1//===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// Pass to verify generated machine code. The following is checked: 11// 12// Operand counts: All explicit operands must be present. 13// 14// Register classes: All physical and virtual register operands must be 15// compatible with the register class required by the instruction descriptor. 16// 17// Register live intervals: Registers must be defined only once, and must be 18// defined before use. 19// 20// The machine code verifier is enabled from LLVMTargetMachine.cpp with the 21// command-line option -verify-machineinstrs, or by defining the environment 22// variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive 23// the verifier errors. 24//===----------------------------------------------------------------------===// 25 26#include "llvm/CodeGen/Passes.h" 27#include "llvm/ADT/DenseSet.h" 28#include "llvm/ADT/DepthFirstIterator.h" 29#include "llvm/ADT/SetOperations.h" 30#include "llvm/ADT/SmallVector.h" 31#include "llvm/CodeGen/LiveIntervalAnalysis.h" 32#include "llvm/CodeGen/LiveStackAnalysis.h" 33#include "llvm/CodeGen/LiveVariables.h" 34#include "llvm/CodeGen/MachineFrameInfo.h" 35#include "llvm/CodeGen/MachineFunctionPass.h" 36#include "llvm/CodeGen/MachineInstrBundle.h" 37#include "llvm/CodeGen/MachineMemOperand.h" 38#include "llvm/CodeGen/MachineRegisterInfo.h" 39#include "llvm/IR/BasicBlock.h" 40#include "llvm/IR/InlineAsm.h" 41#include "llvm/IR/Instructions.h" 42#include "llvm/MC/MCAsmInfo.h" 43#include "llvm/Support/Debug.h" 44#include "llvm/Support/ErrorHandling.h" 45#include "llvm/Support/raw_ostream.h" 46#include "llvm/Target/TargetInstrInfo.h" 47#include "llvm/Target/TargetMachine.h" 48#include "llvm/Target/TargetRegisterInfo.h" 49using namespace llvm; 50 51namespace { 52 struct MachineVerifier { 53 54 MachineVerifier(Pass *pass, const char *b) : 55 PASS(pass), 56 Banner(b), 57 OutFileName(getenv("LLVM_VERIFY_MACHINEINSTRS")) 58 {} 59 60 bool runOnMachineFunction(MachineFunction &MF); 61 62 Pass *const PASS; 63 const char *Banner; 64 const char *const OutFileName; 65 raw_ostream *OS; 66 const MachineFunction *MF; 67 const TargetMachine *TM; 68 const TargetInstrInfo *TII; 69 const TargetRegisterInfo *TRI; 70 const MachineRegisterInfo *MRI; 71 72 unsigned foundErrors; 73 74 typedef SmallVector<unsigned, 16> RegVector; 75 typedef SmallVector<const uint32_t*, 4> RegMaskVector; 76 typedef DenseSet<unsigned> RegSet; 77 typedef DenseMap<unsigned, const MachineInstr*> RegMap; 78 typedef SmallPtrSet<const MachineBasicBlock*, 8> BlockSet; 79 80 const MachineInstr *FirstTerminator; 81 BlockSet FunctionBlocks; 82 83 BitVector regsReserved; 84 RegSet regsLive; 85 RegVector regsDefined, regsDead, regsKilled; 86 RegMaskVector regMasks; 87 RegSet regsLiveInButUnused; 88 89 SlotIndex lastIndex; 90 91 // Add Reg and any sub-registers to RV 92 void addRegWithSubRegs(RegVector &RV, unsigned Reg) { 93 RV.push_back(Reg); 94 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 95 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 96 RV.push_back(*SubRegs); 97 } 98 99 struct BBInfo { 100 // Is this MBB reachable from the MF entry point? 101 bool reachable; 102 103 // Vregs that must be live in because they are used without being 104 // defined. Map value is the user. 105 RegMap vregsLiveIn; 106 107 // Regs killed in MBB. They may be defined again, and will then be in both 108 // regsKilled and regsLiveOut. 109 RegSet regsKilled; 110 111 // Regs defined in MBB and live out. Note that vregs passing through may 112 // be live out without being mentioned here. 113 RegSet regsLiveOut; 114 115 // Vregs that pass through MBB untouched. This set is disjoint from 116 // regsKilled and regsLiveOut. 117 RegSet vregsPassed; 118 119 // Vregs that must pass through MBB because they are needed by a successor 120 // block. This set is disjoint from regsLiveOut. 121 RegSet vregsRequired; 122 123 // Set versions of block's predecessor and successor lists. 124 BlockSet Preds, Succs; 125 126 BBInfo() : reachable(false) {} 127 128 // Add register to vregsPassed if it belongs there. Return true if 129 // anything changed. 130 bool addPassed(unsigned Reg) { 131 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 132 return false; 133 if (regsKilled.count(Reg) || regsLiveOut.count(Reg)) 134 return false; 135 return vregsPassed.insert(Reg).second; 136 } 137 138 // Same for a full set. 139 bool addPassed(const RegSet &RS) { 140 bool changed = false; 141 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 142 if (addPassed(*I)) 143 changed = true; 144 return changed; 145 } 146 147 // Add register to vregsRequired if it belongs there. Return true if 148 // anything changed. 149 bool addRequired(unsigned Reg) { 150 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 151 return false; 152 if (regsLiveOut.count(Reg)) 153 return false; 154 return vregsRequired.insert(Reg).second; 155 } 156 157 // Same for a full set. 158 bool addRequired(const RegSet &RS) { 159 bool changed = false; 160 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 161 if (addRequired(*I)) 162 changed = true; 163 return changed; 164 } 165 166 // Same for a full map. 167 bool addRequired(const RegMap &RM) { 168 bool changed = false; 169 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I) 170 if (addRequired(I->first)) 171 changed = true; 172 return changed; 173 } 174 175 // Live-out registers are either in regsLiveOut or vregsPassed. 176 bool isLiveOut(unsigned Reg) const { 177 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 178 } 179 }; 180 181 // Extra register info per MBB. 182 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 183 184 bool isReserved(unsigned Reg) { 185 return Reg < regsReserved.size() && regsReserved.test(Reg); 186 } 187 188 bool isAllocatable(unsigned Reg) { 189 return Reg < TRI->getNumRegs() && MRI->isAllocatable(Reg); 190 } 191 192 // Analysis information if available 193 LiveVariables *LiveVars; 194 LiveIntervals *LiveInts; 195 LiveStacks *LiveStks; 196 SlotIndexes *Indexes; 197 198 void visitMachineFunctionBefore(); 199 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 200 void visitMachineBundleBefore(const MachineInstr *MI); 201 void visitMachineInstrBefore(const MachineInstr *MI); 202 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 203 void visitMachineInstrAfter(const MachineInstr *MI); 204 void visitMachineBundleAfter(const MachineInstr *MI); 205 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 206 void visitMachineFunctionAfter(); 207 208 void report(const char *msg, const MachineFunction *MF); 209 void report(const char *msg, const MachineBasicBlock *MBB); 210 void report(const char *msg, const MachineInstr *MI); 211 void report(const char *msg, const MachineOperand *MO, unsigned MONum); 212 void report(const char *msg, const MachineFunction *MF, 213 const LiveInterval &LI); 214 void report(const char *msg, const MachineBasicBlock *MBB, 215 const LiveInterval &LI); 216 217 void verifyInlineAsm(const MachineInstr *MI); 218 219 void checkLiveness(const MachineOperand *MO, unsigned MONum); 220 void markReachable(const MachineBasicBlock *MBB); 221 void calcRegsPassed(); 222 void checkPHIOps(const MachineBasicBlock *MBB); 223 224 void calcRegsRequired(); 225 void verifyLiveVariables(); 226 void verifyLiveIntervals(); 227 void verifyLiveInterval(const LiveInterval&); 228 void verifyLiveIntervalValue(const LiveInterval&, VNInfo*); 229 void verifyLiveIntervalSegment(const LiveInterval&, 230 LiveInterval::const_iterator); 231 232 void verifyStackFrame(); 233 }; 234 235 struct MachineVerifierPass : public MachineFunctionPass { 236 static char