1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/CodeGen/SelectionDAGISel.h"
16#include "ScheduleDAGSDNodes.h"
17#include "SelectionDAGBuilder.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/BranchProbabilityInfo.h"
22#include "llvm/Analysis/CFG.h"
23#include "llvm/Analysis/TargetTransformInfo.h"
24#include "llvm/CodeGen/FastISel.h"
25#include "llvm/CodeGen/FunctionLoweringInfo.h"
26#include "llvm/CodeGen/GCMetadata.h"
27#include "llvm/CodeGen/GCStrategy.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineFunction.h"
30#include "llvm/CodeGen/MachineInstrBuilder.h"
31#include "llvm/CodeGen/MachineModuleInfo.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
34#include "llvm/CodeGen/SchedulerRegistry.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/DebugInfo.h"
37#include "llvm/IR/Constants.h"
38#include "llvm/IR/Function.h"
39#include "llvm/IR/InlineAsm.h"
40#include "llvm/IR/Instructions.h"
41#include "llvm/IR/IntrinsicInst.h"
42#include "llvm/IR/Intrinsics.h"
43#include "llvm/IR/LLVMContext.h"
44#include "llvm/IR/Module.h"
45#include "llvm/Support/Compiler.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/ErrorHandling.h"
48#include "llvm/Support/Timer.h"
49#include "llvm/Support/raw_ostream.h"
50#include "llvm/Target/TargetInstrInfo.h"
51#include "llvm/Target/TargetIntrinsicInfo.h"
52#include "llvm/Target/TargetLibraryInfo.h"
53#include "llvm/Target/TargetLowering.h"
54#include "llvm/Target/TargetMachine.h"
55#include "llvm/Target/TargetOptions.h"
56#include "llvm/Target/TargetRegisterInfo.h"
57#include "llvm/Target/TargetSubtargetInfo.h"
58#include "llvm/Transforms/Utils/BasicBlockUtils.h"
59#include <algorithm>
60using namespace llvm;
61
62STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
63STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
64STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
65STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
66STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
67STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
68STATISTIC(NumFastIselFailLowerArguments,
69          "Number of entry blocks where fast isel failed to lower arguments");
70
71#ifndef NDEBUG
72static cl::opt<bool>
73EnableFastISelVerbose2("fast-isel-verbose2", cl::Hidden,
74          cl::desc("Enable extra verbose messages in the \"fast\" "
75                   "instruction selector"));
76
77  // Terminators
78STATISTIC(NumFastIselFailRet,"Fast isel fails on Ret");
79STATISTIC(NumFastIselFailBr,"Fast isel fails on Br");
80STATISTIC(NumFastIselFailSwitch,"Fast isel fails on Switch");
81STATISTIC(NumFastIselFailIndirectBr,"Fast isel fails on IndirectBr");
82STATISTIC(NumFastIselFailInvoke,"Fast isel fails on Invoke");
83STATISTIC(NumFastIselFailResume,"Fast isel fails on Resume");
84STATISTIC(NumFastIselFailUnreachable,"Fast isel fails on Unreachable");
85
86  // Standard binary operators...
87STATISTIC(NumFastIselFailAdd,"Fast isel fails on Add");
88STATISTIC(NumFastIselFailFAdd,"Fast isel fails on FAdd");
89STATISTIC(NumFastIselFailSub,"Fast isel fails on Sub");
90STATISTIC(NumFastIselFailFSub,"Fast isel fails on FSub");
91STATISTIC(NumFastIselFailMul,"Fast isel fails on Mul");
92STATISTIC(NumFastIselFailFMul,"Fast isel fails on FMul");
93STATISTIC(NumFastIselFailUDiv,"Fast isel fails on UDiv");
94STATISTIC(NumFastIselFailSDiv,"Fast isel fails on SDiv");
95STATISTIC(NumFastIselFailFDiv,"Fast isel fails on FDiv");
96STATISTIC(NumFastIselFailURem,"Fast isel fails on URem");
97STATISTIC(NumFastIselFailSRem,"Fast isel fails on SRem");
98STATISTIC(NumFastIselFailFRem,"Fast isel fails on FRem");
99
100  // Logical operators...
101STATISTIC(NumFastIselFailAnd,"Fast isel fails on And");
102STATISTIC(NumFastIselFailOr,"Fast isel fails on Or");
103STATISTIC(NumFastIselFailXor,"Fast isel fails on Xor");
104
105  // Memory instructions...
