1//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief This file implements a class to represent arbitrary precision
12/// integral constant values and operations on them.
13///
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_ADT_APINT_H
17#define LLVM_ADT_APINT_H
18
19#include "llvm/ADT/ArrayRef.h"
20#include "llvm/Support/Compiler.h"
21#include "llvm/Support/MathExtras.h"
22#include <cassert>
23#include <climits>
24#include <cstring>
25#include <string>
26
27namespace llvm {
28class Deserializer;
29class FoldingSetNodeID;
30class Serializer;
31class StringRef;
32class hash_code;
33class raw_ostream;
34
35template <typename T> class SmallVectorImpl;
36
37// An unsigned host type used as a single part of a multi-part
38// bignum.
39typedef uint64_t integerPart;
40
41const unsigned int host_char_bit = 8;
42const unsigned int integerPartWidth =
43    host_char_bit * static_cast<unsigned int>(sizeof(integerPart));
44
45//===----------------------------------------------------------------------===//
46//                              APInt Class
47//===----------------------------------------------------------------------===//
48
49/// \brief Class for arbitrary precision integers.
50///
51/// APInt is a functional replacement for common case unsigned integer type like
52/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
53/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
54/// than 64-bits of precision. APInt provides a variety of arithmetic operators
55/// and methods to manipulate integer values of any bit-width. It supports both
56/// the typical integer arithmetic and comparison operations as well as bitwise
57/// manipulation.
58///
59/// The class has several invariants worth noting:
60///   * All bit, byte, and word positions are zero-based.
61///   * Once the bit width is set, it doesn't change except by the Truncate,
62///     SignExtend, or ZeroExtend operations.
63///   * All binary operators must be on APInt instances of the same bit width.
64///     Attempting to use these operators on instances with different bit
65///     widths will yield an assertion.
66///   * The value is stored canonically as an unsigned value. For operations
67///     where it makes a difference, there are both signed and unsigned variants
68///     of the operation. For example, sdiv and udiv. However, because the bit
69///     widths must be the same, operations such as Mul and Add produce the same
70///     results regardless of whether the values are interpreted as signed or
71///     not.
72///   * In general, the class tries to follow the style of computation that LLVM
73///     uses in its IR. This simplifies its use for LLVM.
74///
75class APInt {
76  unsigned BitWidth; ///< The number of bits in this APInt.
77
78  /// This union is used to store the integer value. When the
79  /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
80  union {
81    uint64_t VAL;   ///< Used to store the <= 64 bits integer value.
82    uint64_t *pVal; ///< Used to store the >64 bits integer value.
83  };
84
85  /// This enum is used to hold the constants we needed for APInt.
86  enum {
87    /// Bits in a word
88    APINT_BITS_PER_WORD =
89        static_cast<unsigned int>(sizeof(uint64_t)) * CHAR_BIT,
90    /// Byte size of a word
91    APINT_WORD_SIZE = static_cast<unsigned int>(sizeof(uint64_t))
92  };
93
94  /// \brief Fast internal constructor
95  ///
96  /// This constructor is used only internally for speed of construction of
97  /// temporaries. It is unsafe for general use so it is not public.
98  APInt(uint64_t *val, unsigned bits) : BitWidth(bits), pVal(val) {}
99
100  /// \brief Determine if this APInt just has one word to store value.
101  ///
102  /// \returns true if the number of bits <= 64, false otherwise.
103  bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
104
105  /// \brief Determine which word a bit is in.
106  ///
107  /// \returns the word position for the specified bit position.
108  static unsigned whichWord(unsigned bitPosition) {
109    return bitPosition / APINT_BITS_PER_WORD;
110  }
111
112  /// \brief Determine which bit in a word a bit is in.
113  ///
114  /// \returns the bit position in a word for the specified bit position
115  /// in the APInt.
116  static unsigned whichBit(unsigned bitPosition) {
117    return bitPosition % APINT_BITS_PER_WORD;
118  }
119
120  /// \brief Get a single bit mask.
121  ///
122  /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
123  /// This method generates and returns a uint64_t (word) mask for a single
124  /// bit at a specific bit position. This is used to mask the bit in the
125  /// corresponding word.
126  static uint64_t maskBit(unsigned bitPosition) {
127    return 1ULL << whichBit(bitPosition);
128  }
129
130  /// \brief Clear unused high order bits
131  ///
132  /// This method is used internally to clear the to "N" bits in the high order
133  /// word that are not used by the APInt. This is needed after the most
134  /// significant word is assigned a value to ensure that those bits are
135  /// zero'd out.
136  APInt &clearUnusedBits() {
137    // Compute how many bits are used in the final word
138    unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
139    if (wordBits == 0)
140      // If all bits are used, we want to leave the value alone. This also
141      // avoids the undefined behavior of >> when the shift is the same size as
142      // the word size (64).
143      return *this;
144
145    // Mask out the high bits.
146    uint64_t mask = ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - wordBits);
147    if (isSingleWord())
148      VAL &= mask;
149    else
150      pVal[getNumWords() - 1] &= mask;
151    return *this;
152  }
153
154  /// \brief Get the word corresponding to a bit position
155  /// \returns the corresponding word for the specified bit position.
156  uint64_t getWord(unsigned bitPosition) const {
157    return isSingleWord() ? VAL : pVal[whichWord(bitPosition)];
158  }
159
160  /// \brief Convert a char array into an APInt
161  ///
162  /// \param radix 2, 8, 10, 16, or 36
163  /// Converts a string into a number.  The string must be non-empty
164  /// and well-formed as a number of the given base. The bit-width
165  /// must be sufficient to hold the result.
166  ///
167  /// This is used by the constructors that take string arguments.
168  ///
169  /// StringRef::getAsInteger is superficially similar but (1) does
170  /// not assume that the string is well-formed and (2) grows the
171  /// result to hold the input.
172  void fromString(unsigned numBits, StringRef str, uint8_t radix);
173
174  /// \brief An internal division function for dividing APInts.
175  ///
176  /// This is used by the toString method to divide by the radix. It simply
177  /// provides a more convenient form of divide for internal use since KnuthDiv
178  /// has specific constraints on its inputs. If those constraints are not met
179  /// then it provides a simpler form of divide.
180  static void divide(const APInt LHS, unsigned lhsWords, const APInt &RHS,
181                     unsigned rhsWords, APInt *Quotient, APInt *Remainder);
182
183  /// out-of-line slow case for inline constructor
184  void initSlowCase(unsigned numBits, uint64_t val, bool isSigned);
185
186  /// shared code between two array constructors
187  void initFromArray(ArrayRef<uint64_t> array);
188
189  /// out-of-line slow case for inline copy constructor
190  void initSlowCase(const APInt &that);
191
192  /// out-of-line slow case for shl
193  APInt shlSlowCase(unsigned shiftAmt) const;
194
195  /// out-of-line slow case for operator&
196  APInt AndSlowCase(const APInt &RHS) const;
197
198  /// out-of-line slow case for operator|
199  APInt OrSlowCase(const APInt &RHS) const;
200
201  /// out-of-line slow case for operator^
202  APInt XorSlowCase(const APInt &RHS) const;
203
204  /// out-of-line slow case for operator=
205  APInt &AssignSlowCase(const APInt &RHS);
206
207  /// out-of-line slow case for operator==
208  bool EqualSlowCase(const APInt &RHS) const;
209
210  /// out-of-line slow case for operator==
211  bool EqualSlowCase(uint64_t Val) const;
212
213  /// out-of-line slow case for countLeadingZeros
214  unsigned countLeadingZerosSlowCase() const;
215
216  /// out-of-line slow case for countTrailingOnes
217  unsigned countTrailingOnesSlowCase() const;
218
219  /// out-of-line slow case for countPopulation
220  unsigned countPopulationSlowCase() const;
221
222public:
223  /// \name Constructors
224  /// @{
225
226  /// \brief Create a new APInt of numBits width, initialized as val.
227  ///
228  /// If isSigned is true then val is treated as if it were a signed value
229  /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
230  /// will be done. Otherwise, no sign extension occurs (high order bits beyond
231  /// the range of val are zero filled).
232  ///
233  /// \param numBits the bit width of the constructed APInt
234  /// \param val the initial value of the APInt
235  /// \param isSigned how to treat signedness of val
236  APInt(unsigned numBits, uint64_t val, bool isSigned = false)
237      : BitWidth(numBits), VAL(0) {
238    assert(BitWidth && "bitwidth too small");
239    if (isSingleWord())
240      VAL = val;
241    else
242      initSlowCase(numBits, val, isSigned);
243    clearUnusedBits();
244  }
245
246  /// \brief Construct an APInt of numBits width, initialized as bigVal[].