ID; // Pass ID, replacement for typeid 237 const char *const Banner; 238 239 MachineVerifierPass(const char *b = 0) 240 : MachineFunctionPass(ID), Banner(b) { 241 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 242 } 243 244 void getAnalysisUsage(AnalysisUsage &AU) const { 245 AU.setPreservesAll(); 246 MachineFunctionPass::getAnalysisUsage(AU); 247 } 248 249 bool runOnMachineFunction(MachineFunction &MF) { 250 MF.verify(this, Banner); 251 return false; 252 } 253 }; 254 255} 256 257char MachineVerifierPass::ID = 0; 258INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 259 "Verify generated machine code", false, false) 260 261FunctionPass *llvm::createMachineVerifierPass(const char *Banner) { 262 return new MachineVerifierPass(Banner); 263} 264 265void MachineFunction::verify(Pass *p, const char *Banner) const { 266 MachineVerifier(p, Banner) 267 .runOnMachineFunction(const_cast<MachineFunction&>(*this)); 268} 269 270bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) { 271 raw_ostream *OutFile = 0; 272 if (OutFileName) { 273 std::string ErrorInfo; 274 OutFile = new raw_fd_ostream(OutFileName, ErrorInfo, sys::fs::F_Append); 275 if (!ErrorInfo.empty()) { 276 errs() << "Error opening '" << OutFileName << "': " << ErrorInfo << '\n'; 277 exit(1); 278 } 279 280 OS = OutFile; 281 } else { 282 OS = &errs(); 283 } 284 285 foundErrors = 0; 286 287 this->MF = &MF; 288 TM = &MF.getTarget(); 289 TII = TM->getInstrInfo(); 290 TRI = TM->getRegisterInfo(); 291 MRI = &MF.getRegInfo(); 292 293 LiveVars = NULL; 294 LiveInts = NULL; 295 LiveStks = NULL; 296 Indexes = NULL; 297 if (PASS) { 298 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 299 // We don't want to verify LiveVariables if LiveIntervals is available. 300 if (!LiveInts) 301 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 302 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 303 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 304 } 305 306 visitMachineFunctionBefore(); 307 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); 308 MFI!=MFE; ++MFI) { 309 visitMachineBasicBlockBefore(MFI); 310 // Keep track of the current bundle header. 311 const MachineInstr *CurBundle = 0; 312 // Do we expect the next instruction to be part of the same bundle? 313 bool InBundle = false; 314 315 for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(), 316 MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) { 317 if (MBBI->getParent() != MFI) { 318 report("Bad instruction parent pointer", MFI); 319 *OS << "Instruction: " << *MBBI; 320 continue; 321 } 322 323 // Check for consistent bundle flags. 324 if (InBundle && !MBBI->isBundledWithPred()) 325 report("Missing BundledPred flag, " 326 "BundledSucc was set on predecessor", MBBI); 327 if (!InBundle && MBBI->isBundledWithPred()) 328 report("BundledPred flag is set, " 329 "but BundledSucc not set on predecessor", MBBI); 330 331 // Is this a bundle header? 332 if (!MBBI->isInsideBundle()) { 333 if (CurBundle) 334 visitMachineBundleAfter(CurBundle); 335 CurBundle = MBBI; 336 visitMachineBundleBefore(CurBundle); 337 } else if (!CurBundle) 338 report("No bundle header", MBBI); 339 visitMachineInstrBefore(MBBI); 340 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) 341 visitMachineOperand(&MBBI->getOperand(I), I); 342 visitMachineInstrAfter(MBBI); 343 344 // Was this the last bundled instruction? 345 InBundle = MBBI->isBundledWithSucc(); 346 } 347 if (CurBundle) 348 visitMachineBundleAfter(CurBundle); 349 if (InBundle) 350 report("BundledSucc flag set on last instruction in block", &MFI->back()); 351 visitMachineBasicBlockAfter(MFI); 352 } 353 visitMachineFunctionAfter(); 354 355 if (OutFile) 356 delete OutFile; 357 else if (foundErrors) 358 report_fatal_error("Found "+Twine(foundErrors)+" machine code errors."); 359 360 // Clean up. 361 regsLive.clear(); 362 regsDefined.clear(); 363 regsDead.clear(); 364 regsKilled.clear(); 365 regMasks.clear(); 366 regsLiveInButUnused.clear(); 367 MBBInfoMap.clear(); 368 369 return false; // no changes 370} 371 372void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 373 assert(MF); 374 *OS << '\n'; 375 if (!foundErrors++) { 376 if (Banner) 377 *OS << "# " << Banner << '\n'; 378 MF->print(*OS, Indexes); 379 } 380 *OS << "*** Bad machine code: " << msg << " ***\n" 381 << "- function: " << MF->getName() << "\n"; 382} 383 384void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 385 assert(MBB); 386 report(msg, MBB->getParent()); 387 *OS << "- basic block: BB#" << MBB->getNumber() 388 << ' ' << MBB->getName() 389 << " (" << (const void*)MBB << ')'; 390 if (Indexes) 391 *OS << " [" << Indexes->getMBBStartIdx(MBB) 392 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 393 *OS << '\n'; 394} 395 396void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 397 assert(MI); 398 report(msg, MI->getParent()); 399 *OS << "- instruction: "; 400 if (Indexes && Indexes->hasIndex(MI)) 401 *OS << Indexes->getInstructionIndex(MI) << '\t'; 402 MI->print(*OS, TM); 403} 404 405void MachineVerifier::report(const char *msg, 406 const MachineOperand *MO, unsigned MONum) { 407 assert(MO); 408 report(msg, MO->getParent()); 409 *OS << "- operand " << MONum << ": "; 410 MO->print(*OS, TM); 411 *OS << "\n"; 412} 413 414void MachineVerifier::report(const char *msg, const MachineFunction *MF, 415 const LiveInterval &LI) { 416 report(msg, MF); 417 *OS << "- interval: "; 418 if (TargetRegisterInfo::isVirtualRegister(LI.reg)) 419 *OS << PrintReg(LI.reg, TRI); 420 else 421 *OS << PrintRegUnit(LI.reg, TRI); 422 *OS << ' ' << LI << '\n'; 423} 424 425void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB, 426 const LiveInterval &LI) { 427 report(msg, MBB); 428 *OS << "- interval: "; 429 if (TargetRegisterInfo::isVirtualRegister(LI.reg)) 430 *OS << PrintReg(LI.reg, TRI); 431 else 432 *OS << PrintRegUnit(LI.reg, TRI); 433 *OS << ' ' << LI << '\n'; 434} 435 436void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 437 BBInfo &MInfo = MBBInfoMap[MBB]; 438 if (!MInfo.reachable) { 439 MInfo.reachable = true; 440 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 441 SuE = MBB->succ_end(); SuI != SuE; ++SuI) 442 markReachable(*SuI); 443 } 444} 445 446void MachineVerifier::visitMachineFunctionBefore() { 447 lastIndex = SlotIndex(); 448 regsReserved = MRI->getReservedRegs(); 449 450 // A sub-register of a reserved register is also reserved 451 for (int Reg = regsReserved.find_first(); Reg>=0; 452 Reg = regsReserved.find_next(Reg)) { 453 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { 454 // FIXME: This should probably be: 455 // assert(regsReserved.test(*SubRegs) && "Non-reserved sub-register"); 456 regsReserved.set(*SubRegs); 457 } 458 } 459 460 markReachable(&MF->front()); 461 462 // Build a set of the basic blocks in the function. 463 FunctionBlocks.clear(); 464 for (MachineFunction::const_iterator 465 I = MF->begin(), E = MF->end(); I != E; ++I) { 466 FunctionBlocks.insert(I); 467 BBInfo &MInfo = MBBInfoMap[I]; 468 469 MInfo.Preds.insert(I->pred_begin(), I->pred_end()); 470 if (MInfo.Preds.size() != I->pred_size()) 471 report("MBB has duplicate entries in its predecessor list.", I); 472 473 MInfo.Succs.insert(I->succ_begin(), I->succ_end()); 474 if (MInfo.Succs.size() != I->succ_size()) 475 report("MBB has duplicate entries in its successor list.", I); 476 } 477 478 // Check that the register use lists are sane. 479 MRI->verifyUseLists(); 480 481 verifyStackFrame(); 482} 483 484// Does iterator point to a and b as the first two elements? 