106STATISTIC(NumFastIselFailAlloca,"Fast isel fails on Alloca");
107STATISTIC(NumFastIselFailLoad,"Fast isel fails on Load");
108STATISTIC(NumFastIselFailStore,"Fast isel fails on Store");
109STATISTIC(NumFastIselFailAtomicCmpXchg,"Fast isel fails on AtomicCmpXchg");
110STATISTIC(NumFastIselFailAtomicRMW,"Fast isel fails on AtomicRWM");
111STATISTIC(NumFastIselFailFence,"Fast isel fails on Frence");
112STATISTIC(NumFastIselFailGetElementPtr,"Fast isel fails on GetElementPtr");
113
114  // Convert instructions...
115STATISTIC(NumFastIselFailTrunc,"Fast isel fails on Trunc");
116STATISTIC(NumFastIselFailZExt,"Fast isel fails on ZExt");
117STATISTIC(NumFastIselFailSExt,"Fast isel fails on SExt");
118STATISTIC(NumFastIselFailFPTrunc,"Fast isel fails on FPTrunc");
119STATISTIC(NumFastIselFailFPExt,"Fast isel fails on FPExt");
120STATISTIC(NumFastIselFailFPToUI,"Fast isel fails on FPToUI");
121STATISTIC(NumFastIselFailFPToSI,"Fast isel fails on FPToSI");
122STATISTIC(NumFastIselFailUIToFP,"Fast isel fails on UIToFP");
123STATISTIC(NumFastIselFailSIToFP,"Fast isel fails on SIToFP");
124STATISTIC(NumFastIselFailIntToPtr,"Fast isel fails on IntToPtr");
125STATISTIC(NumFastIselFailPtrToInt,"Fast isel fails on PtrToInt");
126STATISTIC(NumFastIselFailBitCast,"Fast isel fails on BitCast");
127
128  // Other instructions...
129STATISTIC(NumFastIselFailICmp,"Fast isel fails on ICmp");
130STATISTIC(NumFastIselFailFCmp,"Fast isel fails on FCmp");
131STATISTIC(NumFastIselFailPHI,"Fast isel fails on PHI");
132STATISTIC(NumFastIselFailSelect,"Fast isel fails on Select");
133STATISTIC(NumFastIselFailCall,"Fast isel fails on Call");
134STATISTIC(NumFastIselFailShl,"Fast isel fails on Shl");
135STATISTIC(NumFastIselFailLShr,"Fast isel fails on LShr");
136STATISTIC(NumFastIselFailAShr,"Fast isel fails on AShr");
137STATISTIC(NumFastIselFailVAArg,"Fast isel fails on VAArg");
138STATISTIC(NumFastIselFailExtractElement,"Fast isel fails on ExtractElement");
139STATISTIC(NumFastIselFailInsertElement,"Fast isel fails on InsertElement");
140STATISTIC(NumFastIselFailShuffleVector,"Fast isel fails on ShuffleVector");
141STATISTIC(NumFastIselFailExtractValue,"Fast isel fails on ExtractValue");
142STATISTIC(NumFastIselFailInsertValue,"Fast isel fails on InsertValue");
143STATISTIC(NumFastIselFailLandingPad,"Fast isel fails on LandingPad");
144#endif
145
146static cl::opt<bool>
147EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
148          cl::desc("Enable verbose messages in the \"fast\" "
149                   "instruction selector"));
150static cl::opt<bool>
151EnableFastISelAbort("fast-isel-abort", cl::Hidden,
152          cl::desc("Enable abort calls when \"fast\" instruction selection "
153                   "fails to lower an instruction"));
154static cl::opt<bool>
155EnableFastISelAbortArgs("fast-isel-abort-args", cl::Hidden,
156          cl::desc("Enable abort calls when \"fast\" instruction selection "
157                   "fails to lower a formal argument"));
158
159static cl::opt<bool>
160UseMBPI("use-mbpi",
161        cl::desc("use Machine Branch Probability Info"),
162        cl::init(true), cl::Hidden);
163
164#ifndef NDEBUG
165static cl::opt<bool>
166ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
167          cl::desc("Pop up a window to show dags before the first "
168                   "dag combine pass"));
169static cl::opt<bool>
170ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
171          cl::desc("Pop up a window to show dags before legalize types"));
172static cl::opt<bool>
173ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
174          cl::desc("Pop up a window to show dags before legalize"));
175static cl::opt<bool>
176ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
177          cl::desc("Pop up a window to show dags before the second "
178                   "dag combine pass"));
179static cl::opt<bool>
180ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
181          cl::desc("Pop up a window to show dags before the post legalize types"
182                   " dag combine pass"));
183static cl::opt<bool>
184ViewISelDAGs("view-isel-dags", cl::Hidden,
185          cl::desc("Pop up a window to show isel dags as they are selected"));
186static cl::opt<bool>
187ViewSchedDAGs("view-sched-dags", cl::Hidden,
188          cl::desc("Pop up a window to show sched dags as they are processed"));
189static cl::opt<bool>
190ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
191      cl::desc("Pop up a window to show SUnit dags after they are processed"));
192#else
193static const bool ViewDAGCombine1 = false,
194                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
195                  ViewDAGCombine2 = false,
196                  ViewDAGCombineLT = false,
197                  ViewISelDAGs = false, ViewSchedDAGs = false,
198                  ViewSUnitDAGs = false;
199#endif
200
201//===---------------------------------------------------------------------===//
202///
203/// RegisterScheduler class - Track the registration of instruction schedulers.