247  ///
248  /// Note that bigVal.size() can be smaller or larger than the corresponding
249  /// bit width but any extraneous bits will be dropped.
250  ///
251  /// \param numBits the bit width of the constructed APInt
252  /// \param bigVal a sequence of words to form the initial value of the APInt
253  APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
254
255  /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
256  /// deprecated because this constructor is prone to ambiguity with the
257  /// APInt(unsigned, uint64_t, bool) constructor.
258  ///
259  /// If this overload is ever deleted, care should be taken to prevent calls
260  /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
261  /// constructor.
262  APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
263
264  /// \brief Construct an APInt from a string representation.
265  ///
266  /// This constructor interprets the string \p str in the given radix. The
267  /// interpretation stops when the first character that is not suitable for the
268  /// radix is encountered, or the end of the string. Acceptable radix values
269  /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
270  /// string to require more bits than numBits.
271  ///
272  /// \param numBits the bit width of the constructed APInt
273  /// \param str the string to be interpreted
274  /// \param radix the radix to use for the conversion
275  APInt(unsigned numBits, StringRef str, uint8_t radix);
276
277  /// Simply makes *this a copy of that.
278  /// @brief Copy Constructor.
279  APInt(const APInt &that) : BitWidth(that.BitWidth), VAL(0) {
280    assert(BitWidth && "bitwidth too small");
281    if (isSingleWord())
282      VAL = that.VAL;
283    else
284      initSlowCase(that);
285  }
286
287#if LLVM_HAS_RVALUE_REFERENCES
288  /// \brief Move Constructor.
289  APInt(APInt &&that) : BitWidth(that.BitWidth), VAL(that.VAL) {
290    that.BitWidth = 0;
291  }
292#endif
293
294  /// \brief Destructor.
295  ~APInt() {
296    if (needsCleanup())
297      delete[] pVal;
298  }
299
300  /// \brief Default constructor that creates an uninitialized APInt.
301  ///
302  /// This is useful for object deserialization (pair this with the static
303  ///  method Read).
304  explicit APInt() : BitWidth(1) {}
305
306  /// \brief Returns whether this instance allocated memory.
307  bool needsCleanup() const { return !isSingleWord(); }
308
309  /// Used to insert APInt objects, or objects that contain APInt objects, into
310  ///  FoldingSets.
311  void Profile(FoldingSetNodeID &id) const;
312
313  /// @}
314  /// \name Value Tests
315  /// @{
316
317  /// \brief Determine sign of this APInt.
318  ///
319  /// This tests the high bit of this APInt to determine if it is set.
320  ///
321  /// \returns true if this APInt is negative, false otherwise
322  bool isNegative() const { return (*this)[BitWidth - 1]; }
323
324  /// \brief Determine if this APInt Value is non-negative (>= 0)
325  ///
326  /// This tests the high bit of the APInt to determine if it is unset.
327  bool isNonNegative() const { return !isNegative(); }
328
329  /// \brief Determine if this APInt Value is positive.
330  ///
331  /// This tests if the value of this APInt is positive (> 0). Note
332  /// that 0 is not a positive value.
333  ///
334  /// \returns true if this APInt is positive.
335  bool isStrictlyPositive() const { return isNonNegative() && !!*this; }
336
337  /// \brief Determine if all bits are set
338  ///
339  /// This checks to see if the value has all bits of the APInt are set or not.
340  bool isAllOnesValue() const {
341    if (isSingleWord())
342      return VAL == ~integerPart(0) >> (APINT_BITS_PER_WORD - BitWidth);
343    return countPopulationSlowCase() == BitWidth;
344  }
345
346  /// \brief Determine if this is the largest unsigned value.
347  ///
348  /// This checks to see if the value of this APInt is the maximum unsigned
349  /// value for the APInt's bit width.
350  bool isMaxValue() const { return isAllOnesValue(); }
351
352  /// \brief Determine if this is the largest signed value.
353  ///
354  /// This checks to see if the value of this APInt is the maximum signed
355  /// value for the APInt's bit width.
356  bool isMaxSignedValue() const {
357    return BitWidth == 1 ? VAL == 0
358                         : !isNegative() && countPopulation() == BitWidth - 1;
359  }
360
361  /// \brief Determine if this is the smallest unsigned value.
362  ///
363  /// This checks to see if the value of this APInt is the minimum unsigned
364  /// value for the APInt's bit width.
365  bool isMinValue() const { return !*this; }
366
367  /// \brief Determine if this is the smallest signed value.
368  ///
369  /// This checks to see if the value of this APInt is the minimum signed
370  /// value for the APInt's bit width.
371  bool isMinSignedValue() const {
372    return BitWidth == 1 ? VAL == 1 : isNegative() && isPowerOf2();
373  }
374
375  /// \brief Check if this APInt has an N-bits unsigned integer value.
376  bool isIntN(unsigned N) const {
377    assert(N && "N == 0 ???");
378    return getActiveBits() <= N;
379  }
380
381  /// \brief Check if this APInt has an N-bits signed integer value.
382  bool isSignedIntN(unsigned N) const {
383    assert(N && "N == 0 ???");
384    return getMinSignedBits() <= N;
385  }
386
387  /// \brief Check if this APInt's value is a power of two greater than zero.
388  ///
389  /// \returns true if the argument APInt value is a power of two > 0.
390  bool isPowerOf2() const {
391    if (isSingleWord())
392      return isPowerOf2_64(VAL);
393    return countPopulationSlowCase() == 1;
394  }
395
396  /// \brief Check if the APInt's value is returned by getSignBit.
397  ///
398  /// \returns true if this is the value returned by getSignBit.
399  bool isSignBit() const { return isMinSignedValue(); }
400
401  /// \brief Convert APInt to a boolean value.
402  ///
403  /// This converts the APInt to a boolean value as a test against zero.
404  bool getBoolValue() const { return !!*this; }
405
406  /// If this value is smaller than the specified limit, return it, otherwise
407  /// return the limit value.  This causes the value to saturate to the limit.
408  uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
409    return (getActiveBits() > 64 || getZExtValue() > Limit) ? Limit
410                                                            : getZExtValue();
411  }
412
413  /// @}
414  /// \name Value Generators
415  /// @{
416
417  /// \brief Gets maximum unsigned value of APInt for specific bit width.
418  static APInt getMaxValue(unsigned numBits) {
419    return getAllOnesValue(numBits);
420  }
421
422  /// \brief Gets maximum signed value of APInt for a specific bit width.
423  static APInt getSignedMaxValue(unsigned numBits) {
424    APInt API = getAllOnesValue(numBits);
425    API.clearBit(numBits - 1);
426    return API;
427  }
428
429  /// \brief Gets minimum unsigned value of APInt for a specific bit width.
430  static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
431
432  /// \brief Gets minimum signed value of APInt for a specific bit width.
433  static APInt getSignedMinValue(unsigned numBits) {
434    APInt API(numBits, 0);
435    API.setBit(numBits - 1);
436    return API;
437  }
438
439  /// \brief Get the SignBit for a specific bit width.
440  ///
441  /// This is just a wrapper function of getSignedMinValue(), and it helps code
442  /// readability when we want to get a SignBit.
443  static APInt getSignBit(unsigned BitWidth) {
444    return getSignedMinValue(BitWidth);
445  }
446
447  /// \brief Get the all-ones value.
448  ///
449  /// \returns the all-ones value for an APInt of the specified bit-width.
450  static APInt getAllOnesValue(unsigned numBits) {
451    return APInt(numBits, UINT64_MAX, true);
452  }
453
454  /// \brief Get the '0' value.
455  ///
456  /// \returns the '0' value for an APInt of the specified bit-width.
457  static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }
458
459  /// \brief Compute an APInt containing numBits highbits from this APInt.
460  ///
461  /// Get an APInt with the same BitWidth as this APInt, just zero mask
462  /// the low bits and right shift to the least significant bit.
463  ///
464  /// \returns the high "numBits" bits of this APInt.
465  APInt getHiBits(unsigned numBits) const;
466
467  /// \brief Compute an APInt containing numBits lowbits from this APInt.
468  ///
469  /// Get an APInt with the same BitWidth as this APInt, just zero mask
470  /// the high bits.
471  ///
472  /// \returns the low "numBits" bits of this APInt.
473  APInt getLoBits(unsigned numBits) const;
474
475  /// \brief Return an APInt with exactly one bit set in the result.
476  static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
477    APInt Res(numBits, 0);
478    Res.setBit(BitNo);
479    return Res;
480  }
481
482  /// \brief Get a value with a block of bits set.
