryDecl *
2123        CD = dyn_cast<ObjCCategoryDecl>(Method->getDeclContext()))
2124    if (!CD->IsClassExtension() && List->getBits() < 2)
2125        List->setBits(List->getBits()+1);
2126
2127  // If the list is empty, make it a singleton list.
2128  if (List->Method == 0) {
2129    List->Method = Method;
2130    List->setNext(0);
2131    return;
2132  }
2133
2134  // We've seen a method with this name, see if we have already seen this type
2135  // signature.
2136  ObjCMethodList *Previous = List;
2137  for (; List; Previous = List, List = List->getNext()) {
2138    // If we are building a module, keep all of the methods.
2139    if (getLangOpts().Modules && !getLangOpts().CurrentModule.empty())
2140      continue;
2141
2142    if (!MatchTwoMethodDeclarations(Method, List->Method))
2143      continue;
2144
2145    ObjCMethodDecl *PrevObjCMethod = List->Method;
2146
2147    // Propagate the 'defined' bit.
2148    if (Method->isDefined())
2149      PrevObjCMethod->setDefined(true);
2150
2151    // If a method is deprecated, push it in the global pool.
2152    // This is used for better diagnostics.
2153    if (Method->isDeprecated()) {
2154      if (!PrevObjCMethod->isDeprecated())
2155        List->Method = Method;
2156    }
2157    // If new method is unavailable, push it into global pool
2158    // unless previous one is deprecated.
2159    if (Method->isUnavailable()) {
2160      if (PrevObjCMethod->getAvailability() < AR_Deprecated)
2161        List->Method = Method;
2162    }
2163
2164    return;
2165  }
2166
2167  // We have a new signature for an existing method - add it.
2168  // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
2169  ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
2170  Previous->setNext(new (Mem) ObjCMethodList(Method, 0));
2171}
2172
2173/// \brief Read the contents of the method pool for a given selector from
2174/// external storage.
2175void Sema::ReadMethodPool(Selector Sel) {
2176  assert(ExternalSource && "We need an external AST source");
2177  ExternalSource->ReadMethodPool(Sel);
2178}
2179
2180void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
2181                                 bool instance) {
2182  // Ignore methods of invalid containers.
2183  if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
2184    return;
2185
2186  if (ExternalSource)
2187    ReadMethodPool(Method->getSelector());
2188
2189  GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
2190  if (Pos == MethodPool.end())
2191    Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
2192                                           GlobalMethods())).first;
2193
2194  Method->setDefined(impl);
2195
2196  ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
2197  addMethodToGlobalList(&Entry, Method);
2198}
2199
2200/// Determines if this is an "acceptable" loose mismatch in the global
2201/// method pool.  This exists mostly as a hack to get around certain
2202/// global mismatches which we can't afford to make warnings / errors.
2203/// Really, what we want is a way to take a method out of the global
2204/// method pool.
2205static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
2206                                       ObjCMethodDecl *other) {
2207  if (!chosen->isInstanceMethod())
2208    return false;
2209
2210  Selector sel = chosen->getSelector();
2211  if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
2212    return false;
2213
2214  // Don't complain about mismatches for -length if the method we
2215  // chose has an integral result type.
2216  return (chosen->getResultType()->isIntegerType());
2217}
2218
2219ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
2220                                               bool receiverIdOrClass,
2221                                               bool warn, bool instance) {
2222  if (ExternalSource)
2223    ReadMethodPool(Sel);
2224
2225  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
2226  if (Pos == MethodPool.end())
2227    return 0;
2228
2229  // Gather the non-hidden methods.
2230  ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
2231  llvm::SmallVector<ObjCMethodDecl *, 4> Methods;
2232  for (ObjCMethodList *M = &MethList; M; M = M->getNext()) {
2233    if (M->Method && !M->Method->isHidden()) {
2234      // If we're not supposed to warn about mismatches, we're done.
2235      if (!warn)
2236        return M->Method;
2237
2238      Methods.push_back(M->Method);
2239    }
2240  }
2241
2242  // If there aren't any visible methods, we're done.
2243  // FIXME: Recover if there are any known-but-hidden methods?
2244  if (Methods.empty())
2245    return 0;
2246
2247  if (Methods.size() == 1)
2248    return Methods[0];
2249
2250  // We found multiple methods, so we may have to complain.
2251  bool issueDiagnostic = false, issueError = false;
2252
2253  // We support a warning which complains about *any* difference in
2254  // method signature.
2255  bool strictSelectorMatch =
2256    (receiverIdOrClass && warn &&
2257     (Diags.getDiagnosticLevel(diag::warn_strict_multiple_method_decl,
2258                               R.getBegin())
2259        != DiagnosticsEngine::Ignored));
2260  if (strictSelectorMatch) {
2261    for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
2262      if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) {
2263        issueDiagnostic = true;
2264        break;
2265      }
2266    }
2267  }
2268
2269  // If we didn't see any strict differences, we won't see any loose
2270  // differences.  In ARC, however, we also need to check for loose
2271  // mismatches, because most of them are errors.
2272  if (!strictSelectorMatch ||
2273      (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
2274    for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
2275      // This checks if the methods differ in type mismatch.
