1      SUBROUTINE STPMV(UPLO,TRANS,DIAG,N,AP,X,INCX)
2*     .. Scalar Arguments ..
3      INTEGER INCX,N
4      CHARACTER DIAG,TRANS,UPLO
5*     ..
6*     .. Array Arguments ..
7      REAL AP(*),X(*)
8*     ..
9*
10*  Purpose
11*  =======
12*
13*  STPMV  performs one of the matrix-vector operations
14*
15*     x := A*x,   or   x := A'*x,
16*
17*  where x is an n element vector and  A is an n by n unit, or non-unit,
18*  upper or lower triangular matrix, supplied in packed form.
19*
20*  Arguments
21*  ==========
22*
23*  UPLO   - CHARACTER*1.
24*           On entry, UPLO specifies whether the matrix is an upper or
25*           lower triangular matrix as follows:
26*
27*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
28*
29*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
30*
31*           Unchanged on exit.
32*
33*  TRANS  - CHARACTER*1.
34*           On entry, TRANS specifies the operation to be performed as
35*           follows:
36*
37*              TRANS = 'N' or 'n'   x := A*x.
38*
39*              TRANS = 'T' or 't'   x := A'*x.
40*
41*              TRANS = 'C' or 'c'   x := A'*x.
42*
43*           Unchanged on exit.
44*
45*  DIAG   - CHARACTER*1.
46*           On entry, DIAG specifies whether or not A is unit
47*           triangular as follows:
48*
49*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
50*
51*              DIAG = 'N' or 'n'   A is not assumed to be unit
52*                                  triangular.
53*
54*           Unchanged on exit.
55*
56*  N      - INTEGER.
57*           On entry, N specifies the order of the matrix A.
58*           N must be at least zero.
59*           Unchanged on exit.
60*
61*  AP     - REAL             array of DIMENSION at least
62*           ( ( n*( n + 1 ) )/2 ).
63*           Before entry with  UPLO = 'U' or 'u', the array AP must
64*           contain the upper triangular matrix packed sequentially,
65*           column by column, so that AP( 1 ) contains a( 1, 1 ),
66*           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
67*           respectively, and so on.
68*           Before entry with UPLO = 'L' or 'l', the array AP must
69*           contain the lower triangular matrix packed sequentially,
70*           column by column, so that AP( 1 ) contains a( 1, 1 ),
71*           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
72*           respectively, and so on.
73*           Note that when  DIAG = 'U' or 'u', the diagonal elements of
74*           A are not referenced, but are assumed to be unity.
75*           Unchanged on exit.
76*
77*  X      - REAL             array of dimension at least
78*           ( 1 + ( n - 1 )*abs( INCX ) ).
79*           Before entry, the incremented array X must contain the n
80*           element vector x. On exit, X is overwritten with the
81*           tranformed vector x.
82*
83*  INCX   - INTEGER.
84*           On entry, INCX specifies the increment for the elements of
85*           X. INCX must not be zero.
86*           Unchanged on exit.
87*
88*  Further Details
89*  ===============
90*
91*  Level 2 Blas routine.
92*
93*  -- Written on 22-October-1986.
94*     Jack Dongarra, Argonne National Lab.
95*     Jeremy Du Croz, Nag Central Office.
96*     Sven Hammarling, Nag Central Office.
97*     Richard Hanson, Sandia National Labs.
98*
99*  =====================================================================
100*
101*     .. Parameters ..
102      REAL ZERO
103      PARAMETER (ZERO=0.0E+0)
104*     ..
105*     .. Local Scalars ..
106      REAL TEMP
107      INTEGER I,INFO,IX,J,JX,K,KK,KX
108      LOGICAL NOUNIT
109*     ..
110*     .. External Functions ..
111      LOGICAL LSAME
112      EXTERNAL LSAME
113*     ..
114*     .. External Subroutines ..
115      EXTERNAL XERBLA
116*     ..
117*
118*     Test the input parameters.
119*
120      INFO = 0
121      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
122          INFO = 1
123      ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
124     +         .NOT.LSAME(TRANS,'C')) THEN
125          INFO = 2
126      ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
127          INFO = 3
128      ELSE IF (N.LT.0) THEN
129          INFO = 4
130      ELSE IF (INCX.EQ.0) THEN
131          INFO = 7
132      END IF
133      IF (INFO.NE.0) THEN
134          CALL XERBLA('STPMV ',INFO)
135          RETURN
136      END IF
137*
138*     Quick return if possible.
139*
140      IF (N.EQ.0) RETURN
141*
142      NOUNIT = LSAME(DIAG,'N')
143*
144*     Set up the start point in X if the increment is not unity. This
145*     will be  ( N - 1 )*INCX  too small for descending loops.
146*
147      IF (INCX.LE.0) THEN
148          KX = 1 - (N-1)*INCX
149      ELSE IF (INCX.NE.1) THEN
150          KX = 1
151      END IF
152*
153*     Start the operations. In this version the elements of AP are
154*     accessed sequentially with one pass through AP.
