1//===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the LoopInfo class that is used to identify natural loops
11// and determine the loop depth of various nodes of the CFG.  Note that the
12// loops identified may actually be several natural loops that share the same
13// header node... not just a single natural loop.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Analysis/LoopInfo.h"
18#include "llvm/ADT/DepthFirstIterator.h"
19#include "llvm/ADT/SmallPtrSet.h"
20#include "llvm/Analysis/Dominators.h"
21#include "llvm/Analysis/LoopInfoImpl.h"
22#include "llvm/Analysis/LoopIterator.h"
23#include "llvm/Analysis/ValueTracking.h"
24#include "llvm/Assembly/Writer.h"
25#include "llvm/IR/Constants.h"
26#include "llvm/IR/Instructions.h"
27#include "llvm/IR/Metadata.h"
28#include "llvm/Support/CFG.h"
29#include "llvm/Support/CommandLine.h"
30#include "llvm/Support/Debug.h"
31#include <algorithm>
32using namespace llvm;
33
34// Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops.
35template class llvm::LoopBase<BasicBlock, Loop>;
36template class llvm::LoopInfoBase<BasicBlock, Loop>;
37
38// Always verify loopinfo if expensive checking is enabled.
39#ifdef XDEBUG
40static bool VerifyLoopInfo = true;
41#else
42static bool VerifyLoopInfo = false;
43#endif
44static cl::opt<bool,true>
45VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
46                cl::desc("Verify loop info (time consuming)"));
47
48char LoopInfo::ID = 0;
49INITIALIZE_PASS_BEGIN(LoopInfo, "loops", "Natural Loop Information", true, true)
50INITIALIZE_PASS_DEPENDENCY(DominatorTree)
51INITIALIZE_PASS_END(LoopInfo, "loops", "Natural Loop Information", true, true)
52
53// Loop identifier metadata name.
54static const char *const LoopMDName = "llvm.loop";
55
56//===----------------------------------------------------------------------===//
57// Loop implementation
58//
59
60/// isLoopInvariant - Return true if the specified value is loop invariant
61///
62bool Loop::isLoopInvariant(Value *V) const {
63  if (Instruction *I = dyn_cast<Instruction>(V))
64    return !contains(I);
65  return true;  // All non-instructions are loop invariant
66}
67
68/// hasLoopInvariantOperands - Return true if all the operands of the
69/// specified instruction are loop invariant.
70bool Loop::hasLoopInvariantOperands(Instruction *I) const {
71  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
72    if (!isLoopInvariant(I->getOperand(i)))
73      return false;
74
75  return true;
76}
77
78/// makeLoopInvariant - If the given value is an instruciton inside of the
79/// loop and it can be hoisted, do so to make it trivially loop-invariant.
80/// Return true if the value after any hoisting is loop invariant. This
81/// function can be used as a slightly more aggressive replacement for
82/// isLoopInvariant.
83///
84/// If InsertPt is specified, it is the point to hoist instructions to.
85/// If null, the terminator of the loop preheader is used.
86///
87bool Loop::makeLoopInvariant(Value *V, bool &Changed,
88                             Instruction *InsertPt) const {
89  if (Instruction *I = dyn_cast<Instruction>(V))
90    return makeLoopInvariant(I, Changed, InsertPt);
91  return true;  // All non-instructions are loop-invariant.
92}
93
94/// makeLoopInvariant - If the given instruction is inside of the
95/// loop and it can be hoisted, do so to make it trivially loop-invariant.
96/// Return true if the instruction after any hoisting is loop invariant. This
97/// function can be used as a slightly more aggressive replacement for
98/// isLoopInvariant.
99///
100/// If InsertPt is specified, it is the point to hoist instructions to.
101/// If null, the terminator of the loop preheader is used.
102///
103bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
104                             Instruction *InsertPt) const {
105  // Test if the value is already loop-invariant.