2276      if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) &&
2277          !isAcceptableMethodMismatch(Methods[0], Methods[I])) {
2278        issueDiagnostic = true;
2279        if (getLangOpts().ObjCAutoRefCount)
2280          issueError = true;
2281        break;
2282      }
2283    }
2284
2285  if (issueDiagnostic) {
2286    if (issueError)
2287      Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
2288    else if (strictSelectorMatch)
2289      Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
2290    else
2291      Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
2292
2293    Diag(Methods[0]->getLocStart(),
2294         issueError ? diag::note_possibility : diag::note_using)
2295      << Methods[0]->getSourceRange();
2296    for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
2297      Diag(Methods[I]->getLocStart(), diag::note_also_found)
2298        << Methods[I]->getSourceRange();
2299  }
2300  }
2301  return Methods[0];
2302}
2303
2304ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
2305  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
2306  if (Pos == MethodPool.end())
2307    return 0;
2308
2309  GlobalMethods &Methods = Pos->second;
2310
2311  if (Methods.first.Method && Methods.first.Method->isDefined())
2312    return Methods.first.Method;
2313  if (Methods.second.Method && Methods.second.Method->isDefined())
2314    return Methods.second.Method;
2315  return 0;
2316}
2317
2318static void
2319HelperSelectorsForTypoCorrection(
2320                      SmallVectorImpl<const ObjCMethodDecl *> &BestMethod,
2321                      StringRef Typo, const ObjCMethodDecl * Method) {
2322  const unsigned MaxEditDistance = 1;
2323  unsigned BestEditDistance = MaxEditDistance + 1;
2324  std::string MethodName = Method->getSelector().getAsString();
2325
2326  unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size());
2327  if (MinPossibleEditDistance > 0 &&
2328      Typo.size() / MinPossibleEditDistance < 1)
2329    return;
2330  unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance);
2331  if (EditDistance > MaxEditDistance)
2332    return;
2333  if (EditDistance == BestEditDistance)
2334    BestMethod.push_back(Method);
2335  else if (EditDistance < BestEditDistance) {
2336    BestMethod.clear();
2337    BestMethod.push_back(Method);
2338  }
2339}
2340
2341static bool HelperIsMethodInObjCType(Sema &S, Selector Sel,
2342                                     QualType ObjectType) {
2343  if (ObjectType.isNull())
2344    return true;
2345  if (S.LookupMethodInObjectType(Sel, ObjectType, true/*Instance method*/))
2346    return true;
2347  return S.LookupMethodInObjectType(Sel, ObjectType, false/*Class method*/) != 0;
2348}
2349
2350const ObjCMethodDecl *
2351Sema::SelectorsForTypoCorrection(Selector Sel,
2352                                 QualType ObjectType) {
2353  unsigned NumArgs = Sel.getNumArgs();
2354  SmallVector<const ObjCMethodDecl *, 8> Methods;
2355  bool ObjectIsId = true, ObjectIsClass = true;
2356  if (ObjectType.isNull())
2357    ObjectIsId = ObjectIsClass = false;
2358  else if (!ObjectType->isObjCObjectPointerType())
2359    return 0;
2360  else if (const ObjCObjectPointerType *ObjCPtr =
2361           ObjectType->getAsObjCInterfacePointerType()) {
2362    ObjectType = QualType(ObjCPtr->getInterfaceType(), 0);
2363    ObjectIsId = ObjectIsClass = false;
2364  }
2365  else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType())
2366    ObjectIsClass = false;
2367  else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType())
2368    ObjectIsId = false;
2369  else
2370    return 0;
2371
2372  for (GlobalMethodPool::iterator b = MethodPool.begin(),
2373       e = MethodPool.end(); b != e; b++) {
2374    // instance methods
2375    for (ObjCMethodList *M = &b->second.first; M; M=M->getNext())
2376      if (M->Method &&
2377          (M->Method->getSelector().getNumArgs() == NumArgs) &&
2378          (M->Method->getSelector() != Sel)) {
2379        if (ObjectIsId)
2380          Methods.push_back(M->Method);
2381        else if (!ObjectIsClass &&
2382                 HelperIsMethodInObjCType(*this, M->Method->getSelector(), ObjectType))
2383          Methods.push_back(M->Method);
2384      }
2385    // class methods
2386    for (ObjCMethodList *M = &b->second.second; M; M=M->getNext())
2387      if (M->Method &&
2388          (M->Method->getSelector().getNumArgs() == NumArgs) &&
2389          (M->Method->getSelector() != Sel)) {
2390        if (ObjectIsClass)
2391          Methods.push_back(M->Method);
2392        else if (!ObjectIsId &&
2393                 HelperIsMethodInObjCType(*this, M->Method->getSelector(), ObjectType))
2394          Methods.push_back(M->Method);
2395      }
2396  }
2397
2398  SmallVector<const ObjCMethodDecl *, 8> SelectedMethods;
2399  for (unsigned i = 0, e = Methods.size(); i < e; i++) {
2400    HelperSelectorsForTypoCorrection(SelectedMethods,
2401                                     Sel.getAsString(), Methods[i]);
2402  }
2403  return (SelectedMethods.size() == 1) ? SelectedMethods[0] : NULL;
2404}
2405
2406static void
2407HelperToDiagnoseMismatchedMethodsInGlobalPool(Sema &S,
2408                                              ObjCMethodList &MethList) {
2409  ObjCMethodList *M = &MethList;
2410  ObjCMethodDecl *TargetMethod = M->Method;
2411  while (TargetMethod &&
2412         isa<ObjCImplDecl>(TargetMethod->getDeclContext())) {
2413    M = M->getNext();
2414    TargetMethod = M ? M->Method : 0;
2415  }
2416  if (!TargetMethod)
2417    return;
2418  bool FirstTime = true;
2419  for (M = M->getNext(); M; M=M->getNext()) {
2420    ObjCMethodDecl *MatchingMethodDecl = M->Method;
2421    if (isa<ObjCImplDecl>(MatchingMethodDecl->getDeclContext()))
2422      continue;
2423    if (!S.MatchTwoMethodDeclarations(TargetMethod,
2424                                      MatchingMethodDecl, Sema::MMS_loose)) {
2425      if (FirstTime) {
2426        FirstTime = false;
2427        S.Diag(TargetMethod->getLocation(), diag::warning_multiple_selectors)
2428        << TargetMethod->getSelector();
2429      }
2430      S.Diag(MatchingMethodDecl->getLocation(), diag::note_also_found);
2431    }
2432  }
2433}
2434
2435void Sema::DiagnoseMismatchedMethodsInGlobalPool() {
2436  unsigned DIAG = diag::warning_multiple_selectors;
2437  if (Diags.getDiagnosticLevel(DIAG, SourceLocation())
2438      == DiagnosticsEngine::Ignored)
2439    return;
2440  for (GlobalMethodPool::iterator b = MethodPool.begin(),
2441       e = MethodPool.end(); b != e; b++) {
2442    // first, instance methods
2443    ObjCMethodList &InstMethList = b->second.first;
2444    HelperToDiagnoseMismatchedMethodsInGlobalPool(*this, InstMethList);
2445    // second, class methods
2446    ObjCMethodList &ClsMethList = b->second.second;
2447    HelperToDiagnoseMismatchedMethodsInGlobalPool(*this, ClsMethList);
2448  }
2449}
2450
2451/// DiagnoseDuplicateIvars -
2452/// Check for duplicate ivars in the entire class at the start of
2453/// \@implementation. This becomes necesssary because class extension can
2454/// add ivars to a class in random order which will not be known until
2455/// class's \@implementation is seen.