483  ///
484  /// Constructs an APInt value that has a contiguous range of bits set. The
485  /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
486  /// bits will be zero. For example, with parameters(32, 0, 16) you would get
487  /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
488  /// example, with parameters (32, 28, 4), you would get 0xF000000F.
489  ///
490  /// \param numBits the intended bit width of the result
491  /// \param loBit the index of the lowest bit set.
492  /// \param hiBit the index of the highest bit set.
493  ///
494  /// \returns An APInt value with the requested bits set.
495  static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
496    assert(hiBit <= numBits && "hiBit out of range");
497    assert(loBit < numBits && "loBit out of range");
498    if (hiBit < loBit)
499      return getLowBitsSet(numBits, hiBit) |
500             getHighBitsSet(numBits, numBits - loBit);
501    return getLowBitsSet(numBits, hiBit - loBit).shl(loBit);
502  }
503
504  /// \brief Get a value with high bits set
505  ///
506  /// Constructs an APInt value that has the top hiBitsSet bits set.
507  ///
508  /// \param numBits the bitwidth of the result
509  /// \param hiBitsSet the number of high-order bits set in the result.
510  static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
511    assert(hiBitsSet <= numBits && "Too many bits to set!");
512    // Handle a degenerate case, to avoid shifting by word size
513    if (hiBitsSet == 0)
514      return APInt(numBits, 0);
515    unsigned shiftAmt = numBits - hiBitsSet;
516    // For small values, return quickly
517    if (numBits <= APINT_BITS_PER_WORD)
518      return APInt(numBits, ~0ULL << shiftAmt);
519    return getAllOnesValue(numBits).shl(shiftAmt);
520  }
521
522  /// \brief Get a value with low bits set
523  ///
524  /// Constructs an APInt value that has the bottom loBitsSet bits set.
525  ///
526  /// \param numBits the bitwidth of the result
527  /// \param loBitsSet the number of low-order bits set in the result.
528  static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
529    assert(loBitsSet <= numBits && "Too many bits to set!");
530    // Handle a degenerate case, to avoid shifting by word size
531    if (loBitsSet == 0)
532      return APInt(numBits, 0);
533    if (loBitsSet == APINT_BITS_PER_WORD)
534      return APInt(numBits, UINT64_MAX);
535    // For small values, return quickly.
536    if (loBitsSet <= APINT_BITS_PER_WORD)
537      return APInt(numBits, UINT64_MAX >> (APINT_BITS_PER_WORD - loBitsSet));
538    return getAllOnesValue(numBits).lshr(numBits - loBitsSet);
539  }
540
541  /// \brief Return a value containing V broadcasted over NewLen bits.
542  static APInt getSplat(unsigned NewLen, const APInt &V) {
543    assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!");
544
545    APInt Val = V.zextOrSelf(NewLen);
546    for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
547      Val |= Val << I;
548
549    return Val;
550  }
551
552  /// \brief Determine if two APInts have the same value, after zero-extending
553  /// one of them (if needed!) to ensure that the bit-widths match.
554  static bool isSameValue(const APInt &I1, const APInt &I2) {
555    if (I1.getBitWidth() == I2.getBitWidth())
556      return I1 == I2;
557
558    if (I1.getBitWidth() > I2.getBitWidth())
559      return I1 == I2.zext(I1.getBitWidth());
560
561    return I1.zext(I2.getBitWidth()) == I2;
562  }
563
564  /// \brief Overload to compute a hash_code for an APInt value.
565  friend hash_code hash_value(const APInt &Arg);
566
567  /// This function returns a pointer to the internal storage of the APInt.
568  /// This is useful for writing out the APInt in binary form without any
569  /// conversions.
570  const uint64_t *getRawData() const {
571    if (isSingleWord())
572      return &VAL;
573    return &pVal[0];
574  }
575
576  /// @}
577  /// \name Unary Operators
578  /// @{
579
580  /// \brief Postfix increment operator.
581  ///
582  /// \returns a new APInt value representing *this incremented by one
583  const APInt operator++(int) {
584    APInt API(*this);
585    ++(*this);
586    return API;
587  }
588
589  /// \brief Prefix increment operator.
590  ///
591  /// \returns *this incremented by one
592  APInt &operator++();
593
594  /// \brief Postfix decrement operator.
595  ///
596  /// \returns a new APInt representing *this decremented by one.
597  const APInt operator--(int) {
598    APInt API(*this);
599    --(*this);
600    return API;
601  }
602
603  /// \brief Prefix decrement operator.
604  ///
605  /// \returns *this decremented by one.
606  APInt &operator--();
607
608  /// \brief Unary bitwise complement operator.
609  ///
610  /// Performs a bitwise complement operation on this APInt.
611  ///
612  /// \returns an APInt that is the bitwise complement of *this
613  APInt operator~() const {
614    APInt Result(*this);
615    Result.flipAllBits();
616    return Result;
617  }
618
619  /// \brief Unary negation operator
620  ///
621  /// Negates *this using two's complement logic.
622  ///
623  /// \returns An APInt value representing the negation of *this.
624  APInt operator-() const { return APInt(BitWidth, 0) - (*this); }
625
626  /// \brief Logical negation operator.
627  ///
628  /// Performs logical negation operation on this APInt.
629  ///
630  /// \returns true if *this is zero, false otherwise.
631  bool operator!() const {
632    if (isSingleWord())
633      return !VAL;
634
635    for (unsigned i = 0; i != getNumWords(); ++i)
636      if (pVal[i])
637        return false;
638    return true;
639  }
640
641  /// @}
642  /// \name Assignment Operators
643  /// @{
644
645  /// \brief Copy assignment operator.
646  ///
647  /// \returns *this after assignment of RHS.
648  APInt &operator=(const APInt &RHS) {
649    // If the bitwidths are the same, we can avoid mucking with memory
650    if (isSingleWord() && RHS.isSingleWord()) {
651      VAL = RHS.VAL;
652      BitWidth = RHS.BitWidth;
653      return clearUnusedBits();
654    }
655
656    return AssignSlowCase(RHS);
657  }
658
659#if LLVM_HAS_RVALUE_REFERENCES
660  /// @brief Move assignment operator.
661  APInt &operator=(APInt &&that) {
662    if (!isSingleWord())
663      delete[] pVal;
664
665    BitWidth = that.BitWidth;
666    VAL = that.VAL;
667
668    that.BitWidth = 0;
669
670    return *this;
671  }
672#endif
673
674  /// \brief Assignment operator.
675  ///
676  /// The RHS value is assigned to *this. If the significant bits in RHS exceed
677  /// the bit width, the excess bits are truncated. If the bit width is larger
678  /// than 64, the value is zero filled in the unspecified high order bits.
679  ///
680  /// \returns *this after assignment of RHS value.
681  APInt &operator=(uint64_t RHS);
682
683  /// \brief Bitwise AND assignment operator.
684  ///
685  /// Performs a bitwise AND operation on this APInt and RHS. The result is
686  /// assigned to *this.
687  ///
688  /// \returns *this after ANDing with RHS.
689  APInt &operator&=(const APInt &RHS);
690
691  /// \brief Bitwise OR assignment operator.
692  ///
693  /// Performs a bitwise OR operation on this APInt and RHS. The result is
694  /// assigned *this;
695  ///
696  /// \returns *this after ORing with RHS.
697  APInt &operator|=(const APInt &RHS);
698
699  /// \brief Bitwise OR assignment operator.
700  ///
701  /// Performs a bitwise OR operation on this APInt and RHS. RHS is
702  /// logically zero-extended or truncated to match the bit-width of
703  /// the LHS.
704  APInt &operator|=(uint64_t RHS) {
705    if (isSingleWord()) {
706      VAL |= RHS;
707      clearUnusedBits();
708    } else {
709      pVal[0] |= RHS;
710    }
711    return *this;
712  }
713
714  /// \brief Bitwise XOR assignment operator.
715  ///
716  /// Performs a bitwise XOR operation on this APInt and RHS. The result is
717  /// assigned to *this.
718  ///
719  /// \returns *this after XORing with RHS.
720  APInt &operator^=(const APInt &RHS);
721
722  /// \brief Multiplication assignment operator.
723  ///
724  /// Multiplies this APInt by RHS and assigns the result to *this.
725  ///
726  /// \returns *this
727  APInt &operator*=(const APInt &RHS);
728
729  /// \brief Addition assignment operator.
730  ///
731  /// Adds RHS to *this and assigns the result to *this.
732  ///
733  /// \returns *this
734  APInt &operator+=(const APInt &RHS);
735
736  /// \brief Subtraction assignment operator.
737  ///
738  /// Subtracts RHS from *this and assigns the result to *this.
739  ///
740  /// \returns *this
741  APInt &operator-=(const APInt &RHS);
742
743  /// \brief Left-shift assignment function.