204///
205//===---------------------------------------------------------------------===//
206MachinePassRegistry RegisterScheduler::Registry;
207
208//===---------------------------------------------------------------------===//
209///
210/// ISHeuristic command line option for instruction schedulers.
211///
212//===---------------------------------------------------------------------===//
213static cl::opt<RegisterScheduler::FunctionPassCtor, false,
214               RegisterPassParser<RegisterScheduler> >
215ISHeuristic("pre-RA-sched",
216            cl::init(&createDefaultScheduler),
217            cl::desc("Instruction schedulers available (before register"
218                     " allocation):"));
219
220static RegisterScheduler
221defaultListDAGScheduler("default", "Best scheduler for the target",
222                        createDefaultScheduler);
223
224namespace llvm {
225  //===--------------------------------------------------------------------===//
226  /// createDefaultScheduler - This creates an instruction scheduler appropriate
227  /// for the target.
228  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
229                                             CodeGenOpt::Level OptLevel) {
230    const TargetLowering *TLI = IS->getTargetLowering();
231    const TargetSubtargetInfo &ST = IS->TM.getSubtarget<TargetSubtargetInfo>();
232
233    if (OptLevel == CodeGenOpt::None || ST.enableMachineScheduler() ||
234        TLI->getSchedulingPreference() == Sched::Source)
235      return createSourceListDAGScheduler(IS, OptLevel);
236    if (TLI->getSchedulingPreference() == Sched::RegPressure)
237      return createBURRListDAGScheduler(IS, OptLevel);
238    if (TLI->getSchedulingPreference() == Sched::Hybrid)
239      return createHybridListDAGScheduler(IS, OptLevel);
240    if (TLI->getSchedulingPreference() == Sched::VLIW)
241      return createVLIWDAGScheduler(IS, OptLevel);
242    assert(TLI->getSchedulingPreference() == Sched::ILP &&
243           "Unknown sched type!");
244    return createILPListDAGScheduler(IS, OptLevel);
245  }
246}
247
248// EmitInstrWithCustomInserter - This method should be implemented by targets
249// that mark instructions with the 'usesCustomInserter' flag.  These
250// instructions are special in various ways, which require special support to
251// insert.  The specified MachineInstr is created but not inserted into any
252// basic blocks, and this method is called to expand it into a sequence of
253// instructions, potentially also creating new basic blocks and control flow.
254// When new basic blocks are inserted and the edges from MBB to its successors
255// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
256// DenseMap.