2456void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
2457                                  ObjCInterfaceDecl *SID) {
2458  for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
2459       IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
2460    ObjCIvarDecl* Ivar = *IVI;
2461    if (Ivar->isInvalidDecl())
2462      continue;
2463    if (IdentifierInfo *II = Ivar->getIdentifier()) {
2464      ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
2465      if (prevIvar) {
2466        Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
2467        Diag(prevIvar->getLocation(), diag::note_previous_declaration);
2468        Ivar->setInvalidDecl();
2469      }
2470    }
2471  }
2472}
2473
2474Sema::ObjCContainerKind Sema::getObjCContainerKind() const {
2475  switch (CurContext->getDeclKind()) {
2476    case Decl::ObjCInterface:
2477      return Sema::OCK_Interface;
2478    case Decl::ObjCProtocol:
2479      return Sema::OCK_Protocol;
2480    case Decl::ObjCCategory:
2481      if (dyn_cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
2482        return Sema::OCK_ClassExtension;
2483      else
2484        return Sema::OCK_Category;
2485    case Decl::ObjCImplementation:
2486      return Sema::OCK_Implementation;
2487    case Decl::ObjCCategoryImpl:
2488      return Sema::OCK_CategoryImplementation;
2489
2490    default:
2491      return Sema::OCK_None;
2492  }
2493}
2494
2495// Note: For class/category implementations, allMethods is always null.
2496Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef<Decl *> allMethods,
2497                       ArrayRef<DeclGroupPtrTy> allTUVars) {
2498  if (getObjCContainerKind() == Sema::OCK_None)
2499    return 0;
2500
2501  assert(AtEnd.isValid() && "Invalid location for '@end'");
2502
2503  ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
2504  Decl *ClassDecl = cast<Decl>(OCD);
2505
2506  bool isInterfaceDeclKind =
2507        isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
2508         || isa<ObjCProtocolDecl>(ClassDecl);
2509  bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
2510
2511  // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
2512  llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
2513  llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
2514
2515  for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) {
2516    ObjCMethodDecl *Method =
2517      cast_or_null<ObjCMethodDecl>(allMethods[i]);
2518
2519    if (!Method) continue;  // Already issued a diagnostic.
2520    if (Method->isInstanceMethod()) {
2521      /// Check for instance method of the same name with incompatible types
2522      const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
2523      bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
2524                              : false;
2525      if ((isInterfaceDeclKind && PrevMethod && !match)
2526          || (checkIdenticalMethods && match)) {
2527          Diag(Method->getLocation(), diag::err_duplicate_method_decl)
2528            << Method->getDeclName();
2529          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2530        Method->setInvalidDecl();
2531      } else {
2532        if (PrevMethod) {
2533          Method->setAsRedeclaration(PrevMethod);
2534          if (!Context.getSourceManager().isInSystemHeader(
2535                 Method->getLocation()))
2536            Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
2537              << Method->getDeclName();
2538          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2539        }
2540        InsMap[Method->getSelector()] = Method;
2541        /// The following allows us to typecheck messages to "id".
2542        AddInstanceMethodToGlobalPool(Method);
2543      }
2544    } else {
2545      /// Check for class method of the same name with incompatible types
2546      const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
2547      bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
2548                              : false;
2549      if ((isInterfaceDeclKind && PrevMethod && !match)
2550          || (checkIdenticalMethods && match)) {
2551        Diag(Method->getLocation(), diag::err_duplicate_method_decl)
2552          << Method->getDeclName();
2553        Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2554        Method->setInvalidDecl();
2555      } else {
2556        if (PrevMethod) {
2557          Method->setAsRedeclaration(PrevMethod);
2558          if (!Context.getSourceManager().isInSystemHeader(
2559                 Method->getLocation()))
2560            Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
2561              << Method->getDeclName();
2562          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2563        }
2564        ClsMap[Method->getSelector()] = Method;
2565        AddFactoryMethodToGlobalPool(Method);
2566      }
2567    }
2568  }
2569  if (isa<ObjCInterfaceDecl>(ClassDecl)) {
2570    // Nothing to do here.
2571  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
2572    // Categories are used to extend the class by declaring new methods.
2573    // By the same token, they are also used to add new properties. No
2574    // need to compare the added property to those in the class.
2575
2576    if (C->IsClassExtension()) {
2577      ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
2578      DiagnoseClassExtensionDupMethods(C, CCPrimary);
2579    }
2580  }
2581  if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
2582    if (CDecl->getIdentifier())
2583      // ProcessPropertyDecl is responsible for diagnosing conflicts with any
2584      // user-defined setter/getter. It also synthesizes setter/getter methods
2585      // and adds them to the DeclContext and global method pools.
2586      for (ObjCContainerDecl::prop_iterator I = CDecl->prop_begin(),
2587                                            E = CDecl->prop_end();
2588           I != E; ++I)
2589        ProcessPropertyDecl(*I, CDecl);
2590    CDecl->setAtEndRange(AtEnd);
2591  }
2592  if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
2593    IC->setAtEndRange(AtEnd);
2594    if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
2595      // Any property declared in a class extension might have user
2596      // declared setter or getter in current class extension or one
2597      // of the other class extensions. Mark them as synthesized as
2598      // property will be synthesized when property with same name is
2599      // seen in the @implementation.