106  if (isLoopInvariant(I))
107    return true;
108  if (!isSafeToSpeculativelyExecute(I))
109    return false;
110  if (I->mayReadFromMemory())
111    return false;
112  // The landingpad instruction is immobile.
113  if (isa<LandingPadInst>(I))
114    return false;
115  // Determine the insertion point, unless one was given.
116  if (!InsertPt) {
117    BasicBlock *Preheader = getLoopPreheader();
118    // Without a preheader, hoisting is not feasible.
119    if (!Preheader)
120      return false;
121    InsertPt = Preheader->getTerminator();
122  }
123  // Don't hoist instructions with loop-variant operands.
124  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
125    if (!makeLoopInvariant(I->getOperand(i), Changed, InsertPt))
126      return false;
127
128  // Hoist.
129  I->moveBefore(InsertPt);
130  Changed = true;
131  return true;
132}
133
134/// getCanonicalInductionVariable - Check to see if the loop has a canonical
135/// induction variable: an integer recurrence that starts at 0 and increments
136/// by one each time through the loop.  If so, return the phi node that
137/// corresponds to it.
138///
139/// The IndVarSimplify pass transforms loops to have a canonical induction
140/// variable.
141///
142PHINode *Loop::getCanonicalInductionVariable() const {
143  BasicBlock *H = getHeader();
144
145  BasicBlock *Incoming = 0, *Backedge = 0;
146  pred_iterator PI = pred_begin(H);
147  assert(PI != pred_end(H) &&
148         "Loop must have at least one backedge!");
149  Backedge = *PI++;
150  if (PI == pred_end(H)) return 0;  // dead loop
151  Incoming = *PI++;
152  if (PI != pred_end(H)) return 0;  // multiple backedges?
153
154  if (contains(Incoming)) {
155    if (contains(Backedge))
156      return 0;
157    std::swap(Incoming, Backedge);
158  } else if (!contains(Backedge))
159    return 0;
160
161  // Loop over all of the PHI nodes, looking for a canonical indvar.
162  for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
163    PHINode *PN = cast<PHINode>(I);
164    if (ConstantInt *CI =
165        dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
166      if (CI->isNullValue())
167        if (Instruction *Inc =
168            dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
169          if (Inc->getOpcode() == Instruction::Add &&
170                Inc->getOperand(0) == PN)
171            if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
172              if (CI->equalsInt(1))
173                return PN;
174  }
175  return 0;
176}
177
178/// isLCSSAForm - Return true if the Loop is in LCSSA form
179bool Loop::isLCSSAForm(DominatorTree &DT) const {
180  // Sort the blocks vector so that we can use binary search to do quick
181  // lookups.
182  SmallPtrSet<BasicBlock*, 16> LoopBBs(block_begin(), block_end());
183
184  for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) {
185    BasicBlock *BB = *BI;
186    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;++I)
187      for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
188           ++UI) {
189        User *U = *UI;
190        BasicBlock *UserBB = cast<Instruction>(U)->getParent();
191        if (PHINode *P = dyn_cast<PHINode>(U))
192          UserBB = P->getIncomingBlock(UI);
193
194        // Check the current block, as a fast-path, before checking whether
195        // the use is anywhere in the loop.  Most values are used in the same
196        // block they are defined in.  Also, blocks not reachable from the
197        // entry are special; uses in them don't need to go through PHIs.
198        if (UserBB != BB &&
199            !LoopBBs.count(UserBB) &&
200            DT.isReachableFromEntry(UserBB))
201          return false;
202      }
203  }
204
205  return true;
206}
207
208/// isLoopSimplifyForm - Return true if the Loop is in the form that
209/// the LoopSimplify form transforms loops to, which is sometimes called
210/// normal form.
211bool Loop::isLoopSimplifyForm() const {
212  // Normal-form loops have a preheader, a single backedge, and all of their
213  // exits have all their predecessors inside the loop.
214  return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
215}
216
217/// isSafeToClone - Return true if the loop body is safe to clone in practice.
218/// Routines that reform the loop CFG and split edges often fail on indirectbr.