257MachineBasicBlock *
258TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
259                                            MachineBasicBlock *MBB) const {
260#ifndef NDEBUG
261  dbgs() << "If a target marks an instruction with "
262          "'usesCustomInserter', it must implement "
263          "TargetLowering::EmitInstrWithCustomInserter!";
264#endif
265  llvm_unreachable(0);
266}
267
268void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
269                                                   SDNode *Node) const {
270  assert(!MI->hasPostISelHook() &&
271         "If a target marks an instruction with 'hasPostISelHook', "
272         "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
273}
274
275//===----------------------------------------------------------------------===//
276// SelectionDAGISel code
277//===----------------------------------------------------------------------===//
278
279SelectionDAGISel::SelectionDAGISel(TargetMachine &tm,
280                                   CodeGenOpt::Level OL) :
281  MachineFunctionPass(ID), TM(tm),
282  FuncInfo(new FunctionLoweringInfo(TM)),
283  CurDAG(new SelectionDAG(tm, OL)),
284  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
285  GFI(),
286  OptLevel(OL),
287  DAGSize(0) {
288    initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
289    initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry());
290    initializeBranchProbabilityInfoPass(*PassRegistry::getPassRegistry());
291    initializeTargetLibraryInfoPass(*PassRegistry::getPassRegistry());
292  }
293
294SelectionDAGISel::~SelectionDAGISel() {
295  delete SDB;
296  delete CurDAG;
297  delete FuncInfo;
298}
299
300void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
301  AU.addRequired<AliasAnalysis>();
302  AU.addPreserved<AliasAnalysis>();
303  AU.addRequired<GCModuleInfo>();
304  AU.addPreserved<GCModuleInfo>();
305  AU.addRequired<TargetLibraryInfo>();
306  if (UseMBPI && OptLevel != CodeGenOpt::None)
307    AU.addRequired<BranchProbabilityInfo>();
308  MachineFunctionPass::getAnalysisUsage(AU);
309}
310
311/// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
312/// may trap on it.  In this case we have to split the edge so that the path
313/// through the predecessor block that doesn't go to the phi block doesn't
314/// execute the possibly trapping instruction.
315///
316/// This is required for correctness, so it must be done at -O0.
317///
318static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) {
319  // Loop for blocks with phi nodes.
320  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
321    PHINode *PN = dyn_cast<PHINode>(BB->begin());
322    if (PN == 0) continue;
323
324  ReprocessBlock:
325    // For each block with a PHI node, check to see if any of the input values
326    // are potentially trapping constant expressions.  Constant expressions are
327    // the only potentially trapping value that can occur as the argument to a
328    // PHI.
329    for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
330      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
331        ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
332        if (CE == 0 || !CE->canTrap()) continue;
333
334        // The only case we have to worry about is when the edge is critical.
335        // Since this block has a PHI Node, we assume it has multiple input
336        // edges: check to see if the pred has multiple successors.
337        BasicBlock *Pred = PN->getIncomingBlock(i);
338        if (Pred->getTerminator()->getNumSuccessors() == 1)
339          continue;
340
341        // Okay, we have to split this edge.
342        SplitCriticalEdge(Pred->getTerminator(),
343                          GetSuccessorNumber(Pred, BB), SDISel, true);
344        goto ReprocessBlock;
345      }
346  }
347}
348
349bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
350  // Do some sanity-checking on the command-line options.
351  assert((!EnableFastISelVerbose || TM.Options.EnableFastISel) &&
352         "-fast-isel-verbose requires -fast-isel");
353  assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
354         "-fast-isel-abort requires -fast-isel");
355
356  const Function &Fn = *mf.getFunction();
357  const TargetInstrInfo &TII = *TM.getInstrInfo();
358  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
359
360  MF = &mf;
361  RegInfo = &MF->getRegInfo();
362  AA = &getAnalysis<AliasAnalysis>();
363  LibInfo = &getAnalysis<TargetLibraryInfo>();
364  TTI = getAnalysisIfAvailable<TargetTransformInfo>();
365  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
366
367  TargetSubtargetInfo &ST =
368    const_cast<TargetSubtargetInfo&>(TM.getSubtarget<TargetSubtargetInfo>());
369  ST.resetSubtargetFeatures(MF);
370  TM.resetTargetOptions(MF);
371
372  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
373
374  SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this);
375
376  CurDAG->init(*MF, TTI);
377  FuncInfo->set(Fn, *MF);
378
379  if (UseMBPI && OptLevel != CodeGenOpt::None)
380    FuncInfo->BPI = &getAnalysis<BranchProbabilityInfo>();
381  else
382    FuncInfo->BPI = 0;
383
384  SDB->init(GFI, *AA, LibInfo);
385
386  MF->setHasMSInlineAsm(false);
387  SelectAllBasicBlocks(Fn);
388
389  // If the first basic block in the function has live ins that need to be
390  // copied into vregs, emit the copies into the top of the block before
391  // emitting the code for the block.
392  MachineBasicBlock *EntryMBB = MF->begin();
393  RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
394
395  DenseMap<unsigned, unsigned> LiveInMap;
396  if (!FuncInfo->ArgDbgValues.empty())
397    for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
398           E = RegInfo->livein_end(); LI != E; ++LI)
399      if (LI->second)
400        LiveInMap.insert(std::make_pair(LI->first, LI->second));
401
402  // Insert DBG_VALUE instructions for function arguments to the entry block.