485static bool matchPair(MachineBasicBlock::const_succ_iterator i, 486 const MachineBasicBlock *a, const MachineBasicBlock *b) { 487 if (*i == a) 488 return *++i == b; 489 if (*i == b) 490 return *++i == a; 491 return false; 492} 493 494void 495MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 496 FirstTerminator = 0; 497 498 if (MRI->isSSA()) { 499 // If this block has allocatable physical registers live-in, check that 500 // it is an entry block or landing pad. 501 for (MachineBasicBlock::livein_iterator LI = MBB->livein_begin(), 502 LE = MBB->livein_end(); 503 LI != LE; ++LI) { 504 unsigned reg = *LI; 505 if (isAllocatable(reg) && !MBB->isLandingPad() && 506 MBB != MBB->getParent()->begin()) { 507 report("MBB has allocable live-in, but isn't entry or landing-pad.", MBB); 508 } 509 } 510 } 511 512 // Count the number of landing pad successors. 513 SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs; 514 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 515 E = MBB->succ_end(); I != E; ++I) { 516 if ((*I)->isLandingPad()) 517 LandingPadSuccs.insert(*I); 518 if (!FunctionBlocks.count(*I)) 519 report("MBB has successor that isn't part of the function.", MBB); 520 if (!MBBInfoMap[*I].Preds.count(MBB)) { 521 report("Inconsistent CFG", MBB); 522 *OS << "MBB is not in the predecessor list of the successor BB#" 523 << (*I)->getNumber() << ".\n"; 524 } 525 } 526 527 // Check the predecessor list. 528 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 529 E = MBB->pred_end(); I != E; ++I) { 530 if (!FunctionBlocks.count(*I)) 531 report("MBB has predecessor that isn't part of the function.", MBB); 532 if (!MBBInfoMap[*I].Succs.count(MBB)) { 533 report("Inconsistent CFG", MBB); 534 *OS << "MBB is not in the successor list of the predecessor BB#" 535 << (*I)->getNumber() << ".\n"; 536 } 537 } 538 539 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 540 const BasicBlock *BB = MBB->getBasicBlock(); 541 if (LandingPadSuccs.size() > 1 && 542 !(AsmInfo && 543 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 544 BB && isa<SwitchInst>(BB->getTerminator()))) 545 report("MBB has more than one landing pad successor", MBB); 546 547 // Call AnalyzeBranch. If it succeeds, there several more conditions to check. 548 MachineBasicBlock *TBB = 0, *FBB = 0; 549 SmallVector<MachineOperand, 4> Cond; 550 if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB), 551 TBB, FBB, Cond)) { 552 // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's 553 // check whether its answers match up with reality. 554 if (!TBB && !FBB) { 555 // Block falls through to its successor. 556 MachineFunction::const_iterator MBBI = MBB; 557 ++MBBI; 558 if (MBBI == MF->end()) { 559 // It's possible that the block legitimately ends with a noreturn 560 // call or an unreachable, in which case it won't actually fall 561 // out the bottom of the function. 562 } else if (MBB->succ_size() == LandingPadSuccs.size()) { 563 // It's possible that the block legitimately ends with a noreturn 564 // call or an unreachable, in which case it won't actuall fall 565 // out of the block. 566 } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 567 report("MBB exits via unconditional fall-through but doesn't have " 568 "exactly one CFG successor!", MBB); 569 } else if (!MBB->isSuccessor(MBBI)) { 570 report("MBB exits via unconditional fall-through but its successor " 571 "differs from its CFG successor!", MBB); 572 } 573 if (!MBB->empty() && getBundleStart(&MBB->back())->isBarrier() && 574 !TII->isPredicated(getBundleStart(&MBB->back()))) { 575 report("MBB exits via unconditional fall-through but ends with a " 576 "barrier instruction!", MBB); 577 } 578 if (!Cond.empty()) { 579 report("MBB exits via unconditional fall-through but has a condition!", 580 MBB); 581 } 582 } else if (TBB && !FBB && Cond.empty()) { 583 // Block unconditionally branches somewhere. 584 if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 585 report("MBB exits via unconditional branch but doesn't have " 586 "exactly one CFG successor!", MBB); 587 } else if (!MBB->isSuccessor(TBB)) { 588 report("MBB exits via unconditional branch but the CFG " 589 "successor doesn't match the actual successor!", MBB); 590 } 591 if (MBB->empty()) { 592 report("MBB exits via unconditional branch but doesn't contain " 593 "any instructions!", MBB); 594 } else if (!getBundleStart(&MBB->back())->isBarrier()) { 595 report("MBB exits via unconditional branch but doesn't end with a " 596 "barrier instruction!", MBB); 597 } else if (!getBundleStart(&MBB->back())->isTerminator()) { 598 report("MBB exits via unconditional branch but the branch isn't a " 599 "terminator instruction!", MBB); 600 } 601 } else if (TBB && !FBB && !Cond.empty()) { 602 // Block conditionally branches somewhere, otherwise falls through. 603 MachineFunction::const_iterator MBBI = MBB; 604 ++MBBI; 605 if (MBBI == MF->end()) { 606 report("MBB conditionally falls through out of function!", MBB); 607 } else if (MBB->succ_size() == 1) { 608 // A conditional branch with only one successor is weird, but allowed. 609 if (&*MBBI != TBB) 610 report("MBB exits via conditional branch/fall-through but only has " 611 "one CFG successor!", MBB); 612 else if (TBB != *MBB->succ_begin()) 613 report("MBB exits via conditional branch/fall-through but the CFG " 614 "successor don't match the actual successor!", MBB); 615 } else if (MBB->succ_size() != 2) { 616 report("MBB exits via conditional branch/fall-through but doesn't have " 617 "exactly two CFG successors!", MBB); 618 } else if (!matchPair(MBB->succ_begin(), TBB, MBBI)) { 619 report("MBB exits via conditional branch/fall-through but the CFG " 620 "successors don't match the actual successors!", MBB); 621 } 622 if (MBB->empty()) { 623 report("MBB exits via conditional branch/fall-through but doesn't " 624 "contain any instructions!", MBB); 625 } else if (getBundleStart(&MBB->back())->isBarrier()) { 626 report("MBB exits via conditional branch/fall-through but ends with a " 627 "barrier instruction!", MBB); 628 } else if (!getBundleStart(&MBB->back())->isTerminator()) { 629 report("MBB exits via conditional branch/fall-through but the branch " 630 "isn't a terminator instruction!", MBB); 631 } 632 } else if (TBB && FBB) { 633 // Block conditionally branches somewhere, otherwise branches 634 // somewhere else. 635 if (MBB->succ_size() == 1) { 636 // A conditional branch with only one successor is weird, but allowed. 637 if (FBB != TBB) 638 report("MBB exits via conditional branch/branch through but only has " 639 "one CFG successor!", MBB); 640 else if (TBB != *MBB->succ_begin()) 641 report("MBB exits via conditional branch/branch through but the CFG " 642 "successor don't match the actual successor!", MBB); 643 } else if (MBB->succ_size() != 2) { 644 report("MBB exits via conditional branch/branch but doesn't have " 645 "exactly two CFG successors!", MBB); 646 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) { 647 report("MBB exits via conditional branch/branch but the CFG " 648 "successors don't match the actual successors!", MBB); 649 } 650 if (MBB->empty()) { 651 report("MBB exits via conditional branch/branch but doesn't " 652 "contain any instructions!", MBB); 653 } else if (!getBundleStart(&MBB->back())->isBarrier()) { 654 report("MBB exits via conditional branch/branch but doesn't end with a " 655 "barrier instruction!", MBB); 656 } else if (!getBundleStart(&MBB->back())->isTerminator()) { 657 report("MBB exits via conditional branch/branch but the branch " 658 "isn't a terminator instruction!", MBB); 659 } 660 if (Cond.empty()) { 661 report("MBB exits via conditinal branch/branch but there's no " 662 "condition!", MBB); 663 } 664 } else { 665 report("AnalyzeBranch returned invalid data!", MBB); 666 } 667 } 668 669 regsLive.clear(); 670 for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(), 671 E = MBB->livein_end(); I != E; ++I) { 672 if (!TargetRegisterInfo::isPhysicalRegister(*I)) { 673 report("MBB live-in list contains non-physical register", MBB); 674 continue; 675 } 676 for (MCSubRegIterator SubRegs(*I, TRI, /*IncludeSelf=*/true); 677 SubRegs.isValid(); ++SubRegs) 678 regsLive.insert(*SubRegs); 679 } 680 regsLiveInButUnused = regsLive; 681 682 const MachineFrameInfo *MFI = MF->getFrameInfo(); 683 assert(MFI && "Function has no frame info"); 684 BitVector PR = MFI->getPristineRegs(MBB); 685 for (int I = PR.find_first(); I>0; I = PR.find_next(I)) { 686 for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true); 687 SubRegs.isValid(); ++SubRegs) 688 regsLive.insert(*SubRegs); 689 } 690 691 regsKilled.clear(); 692 regsDefined.clear(); 693 694 if (Indexes) 695 lastIndex = Indexes->getMBBStartIdx(MBB); 696} 697 698// This function gets called for all bundle headers, including normal 699// stand-alone unbundled instructions. 