155*
156      IF (LSAME(TRANS,'N')) THEN
157*
158*        Form  x:= A*x.
159*
160          IF (LSAME(UPLO,'U')) THEN
161              KK = 1
162              IF (INCX.EQ.1) THEN
163                  DO 20 J = 1,N
164                      IF (X(J).NE.ZERO) THEN
165                          TEMP = X(J)
166                          K = KK
167                          DO 10 I = 1,J - 1
168                              X(I) = X(I) + TEMP*AP(K)
169                              K = K + 1
170   10                     CONTINUE
171                          IF (NOUNIT) X(J) = X(J)*AP(KK+J-1)
172                      END IF
173                      KK = KK + J
174   20             CONTINUE
175              ELSE
176                  JX = KX
177                  DO 40 J = 1,N
178                      IF (X(JX).NE.ZERO) THEN
179                          TEMP = X(JX)
180                          IX = KX
181                          DO 30 K = KK,KK + J - 2
182                              X(IX) = X(IX) + TEMP*AP(K)
183                              IX = IX + INCX
184   30                     CONTINUE
185                          IF (NOUNIT) X(JX) = X(JX)*AP(KK+J-1)
186                      END IF
187                      JX = JX + INCX
188                      KK = KK + J
189   40             CONTINUE
190              END IF
191          ELSE
192              KK = (N* (N+1))/2
193              IF (INCX.EQ.1) THEN
194                  DO 60 J = N,1,-1
195                      IF (X(J).NE.ZERO) THEN
196                          TEMP = X(J)
197                          K = KK
198                          DO 50 I = N,J + 1,-1
199                              X(I) = X(I) + TEMP*AP(K)
200                              K = K - 1
201   50                     CONTINUE
202                          IF (NOUNIT) X(J) = X(J)*AP(KK-N+J)
203                      END IF
204                      KK = KK - (N-J+1)
205   60             CONTINUE
206              ELSE
207                  KX = KX + (N-1)*INCX
208                  JX = KX
209                  DO 80 J = N,1,-1
210                      IF (X(JX).NE.ZERO) THEN
211                          TEMP = X(JX)
212                          IX = KX
213                          DO 70 K = KK,KK - (N- (J+1)),-1
214                              X(IX) = X(IX) + TEMP*AP(K)
215                              IX = IX - INCX
216   70                     CONTINUE
217                          IF (NOUNIT) X(JX) = X(JX)*AP(KK-N+J)
218                      END IF
219                      JX = JX - INCX
220                      KK = KK - (N-J+1)
221   80             CONTINUE
222              END IF
223          END IF
224      ELSE
225*
226*        Form  x := A'*x.
227*
228          IF (LSAME(UPLO,'U')) THEN
229              KK = (N* (N+1))/2
230              IF (INCX.EQ.1) THEN
231                  DO 100 J = N,1,-1
232                      TEMP = X(J)
233                      IF (NOUNIT) TEMP = TEMP*AP(KK)
234                      K = KK - 1
235                      DO 90 I = J - 1,1,-1
236                          TEMP = TEMP + AP(K)*X(I)
237                          K = K - 1
238   90                 CONTINUE
239                      X(J) = TEMP
240                      KK = KK - J
241  100             CONTINUE
242              ELSE
243                  JX = KX + (N-1)*INCX
244                  DO 120 J = N,1,-1
245                      TEMP = X(JX)
246                      IX = JX
247                      IF (NOUNIT) TEMP = TEMP*AP(KK)
248                      DO 110 K = KK - 1,KK - J + 1,-1
249                          IX = IX - INCX
250                          TEMP = TEMP + AP(K)*X(IX)
251  110                 CONTINUE
252                      X(JX) = TEMP
253                      JX = JX - INCX
254                      KK = KK - J
255  120             CONTINUE
256              END IF
257          ELSE
258              KK = 1
259              IF (INCX.EQ.1) THEN
260                  DO 140 J = 1,N
261                      TEMP = X(J)
262                      IF (NOUNIT) TEMP = TEMP*AP(KK)
263                      K = KK + 1
264                      DO 130 I = J + 1,N
265                          TEMP = TEMP + AP(K)*X(I)
266                          K = K + 1
267  130                 CONTINUE
268                      X(J) = TEMP
269                      KK = KK + (N-J+1)
270  140             CONTINUE
271              ELSE
272                  JX = KX
273                  DO 160 J = 1,N
274                      TEMP = X(JX)
275                      IX = JX
276                      IF (NOUNIT) TEMP = TEMP*AP(KK)
277                      DO 150 K = KK + 1,KK + N - J
278                          IX = IX + INCX
279                          TEMP = TEMP + AP(K)*X(IX)
280  150                 CONTINUE
281                      X(JX) = TEMP
282                      JX = JX + INCX
283                      KK = KK + (N-J+1)
284  160             CONTINUE
285              END IF
286          END IF
287      END IF
288*
289      RETURN
290*
291*     End of STPMV .
292*
293      END
294