2600      for (ObjCInterfaceDecl::visible_extensions_iterator
2601             Ext = IDecl->visible_extensions_begin(),
2602             ExtEnd = IDecl->visible_extensions_end();
2603           Ext != ExtEnd; ++Ext) {
2604        for (ObjCContainerDecl::prop_iterator I = Ext->prop_begin(),
2605             E = Ext->prop_end(); I != E; ++I) {
2606          ObjCPropertyDecl *Property = *I;
2607          // Skip over properties declared @dynamic
2608          if (const ObjCPropertyImplDecl *PIDecl
2609              = IC->FindPropertyImplDecl(Property->getIdentifier()))
2610            if (PIDecl->getPropertyImplementation()
2611                  == ObjCPropertyImplDecl::Dynamic)
2612              continue;
2613
2614          for (ObjCInterfaceDecl::visible_extensions_iterator
2615                 Ext = IDecl->visible_extensions_begin(),
2616                 ExtEnd = IDecl->visible_extensions_end();
2617               Ext != ExtEnd; ++Ext) {
2618            if (ObjCMethodDecl *GetterMethod
2619                  = Ext->getInstanceMethod(Property->getGetterName()))
2620              GetterMethod->setPropertyAccessor(true);
2621            if (!Property->isReadOnly())
2622              if (ObjCMethodDecl *SetterMethod
2623                    = Ext->getInstanceMethod(Property->getSetterName()))
2624                SetterMethod->setPropertyAccessor(true);
2625          }
2626        }
2627      }
2628      ImplMethodsVsClassMethods(S, IC, IDecl);
2629      AtomicPropertySetterGetterRules(IC, IDecl);
2630      DiagnoseOwningPropertyGetterSynthesis(IC);
2631
2632      bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
2633      if (IDecl->getSuperClass() == NULL) {
2634        // This class has no superclass, so check that it has been marked with
2635        // __attribute((objc_root_class)).
2636        if (!HasRootClassAttr) {
2637          SourceLocation DeclLoc(IDecl->getLocation());
2638          SourceLocation SuperClassLoc(PP.getLocForEndOfToken(DeclLoc));
2639          Diag(DeclLoc, diag::warn_objc_root_class_missing)
2640            << IDecl->getIdentifier();
2641          // See if NSObject is in the current scope, and if it is, suggest
2642          // adding " : NSObject " to the class declaration.
2643          NamedDecl *IF = LookupSingleName(TUScope,
2644                                           NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
2645                                           DeclLoc, LookupOrdinaryName);
2646          ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
2647          if (NSObjectDecl && NSObjectDecl->getDefinition()) {
2648            Diag(SuperClassLoc, diag::note_objc_needs_superclass)
2649              << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
2650          } else {
2651            Diag(SuperClassLoc, diag::note_objc_needs_superclass);
2652          }
2653        }
2654      } else if (HasRootClassAttr) {
2655        // Complain that only root classes may have this attribute.
2656        Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
2657      }
2658
2659      if (LangOpts.ObjCRuntime.isNonFragile()) {
2660        while (IDecl->getSuperClass()) {
2661          DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
2662          IDecl = IDecl->getSuperClass();
2663        }
2664      }
2665    }
2666    SetIvarInitializers(IC);
2667  } else if (ObjCCategoryImplDecl* CatImplClass =
2668                                   dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
2669    CatImplClass->setAtEndRange(AtEnd);
2670
2671    // Find category interface decl and then check that all methods declared
2672    // in this interface are implemented in the category @implementation.
2673    if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
2674      if (ObjCCategoryDecl *Cat
2675            = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) {
2676        ImplMethodsVsClassMethods(S, CatImplClass, Cat);
2677      }
2678    }
2679  }
2680  if (isInterfaceDeclKind) {
2681    // Reject invalid vardecls.
2682    for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
2683      DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
2684      for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
2685        if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
2686          if (!VDecl->hasExternalStorage())
2687            Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
2688        }
2689    }
2690  }
2691  ActOnObjCContainerFinishDefinition();
2692
2693  for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
2694    DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
2695    for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
2696      (*I)->setTopLevelDeclInObjCContainer();
2697    Consumer.HandleTopLevelDeclInObjCContainer(DG);
2698  }
2699
2700  ActOnDocumentableDecl(ClassDecl);
2701  return ClassDecl;
2702}
2703
2704
2705/// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
2706/// objective-c's type qualifier from the parser version of the same info.
2707static Decl::ObjCDeclQualifier
2708CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
2709  return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
2710}
2711
2712static inline
2713unsigned countAlignAttr(const AttrVec &A) {
2714  unsigned count=0;
2715  for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i)
2716    if ((*i)->getKind() == attr::Aligned)
2717      ++count;
2718  return count;
2719}
2720
2721static inline
2722bool containsInvalidMethodImplAttribute(ObjCMethodDecl *IMD,
2723                                        const AttrVec &A) {
2724  // If method is only declared in implementation (private method),
2725  // No need to issue any diagnostics on method definition with attributes.
2726  if (!IMD)
2727    return false;
2728
2729  // method declared in interface has no attribute.
2730  // But implementation has attributes. This is invalid.
2731  // Except when implementation has 'Align' attribute which is
2732  // immaterial to method declared in interface.
2733  if (!IMD->hasAttrs())
2734    return (A.size() > countAlignAttr(A));
2735
2736  const AttrVec &D = IMD->getAttrs();
2737
2738  unsigned countAlignOnImpl = countAlignAttr(A);
2739  if (!countAlignOnImpl && (A.size() != D.size()))
2740    return true;
2741  else if (countAlignOnImpl) {
2742    unsigned countAlignOnDecl = countAlignAttr(D);
2743    if (countAlignOnDecl && (A.size() != D.size()))
2744      return true;
2745    else if (!countAlignOnDecl &&
2746             ((A.size()-countAlignOnImpl) != D.size()))
2747      return true;
2748  }
2749
2750  // attributes on method declaration and definition must match exactly.
2751  // Note that we have at most a couple of attributes on methods, so this
2752  // n*n search is good enough.
2753  for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i) {
2754    if ((*i)->getKind() == attr::Aligned)
2755      continue;
2756    bool match = false;
2757    for (AttrVec::const_iterator i1 = D.begin(), e1 = D.end(); i1 != e1; ++i1) {
2758      if ((*i)->getKind() == (*i1)->getKind()) {
2759        match = true;
2760        break;
2761      }
2762    }
2763    if (!match)
2764      return true;
2765  }
2766
2767  return false;
2768}
2769
2770/// \brief Check whether the declared result type of the given Objective-C
2771/// method declaration is compatible with the method's class.
