1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#include "common.h"
11
12int EIGEN_BLAS_FUNC(gemv)(char *opa, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *incb, RealScalar *pbeta, RealScalar *pc, int *incc)
13{
14  typedef void (*functype)(int, int, const Scalar *, int, const Scalar *, int , Scalar *, int, Scalar);
15  static functype func[4];
16
17  static bool init = false;
18  if(!init)
19  {
20    for(int k=0; k<4; ++k)
21      func[k] = 0;
22
23    func[NOTR] = (internal::general_matrix_vector_product<int,Scalar,ColMajor,false,Scalar,false>::run);
24    func[TR  ] = (internal::general_matrix_vector_product<int,Scalar,RowMajor,false,Scalar,false>::run);
25    func[ADJ ] = (internal::general_matrix_vector_product<int,Scalar,RowMajor,Conj, Scalar,false>::run);
26
27    init = true;
28  }
29
30  Scalar* a = reinterpret_cast<Scalar*>(pa);
31  Scalar* b = reinterpret_cast<Scalar*>(pb);
32  Scalar* c = reinterpret_cast<Scalar*>(pc);
33  Scalar alpha  = *reinterpret_cast<Scalar*>(palpha);
34  Scalar beta   = *reinterpret_cast<Scalar*>(pbeta);
35
36  // check arguments
37  int info = 0;
38  if(OP(*opa)==INVALID)           info = 1;
39  else if(*m<0)                   info = 2;
40  else if(*n<0)                   info = 3;
41  else if(*lda<std::max(1,*m))    info = 6;
42  else if(*incb==0)               info = 8;
43  else if(*incc==0)               info = 11;
44  if(info)
45    return xerbla_(SCALAR_SUFFIX_UP"GEMV ",&info,6);
46
47  if(*m==0 || *n==0 || (alpha==Scalar(0) && beta==Scalar(1)))
48    return 0;
49
50  int actual_m = *m;
51  int actual_n = *n;
52  if(OP(*opa)!=NOTR)
53    std::swap(actual_m,actual_n);
54
55  Scalar* actual_b = get_compact_vector(b,actual_n,*incb);
56  Scalar* actual_c = get_compact_vector(c,actual_m,*incc);
57
58  if(beta!=Scalar(1))
59  {
60    if(beta==Scalar(0)) vector(actual_c, actual_m).setZero();
61    else                vector(actual_c, actual_m) *= beta;
62  }
63
64  int code = OP(*opa);
65  func[code](actual_m, actual_n, a, *lda, actual_b, 1, actual_c, 1, alpha);
66
67  if(actual_b!=b) delete[] actual_b;
68  if(actual_c!=c) delete[] copy_back(actual_c,c,actual_m,*incc);
69
70  return 1;
71}
72
73int EIGEN_BLAS_FUNC(trsv)(char *uplo, char *opa, char *diag, int *n, RealScalar *pa, int *lda, RealScalar *pb, int *incb)
74{
75  typedef void (*functype)(int, const Scalar *, int, Scalar *);
76  static functype func[16];
77
78  static bool init = false;
79  if(!init)
80  {
81    for(int k=0; k<16; ++k)
82      func[k] = 0;
83
84    func[NOTR  | (UP << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0,       false,ColMajor>::run);
85    func[TR    | (UP << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0,       false,RowMajor>::run);
86    func[ADJ   | (UP << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0,       Conj, RowMajor>::run);
87
88    func[NOTR  | (LO << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0,       false,ColMajor>::run);
89    func[TR    | (LO << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0,       false,RowMajor>::run);
90    func[ADJ   | (LO << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0,       Conj, RowMajor>::run);
91
92    func[NOTR  | (UP << 2) | (UNIT  << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,false,ColMajor>::run);
93    func[TR    | (UP << 2) | (UNIT  << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,false,RowMajor>::run);
94    func[ADJ   | (UP << 2) | (UNIT  << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,Conj, RowMajor>::run);
95
96    func[NOTR  | (LO << 2) | (UNIT  << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,false,ColMajor>::run);
97    func[TR    | (LO << 2) | (UNIT  << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,false,RowMajor>::run);
98    func[ADJ   | (LO << 2) | (UNIT  << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,Conj, RowMajor>::run);
99
100    init = true;
101  }
102
103  Scalar* a = reinterpret_cast<Scalar*>(pa);
104  Scalar* b = reinterpret_cast<Scalar*>(pb);
105
106  int info = 0;
107  if(UPLO(*uplo)==INVALID)                                            info = 1;
108  else if(OP(*opa)==INVALID)                                          info = 2;
109  else if(DIAG(*diag)==INVALID)                                       info = 3;