219bool Loop::isSafeToClone() const {
220  // Return false if any loop blocks contain indirectbrs, or there are any calls
221  // to noduplicate functions.
222  for (Loop::block_iterator I = block_begin(), E = block_end(); I != E; ++I) {
223    if (isa<IndirectBrInst>((*I)->getTerminator())) {
224      return false;
225    } else if (const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator())) {
226      if (II->hasFnAttr(Attribute::NoDuplicate))
227        return false;
228    }
229
230    for (BasicBlock::iterator BI = (*I)->begin(), BE = (*I)->end(); BI != BE; ++BI) {
231      if (const CallInst *CI = dyn_cast<CallInst>(BI)) {
232        if (CI->hasFnAttr(Attribute::NoDuplicate))
233          return false;
234      }
235    }
236  }
237  return true;
238}
239
240MDNode *Loop::getLoopID() const {
241  MDNode *LoopID = 0;
242  if (isLoopSimplifyForm()) {
243    LoopID = getLoopLatch()->getTerminator()->getMetadata(LoopMDName);
244  } else {
245    // Go through each predecessor of the loop header and check the
246    // terminator for the metadata.
247    BasicBlock *H = getHeader();
248    for (block_iterator I = block_begin(), IE = block_end(); I != IE; ++I) {
249      TerminatorInst *TI = (*I)->getTerminator();
250      MDNode *MD = 0;
251
252      // Check if this terminator branches to the loop header.
253      for (unsigned i = 0, ie = TI->getNumSuccessors(); i != ie; ++i) {
254        if (TI->getSuccessor(i) == H) {
255          MD = TI->getMetadata(LoopMDName);
256          break;
257        }
258      }
259      if (!MD)
260        return 0;
261
262      if (!LoopID)
263        LoopID = MD;
264      else if (MD != LoopID)
265        return 0;
266    }
267  }
268  if (!LoopID || LoopID->getNumOperands() == 0 ||
269      LoopID->getOperand(0) != LoopID)
270    return 0;
271  return LoopID;
272}
273
274void Loop::setLoopID(MDNode *LoopID) const {
275  assert(LoopID && "Loop ID should not be null");
276  assert(LoopID->getNumOperands() > 0 && "Loop ID needs at least one operand");
277  assert(LoopID->getOperand(0) == LoopID && "Loop ID should refer to itself");
278
279  if (isLoopSimplifyForm()) {
280    getLoopLatch()->getTerminator()->setMetadata(LoopMDName, LoopID);
281    return;
282  }
283
284  BasicBlock *H = getHeader();
285  for (block_iterator I = block_begin(), IE = block_end(); I != IE; ++I) {
286    TerminatorInst *TI = (*I)->getTerminator();
287    for (unsigned i = 0, ie = TI->getNumSuccessors(); i != ie; ++i) {
288      if (TI->getSuccessor(i) == H)
289        TI->setMetadata(LoopMDName, LoopID);
290    }
291  }
292}
293
294bool Loop::isAnnotatedParallel() const {
295  MDNode *desiredLoopIdMetadata = getLoopID();
296
297  if (!desiredLoopIdMetadata)
298      return false;
299
300  // The loop branch contains the parallel loop metadata. In order to ensure
301  // that any parallel-loop-unaware optimization pass hasn't added loop-carried
302  // dependencies (thus converted the loop back to a sequential loop), check
303  // that all the memory instructions in the loop contain parallelism metadata
304  // that point to the same unique "loop id metadata" the loop branch does.
305  for (block_iterator BB = block_begin(), BE = block_end(); BB != BE; ++BB) {
306    for (BasicBlock::iterator II = (*BB)->begin(), EE = (*BB)->end();
307         II != EE; II++) {
308
309      if (!II->mayReadOrWriteMemory())
310        continue;
311
312      if (!II->getMetadata("llvm.mem.parallel_loop_access"))
313        return false;
314
315      // The memory instruction can refer to the loop identifier metadata
316      // directly or indirectly through another list metadata (in case of
317      // nested parallel loops). The loop identifier metadata refers to
318      // itself so we can check both cases with the same routine.