744  ///
745  /// Shifts *this left by shiftAmt and assigns the result to *this.
746  ///
747  /// \returns *this after shifting left by shiftAmt
748  APInt &operator<<=(unsigned shiftAmt) {
749    *this = shl(shiftAmt);
750    return *this;
751  }
752
753  /// @}
754  /// \name Binary Operators
755  /// @{
756
757  /// \brief Bitwise AND operator.
758  ///
759  /// Performs a bitwise AND operation on *this and RHS.
760  ///
761  /// \returns An APInt value representing the bitwise AND of *this and RHS.
762  APInt operator&(const APInt &RHS) const {
763    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
764    if (isSingleWord())
765      return APInt(getBitWidth(), VAL & RHS.VAL);
766    return AndSlowCase(RHS);
767  }
768  APInt And(const APInt &RHS) const { return this->operator&(RHS); }
769
770  /// \brief Bitwise OR operator.
771  ///
772  /// Performs a bitwise OR operation on *this and RHS.
773  ///
774  /// \returns An APInt value representing the bitwise OR of *this and RHS.
775  APInt operator|(const APInt &RHS) const {
776    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
777    if (isSingleWord())
778      return APInt(getBitWidth(), VAL | RHS.VAL);
779    return OrSlowCase(RHS);
780  }
781
782  /// \brief Bitwise OR function.
783  ///
784  /// Performs a bitwise or on *this and RHS. This is implemented bny simply
785  /// calling operator|.
786  ///
787  /// \returns An APInt value representing the bitwise OR of *this and RHS.
788  APInt Or(const APInt &RHS) const { return this->operator|(RHS); }
789
790  /// \brief Bitwise XOR operator.
791  ///
792  /// Performs a bitwise XOR operation on *this and RHS.
793  ///
794  /// \returns An APInt value representing the bitwise XOR of *this and RHS.
795  APInt operator^(const APInt &RHS) const {
796    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
797    if (isSingleWord())
798      return APInt(BitWidth, VAL ^ RHS.VAL);
799    return XorSlowCase(RHS);
800  }
801
802  /// \brief Bitwise XOR function.
803  ///
804  /// Performs a bitwise XOR operation on *this and RHS. This is implemented
805  /// through the usage of operator^.
806  ///
807  /// \returns An APInt value representing the bitwise XOR of *this and RHS.
808  APInt Xor(const APInt &RHS) const { return this->operator^(RHS); }
809
810  /// \brief Multiplication operator.
811  ///
812  /// Multiplies this APInt by RHS and returns the result.
813  APInt operator*(const APInt &RHS) const;
814
815  /// \brief Addition operator.
816  ///
817  /// Adds RHS to this APInt and returns the result.
818  APInt operator+(const APInt &RHS) const;
819  APInt operator+(uint64_t RHS) const { return (*this) + APInt(BitWidth, RHS); }
820
821  /// \brief Subtraction operator.
822  ///
823  /// Subtracts RHS from this APInt and returns the result.
824  APInt operator-(const APInt &RHS) const;
825  APInt operator-(uint64_t RHS) const { return (*this) - APInt(BitWidth, RHS); }
826
827  /// \brief Left logical shift operator.
828  ///
829  /// Shifts this APInt left by \p Bits and returns the result.
830  APInt operator<<(unsigned Bits) const { return shl(Bits); }
831
832  /// \brief Left logical shift operator.
833  ///
834  /// Shifts this APInt left by \p Bits and returns the result.
835  APInt operator<<(const APInt &Bits) const { return shl(Bits); }
836
837  /// \brief Arithmetic right-shift function.
838  ///
839  /// Arithmetic right-shift this APInt by shiftAmt.
840  APInt ashr(unsigned shiftAmt) const;
841
842  /// \brief Logical right-shift function.
843  ///
844  /// Logical right-shift this APInt by shiftAmt.
845  APInt lshr(unsigned shiftAmt) const;
846
847  /// \brief Left-shift function.
848  ///
849  /// Left-shift this APInt by shiftAmt.
850  APInt shl(unsigned shiftAmt) const {
851    assert(shiftAmt <= BitWidth && "Invalid shift amount");
852    if (isSingleWord()) {
853      if (shiftAmt >= BitWidth)
854        return APInt(BitWidth, 0); // avoid undefined shift results
855      return APInt(BitWidth, VAL << shiftAmt);
856    }
857    return shlSlowCase(shiftAmt);
858  }
859
860  /// \brief Rotate left by rotateAmt.
861  APInt rotl(unsigned rotateAmt) const;
862
863  /// \brief Rotate right by rotateAmt.
864  APInt rotr(unsigned rotateAmt) const;
865
866  /// \brief Arithmetic right-shift function.
867  ///
868  /// Arithmetic right-shift this APInt by shiftAmt.
869  APInt ashr(const APInt &shiftAmt) const;
870
871  /// \brief Logical right-shift function.
872  ///
873  /// Logical right-shift this APInt by shiftAmt.
874  APInt lshr(const APInt &shiftAmt) const;
875
876  /// \brief Left-shift function.
877  ///
878  /// Left-shift this APInt by shiftAmt.
879  APInt shl(const APInt &shiftAmt) const;
880
881  /// \brief Rotate left by rotateAmt.
882  APInt rotl(const APInt &rotateAmt) const;
883
884  /// \brief Rotate right by rotateAmt.
885  APInt rotr(const APInt &rotateAmt) const;
886
887  /// \brief Unsigned division operation.
888  ///
889  /// Perform an unsigned divide operation on this APInt by RHS. Both this and
890  /// RHS are treated as unsigned quantities for purposes of this division.
891  ///
892  /// \returns a new APInt value containing the division result
893  APInt udiv(const APInt &RHS) const;
894
895  /// \brief Signed division function for APInt.
896  ///
897  /// Signed divide this APInt by APInt RHS.
898  APInt sdiv(const APInt &RHS) const;
899
900  /// \brief Unsigned remainder operation.
901  ///
902  /// Perform an unsigned remainder operation on this APInt with RHS being the
903  /// divisor. Both this and RHS are treated as unsigned quantities for purposes
904  /// of this operation. Note that this is a true remainder operation and not a
905  /// modulo operation because the sign follows the sign of the dividend which
906  /// is *this.
907  ///
908  /// \returns a new APInt value containing the remainder result
909  APInt urem(const APInt &RHS) const;
910
911  /// \brief Function for signed remainder operation.
912  ///
913  /// Signed remainder operation on APInt.
914  APInt srem(const APInt &RHS) const;
915
916  /// \brief Dual division/remainder interface.
917  ///
918  /// Sometimes it is convenient to divide two APInt values and obtain both the
919  /// quotient and remainder. This function does both operations in the same
920  /// computation making it a little more efficient. The pair of input arguments
921  /// may overlap with the pair of output arguments. It is safe to call
922  /// udivrem(X, Y, X, Y), for example.
923  static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
924                      APInt &Remainder);
925
926  static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
927                      APInt &Remainder);
928
929  // Operations that return overflow indicators.
930  APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
931  APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
932  APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
933  APInt usub_ov(const APInt &RHS, bool &Overflow) const;
934  APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
935  APInt smul_ov(const APInt &RHS, bool &Overflow) const;
936  APInt umul_ov(const APInt &RHS, bool &Overflow) const;
937  APInt sshl_ov(unsigned Amt, bool &Overflow) const;
938
939  /// \brief Array-indexing support.
940  ///
941  /// \returns the bit value at bitPosition
942  bool operator[](unsigned bitPosition) const {
943    assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
944    return (maskBit(bitPosition) &
945            (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) !=
946           0;
947  }
948
949  /// @}
950  /// \name Comparison Operators
951  /// @{
952
953  /// \brief Equality operator.
954  ///
955  /// Compares this APInt with RHS for the validity of the equality
956  /// relationship.
957  bool operator==(const APInt &RHS) const {
958    assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
959    if (isSingleWord())
960      return VAL == RHS.VAL;
961    return EqualSlowCase(RHS);
962  }
963
964  /// \brief Equality operator.
965  ///
966  /// Compares this APInt with a uint64_t for the validity of the equality
967  /// relationship.
968  ///
969  /// \returns true if *this == Val
970  bool operator==(uint64_t Val) const {
971    if (isSingleWord())
972      return VAL == Val;
973    return EqualSlowCase(Val);
974  }
975
976  /// \brief Equality comparison.
977  ///
978  /// Compares this APInt with RHS for the validity of the equality
979  /// relationship.
980  ///
981  /// \returns true if *this == Val
982  bool eq(const APInt &RHS) const { return (*this) == RHS; }
983
984  /// \brief Inequality operator.