700void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 701 if (Indexes && Indexes->hasIndex(MI)) { 702 SlotIndex idx = Indexes->getInstructionIndex(MI); 703 if (!(idx > lastIndex)) { 704 report("Instruction index out of order", MI); 705 *OS << "Last instruction was at " << lastIndex << '\n'; 706 } 707 lastIndex = idx; 708 } 709 710 // Ensure non-terminators don't follow terminators. 711 // Ignore predicated terminators formed by if conversion. 712 // FIXME: If conversion shouldn't need to violate this rule. 713 if (MI->isTerminator() && !TII->isPredicated(MI)) { 714 if (!FirstTerminator) 715 FirstTerminator = MI; 716 } else if (FirstTerminator) { 717 report("Non-terminator instruction after the first terminator", MI); 718 *OS << "First terminator was:\t" << *FirstTerminator; 719 } 720} 721 722// The operands on an INLINEASM instruction must follow a template. 723// Verify that the flag operands make sense. 724void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 725 // The first two operands on INLINEASM are the asm string and global flags. 726 if (MI->getNumOperands() < 2) { 727 report("Too few operands on inline asm", MI); 728 return; 729 } 730 if (!MI->getOperand(0).isSymbol()) 731 report("Asm string must be an external symbol", MI); 732 if (!MI->getOperand(1).isImm()) 733 report("Asm flags must be an immediate", MI); 734 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 735 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16. 736 if (!isUInt<5>(MI->getOperand(1).getImm())) 737 report("Unknown asm flags", &MI->getOperand(1), 1); 738 739 assert(InlineAsm::MIOp_FirstOperand == 2 && "Asm format changed"); 740 741 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 742 unsigned NumOps; 743 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 744 const MachineOperand &MO = MI->getOperand(OpNo); 745 // There may be implicit ops after the fixed operands. 746 if (!MO.isImm()) 747 break; 748 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 749 } 750 751 if (OpNo > MI->getNumOperands()) 752 report("Missing operands in last group", MI); 753 754 // An optional MDNode follows the groups. 755 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 756 ++OpNo; 757 758 // All trailing operands must be implicit registers. 759 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 760 const MachineOperand &MO = MI->getOperand(OpNo); 761 if (!MO.isReg() || !MO.isImplicit()) 762 report("Expected implicit register after groups", &MO, OpNo); 763 } 764} 765 766void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 767 const MCInstrDesc &MCID = MI->getDesc(); 768 if (MI->getNumOperands() < MCID.getNumOperands()) { 769 report("Too few operands", MI); 770 *OS << MCID.getNumOperands() << " operands expected, but " 771 << MI->getNumExplicitOperands() << " given.\n"; 772 } 773 774 // Check the tied operands. 775 if (MI->isInlineAsm()) 776 verifyInlineAsm(MI); 777 778 // Check the MachineMemOperands for basic consistency. 779 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), 780 E = MI->memoperands_end(); I != E; ++I) { 781 if ((*I)->isLoad() && !MI->mayLoad()) 782 report("Missing mayLoad flag", MI); 783 if ((*I)->isStore() && !MI->mayStore()) 784 report("Missing mayStore flag", MI); 785 } 786 787 // Debug values must not have a slot index. 788 // Other instructions must have one, unless they are inside a bundle. 789 if (LiveInts) { 790 bool mapped = !LiveInts->isNotInMIMap(MI); 791 if (MI->isDebugValue()) { 792 if (mapped) 793 report("Debug instruction has a slot index", MI); 794 } else if (MI->isInsideBundle()) { 795 if (mapped) 796 report("Instruction inside bundle has a slot index", MI); 797 } else { 798 if (!mapped) 799 report("Missing slot index", MI); 800 } 801 } 802 803 StringRef ErrorInfo; 804 if (!TII->verifyInstruction(MI, ErrorInfo)) 805 report(ErrorInfo.data(), MI); 806} 807 808void 809MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 810 const MachineInstr *MI = MO->getParent(); 811 const MCInstrDesc &MCID = MI->getDesc(); 812 813 // The first MCID.NumDefs operands must be explicit register defines 814 if (MONum < MCID.getNumDefs()) { 815 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 816 if (!MO->isReg()) 817 report("Explicit definition must be a register", MO, MONum); 818 else if (!MO->isDef() && !MCOI.isOptionalDef()) 819 report("Explicit definition marked as use", MO, MONum); 820 else if (MO->isImplicit()) 821 report("Explicit definition marked as implicit", MO, MONum); 822 } else if (MONum < MCID.getNumOperands()) { 823 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 824 // Don't check if it's the last operand in a variadic instruction. See, 825 // e.g., LDM_RET in the arm back end. 826 if (MO->isReg() && 827 !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) { 828 if (MO->isDef() && !MCOI.isOptionalDef()) 829 report("Explicit operand marked as def", MO, MONum); 830 if (MO->isImplicit()) 831 report("Explicit operand marked as implicit", MO, MONum); 832 } 833 834 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 835 if (TiedTo != -1) { 836 if (!MO->isReg()) 837 report("Tied use must be a register", MO, MONum); 838 else if (!MO->isTied()) 839 report("Operand should be tied", MO, MONum); 840 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 841 report("Tied def doesn't match MCInstrDesc", MO, MONum); 842 } else if (MO->isReg() && MO->isTied()) 843 report("Explicit operand should not be tied", MO, MONum); 844 } else { 845 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 846 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 847 report("Extra explicit operand on non-variadic instruction", MO, MONum); 848 } 849 850 switch (MO->getType()) { 851 case MachineOperand::MO_Register: { 852 const unsigned Reg = MO->getReg(); 853 if (!Reg) 854 return; 855 if (MRI->tracksLiveness() && !MI->isDebugValue()) 856 checkLiveness(MO, MONum); 857 858 // Verify the consistency of tied operands. 859 if (MO->isTied()) { 860 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 861 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 862 if (!OtherMO.isReg()) 863 report("Must be tied to a register", MO, MONum); 864 if (!OtherMO.isTied()) 865 report("Missing tie flags on tied operand", MO, MONum); 866 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 867 report("Inconsistent tie links", MO, MONum); 868 if (MONum < MCID.getNumDefs()) { 869 if (OtherIdx < MCID.getNumOperands()) { 870 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 871 report("Explicit def tied to explicit use without tie constraint", 872 MO, MONum); 873 } else { 874 if (!OtherMO.isImplicit()) 875 report("Explicit def should be tied to implicit use", MO, MONum); 876 } 877 } 878 } 879 880 // Verify two-address constraints after leaving SSA form. 881 unsigned DefIdx; 882 if (!MRI->isSSA() && MO->isUse() && 883 MI->isRegTiedToDefOperand(MONum, &DefIdx) && 884 Reg != MI->getOperand(DefIdx).getReg()) 885 report("Two-address instruction operands must be identical", MO, MONum); 886 887 // Check register classes. 