403  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
404    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
405    bool hasFI = MI->getOperand(0).isFI();
406    unsigned Reg = hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg();
407    if (TargetRegisterInfo::isPhysicalRegister(Reg))
408      EntryMBB->insert(EntryMBB->begin(), MI);
409    else {
410      MachineInstr *Def = RegInfo->getVRegDef(Reg);
411      MachineBasicBlock::iterator InsertPos = Def;
412      // FIXME: VR def may not be in entry block.
413      Def->getParent()->insert(llvm::next(InsertPos), MI);
414    }
415
416    // If Reg is live-in then update debug info to track its copy in a vreg.
417    DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
418    if (LDI != LiveInMap.end()) {
419      assert(!hasFI && "There's no handling of frame pointer updating here yet "
420                       "- add if needed");
421      MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
422      MachineBasicBlock::iterator InsertPos = Def;
423      const MDNode *Variable =
424        MI->getOperand(MI->getNumOperands()-1).getMetadata();
425      bool IsIndirect = MI->getOperand(1).isImm();
426      unsigned Offset = IsIndirect ? MI->getOperand(1).getImm() : 0;
427      // Def is never a terminator here, so it is ok to increment InsertPos.
428      BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
429              TII.get(TargetOpcode::DBG_VALUE),
430              IsIndirect,
431              LDI->second, Offset, Variable);
432
433      // If this vreg is directly copied into an exported register then
434      // that COPY instructions also need DBG_VALUE, if it is the only
435      // user of LDI->second.
436      MachineInstr *CopyUseMI = NULL;
437      for (MachineRegisterInfo::use_iterator
438             UI = RegInfo->use_begin(LDI->second);
439           MachineInstr *UseMI = UI.skipInstruction();) {
440        if (UseMI->isDebugValue()) continue;
441        if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
442          CopyUseMI = UseMI; continue;
443        }
444        // Otherwise this is another use or second copy use.
445        CopyUseMI = NULL; break;
446      }
447      if (CopyUseMI) {
448        MachineInstr *NewMI =
449          BuildMI(*MF, CopyUseMI->getDebugLoc(),
450                  TII.get(TargetOpcode::DBG_VALUE),
451                  IsIndirect,
452                  CopyUseMI->getOperand(0).getReg(),
453                  Offset, Variable);
454        MachineBasicBlock::iterator Pos = CopyUseMI;
455        EntryMBB->insertAfter(Pos, NewMI);
456      }
457    }
458  }
459
460  // Determine if there are any calls in this machine function.
461  MachineFrameInfo *MFI = MF->getFrameInfo();
462  for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); I != E;
463       ++I) {
464
465    if (MFI->hasCalls() && MF->hasMSInlineAsm())
466      break;
467
468    const MachineBasicBlock *MBB = I;
469    for (MachineBasicBlock::const_iterator II = MBB->begin(), IE = MBB->end();
470         II != IE; ++II) {
471      const MCInstrDesc &MCID = TM.getInstrInfo()->get(II->getOpcode());
472      if ((MCID.isCall() && !MCID.isReturn()) ||
473          II->isStackAligningInlineAsm()) {
474        MFI->setHasCalls(true);
475      }
476      if (II->isMSInlineAsm()) {
477        MF->setHasMSInlineAsm(true);
478      }
479    }
480  }
481
482  // Determine if there is a call to setjmp in the machine function.
483  MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
484
485  // Replace forward-declared registers with the registers containing
486  // the desired value.
487  MachineRegisterInfo &MRI = MF->getRegInfo();
488  for (DenseMap<unsigned, unsigned>::iterator
489       I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
490       I != E; ++I) {
491    unsigned From = I->first;
492    unsigned To = I->second;
493    // If To is also scheduled to be replaced, find what its ultimate
494    // replacement is.
495    for (;;) {
496      DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
497      if (J == E) break;
498      To = J->second;
499    }
500    // Replace it.
501    MRI.replaceRegWith(From, To);
502  }
503
504  // Freeze the set of reserved registers now that MachineFrameInfo has been
505  // set up. All the information required by getReservedRegs() should be
506  // available now.
507  MRI.freezeReservedRegs(*MF);
508
509  // Release function-specific state. SDB and CurDAG are already cleared
510  // at this point.