985  ///
986  /// Compares this APInt with RHS for the validity of the inequality
987  /// relationship.
988  ///
989  /// \returns true if *this != Val
990  bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
991
992  /// \brief Inequality operator.
993  ///
994  /// Compares this APInt with a uint64_t for the validity of the inequality
995  /// relationship.
996  ///
997  /// \returns true if *this != Val
998  bool operator!=(uint64_t Val) const { return !((*this) == Val); }
999
1000  /// \brief Inequality comparison
1001  ///
1002  /// Compares this APInt with RHS for the validity of the inequality
1003  /// relationship.
1004  ///
1005  /// \returns true if *this != Val
1006  bool ne(const APInt &RHS) const { return !((*this) == RHS); }
1007
1008  /// \brief Unsigned less than comparison
1009  ///
1010  /// Regards both *this and RHS as unsigned quantities and compares them for
1011  /// the validity of the less-than relationship.
1012  ///
1013  /// \returns true if *this < RHS when both are considered unsigned.
1014  bool ult(const APInt &RHS) const;
1015
1016  /// \brief Unsigned less than comparison
1017  ///
1018  /// Regards both *this as an unsigned quantity and compares it with RHS for
1019  /// the validity of the less-than relationship.
1020  ///
1021  /// \returns true if *this < RHS when considered unsigned.
1022  bool ult(uint64_t RHS) const { return ult(APInt(getBitWidth(), RHS)); }
1023
1024  /// \brief Signed less than comparison
1025  ///
1026  /// Regards both *this and RHS as signed quantities and compares them for
1027  /// validity of the less-than relationship.
1028  ///
1029  /// \returns true if *this < RHS when both are considered signed.
1030  bool slt(const APInt &RHS) const;
1031
1032  /// \brief Signed less than comparison
1033  ///
1034  /// Regards both *this as a signed quantity and compares it with RHS for
1035  /// the validity of the less-than relationship.
1036  ///
1037  /// \returns true if *this < RHS when considered signed.
1038  bool slt(uint64_t RHS) const { return slt(APInt(getBitWidth(), RHS)); }
1039
1040  /// \brief Unsigned less or equal comparison
1041  ///
1042  /// Regards both *this and RHS as unsigned quantities and compares them for
1043  /// validity of the less-or-equal relationship.
1044  ///
1045  /// \returns true if *this <= RHS when both are considered unsigned.
1046  bool ule(const APInt &RHS) const { return ult(RHS) || eq(RHS); }
1047
1048  /// \brief Unsigned less or equal comparison
1049  ///
1050  /// Regards both *this as an unsigned quantity and compares it with RHS for
1051  /// the validity of the less-or-equal relationship.
1052  ///
1053  /// \returns true if *this <= RHS when considered unsigned.
1054  bool ule(uint64_t RHS) const { return ule(APInt(getBitWidth(), RHS)); }
1055
1056  /// \brief Signed less or equal comparison
1057  ///
1058  /// Regards both *this and RHS as signed quantities and compares them for
1059  /// validity of the less-or-equal relationship.
1060  ///
1061  /// \returns true if *this <= RHS when both are considered signed.
1062  bool sle(const APInt &RHS) const { return slt(RHS) || eq(RHS); }
1063
1064  /// \brief Signed less or equal comparison
1065  ///
1066  /// Regards both *this as a signed quantity and compares it with RHS for the
1067  /// validity of the less-or-equal relationship.
1068  ///
1069  /// \returns true if *this <= RHS when considered signed.
1070  bool sle(uint64_t RHS) const { return sle(APInt(getBitWidth(), RHS)); }
1071
1072  /// \brief Unsigned greather than comparison
1073  ///
1074  /// Regards both *this and RHS as unsigned quantities and compares them for
1075  /// the validity of the greater-than relationship.
1076  ///
1077  /// \returns true if *this > RHS when both are considered unsigned.
1078  bool ugt(const APInt &RHS) const { return !ult(RHS) && !eq(RHS); }
1079
1080  /// \brief Unsigned greater than comparison
1081  ///
1082  /// Regards both *this as an unsigned quantity and compares it with RHS for
1083  /// the validity of the greater-than relationship.
1084  ///
1085  /// \returns true if *this > RHS when considered unsigned.
1086  bool ugt(uint64_t RHS) const { return ugt(APInt(getBitWidth(), RHS)); }
1087
1088  /// \brief Signed greather than comparison
1089  ///
1090  /// Regards both *this and RHS as signed quantities and compares them for the
1091  /// validity of the greater-than relationship.
1092  ///
1093  /// \returns true if *this > RHS when both are considered signed.
1094  bool sgt(const APInt &RHS) const { return !slt(RHS) && !eq(RHS); }
1095
1096  /// \brief Signed greater than comparison
1097  ///
1098  /// Regards both *this as a signed quantity and compares it with RHS for
1099  /// the validity of the greater-than relationship.
1100  ///
1101  /// \returns true if *this > RHS when considered signed.
1102  bool sgt(uint64_t RHS) const { return sgt(APInt(getBitWidth(), RHS)); }
1103
1104  /// \brief Unsigned greater or equal comparison
1105  ///
1106  /// Regards both *this and RHS as unsigned quantities and compares them for
1107  /// validity of the greater-or-equal relationship.
1108  ///
1109  /// \returns true if *this >= RHS when both are considered unsigned.
1110  bool uge(const APInt &RHS) const { return !ult(RHS); }
1111
1112  /// \brief Unsigned greater or equal comparison
1113  ///
1114  /// Regards both *this as an unsigned quantity and compares it with RHS for
1115  /// the validity of the greater-or-equal relationship.
1116  ///
1117  /// \returns true if *this >= RHS when considered unsigned.
1118  bool uge(uint64_t RHS) const { return uge(APInt(getBitWidth(), RHS)); }
1119
1120  /// \brief Signed greather or equal comparison
1121  ///
1122  /// Regards both *this and RHS as signed quantities and compares them for
1123  /// validity of the greater-or-equal relationship.
1124  ///
1125  /// \returns true if *this >= RHS when both are considered signed.
1126  bool sge(const APInt &RHS) const { return !slt(RHS); }
1127
1128  /// \brief Signed greater or equal comparison
1129  ///
1130  /// Regards both *this as a signed quantity and compares it with RHS for
1131  /// the validity of the greater-or-equal relationship.
1132  ///
1133  /// \returns true if *this >= RHS when considered signed.
1134  bool sge(uint64_t RHS) const { return sge(APInt(getBitWidth(), RHS)); }
1135
1136  /// This operation tests if there are any pairs of corresponding bits
1137  /// between this APInt and RHS that are both set.
1138  bool intersects(const APInt &RHS) const { return (*this & RHS) != 0; }
1139
1140  /// @}
1141  /// \name Resizing Operators
1142  /// @{
1143
1144  /// \brief Truncate to new width.
1145  ///
1146  /// Truncate the APInt to a specified width. It is an error to specify a width
1147  /// that is greater than or equal to the current width.
1148  APInt trunc(unsigned width) const;
1149
1150  /// \brief Sign extend to a new width.
1151  ///
1152  /// This operation sign extends the APInt to a new width. If the high order
1153  /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1154  /// It is an error to specify a width that is less than or equal to the
1155  /// current width.
1156  APInt sext(unsigned width) const;
1157
1158  /// \brief Zero extend to a new width.
1159  ///
1160  /// This operation zero extends the APInt to a new width. The high order bits
1161  /// are filled with 0 bits.  It is an error to specify a width that is less
1162  /// than or equal to the current width.
1163  APInt zext(unsigned width) const;
1164
1165  /// \brief Sign extend or truncate to width
1166  ///
1167  /// Make this APInt have the bit width given by \p width. The value is sign
1168  /// extended, truncated, or left alone to make it that width.
1169  APInt sextOrTrunc(unsigned width) const;
1170
1171  /// \brief Zero extend or truncate to width
1172  ///
1173  /// Make this APInt have the bit width given by \p width. The value is zero
1174  /// extended, truncated, or left alone to make it that width.
1175  APInt zextOrTrunc(unsigned width) const;
1176
1177  /// \brief Sign extend or truncate to width
1178  ///
1179  /// Make this APInt have the bit width given by \p width. The value is sign
1180  /// extended, or left alone to make it that width.
1181  APInt sextOrSelf(unsigned width) const;
1182
1183  /// \brief Zero extend or truncate to width
1184  ///
1185  /// Make this APInt have the bit width given by \p width. The value is zero
1186  /// extended, or left alone to make it that width.
1187  APInt zextOrSelf(unsigned width) const;
1188
1189  /// @}
1190  /// \name Bit Manipulation Operators
1191  /// @{
1192
1193  /// \brief Set every bit to 1.
