1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#include "main.h"
11
12template<typename MatrixType> void linearStructure(const MatrixType& m)
13{
14  /* this test covers the following files:
15     CwiseUnaryOp.h, CwiseBinaryOp.h, SelfCwiseBinaryOp.h
16  */
17  typedef typename MatrixType::Index Index;
18  typedef typename MatrixType::Scalar Scalar;
19
20  Index rows = m.rows();
21  Index cols = m.cols();
22
23  // this test relies a lot on Random.h, and there's not much more that we can do
24  // to test it, hence I consider that we will have tested Random.h
25  MatrixType m1 = MatrixType::Random(rows, cols),
26             m2 = MatrixType::Random(rows, cols),
27             m3(rows, cols);
28
29  Scalar s1 = internal::random<Scalar>();
30  while (internal::abs(s1)<1e-3) s1 = internal::random<Scalar>();
31
32  Index r = internal::random<Index>(0, rows-1),
33        c = internal::random<Index>(0, cols-1);
34
35  VERIFY_IS_APPROX(-(-m1),                  m1);
36  VERIFY_IS_APPROX(m1+m1,                   2*m1);
37  VERIFY_IS_APPROX(m1+m2-m1,                m2);
38  VERIFY_IS_APPROX(-m2+m1+m2,               m1);
39  VERIFY_IS_APPROX(m1*s1,                   s1*m1);
40  VERIFY_IS_APPROX((m1+m2)*s1,              s1*m1+s1*m2);
41  VERIFY_IS_APPROX((-m1+m2)*s1,             -s1*m1+s1*m2);
42  m3 = m2; m3 += m1;
43  VERIFY_IS_APPROX(m3,                      m1+m2);
44  m3 = m2; m3 -= m1;
45  VERIFY_IS_APPROX(m3,                      m2-m1);
46  m3 = m2; m3 *= s1;
47  VERIFY_IS_APPROX(m3,                      s1*m2);
48  if(!NumTraits<Scalar>::IsInteger)
49  {
50    m3 = m2; m3 /= s1;
51    VERIFY_IS_APPROX(m3,                    m2/s1);
52  }
53
54  // again, test operator() to check const-qualification
55  VERIFY_IS_APPROX((-m1)(r,c), -(m1(r,c)));
56  VERIFY_IS_APPROX((m1-m2)(r,c), (m1(r,c))-(m2(r,c)));
57  VERIFY_IS_APPROX((m1+m2)(r,c), (m1(r,c))+(m2(r,c)));
58  VERIFY_IS_APPROX((s1*m1)(r,c), s1*(m1(r,c)));
59  VERIFY_IS_APPROX((m1*s1)(r,c), (m1(r,c))*s1);
60  if(!NumTraits<Scalar>::IsInteger)
61    VERIFY_IS_APPROX((m1/s1)(r,c), (m1(r,c))/s1);
62
63  // use .block to disable vectorization and compare to the vectorized version
64  VERIFY_IS_APPROX(m1+m1.block(0,0,rows,cols), m1+m1);
65  VERIFY_IS_APPROX(m1.cwiseProduct(m1.block(0,0,rows,cols)), m1.cwiseProduct(m1));
66  VERIFY_IS_APPROX(m1 - m1.block(0,0,rows,cols), m1 - m1);
67  VERIFY_IS_APPROX(m1.block(0,0,rows,cols) * s1, m1 * s1);
68}
69
70void test_linearstructure()
71{
72  for(int i = 0; i < g_repeat; i++) {
73    CALL_SUBTEST_1( linearStructure(Matrix<float, 1, 1>()) );
74    CALL_SUBTEST_2( linearStructure(Matrix2f()) );
75    CALL_SUBTEST_3( linearStructure(Vector3d()) );
76    CALL_SUBTEST_4( linearStructure(Matrix4d()) );
77    CALL_SUBTEST_5( linearStructure(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
78    CALL_SUBTEST_6( linearStructure(MatrixXf (internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
79    CALL_SUBTEST_7( linearStructure(MatrixXi (internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
80    CALL_SUBTEST_8( linearStructure(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
81    CALL_SUBTEST_9( linearStructure(ArrayXXf (internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
82  }
83}
84