110  else if(*n<0)                                                       info = 4;
111  else if(*lda<std::max(1,*n))                                        info = 6;
112  else if(*incb==0)                                                   info = 8;
113  if(info)
114    return xerbla_(SCALAR_SUFFIX_UP"TRSV ",&info,6);
115
116  Scalar* actual_b = get_compact_vector(b,*n,*incb);
117
118  int code = OP(*opa) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3);
119  func[code](*n, a, *lda, actual_b);
120
121  if(actual_b!=b) delete[] copy_back(actual_b,b,*n,*incb);
122
123  return 0;
124}
125
126
127
128int EIGEN_BLAS_FUNC(trmv)(char *uplo, char *opa, char *diag, int *n, RealScalar *pa, int *lda, RealScalar *pb, int *incb)
129{
130  typedef void (*functype)(int, int, const Scalar *, int, const Scalar *, int, Scalar *, int, Scalar);
131  static functype func[16];
132
133  static bool init = false;
134  if(!init)
135  {
136    for(int k=0; k<16; ++k)
137      func[k] = 0;
138
139    func[NOTR  | (UP << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Upper|0,       Scalar,false,Scalar,false,ColMajor>::run);
140    func[TR    | (UP << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Lower|0,       Scalar,false,Scalar,false,RowMajor>::run);
141    func[ADJ   | (UP << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Lower|0,       Scalar,Conj, Scalar,false,RowMajor>::run);
142
143    func[NOTR  | (LO << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Lower|0,       Scalar,false,Scalar,false,ColMajor>::run);
144    func[TR    | (LO << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Upper|0,       Scalar,false,Scalar,false,RowMajor>::run);
145    func[ADJ   | (LO << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Upper|0,       Scalar,Conj, Scalar,false,RowMajor>::run);
146
147    func[NOTR  | (UP << 2) | (UNIT  << 3)] = (internal::triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,false,Scalar,false,ColMajor>::run);
148    func[TR    | (UP << 2) | (UNIT  << 3)] = (internal::triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,false,Scalar,false,RowMajor>::run);
149    func[ADJ   | (UP << 2) | (UNIT  << 3)] = (internal::triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,Conj, Scalar,false,RowMajor>::run);
150
151    func[NOTR  | (LO << 2) | (UNIT  << 3)] = (internal::triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,false,Scalar,false,ColMajor>::run);
152    func[TR    | (LO << 2) | (UNIT  << 3)] = (internal::triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,false,Scalar,false,RowMajor>::run);
153    func[ADJ   | (LO << 2) | (UNIT  << 3)] = (internal::triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,Conj, Scalar,false,RowMajor>::run);
154
155    init = true;
156  }
157
158  Scalar* a = reinterpret_cast<Scalar*>(pa);
159  Scalar* b = reinterpret_cast<Scalar*>(pb);
160
161  int info = 0;
162  if(UPLO(*uplo)==INVALID)                                            info = 1;
163  else if(OP(*opa)==INVALID)                                          info = 2;
164  else if(DIAG(*diag)==INVALID)                                       info = 3;
165  else if(*n<0)                                                       info = 4;
166  else if(*lda<std::max(1,*n))                                        info = 6;
167  else if(*incb==0)                                                   info = 8;
168  if(info)
169    return xerbla_(SCALAR_SUFFIX_UP"TRMV ",&info,6);
170
171  if(*n==0)
172    return 1;
173
174  Scalar* actual_b = get_compact_vector(b,*n,*incb);
175  Matrix<Scalar,Dynamic,1> res(*n);
176  res.setZero();
177
178  int code = OP(*opa) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3);
179  if(code>=16 || func[code]==0)
180    return 0;
181
182  func[code](*n, *n, a, *lda, actual_b, 1, res.data(), 1, Scalar(1));
183
184  copy_back(res.data(),b,*n,*incb);
185  if(actual_b!=b) delete[] actual_b;
186
187  return 0;
188}
189
190/**  GBMV  performs one of the matrix-vector operations
191  *
192  *     y := alpha*A*x + beta*y,   or   y := alpha*A'*x + beta*y,
193  *
194  *  where alpha and beta are scalars, x and y are vectors and A is an
195  *  m by n band matrix, with kl sub-diagonals and ku super-diagonals.