2772///
2773static Sema::ResultTypeCompatibilityKind
2774CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
2775                                    ObjCInterfaceDecl *CurrentClass) {
2776  QualType ResultType = Method->getResultType();
2777
2778  // If an Objective-C method inherits its related result type, then its
2779  // declared result type must be compatible with its own class type. The
2780  // declared result type is compatible if:
2781  if (const ObjCObjectPointerType *ResultObjectType
2782                                = ResultType->getAs<ObjCObjectPointerType>()) {
2783    //   - it is id or qualified id, or
2784    if (ResultObjectType->isObjCIdType() ||
2785        ResultObjectType->isObjCQualifiedIdType())
2786      return Sema::RTC_Compatible;
2787
2788    if (CurrentClass) {
2789      if (ObjCInterfaceDecl *ResultClass
2790                                      = ResultObjectType->getInterfaceDecl()) {
2791        //   - it is the same as the method's class type, or
2792        if (declaresSameEntity(CurrentClass, ResultClass))
2793          return Sema::RTC_Compatible;
2794
2795        //   - it is a superclass of the method's class type
2796        if (ResultClass->isSuperClassOf(CurrentClass))
2797          return Sema::RTC_Compatible;
2798      }
2799    } else {
2800      // Any Objective-C pointer type might be acceptable for a protocol
2801      // method; we just don't know.
2802      return Sema::RTC_Unknown;
2803    }
2804  }
2805
2806  return Sema::RTC_Incompatible;
2807}
2808
2809namespace {
2810/// A helper class for searching for methods which a particular method
2811/// overrides.
2812class OverrideSearch {
2813public:
2814  Sema &S;
2815  ObjCMethodDecl *Method;
2816  llvm::SmallPtrSet<ObjCMethodDecl*, 4> Overridden;
2817  bool Recursive;
2818
2819public:
2820  OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) {
2821    Selector selector = method->getSelector();
2822
2823    // Bypass this search if we've never seen an instance/class method
2824    // with this selector before.
2825    Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
2826    if (it == S.MethodPool.end()) {
2827      if (!S.getExternalSource()) return;
2828      S.ReadMethodPool(selector);
2829
2830      it = S.MethodPool.find(selector);
2831      if (it == S.MethodPool.end())
2832        return;
2833    }
2834    ObjCMethodList &list =
2835      method->isInstanceMethod() ? it->second.first : it->second.second;
2836    if (!list.Method) return;
2837
2838    ObjCContainerDecl *container
2839      = cast<ObjCContainerDecl>(method->getDeclContext());
2840
2841    // Prevent the search from reaching this container again.  This is
2842    // important with categories, which override methods from the
2843    // interface and each other.
2844    if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(container)) {
2845      searchFromContainer(container);
2846      if (ObjCInterfaceDecl *Interface = Category->getClassInterface())
2847        searchFromContainer(Interface);
2848    } else {
2849      searchFromContainer(container);
2850    }
2851  }
2852
2853  typedef llvm::SmallPtrSet<ObjCMethodDecl*, 128>::iterator iterator;
2854  iterator begin() const { return Overridden.begin(); }
2855  iterator end() const { return Overridden.end(); }
2856
2857private:
2858  void searchFromContainer(ObjCContainerDecl *container) {
2859    if (container->isInvalidDecl()) return;
2860
2861    switch (container->getDeclKind()) {
2862#define OBJCCONTAINER(type, base) \
2863    case Decl::type: \
2864      searchFrom(cast<type##Decl>(container)); \
2865      break;
2866#define ABSTRACT_DECL(expansion)
2867#define DECL(type, base) \
2868    case Decl::type:
2869#include "clang/AST/DeclNodes.inc"
2870      llvm_unreachable("not an ObjC container!");
2871    }
2872  }
2873
2874  void searchFrom(ObjCProtocolDecl *protocol) {
2875    if (!protocol->hasDefinition())
2876      return;
2877
2878    // A method in a protocol declaration overrides declarations from
2879    // referenced ("parent") protocols.
2880    search(protocol->getReferencedProtocols());
2881  }
2882
2883  void searchFrom(ObjCCategoryDecl *category) {
2884    // A method in a category declaration overrides declarations from
2885    // the main class and from protocols the category references.
2886    // The main class is handled in the constructor.
2887    search(category->getReferencedProtocols());
2888  }
2889
2890  void searchFrom(ObjCCategoryImplDecl *impl) {
2891    // A method in a category definition that has a category
2892    // declaration overrides declarations from the category
2893    // declaration.
2894    if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
2895      search(category);
2896      if (ObjCInterfaceDecl *Interface = category->getClassInterface())
2897        search(Interface);
2898
2899    // Otherwise it overrides declarations from the class.
2900    } else if (ObjCInterfaceDecl *Interface = impl->getClassInterface()) {
2901      search(Interface);
2902    }
2903  }
2904
2905  void searchFrom(ObjCInterfaceDecl *iface) {
2906    // A method in a class declaration overrides declarations from
2907    if (!iface->hasDefinition())
2908      return;
2909
2910    //   - categories,
2911    for (ObjCInterfaceDecl::known_categories_iterator
2912           cat = iface->known_categories_begin(),
2913           catEnd = iface->known_categories_end();
2914         cat != catEnd; ++cat) {
2915      search(*cat);
2916    }
2917
2918    //   - the super class, and
2919    if (ObjCInterfaceDecl *super = iface->getSuperClass())
2920      search(super);
2921
2922    //   - any referenced protocols.
2923    search(iface->getReferencedProtocols());
2924  }
2925
2926  void searchFrom(ObjCImplementationDecl *impl) {
2927    // A method in a class implementation overrides declarations from
2928    // the class interface.
2929    if (ObjCInterfaceDecl *Interface = impl->getClassInterface())
2930      search(Interface);
2931  }
2932
2933
2934  void search(const ObjCProtocolList &protocols) {
2935    for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end();
2936         i != e; ++i)
2937      search(*i);
2938  }
2939
2940  void search(ObjCContainerDecl *container) {
2941    // Check for a method in this container which matches this selector.
2942    ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
2943                                                Method->isInstanceMethod(),
2944                                                /*AllowHidden=*/true);
2945
2946    // If we find one, record it and bail out.
2947    if (meth) {
2948      Overridden.insert(meth);
2949      return;
2950    }
2951
2952    // Otherwise, search for methods that a hypothetical method here
2953    // would have overridden.
2954
2955    // Note that we're now in a recursive case.
2956    Recursive = true;
2957
2958    searchFromContainer(container);
2959  }
2960};
2961}
2962
2963void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
2964                                    ObjCInterfaceDecl *CurrentClass,
2965                                    ResultTypeCompatibilityKind RTC) {
2966  // Search for overridden methods and merge information down from them.
2967  OverrideSearch overrides(*this, ObjCMethod);
2968  // Keep track if the method overrides any method in the class's base classes,
2969  // its protocols, or its categories' protocols; we will keep that info
2970  // in the ObjCMethodDecl.