888 if (MONum < MCID.getNumOperands() && !MO->isImplicit()) { 889 unsigned SubIdx = MO->getSubReg(); 890 891 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 892 if (SubIdx) { 893 report("Illegal subregister index for physical register", MO, MONum); 894 return; 895 } 896 if (const TargetRegisterClass *DRC = 897 TII->getRegClass(MCID, MONum, TRI, *MF)) { 898 if (!DRC->contains(Reg)) { 899 report("Illegal physical register for instruction", MO, MONum); 900 *OS << TRI->getName(Reg) << " is not a " 901 << DRC->getName() << " register.\n"; 902 } 903 } 904 } else { 905 // Virtual register. 906 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 907 if (SubIdx) { 908 const TargetRegisterClass *SRC = 909 TRI->getSubClassWithSubReg(RC, SubIdx); 910 if (!SRC) { 911 report("Invalid subregister index for virtual register", MO, MONum); 912 *OS << "Register class " << RC->getName() 913 << " does not support subreg index " << SubIdx << "\n"; 914 return; 915 } 916 if (RC != SRC) { 917 report("Invalid register class for subregister index", MO, MONum); 918 *OS << "Register class " << RC->getName() 919 << " does not fully support subreg index " << SubIdx << "\n"; 920 return; 921 } 922 } 923 if (const TargetRegisterClass *DRC = 924 TII->getRegClass(MCID, MONum, TRI, *MF)) { 925 if (SubIdx) { 926 const TargetRegisterClass *SuperRC = 927 TRI->getLargestLegalSuperClass(RC); 928 if (!SuperRC) { 929 report("No largest legal super class exists.", MO, MONum); 930 return; 931 } 932 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 933 if (!DRC) { 934 report("No matching super-reg register class.", MO, MONum); 935 return; 936 } 937 } 938 if (!RC->hasSuperClassEq(DRC)) { 939 report("Illegal virtual register for instruction", MO, MONum); 940 *OS << "Expected a " << DRC->getName() << " register, but got a " 941 << RC->getName() << " register\n"; 942 } 943 } 944 } 945 } 946 break; 947 } 948 949 case MachineOperand::MO_RegisterMask: 950 regMasks.push_back(MO->getRegMask()); 951 break; 952 953 case MachineOperand::MO_MachineBasicBlock: 954 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 955 report("PHI operand is not in the CFG", MO, MONum); 956 break; 957 958 case MachineOperand::MO_FrameIndex: 959 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 960 LiveInts && !LiveInts->isNotInMIMap(MI)) { 961 LiveInterval &LI = LiveStks->getInterval(MO->getIndex()); 962 SlotIndex Idx = LiveInts->getInstructionIndex(MI); 963 if (MI->mayLoad() && !LI.liveAt(Idx.getRegSlot(true))) { 964 report("Instruction loads from dead spill slot", MO, MONum); 965 *OS << "Live stack: " << LI << '\n'; 966 } 967 if (MI->mayStore() && !LI.liveAt(Idx.getRegSlot())) { 968 report("Instruction stores to dead spill slot", MO, MONum); 969 *OS << "Live stack: " << LI << '\n'; 970 } 971 } 972 break; 973 974 default: 975 break; 976 } 977} 978 979void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 980 const MachineInstr *MI = MO->getParent(); 981 const unsigned Reg = MO->getReg(); 982 983 // Both use and def operands can read a register. 984 if (MO->readsReg()) { 985 regsLiveInButUnused.erase(Reg); 986 987 if (MO->isKill()) 988 addRegWithSubRegs(regsKilled, Reg); 989 990 // Check that LiveVars knows this kill. 991 if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) && 992 MO->isKill()) { 993 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 994 if (std::find(VI.Kills.begin(), VI.Kills.end(), MI) == VI.Kills.end()) 995 report("Kill missing from LiveVariables", MO, MONum); 996 } 997 998 // Check LiveInts liveness and kill. 999 if (LiveInts && !LiveInts->isNotInMIMap(MI)) { 1000 SlotIndex UseIdx = LiveInts->getInstructionIndex(MI); 1001 // Check the cached regunit intervals. 1002 if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) { 1003 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1004 if (const LiveInterval *LI = LiveInts->getCachedRegUnit(*Units)) { 1005 LiveRangeQuery LRQ(*LI, UseIdx); 1006 if (!LRQ.valueIn()) { 1007 report("No live range at use", MO, MONum); 1008 *OS << UseIdx << " is not live in " << PrintRegUnit(*Units, TRI) 1009 << ' ' << *LI << '\n'; 1010 } 1011 if (MO->isKill() && !LRQ.isKill()) { 1012 report("Live range continues after kill flag", MO, MONum); 1013 *OS << PrintRegUnit(*Units, TRI) << ' ' << *LI << '\n'; 1014 } 1015 } 1016 } 1017 } 1018 1019 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1020 if (LiveInts->hasInterval(Reg)) { 1021 // This is a virtual register interval. 1022 const LiveInterval &LI = LiveInts->getInterval(Reg); 1023 LiveRangeQuery LRQ(LI, UseIdx); 1024 if (!LRQ.valueIn()) { 1025 report("No live range at use", MO, MONum); 1026 *OS << UseIdx << " is not live in " << LI << '\n'; 1027 } 1028 // Check for extra kill flags. 1029 // Note that we allow missing kill flags for now. 1030 if (MO->isKill() && !LRQ.isKill()) { 1031 report("Live range continues after kill flag", MO, MONum); 1032 *OS << "Live range: " << LI << '\n'; 1033 } 1034 } else { 1035 report("Virtual register has no live interval", MO, MONum); 1036 } 1037 } 1038 } 1039 1040 // Use of a dead register. 1041 if (!regsLive.count(Reg)) { 1042 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1043 // Reserved registers may be used even when 'dead'. 1044 if (!isReserved(Reg)) 1045 report("Using an undefined physical register", MO, MONum); 1046 } else if (MRI->def_empty(Reg)) { 1047 report("Reading virtual register without a def", MO, MONum); 1048 } else { 1049 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1050 // We don't know which virtual registers are live in, so only complain 1051 // if vreg was killed in this MBB. Otherwise keep track of vregs that 1052 // must be live in. PHI instructions are handled separately. 1053 if (MInfo.regsKilled.count(Reg)) 1054 report("Using a killed virtual register", MO, MONum); 1055 else if (!MI->isPHI()) 1056 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 1057 } 1058 } 1059 } 1060 1061 if (MO->isDef()) { 1062 // Register defined. 1063 // TODO: verify that earlyclobber ops are not used. 1064 if (MO->isDead()) 1065 addRegWithSubRegs(regsDead, Reg); 1066 else 1067 addRegWithSubRegs(regsDefined, Reg); 1068 1069 // Verify SSA form. 1070 if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) && 1071 llvm::next(MRI->def_begin(Reg)) != MRI->def_end()) 1072 report("Multiple virtual register defs in SSA form", MO, MONum); 1073 1074 // Check LiveInts for a live range, but only for virtual registers. 1075 if (LiveInts && TargetRegisterInfo::isVirtualRegister(Reg) && 1076 !LiveInts->isNotInMIMap(MI)) { 1077 SlotIndex DefIdx = LiveInts->getInstructionIndex(MI); 1078 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 1079 if (LiveInts->hasInterval(Reg)) { 1080 const LiveInterval &LI = LiveInts->getInterval(Reg); 1081 if (const VNInfo *VNI = LI.getVNInfoAt(DefIdx)) { 1082 assert(VNI && "NULL valno is not allowed"); 1083 if (VNI->def != DefIdx) { 1084 report("Inconsistent valno->def", MO, MONum); 1085 *OS << "Valno " << VNI->id << " is not defined at " 1086 << DefIdx << " in " << LI << '\n'; 1087 } 1088 } else { 1089 report("No live range at def", MO, MONum); 1090 *OS << DefIdx << " is not live in " << LI << '\n'; 1091 } 1092 } else { 1093 report("Virtual register has no Live interval", MO, MONum); 1094 } 1095 } 1096 } 1097} 1098 1099void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) { 1100} 1101 1102// This function gets called after visiting all instructions in a bundle. The 1103// argument points to the bundle header. 