319      MDNode *loopIdMD =
320          dyn_cast<MDNode>(II->getMetadata("llvm.mem.parallel_loop_access"));
321      bool loopIdMDFound = false;
322      for (unsigned i = 0, e = loopIdMD->getNumOperands(); i < e; ++i) {
323        if (loopIdMD->getOperand(i) == desiredLoopIdMetadata) {
324          loopIdMDFound = true;
325          break;
326        }
327      }
328
329      if (!loopIdMDFound)
330        return false;
331    }
332  }
333  return true;
334}
335
336
337/// hasDedicatedExits - Return true if no exit block for the loop
338/// has a predecessor that is outside the loop.
339bool Loop::hasDedicatedExits() const {
340  // Sort the blocks vector so that we can use binary search to do quick
341  // lookups.
342  SmallPtrSet<BasicBlock *, 16> LoopBBs(block_begin(), block_end());
343  // Each predecessor of each exit block of a normal loop is contained
344  // within the loop.
345  SmallVector<BasicBlock *, 4> ExitBlocks;
346  getExitBlocks(ExitBlocks);
347  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
348    for (pred_iterator PI = pred_begin(ExitBlocks[i]),
349         PE = pred_end(ExitBlocks[i]); PI != PE; ++PI)
350      if (!LoopBBs.count(*PI))
351        return false;
352  // All the requirements are met.
353  return true;
354}
355
356/// getUniqueExitBlocks - Return all unique successor blocks of this loop.
357/// These are the blocks _outside of the current loop_ which are branched to.
358/// This assumes that loop exits are in canonical form.
359///
360void
361Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const {
362  assert(hasDedicatedExits() &&
363         "getUniqueExitBlocks assumes the loop has canonical form exits!");
364
365  // Sort the blocks vector so that we can use binary search to do quick
366  // lookups.
367  SmallVector<BasicBlock *, 128> LoopBBs(block_begin(), block_end());
368  std::sort(LoopBBs.begin(), LoopBBs.end());
369
370  SmallVector<BasicBlock *, 32> switchExitBlocks;
371
372  for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) {
373
374    BasicBlock *current = *BI;
375    switchExitBlocks.clear();
376
377    for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) {
378      // If block is inside the loop then it is not a exit block.
379      if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
380        continue;
381
382      pred_iterator PI = pred_begin(*I);
383      BasicBlock *firstPred = *PI;
384
385      // If current basic block is this exit block's first predecessor
386      // then only insert exit block in to the output ExitBlocks vector.
387      // This ensures that same exit block is not inserted twice into
388      // ExitBlocks vector.
389      if (current != firstPred)
390        continue;
391
392      // If a terminator has more then two successors, for example SwitchInst,
393      // then it is possible that there are multiple edges from current block
394      // to one exit block.
395      if (std::distance(succ_begin(current), succ_end(current)) <= 2) {
396        ExitBlocks.push_back(*I);
397        continue;
398      }
399
400      // In case of multiple edges from current block to exit block, collect
401      // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
402      // duplicate edges.
403      if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I)
404          == switchExitBlocks.end()) {
405        switchExitBlocks.push_back(*I);
406        ExitBlocks.push_back(*I);
407      }
408    }
409  }
410}
411
412/// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
413/// block, return that block. Otherwise return null.
414BasicBlock *Loop::getUniqueExitBlock() const {
415  SmallVector<BasicBlock *, 8> UniqueExitBlocks;
416  getUniqueExitBlocks(UniqueExitBlocks);
417  if (UniqueExitBlocks.size() == 1)
418    return UniqueExitBlocks[0];
419  return 0;
420}
421
422#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
423void Loop::dump() const {
424  print(dbgs());
425}
426#endif
427
428//===----------------------------------------------------------------------===//
429// UnloopUpdater implementation
430//
431
432namespace {
433/// Find the new parent loop for all blocks within the "unloop" whose last
434/// backedges has just been removed.