196  */
197int EIGEN_BLAS_FUNC(gbmv)(char *trans, int *m, int *n, int *kl, int *ku, RealScalar *palpha, RealScalar *pa, int *lda,
198                          RealScalar *px, int *incx, RealScalar *pbeta, RealScalar *py, int *incy)
199{
200  Scalar* a = reinterpret_cast<Scalar*>(pa);
201  Scalar* x = reinterpret_cast<Scalar*>(px);
202  Scalar* y = reinterpret_cast<Scalar*>(py);
203  Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
204  Scalar beta = *reinterpret_cast<Scalar*>(pbeta);
205  int coeff_rows = *kl+*ku+1;
206
207  int info = 0;
208       if(OP(*trans)==INVALID)                                        info = 1;
209  else if(*m<0)                                                       info = 2;
210  else if(*n<0)                                                       info = 3;
211  else if(*kl<0)                                                      info = 4;
212  else if(*ku<0)                                                      info = 5;
213  else if(*lda<coeff_rows)                                            info = 8;
214  else if(*incx==0)                                                   info = 10;
215  else if(*incy==0)                                                   info = 13;
216  if(info)
217    return xerbla_(SCALAR_SUFFIX_UP"GBMV ",&info,6);
218
219  if(*m==0 || *n==0 || (alpha==Scalar(0) && beta==Scalar(1)))
220    return 0;
221
222  int actual_m = *m;
223  int actual_n = *n;
224  if(OP(*trans)!=NOTR)
225    std::swap(actual_m,actual_n);
226
227  Scalar* actual_x = get_compact_vector(x,actual_n,*incx);
228  Scalar* actual_y = get_compact_vector(y,actual_m,*incy);
229
230  if(beta!=Scalar(1))
231  {
232    if(beta==Scalar(0)) vector(actual_y, actual_m).setZero();
233    else                vector(actual_y, actual_m) *= beta;
234  }
235
236  MatrixType mat_coeffs(a,coeff_rows,*n,*lda);
237
238  int nb = std::min(*n,(*m)+(*ku));
239  for(int j=0; j<nb; ++j)
240  {
241    int start = std::max(0,j - *ku);
242    int end = std::min((*m)-1,j + *kl);
243    int len = end - start + 1;
244    int offset = (*ku) - j + start;
245    if(OP(*trans)==NOTR)
246      vector(actual_y+start,len) += (alpha*actual_x[j]) * mat_coeffs.col(j).segment(offset,len);
247    else if(OP(*trans)==TR)
248      actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).transpose() * vector(actual_x+start,len) ).value();
249    else
250      actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).adjoint()   * vector(actual_x+start,len) ).value();
251  }
252
253  if(actual_x!=x) delete[] actual_x;
254  if(actual_y!=y) delete[] copy_back(actual_y,y,actual_m,*incy);
255
256  return 0;
257}
258
259#if 0
260/**  TBMV  performs one of the matrix-vector operations
261  *
262  *     x := A*x,   or   x := A'*x,
263  *
264  *  where x is an n element vector and  A is an n by n unit, or non-unit,
265  *  upper or lower triangular band matrix, with ( k + 1 ) diagonals.