1104// Normal stand-alone instructions are also considered 'bundles', and this 1105// function is called for all of them. 1106void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 1107 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1108 set_union(MInfo.regsKilled, regsKilled); 1109 set_subtract(regsLive, regsKilled); regsKilled.clear(); 1110 // Kill any masked registers. 1111 while (!regMasks.empty()) { 1112 const uint32_t *Mask = regMasks.pop_back_val(); 1113 for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I) 1114 if (TargetRegisterInfo::isPhysicalRegister(*I) && 1115 MachineOperand::clobbersPhysReg(Mask, *I)) 1116 regsDead.push_back(*I); 1117 } 1118 set_subtract(regsLive, regsDead); regsDead.clear(); 1119 set_union(regsLive, regsDefined); regsDefined.clear(); 1120} 1121 1122void 1123MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 1124 MBBInfoMap[MBB].regsLiveOut = regsLive; 1125 regsLive.clear(); 1126 1127 if (Indexes) { 1128 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 1129 if (!(stop > lastIndex)) { 1130 report("Block ends before last instruction index", MBB); 1131 *OS << "Block ends at " << stop 1132 << " last instruction was at " << lastIndex << '\n'; 1133 } 1134 lastIndex = stop; 1135 } 1136} 1137 1138// Calculate the largest possible vregsPassed sets. These are the registers that 1139// can pass through an MBB live, but may not be live every time. It is assumed 1140// that all vregsPassed sets are empty before the call. 1141void MachineVerifier::calcRegsPassed() { 1142 // First push live-out regs to successors' vregsPassed. Remember the MBBs that 1143 // have any vregsPassed. 1144 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1145 for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); 1146 MFI != MFE; ++MFI) { 1147 const MachineBasicBlock &MBB(*MFI); 1148 BBInfo &MInfo = MBBInfoMap[&MBB]; 1149 if (!MInfo.reachable) 1150 continue; 1151 for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(), 1152 SuE = MBB.succ_end(); SuI != SuE; ++SuI) { 1153 BBInfo &SInfo = MBBInfoMap[*SuI]; 1154 if (SInfo.addPassed(MInfo.regsLiveOut)) 1155 todo.insert(*SuI); 1156 } 1157 } 1158 1159 // Iteratively push vregsPassed to successors. This will converge to the same 1160 // final state regardless of DenseSet iteration order. 1161 while (!todo.empty()) { 1162 const MachineBasicBlock *MBB = *todo.begin(); 1163 todo.erase(MBB); 1164 BBInfo &MInfo = MBBInfoMap[MBB]; 1165 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 1166 SuE = MBB->succ_end(); SuI != SuE; ++SuI) { 1167 if (*SuI == MBB) 1168 continue; 1169 BBInfo &SInfo = MBBInfoMap[*SuI]; 1170 if (SInfo.addPassed(MInfo.vregsPassed)) 1171 todo.insert(*SuI); 1172 } 1173 } 1174} 1175 1176// Calculate the set of virtual registers that must be passed through each basic 1177// block in order to satisfy the requirements of successor blocks. This is very 1178// similar to calcRegsPassed, only backwards. 1179void MachineVerifier::calcRegsRequired() { 1180 // First push live-in regs to predecessors' vregsRequired. 1181 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1182 for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); 1183 MFI != MFE; ++MFI) { 1184 const MachineBasicBlock &MBB(*MFI); 1185 BBInfo &MInfo = MBBInfoMap[&MBB]; 1186 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(), 1187 PrE = MBB.pred_end(); PrI != PrE; ++PrI) { 1188 BBInfo &PInfo = MBBInfoMap[*PrI]; 1189 if (PInfo.addRequired(MInfo.vregsLiveIn)) 1190 todo.insert(*PrI); 1191 } 1192 } 1193 1194 // Iteratively push vregsRequired to predecessors. This will converge to the 1195 // same final state regardless of DenseSet iteration order. 1196 while (!todo.empty()) { 1197 const MachineBasicBlock *MBB = *todo.begin(); 1198 todo.erase(MBB); 1199 BBInfo &MInfo = MBBInfoMap[MBB]; 1200 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 1201 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 1202 if (*PrI == MBB) 1203 continue; 1204 BBInfo &SInfo = MBBInfoMap[*PrI]; 1205 if (SInfo.addRequired(MInfo.vregsRequired)) 1206 todo.insert(*PrI); 1207 } 1208 } 1209} 1210 1211// Check PHI instructions at the beginning of MBB. It is assumed that 1212// calcRegsPassed has been run so BBInfo::isLiveOut is valid. 1213void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) { 1214 SmallPtrSet<const MachineBasicBlock*, 8> seen; 1215 for (MachineBasicBlock::const_iterator BBI = MBB->begin(), BBE = MBB->end(); 1216 BBI != BBE && BBI->isPHI(); ++BBI) { 1217 seen.clear(); 1218 1219 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) { 1220 unsigned Reg = BBI->getOperand(i).getReg(); 1221 const MachineBasicBlock *Pre = BBI->getOperand(i + 1).getMBB(); 1222 if (!Pre->isSuccessor(MBB)) 1223 continue; 1224 seen.insert(Pre); 1225 BBInfo &PrInfo = MBBInfoMap[Pre]; 1226 if (PrInfo.reachable && !PrInfo.isLiveOut(Reg)) 1227 report("PHI operand is not live-out from predecessor", 1228 &BBI->getOperand(i), i); 1229 } 1230 1231 // Did we see all predecessors? 1232 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 1233 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 1234 if (!seen.count(*PrI)) { 1235 report("Missing PHI operand", BBI); 1236 *OS << "BB#" << (*PrI)->getNumber() 1237 << " is a predecessor according to the CFG.\n"; 1238 } 1239 } 1240 } 1241} 1242 1243void MachineVerifier::visitMachineFunctionAfter() { 1244 calcRegsPassed(); 1245 1246 for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); 1247 MFI != MFE; ++MFI) { 1248 BBInfo &MInfo = MBBInfoMap[MFI]; 1249 1250 // Skip unreachable MBBs. 1251 if (!MInfo.reachable) 1252 continue; 1253 1254 checkPHIOps(MFI); 1255 } 1256 1257 // Now check liveness info if available 1258 calcRegsRequired(); 1259 1260 // Check for killed virtual registers that should be live out. 1261 for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); 1262 MFI != MFE; ++MFI) { 1263 BBInfo &MInfo = MBBInfoMap[MFI]; 1264 for (RegSet::iterator 1265 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1266 ++I) 1267 if (MInfo.regsKilled.count(*I)) { 1268 report("Virtual register killed in block, but needed live out.", MFI); 1269 *OS << "Virtual register " << PrintReg(*I) 1270 << " is used after the block.\n"; 1271 } 1272 } 1273 1274 if (!MF->empty()) { 1275 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 1276 for (RegSet::iterator 1277 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1278 ++I) 1279 report("Virtual register def doesn't dominate all uses.", 1280 MRI->getVRegDef(*I)); 1281 } 1282 1283 if (LiveVars) 1284 verifyLiveVariables(); 1285 if (LiveInts) 1286 verifyLiveIntervals(); 1287} 1288 1289void MachineVerifier::verifyLiveVariables() { 1290 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 1291 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1292 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1293 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1294 for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); 1295 MFI != MFE; ++MFI) { 1296 BBInfo &MInfo = MBBInfoMap[MFI]; 1297 1298 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 1299 if (MInfo.vregsRequired.count(Reg)) { 1300 if (!VI.AliveBlocks.test(MFI->getNumber())) { 1301 report("LiveVariables: Block missing from AliveBlocks", MFI); 1302 *OS << "Virtual register " << PrintReg(Reg) 1303 << " must be live through the block.