1194  void setAllBits() {
1195    if (isSingleWord())
1196      VAL = UINT64_MAX;
1197    else {
1198      // Set all the bits in all the words.
1199      for (unsigned i = 0; i < getNumWords(); ++i)
1200        pVal[i] = UINT64_MAX;
1201    }
1202    // Clear the unused ones
1203    clearUnusedBits();
1204  }
1205
1206  /// \brief Set a given bit to 1.
1207  ///
1208  /// Set the given bit to 1 whose position is given as "bitPosition".
1209  void setBit(unsigned bitPosition);
1210
1211  /// \brief Set every bit to 0.
1212  void clearAllBits() {
1213    if (isSingleWord())
1214      VAL = 0;
1215    else
1216      memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
1217  }
1218
1219  /// \brief Set a given bit to 0.
1220  ///
1221  /// Set the given bit to 0 whose position is given as "bitPosition".
1222  void clearBit(unsigned bitPosition);
1223
1224  /// \brief Toggle every bit to its opposite value.
1225  void flipAllBits() {
1226    if (isSingleWord())
1227      VAL ^= UINT64_MAX;
1228    else {
1229      for (unsigned i = 0; i < getNumWords(); ++i)
1230        pVal[i] ^= UINT64_MAX;
1231    }
1232    clearUnusedBits();
1233  }
1234
1235  /// \brief Toggles a given bit to its opposite value.
1236  ///
1237  /// Toggle a given bit to its opposite value whose position is given
1238  /// as "bitPosition".
1239  void flipBit(unsigned bitPosition);
1240
1241  /// @}
1242  /// \name Value Characterization Functions
1243  /// @{
1244
1245  /// \brief Return the number of bits in the APInt.
1246  unsigned getBitWidth() const { return BitWidth; }
1247
1248  /// \brief Get the number of words.
1249  ///
1250  /// Here one word's bitwidth equals to that of uint64_t.
1251  ///
1252  /// \returns the number of words to hold the integer value of this APInt.
1253  unsigned getNumWords() const { return getNumWords(BitWidth); }
1254
1255  /// \brief Get the number of words.
1256  ///
1257  /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
1258  ///
1259  /// \returns the number of words to hold the integer value with a given bit
1260  /// width.
1261  static unsigned getNumWords(unsigned BitWidth) {
1262    return (BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1263  }
1264
1265  /// \brief Compute the number of active bits in the value
1266  ///
1267  /// This function returns the number of active bits which is defined as the
1268  /// bit width minus the number of leading zeros. This is used in several
1269  /// computations to see how "wide" the value is.
1270  unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
1271
1272  /// \brief Compute the number of active words in the value of this APInt.
1273  ///
1274  /// This is used in conjunction with getActiveData to extract the raw value of
1275  /// the APInt.
1276  unsigned getActiveWords() const {
1277    unsigned numActiveBits = getActiveBits();
1278    return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
1279  }
1280
1281  /// \brief Get the minimum bit size for this signed APInt
1282  ///
1283  /// Computes the minimum bit width for this APInt while considering it to be a
1284  /// signed (and probably negative) value. If the value is not negative, this
1285  /// function returns the same value as getActiveBits()+1. Otherwise, it
1286  /// returns the smallest bit width that will retain the negative value. For
1287  /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1288  /// for -1, this function will always return 1.
1289  unsigned getMinSignedBits() const {
1290    if (isNegative())
1291      return BitWidth - countLeadingOnes() + 1;
1292    return getActiveBits() + 1;
1293  }
1294
1295  /// \brief Get zero extended value
1296  ///
1297  /// This method attempts to return the value of this APInt as a zero extended
1298  /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1299  /// uint64_t. Otherwise an assertion will result.
1300  uint64_t getZExtValue() const {
1301    if (isSingleWord())
1302      return VAL;
1303    assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
1304    return pVal[0];
1305  }
1306
1307  /// \brief Get sign extended value
1308  ///
1309  /// This method attempts to return the value of this APInt as a sign extended
1310  /// int64_t. The bit width must be <= 64 or the value must fit within an
1311  /// int64_t. Otherwise an assertion will result.
1312  int64_t getSExtValue() const {
1313    if (isSingleWord())
1314      return int64_t(VAL << (APINT_BITS_PER_WORD - BitWidth)) >>
1315             (APINT_BITS_PER_WORD - BitWidth);
1316    assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
1317    return int64_t(pVal[0]);
1318  }
1319
1320  /// \brief Get bits required for string value.
1321  ///
1322  /// This method determines how many bits are required to hold the APInt
1323  /// equivalent of the string given by \p str.
1324  static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1325
1326  /// \brief The APInt version of the countLeadingZeros functions in
1327  ///   MathExtras.h.
1328  ///
1329  /// It counts the number of zeros from the most significant bit to the first
1330  /// one bit.
1331  ///
1332  /// \returns BitWidth if the value is zero, otherwise returns the number of
1333  ///   zeros from the most significant bit to the first one bits.
1334  unsigned countLeadingZeros() const {
1335    if (isSingleWord()) {
1336      unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1337      return llvm::countLeadingZeros(VAL) - unusedBits;
1338    }
1339    return countLeadingZerosSlowCase();
1340  }
1341
1342  /// \brief Count the number of leading one bits.
1343  ///
1344  /// This function is an APInt version of the countLeadingOnes_{32,64}
1345  /// functions in MathExtras.h. It counts the number of ones from the most
1346  /// significant bit to the first zero bit.
1347  ///
1348  /// \returns 0 if the high order bit is not set, otherwise returns the number
1349  /// of 1 bits from the most significant to the least
1350  unsigned countLeadingOnes() const;
1351
1352  /// Computes the number of leading bits of this APInt that are equal to its
1353  /// sign bit.
1354  unsigned getNumSignBits() const {
1355    return isNegative() ? countLeadingOnes() : countLeadingZeros();
1356  }
1357
1358  /// \brief Count the number of trailing zero bits.
1359  ///
1360  /// This function is an APInt version of the countTrailingZeros_{32,64}
1361  /// functions in MathExtras.h. It counts the number of zeros from the least
1362  /// significant bit to the first set bit.
1363  ///
1364  /// \returns BitWidth if the value is zero, otherwise returns the number of
1365  /// zeros from the least significant bit to the first one bit.
1366  unsigned countTrailingZeros() const;
1367
1368  /// \brief Count the number of trailing one bits.
1369  ///
1370  /// This function is an APInt version of the countTrailingOnes_{32,64}
1371  /// functions in MathExtras.h. It counts the number of ones from the least
1372  /// significant bit to the first zero bit.
1373  ///
1374  /// \returns BitWidth if the value is all ones, otherwise returns the number
1375  /// of ones from the least significant bit to the first zero bit.
1376  unsigned countTrailingOnes() const {
1377    if (isSingleWord())
1378      return CountTrailingOnes_64(VAL);
1379    return countTrailingOnesSlowCase();
1380  }
1381
1382  /// \brief Count the number of bits set.
1383  ///
1384  /// This function is an APInt version of the countPopulation_{32,64} functions
1385  /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
1386  ///
1387  /// \returns 0 if the value is zero, otherwise returns the number of set bits.
1388  unsigned countPopulation() const {
1389    if (isSingleWord())
1390      return CountPopulation_64(VAL);
1391    return countPopulationSlowCase();
1392  }
1393
1394  /// @}
1395  /// \name Conversion Functions
1396  /// @{
1397  void print(raw_ostream &OS, bool isSigned) const;
1398
1399  /// Converts an APInt to a string and append it to Str.  Str is commonly a
1400  /// SmallString.
1401  void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1402                bool formatAsCLiteral = false) const;
1403
1404  /// Considers the APInt to be unsigned and converts it into a string in the
1405  /// radix given. The radix can be 2, 8, 10 16, or 36.
1406  void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1407    toString(Str, Radix, false, false);
1408  }
1409
1410  /// Considers the APInt to be signed and converts it into a string in the
1411  /// radix given. The radix can be 2, 8, 10, 16, or 36.
1412  void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1413    toString(Str, Radix, true, false);
1414  }
1415
1416  /// \brief Return the APInt as a std::string.
1417  ///
1418  /// Note that this is an inefficient method.  It is better to pass in a
1419  /// SmallVector/SmallString to the methods above to avoid thrashing the heap
1420  /// for the string.
1421  std::string toString(unsigned Radix, bool Signed) const;
1422
1423  /// \returns a byte-swapped representation of this APInt Value.
1424  APInt byteSwap() const;
1425
1426  /// \brief Converts this APInt to a double value.