435class UnloopUpdater {
436  Loop *Unloop;
437  LoopInfo *LI;
438
439  LoopBlocksDFS DFS;
440
441  // Map unloop's immediate subloops to their nearest reachable parents. Nested
442  // loops within these subloops will not change parents. However, an immediate
443  // subloop's new parent will be the nearest loop reachable from either its own
444  // exits *or* any of its nested loop's exits.
445  DenseMap<Loop*, Loop*> SubloopParents;
446
447  // Flag the presence of an irreducible backedge whose destination is a block
448  // directly contained by the original unloop.
449  bool FoundIB;
450
451public:
452  UnloopUpdater(Loop *UL, LoopInfo *LInfo) :
453    Unloop(UL), LI(LInfo), DFS(UL), FoundIB(false) {}
454
455  void updateBlockParents();
456
457  void removeBlocksFromAncestors();
458
459  void updateSubloopParents();
460
461protected:
462  Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop);
463};
464} // end anonymous namespace
465
466/// updateBlockParents - Update the parent loop for all blocks that are directly
467/// contained within the original "unloop".
468void UnloopUpdater::updateBlockParents() {
469  if (Unloop->getNumBlocks()) {
470    // Perform a post order CFG traversal of all blocks within this loop,
471    // propagating the nearest loop from sucessors to predecessors.
472    LoopBlocksTraversal Traversal(DFS, LI);
473    for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
474           POE = Traversal.end(); POI != POE; ++POI) {
475
476      Loop *L = LI->getLoopFor(*POI);
477      Loop *NL = getNearestLoop(*POI, L);
478
479      if (NL != L) {
480        // For reducible loops, NL is now an ancestor of Unloop.
481        assert((NL != Unloop && (!NL || NL->contains(Unloop))) &&
482               "uninitialized successor");
483        LI->changeLoopFor(*POI, NL);
484      }
485      else {
486        // Or the current block is part of a subloop, in which case its parent
487        // is unchanged.
488        assert((FoundIB || Unloop->contains(L)) && "uninitialized successor");
489      }
490    }
491  }
492  // Each irreducible loop within the unloop induces a round of iteration using
493  // the DFS result cached by Traversal.
494  bool Changed = FoundIB;
495  for (unsigned NIters = 0; Changed; ++NIters) {
496    assert(NIters < Unloop->getNumBlocks() && "runaway iterative algorithm");
497
498    // Iterate over the postorder list of blocks, propagating the nearest loop
499    // from successors to predecessors as before.
500    Changed = false;
501    for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(),
502           POE = DFS.endPostorder(); POI != POE; ++POI) {
503
504      Loop *L = LI->getLoopFor(*POI);
505      Loop *NL = getNearestLoop(*POI, L);
506      if (NL != L) {
507        assert(NL != Unloop && (!NL || NL->contains(Unloop)) &&
508               "uninitialized successor");
509        LI->changeLoopFor(*POI, NL);
510        Changed = true;
511      }
512    }
513  }
514}
515
516/// removeBlocksFromAncestors - Remove unloop's blocks from all ancestors below
517/// their new parents.
518void UnloopUpdater::removeBlocksFromAncestors() {
519  // Remove all unloop's blocks (including those in nested subloops) from
520  // ancestors below the new parent loop.
521  for (Loop::block_iterator BI = Unloop->block_begin(),
522         BE = Unloop->block_end(); BI != BE; ++BI) {
523    Loop *OuterParent = LI->getLoopFor(*BI);
524    if (Unloop->contains(OuterParent)) {
525      while (OuterParent->getParentLoop() != Unloop)
526        OuterParent = OuterParent->getParentLoop();
527      OuterParent = SubloopParents[OuterParent];
528    }
529    // Remove blocks from former Ancestors except Unloop itself which will be
530    // deleted.