\n"; 1304 } 1305 } else { 1306 if (VI.AliveBlocks.test(MFI->getNumber())) { 1307 report("LiveVariables: Block should not be in AliveBlocks", MFI); 1308 *OS << "Virtual register " << PrintReg(Reg) 1309 << " is not needed live through the block.\n"; 1310 } 1311 } 1312 } 1313 } 1314} 1315 1316void MachineVerifier::verifyLiveIntervals() { 1317 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 1318 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1319 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1320 1321 // Spilling and splitting may leave unused registers around. Skip them. 1322 if (MRI->reg_nodbg_empty(Reg)) 1323 continue; 1324 1325 if (!LiveInts->hasInterval(Reg)) { 1326 report("Missing live interval for virtual register", MF); 1327 *OS << PrintReg(Reg, TRI) << " still has defs or uses\n"; 1328 continue; 1329 } 1330 1331 const LiveInterval &LI = LiveInts->getInterval(Reg); 1332 assert(Reg == LI.reg && "Invalid reg to interval mapping"); 1333 verifyLiveInterval(LI); 1334 } 1335 1336 // Verify all the cached regunit intervals. 1337 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 1338 if (const LiveInterval *LI = LiveInts->getCachedRegUnit(i)) 1339 verifyLiveInterval(*LI); 1340} 1341 1342void MachineVerifier::verifyLiveIntervalValue(const LiveInterval &LI, 1343 VNInfo *VNI) { 1344 if (VNI->isUnused()) 1345 return; 1346 1347 const VNInfo *DefVNI = LI.getVNInfoAt(VNI->def); 1348 1349 if (!DefVNI) { 1350 report("Valno not live at def and not marked unused", MF, LI); 1351 *OS << "Valno #" << VNI->id << '\n'; 1352 return; 1353 } 1354 1355 if (DefVNI != VNI) { 1356 report("Live range at def has different valno", MF, LI); 1357 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1358 << " where valno #" << DefVNI->id << " is live\n"; 1359 return; 1360 } 1361 1362 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 1363 if (!MBB) { 1364 report("Invalid definition index", MF, LI); 1365 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1366 << " in " << LI << '\n'; 1367 return; 1368 } 1369 1370 if (VNI->isPHIDef()) { 1371 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 1372 report("PHIDef value is not defined at MBB start", MBB, LI); 1373 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1374 << ", not at the beginning of BB#" << MBB->getNumber() << '\n'; 1375 } 1376 return; 1377 } 1378 1379 // Non-PHI def. 1380 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 1381 if (!MI) { 1382 report("No instruction at def index", MBB, LI); 1383 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n'; 1384 return; 1385 } 1386 1387 bool hasDef = false; 1388 bool isEarlyClobber = false; 1389 for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) { 1390 if (!MOI->isReg() || !MOI->isDef()) 1391 continue; 1392 if (TargetRegisterInfo::isVirtualRegister(LI.reg)) { 1393 if (MOI->getReg() != LI.reg) 1394 continue; 1395 } else { 1396 if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) || 1397 !TRI->hasRegUnit(MOI->getReg(), LI.reg)) 1398 continue; 1399 } 1400 hasDef = true; 1401 if (MOI->isEarlyClobber()) 1402 isEarlyClobber = true; 1403 } 1404 1405 if (!hasDef) { 1406 report("Defining instruction does not modify register", MI); 1407 *OS << "Valno #" << VNI->id << " in " << LI << '\n'; 1408 } 1409 1410 // Early clobber defs begin at USE slots, but other defs must begin at 1411 // DEF slots. 1412 if (isEarlyClobber) { 1413 if (!VNI->def.isEarlyClobber()) { 1414 report("Early clobber def must be at an early-clobber slot", MBB, LI); 1415 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n'; 1416 } 1417 } else if (!VNI->def.isRegister()) { 1418 report("Non-PHI, non-early clobber def must be at a register slot", 1419 MBB, LI); 1420 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n'; 1421 } 1422} 1423 1424void 1425MachineVerifier::verifyLiveIntervalSegment(const LiveInterval &LI, 1426 LiveInterval::const_iterator I) { 1427 const VNInfo *VNI = I->valno; 1428 assert(VNI && "Live range has no valno"); 1429 1430 if (VNI->id >= LI.getNumValNums() || VNI != LI.getValNumInfo(VNI->id)) { 1431 report("Foreign valno in live range", MF, LI); 1432 *OS << *I << " has a bad valno\n"; 1433 } 1434 1435 if (VNI->isUnused()) { 1436 report("Live range valno is marked unused", MF, LI); 1437 *OS << *I << '\n'; 1438 } 1439 1440 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(I->start); 1441 if (!MBB) { 1442 report("Bad start of live segment, no basic block", MF, LI); 1443 *OS << *I << '\n'; 1444 return; 1445 } 1446 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 1447 if (I->start != MBBStartIdx && I->start != VNI->def) { 1448 report("Live segment must begin at MBB entry or valno def", MBB, LI); 1449 *OS << *I << '\n'; 1450 } 1451 1452 const MachineBasicBlock *EndMBB = 1453 LiveInts->getMBBFromIndex(I->end.getPrevSlot()); 1454 if (!EndMBB) { 1455 report("Bad end of live segment, no basic block", MF, LI); 1456 *OS << *I << '\n'; 1457 return; 1458 } 1459 1460 // No more checks for live-out segments. 1461 if (I->end == LiveInts->getMBBEndIdx(EndMBB)) 1462 return; 1463 1464 // RegUnit intervals are allowed dead phis. 1465 if (!TargetRegisterInfo::isVirtualRegister(LI.reg) && VNI->isPHIDef() && 1466 I->start == VNI->def && I->end == VNI->def.getDeadSlot()) 1467 return; 1468 1469 // The live segment is ending inside EndMBB 1470 const MachineInstr *MI = 1471 LiveInts->getInstructionFromIndex(I->end.getPrevSlot()); 1472 if (!MI) { 1473 report("Live segment doesn't end at a valid instruction", EndMBB, LI); 1474 *OS << *I << '\n'; 1475 return; 1476 } 1477 1478 // The block slot must refer to a basic block boundary. 1479 if (I->end.isBlock()) { 1480 report("Live segment ends at B slot of an instruction", EndMBB, LI); 1481 *OS << *I << '\n'; 1482 } 1483 1484 if (I->end.isDead()) { 1485 // Segment ends on the dead slot. 1486 // That means there must be a dead def. 1487 if (!SlotIndex::isSameInstr(I->start, I->end)) { 1488 report("Live segment ending at dead slot spans instructions", EndMBB, LI); 1489 *OS << *I << '\n'; 1490 } 1491 } 1492 1493 // A live segment can only end at an early-clobber slot if it is being 1494 // redefined by an early-clobber def. 1495 if (I->end.isEarlyClobber()) { 1496 if (I+1 == LI.end() || (I+1)->start != I->end) { 1497 report("Live segment ending at early clobber slot must be " 1498 "redefined by an EC def in the same instruction", EndMBB, LI); 1499 *OS << *I << '\n'; 1500 } 1501 } 1502 1503 // The following checks only apply to virtual registers. Physreg liveness 1504 // is too weird to check. 1505 if (TargetRegisterInfo::isVirtualRegister(LI.reg)) { 1506 // A live range can end with either a redefinition, a kill flag on a 1507 // use, or a dead flag on a def. 1508 bool hasRead = false; 1509 bool hasDeadDef = false; 1510 for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) { 1511 if (!MOI->isReg() || MOI->getReg() != LI.reg) 1512 continue; 1513 if (MOI->readsReg()) 1514 hasRead = true; 1515 if (MOI->isDef() && MOI->isDead()) 1516 hasDeadDef = true; 1517 } 1518 1519 if (I->end.isDead()) { 1520 if (!hasDeadDef) { 1521 report("Instruction doesn't have a dead def operand", MI); 1522 I->print(*OS); 1523 *OS << " in " << LI << '\n'; 1524 } 1525 } else { 1526 if (!hasRead) { 1527 report("Instruction ending live range doesn't read the register", MI); 1528 *OS << *I << " in " << LI << '\n'; 1529 } 1530 } 1531 } 1532 1533 // Now check all the basic blocks in this live segment. 1534 MachineFunction::const_iterator MFI = MBB; 1535 // Is this live range the beginning of a non-PHIDef VN? 1536 if (I->start == VNI->def && !VNI->isPHIDef()) { 1537 // Not live-in to any blocks. 1538 if (MBB == EndMBB) 1539 return; 1540 // Skip this block. 