266  */
267int EIGEN_BLAS_FUNC(tbmv)(char *uplo, char *opa, char *diag, int *n, int *k, RealScalar *pa, int *lda, RealScalar *px, int *incx)
268{
269  Scalar* a = reinterpret_cast<Scalar*>(pa);
270  Scalar* x = reinterpret_cast<Scalar*>(px);
271  int coeff_rows = *k + 1;
272
273  int info = 0;
274       if(UPLO(*uplo)==INVALID)                                       info = 1;
275  else if(OP(*opa)==INVALID)                                          info = 2;
276  else if(DIAG(*diag)==INVALID)                                       info = 3;
277  else if(*n<0)                                                       info = 4;
278  else if(*k<0)                                                       info = 5;
279  else if(*lda<coeff_rows)                                            info = 7;
280  else if(*incx==0)                                                   info = 9;
281  if(info)
282    return xerbla_(SCALAR_SUFFIX_UP"TBMV ",&info,6);
283
284  if(*n==0)
285    return 0;
286
287  int actual_n = *n;
288
289  Scalar* actual_x = get_compact_vector(x,actual_n,*incx);
290
291  MatrixType mat_coeffs(a,coeff_rows,*n,*lda);
292
293  int ku = UPLO(*uplo)==UPPER ? *k : 0;
294  int kl = UPLO(*uplo)==LOWER ? *k : 0;
295
296  for(int j=0; j<*n; ++j)
297  {
298    int start = std::max(0,j - ku);
299    int end = std::min((*m)-1,j + kl);
300    int len = end - start + 1;
301    int offset = (ku) - j + start;
302
303    if(OP(*trans)==NOTR)
304      vector(actual_y+start,len) += (alpha*actual_x[j]) * mat_coeffs.col(j).segment(offset,len);
305    else if(OP(*trans)==TR)
306      actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).transpose() * vector(actual_x+start,len) ).value();
307    else
308      actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).adjoint()   * vector(actual_x+start,len) ).value();
309  }
310
311  if(actual_x!=x) delete[] actual_x;
312  if(actual_y!=y) delete[] copy_back(actual_y,y,actual_m,*incy);
313
314  return 0;
315}
316#endif
317
318/**  DTBSV  solves one of the systems of equations
319  *
320  *     A*x = b,   or   A'*x = b,
321  *
322  *  where b and x are n element vectors and A is an n by n unit, or
323  *  non-unit, upper or lower triangular band matrix, with ( k + 1 )
324  *  diagonals.
325  *
326  *  No test for singularity or near-singularity is included in this
327  *  routine. Such tests must be performed before calling this routine.
328  */
329int EIGEN_BLAS_FUNC(tbsv)(char *uplo, char *op, char *diag, int *n, int *k, RealScalar *pa, int *lda, RealScalar *px, int *incx)
330{
331  typedef void (*functype)(int, int, const Scalar *, int, Scalar *);
332  static functype func[16];
333
334  static bool init = false;
335  if(!init)
336  {
337    for(int k=0; k<16; ++k)
338      func[k] = 0;
339
340    func[NOTR  | (UP << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Upper|0,       Scalar,false,Scalar,ColMajor>::run);
341    func[TR    | (UP << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Lower|0,       Scalar,false,Scalar,RowMajor>::run);
342    func[ADJ   | (UP << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Lower|0,       Scalar,Conj, Scalar,RowMajor>::run);
343
344    func[NOTR  | (LO << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Lower|0,       Scalar,false,Scalar,ColMajor>::run);
345    func[TR    | (LO << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Upper|0,       Scalar,false,Scalar,RowMajor>::run);
346    func[ADJ   | (LO << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Upper|0,       Scalar,Conj, Scalar,RowMajor>::run);
347
348    func[NOTR  | (UP << 2) | (UNIT  << 3)] = (internal::band_solve_triangular_selector<int,Upper|UnitDiag,Scalar,false,Scalar,ColMajor>::run);
349    func[TR    | (UP << 2) | (UNIT  << 3)] = (internal::band_solve_triangular_selector<int,Lower|UnitDiag,Scalar,false,Scalar,RowMajor>::run);
350    func[ADJ   | (UP << 2) | (UNIT  << 3)] = (internal::band_solve_triangular_selector<int,Lower|UnitDiag,Scalar,Conj, Scalar,RowMajor>::run);
351
352    func[NOTR  | (LO << 2) | (UNIT  << 3)] = (internal::band_solve_triangular_selector<int,Lower|UnitDiag,Scalar,false,Scalar,ColMajor>::run);