531    for (Loop *OldParent = Unloop->getParentLoop(); OldParent != OuterParent;
532         OldParent = OldParent->getParentLoop()) {
533      assert(OldParent && "new loop is not an ancestor of the original");
534      OldParent->removeBlockFromLoop(*BI);
535    }
536  }
537}
538
539/// updateSubloopParents - Update the parent loop for all subloops directly
540/// nested within unloop.
541void UnloopUpdater::updateSubloopParents() {
542  while (!Unloop->empty()) {
543    Loop *Subloop = *llvm::prior(Unloop->end());
544    Unloop->removeChildLoop(llvm::prior(Unloop->end()));
545
546    assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
547    if (Loop *Parent = SubloopParents[Subloop])
548      Parent->addChildLoop(Subloop);
549    else
550      LI->addTopLevelLoop(Subloop);
551  }
552}
553
554/// getNearestLoop - Return the nearest parent loop among this block's
555/// successors. If a successor is a subloop header, consider its parent to be
556/// the nearest parent of the subloop's exits.
557///
558/// For subloop blocks, simply update SubloopParents and return NULL.
559Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {
560
561  // Initially for blocks directly contained by Unloop, NearLoop == Unloop and
562  // is considered uninitialized.
563  Loop *NearLoop = BBLoop;
564
565  Loop *Subloop = 0;
566  if (NearLoop != Unloop && Unloop->contains(NearLoop)) {
567    Subloop = NearLoop;
568    // Find the subloop ancestor that is directly contained within Unloop.
569    while (Subloop->getParentLoop() != Unloop) {
570      Subloop = Subloop->getParentLoop();
571      assert(Subloop && "subloop is not an ancestor of the original loop");
572    }
573    // Get the current nearest parent of the Subloop exits, initially Unloop.
574    NearLoop =
575      SubloopParents.insert(std::make_pair(Subloop, Unloop)).first->second;
576  }
577
578  succ_iterator I = succ_begin(BB), E = succ_end(BB);
579  if (I == E) {
580    assert(!Subloop && "subloop blocks must have a successor");
581    NearLoop = 0; // unloop blocks may now exit the function.
582  }
583  for (; I != E; ++I) {
584    if (*I == BB)
585      continue; // self loops are uninteresting
586
587    Loop *L = LI->getLoopFor(*I);
588    if (L == Unloop) {
589      // This successor has not been processed. This path must lead to an
590      // irreducible backedge.
591      assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB");
592      FoundIB = true;
593    }
594    if (L != Unloop && Unloop->contains(L)) {
595      // Successor is in a subloop.
596      if (Subloop)
597        continue; // Branching within subloops. Ignore it.
598
599      // BB branches from the original into a subloop header.
600      assert(L->getParentLoop() == Unloop && "cannot skip into nested loops");
601
602      // Get the current nearest parent of the Subloop's exits.
603      L = SubloopParents[L];
604      // L could be Unloop if the only exit was an irreducible backedge.
605    }
606    if (L == Unloop) {
607      continue;
608    }
609    // Handle critical edges from Unloop into a sibling loop.
610    if (L && !L->contains(Unloop)) {
611      L = L->getParentLoop();
612    }
613    // Remember the nearest parent loop among successors or subloop exits.
614    if (NearLoop == Unloop || !NearLoop || NearLoop->contains(L))
615      NearLoop = L;
616  }
617  if (Subloop) {
618    SubloopParents[Subloop] = NearLoop;
619    return BBLoop;
620  }
621  return NearLoop;
622}
623
624//===----------------------------------------------------------------------===//
625// LoopInfo implementation
626//
627bool LoopInfo::runOnFunction(Function &) {
628  releaseMemory();
629  LI.Analyze(getAnalysis<DominatorTree>().getBase());
630  return false;
631}
632
633/// updateUnloop - The last backedge has been removed from a loop--now the
634/// "unloop". Find a new parent for the blocks contained within unloop and
635/// update the loop tree. We don't necessarily have valid dominators at this
636/// point, but LoopInfo is still valid except for the removal of this loop.