2971  // For this info, a method in an implementation is not considered as
2972  // overriding the same method in the interface or its categories.
2973  bool hasOverriddenMethodsInBaseOrProtocol = false;
2974  for (OverrideSearch::iterator
2975         i = overrides.begin(), e = overrides.end(); i != e; ++i) {
2976    ObjCMethodDecl *overridden = *i;
2977
2978    if (!hasOverriddenMethodsInBaseOrProtocol) {
2979      if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
2980          CurrentClass != overridden->getClassInterface() ||
2981          overridden->isOverriding()) {
2982        hasOverriddenMethodsInBaseOrProtocol = true;
2983
2984      } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) {
2985        // OverrideSearch will return as "overridden" the same method in the
2986        // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to
2987        // check whether a category of a base class introduced a method with the
2988        // same selector, after the interface method declaration.
2989        // To avoid unnecessary lookups in the majority of cases, we use the
2990        // extra info bits in GlobalMethodPool to check whether there were any
2991        // category methods with this selector.
2992        GlobalMethodPool::iterator It =
2993            MethodPool.find(ObjCMethod->getSelector());
2994        if (It != MethodPool.end()) {
2995          ObjCMethodList &List =
2996            ObjCMethod->isInstanceMethod()? It->second.first: It->second.second;
2997          unsigned CategCount = List.getBits();
2998          if (CategCount > 0) {
2999            // If the method is in a category we'll do lookup if there were at
3000            // least 2 category methods recorded, otherwise only one will do.
3001            if (CategCount > 1 ||
3002                !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) {
3003              OverrideSearch overrides(*this, overridden);
3004              for (OverrideSearch::iterator
3005                     OI= overrides.begin(), OE= overrides.end(); OI!=OE; ++OI) {
3006                ObjCMethodDecl *SuperOverridden = *OI;
3007                if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) ||
3008                    CurrentClass != SuperOverridden->getClassInterface()) {
3009                  hasOverriddenMethodsInBaseOrProtocol = true;
3010                  overridden->setOverriding(true);
3011                  break;
3012                }
3013              }
3014            }
3015          }
3016        }
3017      }
3018    }
3019
3020    // Propagate down the 'related result type' bit from overridden methods.
3021    if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType())
3022      ObjCMethod->SetRelatedResultType();
3023
3024    // Then merge the declarations.
3025    mergeObjCMethodDecls(ObjCMethod, overridden);
3026
3027    if (ObjCMethod->isImplicit() && overridden->isImplicit())
3028      continue; // Conflicting properties are detected elsewhere.
3029
3030    // Check for overriding methods
3031    if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
3032        isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
3033      CheckConflictingOverridingMethod(ObjCMethod, overridden,
3034              isa<ObjCProtocolDecl>(overridden->getDeclContext()));
3035
3036    if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
3037        isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
3038        !overridden->isImplicit() /* not meant for properties */) {
3039      ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
3040                                          E = ObjCMethod->param_end();
3041      ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
3042                                     PrevE = overridden->param_end();
3043      for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
3044        assert(PrevI != overridden->param_end() && "Param mismatch");
3045        QualType T1 = Context.getCanonicalType((*ParamI)->getType());
3046        QualType T2 = Context.getCanonicalType((*PrevI)->getType());
3047        // If type of argument of method in this class does not match its
3048        // respective argument type in the super class method, issue warning;
3049        if (!Context.typesAreCompatible(T1, T2)) {
3050          Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
3051            << T1 << T2;
3052          Diag(overridden->getLocation(), diag::note_previous_declaration);
3053          break;
3054        }
3055      }
3056    }
3057  }
3058
3059  ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
3060}
3061
3062Decl *Sema::ActOnMethodDeclaration(
3063    Scope *S,
3064    SourceLocation MethodLoc, SourceLocation EndLoc,
3065    tok::TokenKind MethodType,
3066    ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
3067    ArrayRef<SourceLocation> SelectorLocs,
3068    Selector Sel,
3069    // optional arguments. The number of types/arguments is obtained
3070    // from the Sel.getNumArgs().
3071    ObjCArgInfo *ArgInfo,
3072    DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
3073    AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind,
3074    bool isVariadic, bool MethodDefinition) {
3075  // Make sure we can establish a context for the method.
3076  if (!CurContext->isObjCContainer()) {
3077    Diag(MethodLoc, diag::error_missing_method_context);
3078    return 0;
3079  }
3080  ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
3081  Decl *ClassDecl = cast<Decl>(OCD);
3082  QualType resultDeclType;
3083
3084  bool HasRelatedResultType = false;
3085  TypeSourceInfo *ResultTInfo = 0;
3086  if (ReturnType) {
3087    resultDeclType = GetTypeFromParser(ReturnType, &ResultTInfo);
3088
3089    if (CheckFunctionReturnType(resultDeclType, MethodLoc))
3090      return 0;
3091
3092    HasRelatedResultType = (resultDeclType == Context.getObjCInstanceType());
3093  } else { // get the type for "id".
3094    resultDeclType = Context.getObjCIdType();
3095    Diag(MethodLoc, diag::warn_missing_method_return_type)
3096      << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
3097  }
3098
3099  ObjCMethodDecl* ObjCMethod =
3100    ObjCMethodDecl::Create(Context, MethodLoc, EndLoc, Sel,
3101                           resultDeclType,
3102                           ResultTInfo,
3103                           CurContext,
3104                           MethodType == tok::minus, isVariadic,
3105                           /*isPropertyAccessor=*/false,
3106                           /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
3107                           MethodDeclKind == tok::objc_optional
3108                             ? ObjCMethodDecl::Optional
3109                             : ObjCMethodDecl::Required,
3110                           HasRelatedResultType);
3111
3112  SmallVector<ParmVarDecl*, 16> Params;
3113
3114  for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
3115    QualType ArgType;
3116    TypeSourceInfo *DI;
3117
3118    if (!ArgInfo[i].Type) {
3119      ArgType = Context.getObjCIdType();
3120      DI = 0;
3121    } else {
3122      ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
3123    }
3124
3125    LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
3126                   LookupOrdinaryName, ForRedeclaration);
3127    LookupName(R, S);
3128    if (R.isSingleResult()) {
3129      NamedDecl *PrevDecl = R.getFoundDecl();
3130      if (S->isDeclScope(PrevDecl)) {
3131        Diag(ArgInfo[i].NameLoc,
3132             (MethodDefinition ? diag::warn_method_param_redefinition
3133                               : diag::warn_method_param_declaration))
3134          << ArgInfo[i].Name;
3135        Diag(PrevDecl->getLocation(),
3136             diag::note_previous_declaration);
3137      }
3138    }
3139
3140    SourceLocation StartLoc = DI
3141      ? DI->getTypeLoc().getBeginLoc()
3142      : ArgInfo[i].NameLoc;
3143
3144    ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
3145                                        ArgInfo[i].NameLoc, ArgInfo[i].Name,
3146                                        ArgType, DI, SC_None);
3147
3148    Param->setObjCMethodScopeInfo(i);
3149
3150    Param->setObjCDeclQualifier(
3151      CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
3152
3153    // Apply the attributes to the parameter.