1427  double roundToDouble(bool isSigned) const;
1428
1429  /// \brief Converts this unsigned APInt to a double value.
1430  double roundToDouble() const { return roundToDouble(false); }
1431
1432  /// \brief Converts this signed APInt to a double value.
1433  double signedRoundToDouble() const { return roundToDouble(true); }
1434
1435  /// \brief Converts APInt bits to a double
1436  ///
1437  /// The conversion does not do a translation from integer to double, it just
1438  /// re-interprets the bits as a double. Note that it is valid to do this on
1439  /// any bit width. Exactly 64 bits will be translated.
1440  double bitsToDouble() const {
1441    union {
1442      uint64_t I;
1443      double D;
1444    } T;
1445    T.I = (isSingleWord() ? VAL : pVal[0]);
1446    return T.D;
1447  }
1448
1449  /// \brief Converts APInt bits to a double
1450  ///
1451  /// The conversion does not do a translation from integer to float, it just
1452  /// re-interprets the bits as a float. Note that it is valid to do this on
1453  /// any bit width. Exactly 32 bits will be translated.
1454  float bitsToFloat() const {
1455    union {
1456      unsigned I;
1457      float F;
1458    } T;
1459    T.I = unsigned((isSingleWord() ? VAL : pVal[0]));
1460    return T.F;
1461  }
1462
1463  /// \brief Converts a double to APInt bits.
1464  ///
1465  /// The conversion does not do a translation from double to integer, it just
1466  /// re-interprets the bits of the double.
1467  static APInt doubleToBits(double V) {
1468    union {
1469      uint64_t I;
1470      double D;
1471    } T;
1472    T.D = V;
1473    return APInt(sizeof T * CHAR_BIT, T.I);
1474  }
1475
1476  /// \brief Converts a float to APInt bits.
1477  ///
1478  /// The conversion does not do a translation from float to integer, it just
1479  /// re-interprets the bits of the float.
1480  static APInt floatToBits(float V) {
1481    union {
1482      unsigned I;
1483      float F;
1484    } T;
1485    T.F = V;
1486    return APInt(sizeof T * CHAR_BIT, T.I);
1487  }
1488
1489  /// @}
1490  /// \name Mathematics Operations
1491  /// @{
1492
1493  /// \returns the floor log base 2 of this APInt.
1494  unsigned logBase2() const { return BitWidth - 1 - countLeadingZeros(); }
1495
1496  /// \returns the ceil log base 2 of this APInt.
1497  unsigned ceilLogBase2() const {
1498    return BitWidth - (*this - 1).countLeadingZeros();
1499  }
1500
1501  /// \returns the log base 2 of this APInt if its an exact power of two, -1
1502  /// otherwise
1503  int32_t exactLogBase2() const {
1504    if (!isPowerOf2())
1505      return -1;
1506    return logBase2();
1507  }
1508
1509  /// \brief Compute the square root
1510  APInt sqrt() const;
1511
1512  /// \brief Get the absolute value;
1513  ///
1514  /// If *this is < 0 then return -(*this), otherwise *this;
1515  APInt abs() const {
1516    if (isNegative())
1517      return -(*this);
1518    return *this;
1519  }
1520
1521  /// \returns the multiplicative inverse for a given modulo.
1522  APInt multiplicativeInverse(const APInt &modulo) const;
1523
1524  /// @}
1525  /// \name Support for division by constant
1526  /// @{
1527
1528  /// Calculate the magic number for signed division by a constant.
1529  struct ms;
1530  ms magic() const;
1531
1532  /// Calculate the magic number for unsigned division by a constant.
1533  struct mu;
1534  mu magicu(unsigned LeadingZeros = 0) const;
1535
1536  /// @}
1537  /// \name Building-block Operations for APInt and APFloat
1538  /// @{
1539
1540  // These building block operations operate on a representation of arbitrary
1541  // precision, two's-complement, bignum integer values. They should be
1542  // sufficient to implement APInt and APFloat bignum requirements. Inputs are
1543  // generally a pointer to the base of an array of integer parts, representing
1544  // an unsigned bignum, and a count of how many parts there are.
1545
1546  /// Sets the least significant part of a bignum to the input value, and zeroes
1547  /// out higher parts.
1548  static void tcSet(integerPart *, integerPart, unsigned int);
1549
1550  /// Assign one bignum to another.
1551  static void tcAssign(integerPart *, const integerPart *, unsigned int);
1552
1553  /// Returns true if a bignum is zero, false otherwise.
1554  static bool tcIsZero(const integerPart *, unsigned int);
1555
1556  /// Extract the given bit of a bignum; returns 0 or 1.  Zero-based.
1557  static int tcExtractBit(const integerPart *, unsigned int bit);
1558
1559  /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
1560  /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
1561  /// significant bit of DST.  All high bits above srcBITS in DST are
1562  /// zero-filled.
1563  static void tcExtract(integerPart *, unsigned int dstCount,
1564                        const integerPart *, unsigned int srcBits,
1565                        unsigned int srcLSB);
1566
1567  /// Set the given bit of a bignum.  Zero-based.
1568  static void tcSetBit(integerPart *, unsigned int bit);
1569
1570  /// Clear the given bit of a bignum.  Zero-based.
1571  static void tcClearBit(integerPart *, unsigned int bit);
1572
1573  /// Returns the bit number of the least or most significant set bit of a
1574  /// number.  If the input number has no bits set -1U is returned.
1575  static unsigned int tcLSB(const integerPart *, unsigned int);
1576  static unsigned int tcMSB(const integerPart *parts, unsigned int n);
1577
1578  /// Negate a bignum in-place.
1579  static void tcNegate(integerPart *, unsigned int);
1580
1581  /// DST += RHS + CARRY where CARRY is zero or one.  Returns the carry flag.
1582  static integerPart tcAdd(integerPart *, const integerPart *,
1583                           integerPart carry, unsigned);
1584
1585  /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1586  static integerPart tcSubtract(integerPart *, const integerPart *,
1587                                integerPart carry, unsigned);
1588
1589  /// DST += SRC * MULTIPLIER + PART   if add is true
1590  /// DST  = SRC * MULTIPLIER + PART   if add is false
1591  ///
1592  /// Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC they must
1593  /// start at the same point, i.e. DST == SRC.
1594  ///
1595  /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
1596  /// Otherwise DST is filled with the least significant DSTPARTS parts of the
1597  /// result, and if all of the omitted higher parts were zero return zero,
1598  /// otherwise overflow occurred and return one.
1599  static int tcMultiplyPart(integerPart *dst, const integerPart *src,
1600                            integerPart multiplier, integerPart carry,
1601                            unsigned int srcParts, unsigned int dstParts,
1602                            bool add);
1603
1604  /// DST = LHS * RHS, where DST has the same width as the operands and is
1605  /// filled with the least significant parts of the result.  Returns one if
1606  /// overflow occurred, otherwise zero.  DST must be disjoint from both
1607  /// operands.
1608  static int tcMultiply(integerPart *, const integerPart *, const integerPart *,
1609                        unsigned);
1610
1611  /// DST = LHS * RHS, where DST has width the sum of the widths of the
1612  /// operands.  No overflow occurs.  DST must be disjoint from both
1613  /// operands. Returns the number of parts required to hold the result.
1614  static unsigned int tcFullMultiply(integerPart *, const integerPart *,
1615                                     const integerPart *, unsigned, unsigned);
1616
1617  /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1618  /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
1619  /// REMAINDER to the remainder, return zero.  i.e.
1620  ///
1621  ///  OLD_LHS = RHS * LHS + REMAINDER
1622  ///
1623  /// SCRATCH is a bignum of the same size as the operands and result for use by
1624  /// the routine; its contents need not be initialized and are destroyed.  LHS,
1625  /// REMAINDER and SCRATCH must be distinct.
1626  static int tcDivide(integerPart *lhs, const integerPart *rhs,
1627                      integerPart *remainder, integerPart *scratch,
1628                      unsigned int parts);
1629
1630  /// Shift a bignum left COUNT bits.  Shifted in bits are zero.  There are no
1631  /// restrictions on COUNT.
1632  static void tcShiftLeft(integerPart *, unsigned int parts,
1633                          unsigned int count);
1634
1635  /// Shift a bignum right COUNT bits.  Shifted in bits are zero.  There are no
1636  /// restrictions on COUNT.
1637  static void tcShiftRight(integerPart *, unsigned int parts,
1638                           unsigned int count);
1639
1640  /// The obvious AND, OR and XOR and complement operations.
1641  static void tcAnd(integerPart *, const integerPart *, unsigned int);
1642  static void tcOr(integerPart *, const integerPart *, unsigned int);
1643  static void tcXor(integerPart *, const integerPart *, unsigned int);
1644  static void tcComplement(integerPart *, unsigned int);
1645
1646  /// Comparison (unsigned) of two bignums.