511  FuncInfo->clear();
512
513  return true;
514}
515
516void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
517                                        BasicBlock::const_iterator End,
518                                        bool &HadTailCall) {
519  // Lower all of the non-terminator instructions. If a call is emitted
520  // as a tail call, cease emitting nodes for this block. Terminators
521  // are handled below.
522  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
523    SDB->visit(*I);
524
525  // Make sure the root of the DAG is up-to-date.
526  CurDAG->setRoot(SDB->getControlRoot());
527  HadTailCall = SDB->HasTailCall;
528  SDB->clear();
529
530  // Final step, emit the lowered DAG as machine code.
531  CodeGenAndEmitDAG();
532}
533
534void SelectionDAGISel::ComputeLiveOutVRegInfo() {
535  SmallPtrSet<SDNode*, 128> VisitedNodes;
536  SmallVector<SDNode*, 128> Worklist;
537
538  Worklist.push_back(CurDAG->getRoot().getNode());
539
540  APInt KnownZero;
541  APInt KnownOne;
542
543  do {
544    SDNode *N = Worklist.pop_back_val();
545
546    // If we've already seen this node, ignore it.
547    if (!VisitedNodes.insert(N))
548      continue;
549
550    // Otherwise, add all chain operands to the worklist.
551    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
552      if (N->getOperand(i).getValueType() == MVT::Other)
553        Worklist.push_back(N->getOperand(i).getNode());
554
555    // If this is a CopyToReg with a vreg dest, process it.
556    if (N->getOpcode() != ISD::CopyToReg)
557      continue;
558
559    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
560    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
561      continue;
562
563    // Ignore non-scalar or non-integer values.
564    SDValue Src = N->getOperand(2);
565    EVT SrcVT = Src.getValueType();
566    if (!SrcVT.isInteger() || SrcVT.isVector())
567      continue;
568
569    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
570    CurDAG->ComputeMaskedBits(Src, KnownZero, KnownOne);
571    FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne);
572  } while (!Worklist.empty());
573}
574
575void SelectionDAGISel::CodeGenAndEmitDAG() {
576  std::string GroupName;
577  if (TimePassesIsEnabled)
578    GroupName = "Instruction Selection and Scheduling";
579  std::string BlockName;
580  int BlockNumber = -1;
581  (void)BlockNumber;
582#ifdef NDEBUG
583  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
584      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
585      ViewSUnitDAGs)
586#endif
587  {
588    BlockNumber = FuncInfo->MBB->getNumber();
589    BlockName = MF->getName().str() + ":" +
590                FuncInfo->MBB->getBasicBlock()->getName().str();
591  }
592  DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
593        << " '" << BlockName << "'\n"; CurDAG->dump());
594
595  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
596
597  // Run the DAG combiner in pre-legalize mode.
598  {
599    NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
600    CurDAG->Combine(BeforeLegalizeTypes, *AA, OptLevel);
601  }
602
603  DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber
604        << " '" << BlockName << "'\n"; CurDAG->dump());
605
606  // Second step, hack on the DAG until it only uses operations and types that
607  // the target supports.
608  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
609                                               BlockName);
610
611  bool Changed;
612  {
613    NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
614    Changed = CurDAG->LegalizeTypes();
615  }
616
617  DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
618        << " '" << BlockName << "'\n"; CurDAG->dump());
619
620  if (Changed) {
621    if (ViewDAGCombineLT)
622      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
623
624    // Run the DAG combiner in post-type-legalize mode.
625    {
626      NamedRegionTimer T("DAG Combining after legalize types", GroupName,
627                         TimePassesIsEnabled);
628      CurDAG->Combine(AfterLegalizeTypes, *AA, OptLevel);
629    }
630
631    DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber
632          << " '" << BlockName << "'\n"; CurDAG->dump());
633
634  }
635
636  {
637    NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
638    Changed = CurDAG->LegalizeVectors();
639  }
640
641  if (Changed) {
642    {
643      NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
644      CurDAG->LegalizeTypes();
645    }
646
647    if (ViewDAGCombineLT)
648      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
649
650    // Run the DAG combiner in post-type-legalize mode.
651    {
652      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
653                         TimePassesIsEnabled);
654      CurDAG->Combine(AfterLegalizeVectorOps, *AA, OptLevel);
655    }
656
657    DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#"
658          << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump());
659  }
660
661  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
662
663  {
664    NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
665    CurDAG->Legalize();
666  }
667
668  DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
669        << " '" << BlockName << "'\n"; CurDAG->dump());
670
671  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
672
673  // Run the DAG combiner in post-legalize mode.