3154    ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
3155
3156    if (Param->hasAttr<BlocksAttr>()) {
3157      Diag(Param->getLocation(), diag::err_block_on_nonlocal);
3158      Param->setInvalidDecl();
3159    }
3160    S->AddDecl(Param);
3161    IdResolver.AddDecl(Param);
3162
3163    Params.push_back(Param);
3164  }
3165
3166  for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
3167    ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
3168    QualType ArgType = Param->getType();
3169    if (ArgType.isNull())
3170      ArgType = Context.getObjCIdType();
3171    else
3172      // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
3173      ArgType = Context.getAdjustedParameterType(ArgType);
3174
3175    Param->setDeclContext(ObjCMethod);
3176    Params.push_back(Param);
3177  }
3178
3179  ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
3180  ObjCMethod->setObjCDeclQualifier(
3181    CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
3182
3183  if (AttrList)
3184    ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
3185
3186  // Add the method now.
3187  const ObjCMethodDecl *PrevMethod = 0;
3188  if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
3189    if (MethodType == tok::minus) {
3190      PrevMethod = ImpDecl->getInstanceMethod(Sel);
3191      ImpDecl->addInstanceMethod(ObjCMethod);
3192    } else {
3193      PrevMethod = ImpDecl->getClassMethod(Sel);
3194      ImpDecl->addClassMethod(ObjCMethod);
3195    }
3196
3197    ObjCMethodDecl *IMD = 0;
3198    if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface())
3199      IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
3200                                ObjCMethod->isInstanceMethod());
3201    if (IMD && IMD->hasAttr<ObjCRequiresSuperAttr>() &&
3202        !ObjCMethod->hasAttr<ObjCRequiresSuperAttr>()) {
3203      // merge the attribute into implementation.
3204      ObjCMethod->addAttr(
3205        new (Context) ObjCRequiresSuperAttr(ObjCMethod->getLocation(), Context));
3206    }
3207    if (ObjCMethod->hasAttrs() &&
3208        containsInvalidMethodImplAttribute(IMD, ObjCMethod->getAttrs())) {
3209      SourceLocation MethodLoc = IMD->getLocation();
3210      if (!getSourceManager().isInSystemHeader(MethodLoc)) {
3211        Diag(EndLoc, diag::warn_attribute_method_def);
3212        Diag(MethodLoc, diag::note_method_declared_at)
3213          << ObjCMethod->getDeclName();
3214      }
3215    }
3216  } else {
3217    cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
3218  }
3219
3220  if (PrevMethod) {
3221    // You can never have two method definitions with the same name.
3222    Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
3223      << ObjCMethod->getDeclName();
3224    Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3225    ObjCMethod->setInvalidDecl();
3226    return ObjCMethod;
3227  }
3228
3229  // If this Objective-C method does not have a related result type, but we
3230  // are allowed to infer related result types, try to do so based on the
3231  // method family.
3232  ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
3233  if (!CurrentClass) {
3234    if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
3235      CurrentClass = Cat->getClassInterface();
3236    else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
3237      CurrentClass = Impl->getClassInterface();
3238    else if (ObjCCategoryImplDecl *CatImpl
3239                                   = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
3240      CurrentClass = CatImpl->getClassInterface();
3241  }
3242
3243  ResultTypeCompatibilityKind RTC
3244    = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
3245
3246  CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
3247
3248  bool ARCError = false;
3249  if (getLangOpts().ObjCAutoRefCount)
3250    ARCError = CheckARCMethodDecl(ObjCMethod);
3251
3252  // Infer the related result type when possible.
3253  if (!ARCError && RTC == Sema::RTC_Compatible &&
3254      !ObjCMethod->hasRelatedResultType() &&
3255      LangOpts.ObjCInferRelatedResultType) {
3256    bool InferRelatedResultType = false;
3257    switch (ObjCMethod->getMethodFamily()) {
3258    case OMF_None:
3259    case OMF_copy:
3260    case OMF_dealloc:
3261    case OMF_finalize:
3262    case OMF_mutableCopy:
3263    case OMF_release:
3264    case OMF_retainCount:
3265    case OMF_performSelector:
3266      break;
3267
3268    case OMF_alloc:
3269    case OMF_new:
3270      InferRelatedResultType = ObjCMethod->isClassMethod();
3271      break;
3272
3273    case OMF_init:
3274    case OMF_autorelease:
3275    case OMF_retain:
3276    case OMF_self:
3277      InferRelatedResultType = ObjCMethod->isInstanceMethod();
3278      break;
3279    }
3280
3281    if (InferRelatedResultType)
3282      ObjCMethod->SetRelatedResultType();
3283  }
3284
3285  ActOnDocumentableDecl(ObjCMethod);
3286
3287  return ObjCMethod;
3288}
3289
3290bool Sema::CheckObjCDeclScope(Decl *D) {
3291  // Following is also an error. But it is caused by a missing @end
3292  // and diagnostic is issued elsewhere.
3293  if (isa<ObjCContainerDecl>(CurContext->getRedeclContext()))
3294    return false;
3295
3296  // If we switched context to translation unit while we are still lexically in
3297  // an objc container, it means the parser missed emitting an error.
3298  if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext()))
3299    return false;
3300
3301  Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
3302  D->setInvalidDecl();
3303
3304  return true;
3305}
3306
3307/// Called whenever \@defs(ClassName) is encountered in the source.  Inserts the
3308/// instance variables of ClassName into Decls.