637///
638/// Note that Unloop may now be an empty loop. Calling Loop::getHeader without
639/// checking first is illegal.
640void LoopInfo::updateUnloop(Loop *Unloop) {
641
642  // First handle the special case of no parent loop to simplify the algorithm.
643  if (!Unloop->getParentLoop()) {
644    // Since BBLoop had no parent, Unloop blocks are no longer in a loop.
645    for (Loop::block_iterator I = Unloop->block_begin(),
646         E = Unloop->block_end(); I != E; ++I) {
647
648      // Don't reparent blocks in subloops.
649      if (getLoopFor(*I) != Unloop)
650        continue;
651
652      // Blocks no longer have a parent but are still referenced by Unloop until
653      // the Unloop object is deleted.
654      LI.changeLoopFor(*I, 0);
655    }
656
657    // Remove the loop from the top-level LoopInfo object.
658    for (LoopInfo::iterator I = LI.begin();; ++I) {
659      assert(I != LI.end() && "Couldn't find loop");
660      if (*I == Unloop) {
661        LI.removeLoop(I);
662        break;
663      }
664    }
665
666    // Move all of the subloops to the top-level.
667    while (!Unloop->empty())
668      LI.addTopLevelLoop(Unloop->removeChildLoop(llvm::prior(Unloop->end())));
669
670    return;
671  }
672
673  // Update the parent loop for all blocks within the loop. Blocks within
674  // subloops will not change parents.
675  UnloopUpdater Updater(Unloop, this);
676  Updater.updateBlockParents();
677
678  // Remove blocks from former ancestor loops.
679  Updater.removeBlocksFromAncestors();
680
681  // Add direct subloops as children in their new parent loop.
682  Updater.updateSubloopParents();
683
684  // Remove unloop from its parent loop.
685  Loop *ParentLoop = Unloop->getParentLoop();
686  for (Loop::iterator I = ParentLoop->begin();; ++I) {
687    assert(I != ParentLoop->end() && "Couldn't find loop");
688    if (*I == Unloop) {
689      ParentLoop->removeChildLoop(I);
690      break;
691    }
692  }
693}
694
695void LoopInfo::verifyAnalysis() const {
696  // LoopInfo is a FunctionPass, but verifying every loop in the function
697  // each time verifyAnalysis is called is very expensive. The
698  // -verify-loop-info option can enable this. In order to perform some
699  // checking by default, LoopPass has been taught to call verifyLoop
700  // manually during loop pass sequences.
701
702  if (!VerifyLoopInfo) return;
703
704  DenseSet<const Loop*> Loops;
705  for (iterator I = begin(), E = end(); I != E; ++I) {
706    assert(!(*I)->getParentLoop() && "Top-level loop has a parent!");
707    (*I)->verifyLoopNest(&Loops);
708  }
709
710  // Verify that blocks are mapped to valid loops.
711  for (DenseMap<BasicBlock*, Loop*>::const_iterator I = LI.BBMap.begin(),
712         E = LI.BBMap.end(); I != E; ++I) {
713    assert(Loops.count(I->second) && "orphaned loop");
714    assert(I->second->contains(I->first) && "orphaned block");
715  }
716}
717
718void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
719  AU.setPreservesAll();
720  AU.addRequired<DominatorTree>();
721}
722
723void LoopInfo::print(raw_ostream &OS, const Module*) const {
724  LI.print(OS);
725}
726
727//===----------------------------------------------------------------------===//
728// LoopBlocksDFS implementation
729//
730
731/// Traverse the loop blocks and store the DFS result.
732/// Useful for clients that just want the final DFS result and don't need to
733/// visit blocks during the initial traversal.
734void LoopBlocksDFS::perform(LoopInfo *LI) {
735  LoopBlocksTraversal Traversal(*this, LI);
736  for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
737         POE = Traversal.end(); POI != POE; ++POI) ;
738}
739