1647  static int tcCompare(const integerPart *, const integerPart *, unsigned int);
1648
1649  /// Increment a bignum in-place.  Return the carry flag.
1650  static integerPart tcIncrement(integerPart *, unsigned int);
1651
1652  /// Decrement a bignum in-place.  Return the borrow flag.
1653  static integerPart tcDecrement(integerPart *, unsigned int);
1654
1655  /// Set the least significant BITS and clear the rest.
1656  static void tcSetLeastSignificantBits(integerPart *, unsigned int,
1657                                        unsigned int bits);
1658
1659  /// \brief debug method
1660  void dump() const;
1661
1662  /// @}
1663};
1664
1665/// Magic data for optimising signed division by a constant.
1666struct APInt::ms {
1667  APInt m;    ///< magic number
1668  unsigned s; ///< shift amount
1669};
1670
1671/// Magic data for optimising unsigned division by a constant.
1672struct APInt::mu {
1673  APInt m;    ///< magic number
1674  bool a;     ///< add indicator
1675  unsigned s; ///< shift amount
1676};
1677
1678inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
1679
1680inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
1681
1682inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
1683  I.print(OS, true);
1684  return OS;
1685}
1686
1687namespace APIntOps {
1688
1689/// \brief Determine the smaller of two APInts considered to be signed.
1690inline APInt smin(const APInt &A, const APInt &B) { return A.slt(B) ? A : B; }
1691
1692/// \brief Determine the larger of two APInts considered to be signed.
1693inline APInt smax(const APInt &A, const APInt &B) { return A.sgt(B) ? A : B; }
1694
1695/// \brief Determine the smaller of two APInts considered to be signed.
1696inline APInt umin(const APInt &A, const APInt &B) { return A.ult(B) ? A : B; }
1697
1698/// \brief Determine the larger of two APInts considered to be unsigned.
1699inline APInt umax(const APInt &A, const APInt &B) { return A.ugt(B) ? A : B; }
1700
1701/// \brief Check if the specified APInt has a N-bits unsigned integer value.
1702inline bool isIntN(unsigned N, const APInt &APIVal) { return APIVal.isIntN(N); }
1703
1704/// \brief Check if the specified APInt has a N-bits signed integer value.
1705inline bool isSignedIntN(unsigned N, const APInt &APIVal) {
1706  return APIVal.isSignedIntN(N);
1707}
1708
1709/// \returns true if the argument APInt value is a sequence of ones starting at
1710/// the least significant bit with the remainder zero.
1711inline bool isMask(unsigned numBits, const APInt &APIVal) {
1712  return numBits <= APIVal.getBitWidth() &&
1713         APIVal == APInt::getLowBitsSet(APIVal.getBitWidth(), numBits);
1714}
1715
1716/// \brief Return true if the argument APInt value contains a sequence of ones
1717/// with the remainder zero.
1718inline bool isShiftedMask(unsigned numBits, const APInt &APIVal) {
1719  return isMask(numBits, (APIVal - APInt(numBits, 1)) | APIVal);
1720}
1721
1722/// \brief Returns a byte-swapped representation of the specified APInt Value.
1723inline APInt byteSwap(const APInt &APIVal) { return APIVal.byteSwap(); }
1724
1725/// \brief Returns the floor log base 2 of the specified APInt value.
1726inline unsigned logBase2(const APInt &APIVal) { return APIVal.logBase2(); }
1727
1728/// \brief Compute GCD of two APInt values.
1729///
1730/// This function returns the greatest common divisor of the two APInt values
1731/// using Euclid's algorithm.
1732///
1733/// \returns the greatest common divisor of Val1 and Val2
1734APInt GreatestCommonDivisor(const APInt &Val1, const APInt &Val2);
1735
1736/// \brief Converts the given APInt to a double value.
1737///
1738/// Treats the APInt as an unsigned value for conversion purposes.
1739inline double RoundAPIntToDouble(const APInt &APIVal) {
1740  return APIVal.roundToDouble();
1741}
1742
1743/// \brief Converts the given APInt to a double value.
1744///
1745/// Treats the APInt as a signed value for conversion purposes.
1746inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
1747  return APIVal.signedRoundToDouble();
1748}
1749
1750/// \brief Converts the given APInt to a float vlalue.
1751inline float RoundAPIntToFloat(const APInt &APIVal) {
1752  return float(RoundAPIntToDouble(APIVal));
1753}
1754
1755/// \brief Converts the given APInt to a float value.
1756///
1757/// Treast the APInt as a signed value for conversion purposes.
1758inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
1759  return float(APIVal.signedRoundToDouble());
1760}
1761
1762/// \brief Converts the given double value into a APInt.
1763///
1764/// This function convert a double value to an APInt value.
1765APInt RoundDoubleToAPInt(double Double, unsigned width);
1766
1767/// \brief Converts a float value into a APInt.
1768///
1769/// Converts a float value into an APInt value.
1770inline APInt RoundFloatToAPInt(float Float, unsigned width) {
1771  return RoundDoubleToAPInt(double(Float), width);
1772}
1773
1774/// \brief Arithmetic right-shift function.
1775///
1776/// Arithmetic right-shift the APInt by shiftAmt.
1777inline APInt ashr(const APInt &LHS, unsigned shiftAmt) {
1778  return LHS.ashr(shiftAmt);
1779}
1780
1781/// \brief Logical right-shift function.
1782///
1783/// Logical right-shift the APInt by shiftAmt.
1784inline APInt lshr(const APInt &LHS, unsigned shiftAmt) {
1785  return LHS.lshr(shiftAmt);
1786}
1787
1788/// \brief Left-shift function.
1789///
1790/// Left-shift the APInt by shiftAmt.
1791inline APInt shl(const APInt &LHS, unsigned shiftAmt) {
1792  return LHS.shl(shiftAmt);
1793}
1794
1795/// \brief Signed division function for APInt.
1796///
1797/// Signed divide APInt LHS by APInt RHS.
1798inline APInt sdiv(const APInt &LHS, const APInt &RHS) { return LHS.sdiv(RHS); }
1799
1800/// \brief Unsigned division function for APInt.
1801///
1802/// Unsigned divide APInt LHS by APInt RHS.
1803inline APInt udiv(const APInt &LHS, const APInt &RHS) { return LHS.udiv(RHS); }
1804
1805/// \brief Function for signed remainder operation.
1806///
1807/// Signed remainder operation on APInt.
1808inline APInt srem(const APInt &LHS, const APInt &RHS) { return LHS.srem(RHS); }
1809
1810/// \brief Function for unsigned remainder operation.
1811///
1812/// Unsigned remainder operation on APInt.
1813inline APInt urem(const APInt &LHS, const APInt &RHS) { return LHS.urem(RHS); }
1814
1815/// \brief Function for multiplication operation.
1816///
1817/// Performs multiplication on APInt values.
1818inline APInt mul(const APInt &LHS, const APInt &RHS) { return LHS * RHS; }
1819
1820/// \brief Function for addition operation.
1821///
1822/// Performs addition on APInt values.
1823inline APInt add(const APInt &LHS, const APInt &RHS) { return LHS + RHS; }
1824
1825/// \brief Function for subtraction operation.
1826///
1827/// Performs subtraction on APInt values.
1828inline APInt sub(const APInt &LHS, const APInt &RHS) { return LHS - RHS; }
1829
1830/// \brief Bitwise AND function for APInt.
1831///
1832/// Performs bitwise AND operation on APInt LHS and
1833/// APInt RHS.
1834inline APInt And(const APInt &LHS, const APInt &RHS) { return LHS & RHS; }
1835
1836/// \brief Bitwise OR function for APInt.
1837///
1838/// Performs bitwise OR operation on APInt LHS and APInt RHS.
1839inline APInt Or(const APInt &LHS, const APInt &RHS) { return LHS | RHS; }
1840
1841/// \brief Bitwise XOR function for APInt.
1842///
1843/// Performs bitwise XOR operation on APInt.
1844inline APInt Xor(const APInt &LHS, const APInt &RHS) { return LHS ^ RHS; }
1845
1846/// \brief Bitwise complement function.
1847///
1848/// Performs a bitwise complement operation on APInt.
1849inline APInt Not(const APInt &APIVal) { return ~APIVal; }
1850
1851} // End of APIntOps namespace
1852
1853// See friend declaration above. This additional declaration is required in
1854// order to compile LLVM with IBM xlC compiler.
1855hash_code hash_value(const APInt &Arg);
1856} // End of llvm namespace
1857
1858#endif
1859