3309void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
3310                     IdentifierInfo *ClassName,
3311                     SmallVectorImpl<Decl*> &Decls) {
3312  // Check that ClassName is a valid class
3313  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
3314  if (!Class) {
3315    Diag(DeclStart, diag::err_undef_interface) << ClassName;
3316    return;
3317  }
3318  if (LangOpts.ObjCRuntime.isNonFragile()) {
3319    Diag(DeclStart, diag::err_atdef_nonfragile_interface);
3320    return;
3321  }
3322
3323  // Collect the instance variables
3324  SmallVector<const ObjCIvarDecl*, 32> Ivars;
3325  Context.DeepCollectObjCIvars(Class, true, Ivars);
3326  // For each ivar, create a fresh ObjCAtDefsFieldDecl.
3327  for (unsigned i = 0; i < Ivars.size(); i++) {
3328    const FieldDecl* ID = cast<FieldDecl>(Ivars[i]);
3329    RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
3330    Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
3331                                           /*FIXME: StartL=*/ID->getLocation(),
3332                                           ID->getLocation(),
3333                                           ID->getIdentifier(), ID->getType(),
3334                                           ID->getBitWidth());
3335    Decls.push_back(FD);
3336  }
3337
3338  // Introduce all of these fields into the appropriate scope.
3339  for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
3340       D != Decls.end(); ++D) {
3341    FieldDecl *FD = cast<FieldDecl>(*D);
3342    if (getLangOpts().CPlusPlus)
3343      PushOnScopeChains(cast<FieldDecl>(FD), S);
3344    else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
3345      Record->addDecl(FD);
3346  }
3347}
3348
3349/// \brief Build a type-check a new Objective-C exception variable declaration.
3350VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
3351                                      SourceLocation StartLoc,
3352                                      SourceLocation IdLoc,
3353                                      IdentifierInfo *Id,
3354                                      bool Invalid) {
3355  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
3356  // duration shall not be qualified by an address-space qualifier."
3357  // Since all parameters have automatic store duration, they can not have
3358  // an address space.
3359  if (T.getAddressSpace() != 0) {
3360    Diag(IdLoc, diag::err_arg_with_address_space);
3361    Invalid = true;
3362  }
3363
3364  // An @catch parameter must be an unqualified object pointer type;
3365  // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
3366  if (Invalid) {
3367    // Don't do any further checking.
3368  } else if (T->isDependentType()) {
3369    // Okay: we don't know what this type will instantiate to.
3370  } else if (!T->isObjCObjectPointerType()) {
3371    Invalid = true;
3372    Diag(IdLoc ,diag::err_catch_param_not_objc_type);
3373  } else if (T->isObjCQualifiedIdType()) {
3374    Invalid = true;
3375    Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
3376  }
3377
3378  VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
3379                                 T, TInfo, SC_None);
3380  New->setExceptionVariable(true);
3381
3382  // In ARC, infer 'retaining' for variables of retainable type.
3383  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
3384    Invalid = true;
3385
3386  if (Invalid)
3387    New->setInvalidDecl();
3388  return New;
3389}
3390
3391Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
3392  const DeclSpec &DS = D.getDeclSpec();
3393
3394  // We allow the "register" storage class on exception variables because
3395  // GCC did, but we drop it completely. Any other storage class is an error.
3396  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3397    Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
3398      << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
3399  } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
3400    Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
3401      << DeclSpec::getSpecifierName(SCS);
3402  }
3403  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
3404    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
3405         diag::err_invalid_thread)
3406     << DeclSpec::getSpecifierName(TSCS);
3407  D.getMutableDeclSpec().ClearStorageClassSpecs();
3408
3409  DiagnoseFunctionSpecifiers(D.getDeclSpec());
3410
3411  // Check that there are no default arguments inside the type of this
3412  // exception object (C++ only).
3413  if (getLangOpts().CPlusPlus)
3414    CheckExtraCXXDefaultArguments(D);
3415
3416  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3417  QualType ExceptionType = TInfo->getType();
3418
3419  VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
3420                                        D.getSourceRange().getBegin(),
3421                                        D.getIdentifierLoc(),
3422                                        D.getIdentifier(),
3423                                        D.isInvalidType());
3424
3425  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3426  if (D.getCXXScopeSpec().isSet()) {
3427    Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
3428      << D.getCXXScopeSpec().getRange();
3429    New->setInvalidDecl();
3430  }
3431
3432  // Add the parameter declaration into this scope.
3433  S->AddDecl(New);
3434  if (D.getIdentifier())
3435    IdResolver.AddDecl(New);
3436
3437  ProcessDeclAttributes(S, New, D);
3438
3439  if (New->hasAttr<BlocksAttr>())
3440    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3441  return New;
3442}
3443
3444/// CollectIvarsToConstructOrDestruct - Collect those ivars which require
3445/// initialization.
3446void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
3447                                SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
3448  for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
3449       Iv= Iv->getNextIvar()) {
3450    QualType QT = Context.getBaseElementType(Iv->getType());
3451    if (QT->isRecordType())
3452      Ivars.push_back(Iv);
3453  }
3454}
3455
3456void Sema::DiagnoseUseOfUnimplementedSelectors() {
3457  // Load referenced selectors from the external source.
3458  if (ExternalSource) {
3459    SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
3460    ExternalSource->ReadReferencedSelectors(Sels);
3461    for (unsigned I = 0, N = Sels.size(); I != N; ++I)
3462      ReferencedSelectors[Sels[I].first] = Sels[I].second;
3463  }
3464
3465  DiagnoseMismatchedMethodsInGlobalPool();
3466
3467  // Warning will be issued only when selector table is
3468  // generated (which means there is at lease one implementation
3469  // in the TU). This is to match gcc's behavior.
3470  if (ReferencedSelectors.empty() ||
3471      !Context.AnyObjCImplementation())
3472    return;
3473  for (llvm::DenseMap<Selector, SourceLocation>::iterator S =
3474        ReferencedSelectors.begin(),
3475       E = ReferencedSelectors.end(); S != E; ++S) {
3476    Selector Sel = (*S).first;
3477    if (!LookupImplementedMethodInGlobalPool(Sel))
3478      Diag((*S).second, diag::warn_unimplemented_selector) << Sel;
3479  }
3480  return;
3481}
3482