353    func[TR    | (LO << 2) | (UNIT  << 3)] = (internal::band_solve_triangular_selector<int,Upper|UnitDiag,Scalar,false,Scalar,RowMajor>::run);
354    func[ADJ   | (LO << 2) | (UNIT  << 3)] = (internal::band_solve_triangular_selector<int,Upper|UnitDiag,Scalar,Conj, Scalar,RowMajor>::run);
355
356    init = true;
357  }
358
359  Scalar* a = reinterpret_cast<Scalar*>(pa);
360  Scalar* x = reinterpret_cast<Scalar*>(px);
361  int coeff_rows = *k+1;
362
363  int info = 0;
364       if(UPLO(*uplo)==INVALID)                                       info = 1;
365  else if(OP(*op)==INVALID)                                           info = 2;
366  else if(DIAG(*diag)==INVALID)                                       info = 3;
367  else if(*n<0)                                                       info = 4;
368  else if(*k<0)                                                       info = 5;
369  else if(*lda<coeff_rows)                                            info = 7;
370  else if(*incx==0)                                                   info = 9;
371  if(info)
372    return xerbla_(SCALAR_SUFFIX_UP"TBSV ",&info,6);
373
374  if(*n==0 || (*k==0 && DIAG(*diag)==UNIT))
375    return 0;
376
377  int actual_n = *n;
378
379  Scalar* actual_x = get_compact_vector(x,actual_n,*incx);
380
381  int code = OP(*op) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3);
382  if(code>=16 || func[code]==0)
383    return 0;
384
385  func[code](*n, *k, a, *lda, actual_x);
386
387  if(actual_x!=x) delete[] copy_back(actual_x,x,actual_n,*incx);
388
389  return 0;
390}
391
392/**  DTPMV  performs one of the matrix-vector operations
393  *
394  *     x := A*x,   or   x := A'*x,
395  *
396  *  where x is an n element vector and  A is an n by n unit, or non-unit,
397  *  upper or lower triangular matrix, supplied in packed form.
398  */
399// int EIGEN_BLAS_FUNC(tpmv)(char *uplo, char *trans, char *diag, int *n, RealScalar *ap, RealScalar *x, int *incx)
400// {
401//   return 1;
402// }
403
404/**  DTPSV  solves one of the systems of equations
405  *
406  *     A*x = b,   or   A'*x = b,
407  *
408  *  where b and x are n element vectors and A is an n by n unit, or
409  *  non-unit, upper or lower triangular matrix, supplied in packed form.
410  *
411  *  No test for singularity or near-singularity is included in this
412  *  routine. Such tests must be performed before calling this routine.
413  */
414// int EIGEN_BLAS_FUNC(tpsv)(char *uplo, char *trans, char *diag, int *n, RealScalar *ap, RealScalar *x, int *incx)
415// {
416//   return 1;
417// }
418
419/**  DGER   performs the rank 1 operation
420  *
421  *     A := alpha*x*y' + A,
422  *
423  *  where alpha is a scalar, x is an m element vector, y is an n element
424  *  vector and A is an m by n matrix.
425  */
426int EIGEN_BLAS_FUNC(ger)(int *m, int *n, Scalar *palpha, Scalar *px, int *incx, Scalar *py, int *incy, Scalar *pa, int *lda)
427{
428  Scalar* x = reinterpret_cast<Scalar*>(px);
429  Scalar* y = reinterpret_cast<Scalar*>(py);
430  Scalar* a = reinterpret_cast<Scalar*>(pa);
431  Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
432
433  int info = 0;
434       if(*m<0)                                                       info = 1;
435  else if(*n<0)                                                       info = 2;
436  else if(*incx==0)                                                   info = 5;
437  else if(*incy==0)                                                   info = 7;
438  else if(*lda<std::max(1,*m))                                        info = 9;
439  if(info)
440    return xerbla_(SCALAR_SUFFIX_UP"GER  ",&info,6);
441
442  if(alpha==Scalar(0))
443    return 1;
444
445  Scalar* x_cpy = get_compact_vector(x,*m,*incx);
446  Scalar* y_cpy = get_compact_vector(y,*n,*incy);
447
448  // TODO perform direct calls to underlying implementation
449  matrix(a,*m,*n,*lda) += alpha * vector(x_cpy,*m) * vector(y_cpy,*n).adjoint();
450
451  if(x_cpy!=x)  delete[] x_cpy;
452  if(y_cpy!=y)  delete[] y_cpy;
453
454  return 1;
455}
456
457
458