674  {
675    NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
676    CurDAG->Combine(AfterLegalizeDAG, *AA, OptLevel);
677  }
678
679  DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber
680        << " '" << BlockName << "'\n"; CurDAG->dump());
681
682  if (OptLevel != CodeGenOpt::None)
683    ComputeLiveOutVRegInfo();
684
685  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
686
687  // Third, instruction select all of the operations to machine code, adding the
688  // code to the MachineBasicBlock.
689  {
690    NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
691    DoInstructionSelection();
692  }
693
694  DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
695        << " '" << BlockName << "'\n"; CurDAG->dump());
696
697  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
698
699  // Schedule machine code.
700  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
701  {
702    NamedRegionTimer T("Instruction Scheduling", GroupName,
703                       TimePassesIsEnabled);
704    Scheduler->Run(CurDAG, FuncInfo->MBB);
705  }
706
707  if (ViewSUnitDAGs) Scheduler->viewGraph();
708
709  // Emit machine code to BB.  This can change 'BB' to the last block being
710  // inserted into.
711  MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
712  {
713    NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
714
715    // FuncInfo->InsertPt is passed by reference and set to the end of the
716    // scheduled instructions.
717    LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
718  }
719
720  // If the block was split, make sure we update any references that are used to
721  // update PHI nodes later on.
722  if (FirstMBB != LastMBB)
723    SDB->UpdateSplitBlock(FirstMBB, LastMBB);
724
725  // Free the scheduler state.
726  {
727    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
728                       TimePassesIsEnabled);
729    delete Scheduler;
730  }
731
732  // Free the SelectionDAG state, now that we're finished with it.
733  CurDAG->clear();
734}
735
736namespace {
737/// ISelUpdater - helper class to handle updates of the instruction selection
738/// graph.
739class ISelUpdater : public SelectionDAG::DAGUpdateListener {
740  SelectionDAG::allnodes_iterator &ISelPosition;
741public:
742  ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
743    : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
744
745  /// NodeDeleted - Handle nodes deleted from the graph. If the node being
746  /// deleted is the current ISelPosition node, update ISelPosition.
747  ///
748  virtual void NodeDeleted(SDNode *N, SDNode *E) {
749    if (ISelPosition == SelectionDAG::allnodes_iterator(N))
750      ++ISelPosition;
751  }
752};
753} // end anonymous namespace
754
755void SelectionDAGISel::DoInstructionSelection() {
756  DEBUG(dbgs() << "===== Instruction selection begins: BB#"
757        << FuncInfo->MBB->getNumber()
758        << " '" << FuncInfo->MBB->getName() << "'\n");
759
760  PreprocessISelDAG();
761
762  // Select target instructions for the DAG.
763  {
764    // Number all nodes with a topological order and set DAGSize.
765    DAGSize = CurDAG->AssignTopologicalOrder();
766
767    // Create a dummy node (which is not added to allnodes), that adds
768    // a reference to the root node, preventing it from being deleted,
769    // and tracking any changes of the root.
770    HandleSDNode Dummy(CurDAG->getRoot());
771    SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
772    ++ISelPosition;
773
774    // Make sure that ISelPosition gets properly updated when nodes are deleted
775    // in calls made from this function.
776    ISelUpdater ISU(*CurDAG, ISelPosition);
777
778    // The AllNodes list is now topological-sorted. Visit the
779    // nodes by starting at the end of the list (the root of the
780    // graph) and preceding back toward the beginning (the entry
781    // node).
782    while (ISelPosition != CurDAG->allnodes_begin()) {
783      SDNode *Node = --ISelPosition;
784      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
785      // but there are currently some corner cases that it misses. Also, this
786      // makes it theoretically possible to disable the DAGCombiner.
787      if (Node->use_empty())
788        continue;
789
790      SDNode *ResNode = Select(Node);
791
792      // FIXME: This is pretty gross.  'Select' should be changed to not return
793      // anything at all and this code should be nuked with a tactical strike.
794
795      // If node should not be replaced, continue with the next one.
796      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
797        continue;
798      // Replace node.
799      if (ResNode) {
800        ReplaceUses(Node, ResNode);
801      }
802
803      // If after the replacement this node is not used any more,
804      // remove this dead node.