1541 ++MFI; 1542 } 1543 for (;;) { 1544 assert(LiveInts->isLiveInToMBB(LI, MFI)); 1545 // We don't know how to track physregs into a landing pad. 1546 if (!TargetRegisterInfo::isVirtualRegister(LI.reg) && 1547 MFI->isLandingPad()) { 1548 if (&*MFI == EndMBB) 1549 break; 1550 ++MFI; 1551 continue; 1552 } 1553 1554 // Is VNI a PHI-def in the current block? 1555 bool IsPHI = VNI->isPHIDef() && 1556 VNI->def == LiveInts->getMBBStartIdx(MFI); 1557 1558 // Check that VNI is live-out of all predecessors. 1559 for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(), 1560 PE = MFI->pred_end(); PI != PE; ++PI) { 1561 SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI); 1562 const VNInfo *PVNI = LI.getVNInfoBefore(PEnd); 1563 1564 // All predecessors must have a live-out value. 1565 if (!PVNI) { 1566 report("Register not marked live out of predecessor", *PI, LI); 1567 *OS << "Valno #" << VNI->id << " live into BB#" << MFI->getNumber() 1568 << '@' << LiveInts->getMBBStartIdx(MFI) << ", not live before " 1569 << PEnd << '\n'; 1570 continue; 1571 } 1572 1573 // Only PHI-defs can take different predecessor values. 1574 if (!IsPHI && PVNI != VNI) { 1575 report("Different value live out of predecessor", *PI, LI); 1576 *OS << "Valno #" << PVNI->id << " live out of BB#" 1577 << (*PI)->getNumber() << '@' << PEnd 1578 << "\nValno #" << VNI->id << " live into BB#" << MFI->getNumber() 1579 << '@' << LiveInts->getMBBStartIdx(MFI) << '\n'; 1580 } 1581 } 1582 if (&*MFI == EndMBB) 1583 break; 1584 ++MFI; 1585 } 1586} 1587 1588void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 1589 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end(); 1590 I!=E; ++I) 1591 verifyLiveIntervalValue(LI, *I); 1592 1593 for (LiveInterval::const_iterator I = LI.begin(), E = LI.end(); I!=E; ++I) 1594 verifyLiveIntervalSegment(LI, I); 1595 1596 // Check the LI only has one connected component. 1597 if (TargetRegisterInfo::isVirtualRegister(LI.reg)) { 1598 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 1599 unsigned NumComp = ConEQ.Classify(&LI); 1600 if (NumComp > 1) { 1601 report("Multiple connected components in live interval", MF, LI); 1602 for (unsigned comp = 0; comp != NumComp; ++comp) { 1603 *OS << comp << ": valnos"; 1604 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), 1605 E = LI.vni_end(); I!=E; ++I) 1606 if (comp == ConEQ.getEqClass(*I)) 1607 *OS << ' ' << (*I)->id; 1608 *OS << '\n'; 1609 } 1610 } 1611 } 1612} 1613 1614namespace { 1615 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 1616 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 1617 // value is zero. 1618 // We use a bool plus an integer to capture the stack state. 1619 struct StackStateOfBB { 1620 StackStateOfBB() : EntryValue(0), ExitValue(0), EntryIsSetup(false), 1621 ExitIsSetup(false) { } 1622 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 1623 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 1624 ExitIsSetup(ExitSetup) { } 1625 // Can be negative, which means we are setting up a frame. 1626 int EntryValue; 1627 int ExitValue; 1628 bool EntryIsSetup; 1629 bool ExitIsSetup; 1630 }; 1631} 1632 1633/// Make sure on every path through the CFG, a FrameSetup <n> is always followed 1634/// by a FrameDestroy <n>, stack adjustments are identical on all 1635/// CFG edges to a merge point, and frame is destroyed at end of a return block. 1636void MachineVerifier::verifyStackFrame() { 1637 int FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 1638 int FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 1639 1640 SmallVector<StackStateOfBB, 8> SPState; 1641 SPState.resize(MF->getNumBlockIDs()); 1642 SmallPtrSet<const MachineBasicBlock*, 8> Reachable; 1643 1644 // Visit the MBBs in DFS order. 1645 for (df_ext_iterator<const MachineFunction*, 1646 SmallPtrSet<const MachineBasicBlock*, 8> > 1647 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 1648 DFI != DFE; ++DFI) { 1649 const MachineBasicBlock *MBB = *DFI; 1650 1651 StackStateOfBB BBState; 1652 // Check the exit state of the DFS stack predecessor. 1653 if (DFI.getPathLength() >= 2) { 1654 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 1655 assert(Reachable.count(StackPred) && 1656 "DFS stack predecessor is already visited.\n"); 1657 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 1658 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 1659 BBState.ExitValue = BBState.EntryValue; 1660 BBState.ExitIsSetup = BBState.EntryIsSetup; 1661 } 1662 1663 // Update stack state by checking contents of MBB. 1664 for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end(); 1665 I != E; ++I) { 1666 if (I->getOpcode() == FrameSetupOpcode) { 1667 // The first operand of a FrameOpcode should be i32. 1668 int Size = I->getOperand(0).getImm(); 1669 assert(Size >= 0 && 1670 "Value should be non-negative in FrameSetup and FrameDestroy.\n"); 1671 1672 if (BBState.ExitIsSetup) 1673 report("FrameSetup is after another FrameSetup", I); 1674 BBState.ExitValue -= Size; 1675 BBState.ExitIsSetup = true; 1676 } 1677 1678 if (I->getOpcode() == FrameDestroyOpcode) { 1679 // The first operand of a FrameOpcode should be i32. 1680 int Size = I->getOperand(0).getImm(); 1681 assert(Size >= 0 && 1682 "Value should be non-negative in FrameSetup and FrameDestroy.\n"); 1683 1684 if (!BBState.ExitIsSetup) 1685 report("FrameDestroy is not after a FrameSetup", I); 1686 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 1687 BBState.ExitValue; 1688 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 1689 report("FrameDestroy <n> is after FrameSetup <m>", I); 1690 *OS << "FrameDestroy <" << Size << "> is after FrameSetup <" 1691 << AbsSPAdj << ">.\n"; 1692 } 1693 BBState.ExitValue += Size; 1694 BBState.ExitIsSetup = false; 1695 } 1696 } 1697 SPState[MBB->getNumber()] = BBState; 1698 1699 // Make sure the exit state of any predecessor is consistent with the entry 1700 // state. 1701 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 1702 E = MBB->pred_end(); I != E; ++I) { 1703 if (Reachable.count(*I) && 1704 (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue || 1705 SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 1706 report("The exit stack state of a predecessor is inconsistent.", MBB); 1707 *OS << "Predecessor BB#" << (*I)->getNumber() << " has exit state (" 1708 << SPState[(*I)->getNumber()].ExitValue << ", " 1709 << SPState[(*I)->getNumber()].ExitIsSetup 1710 << "), while BB#" << MBB->getNumber() << " has entry state (" 1711 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 1712 } 1713 } 1714 1715 // Make sure the entry state of any successor is consistent with the exit 1716 // state. 1717 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 1718 E = MBB->succ_end(); I != E; ++I) { 1719 if (Reachable.count(*I) && 1720 (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue || 1721 SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 1722 report("The entry stack state of a successor is inconsistent.", MBB); 1723 *OS << "Successor BB#" << (*I)->getNumber() << " has entry state (" 1724 << SPState[(*I)->getNumber()].EntryValue << ", " 1725 << SPState[(*I)->getNumber()].EntryIsSetup 1726 << "), while BB#" << MBB->getNumber() << " has exit state (" 1727 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 1728 } 1729 } 1730 1731 // Make sure a basic block with return ends with zero stack adjustment. 1732 if (!MBB->empty() && MBB->back().isReturn()) { 1733 if (BBState.ExitIsSetup) 1734 report("A return block ends with a FrameSetup.", MBB); 1735 if (BBState.ExitValue) 1736 report("A return block ends with a nonzero stack adjustment.", MBB); 1737 } 1738 } 1739} 1740