805      if (Node->use_empty()) // Don't delete EntryToken, etc.
806        CurDAG->RemoveDeadNode(Node);
807    }
808
809    CurDAG->setRoot(Dummy.getValue());
810  }
811
812  DEBUG(dbgs() << "===== Instruction selection ends:\n");
813
814  PostprocessISelDAG();
815}
816
817/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
818/// do other setup for EH landing-pad blocks.
819void SelectionDAGISel::PrepareEHLandingPad() {
820  MachineBasicBlock *MBB = FuncInfo->MBB;
821
822  // Add a label to mark the beginning of the landing pad.  Deletion of the
823  // landing pad can thus be detected via the MachineModuleInfo.
824  MCSymbol *Label = MF->getMMI().addLandingPad(MBB);
825
826  // Assign the call site to the landing pad's begin label.
827  MF->getMMI().setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
828
829  const MCInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
830  BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
831    .addSym(Label);
832
833  // Mark exception register as live in.
834  const TargetLowering *TLI = getTargetLowering();
835  const TargetRegisterClass *PtrRC = TLI->getRegClassFor(TLI->getPointerTy());
836  if (unsigned Reg = TLI->getExceptionPointerRegister())
837    FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
838
839  // Mark exception selector register as live in.
840  if (unsigned Reg = TLI->getExceptionSelectorRegister())
841    FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC);
842}
843
844/// isFoldedOrDeadInstruction - Return true if the specified instruction is
845/// side-effect free and is either dead or folded into a generated instruction.
846/// Return false if it needs to be emitted.
847static bool isFoldedOrDeadInstruction(const Instruction *I,
848                                      FunctionLoweringInfo *FuncInfo) {
849  return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
850         !isa<TerminatorInst>(I) && // Terminators aren't folded.
851         !isa<DbgInfoIntrinsic>(I) &&  // Debug instructions aren't folded.
852         !isa<LandingPadInst>(I) &&    // Landingpad instructions aren't folded.
853         !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
854}
855
856#ifndef NDEBUG
857// Collect per Instruction statistics for fast-isel misses.  Only those
858// instructions that cause the bail are accounted for.  It does not account for
859// instructions higher in the block.  Thus, summing the per instructions stats
860// will not add up to what is reported by NumFastIselFailures.
861static void collectFailStats(const Instruction *I) {
862  switch (I->getOpcode()) {
863  default: assert (0 && "<Invalid operator> ");
864
865  // Terminators
866  case Instruction::Ret:         NumFastIselFailRet++; return;
867  case Instruction::Br:          NumFastIselFailBr++; return;
868  case Instruction::Switch:      NumFastIselFailSwitch++; return;
869  case Instruction::IndirectBr:  NumFastIselFailIndirectBr++; return;
870  case Instruction::Invoke:      NumFastIselFailInvoke++; return;
871  case Instruction::Resume:      NumFastIselFailResume++; return;
872  case Instruction::Unreachable: NumFastIselFailUnreachable++; return;
873
874  // Standard binary operators...
875  case Instruction::Add:  NumFastIselFailAdd++; return;
876  case Instruction::FAdd: NumFastIselFailFAdd++; return;
877  case Instruction::Sub:  NumFastIselFailSub++; return;
878  case Instruction::FSub: NumFastIselFailFSub++; return;
879  case Instruction::Mul:  NumFastIselFailMul++; return;
880  case Instruction::FMul: NumFastIselFailFMul++; return;
881  case Instruction::UDiv: NumFastIselFailUDiv++; return;
882  case Instruction::SDiv: NumFastIselFailSDiv++; return;
883  case Instruction::FDiv: NumFastIselFailFDiv++; return;
884  case Instruction::URem: NumFastIselFailURem++; return;
885  case Instruction::SRem: NumFastIselFailSRem++; return;
886  case Instruction::FRem: NumFastIselFailFRem++; return;
887
888  // Logical operators...
889  case Instruction::And: NumFastIselFailAnd++; return;
890  case Instruction::Or:  NumFastIselFailOr++; return;
891  case Instruction::Xor: NumFastIselFailXor++; return;
892
893  // Memory instructions...
894  case Instruction::Alloca:        NumFastIselFailAlloca++; return;
895  case Instruction::Load:          NumFastIselFailLoad++; return;
896  case Instruction::Store:         NumFastIselFailStore++; return;
897  case Instruction::AtomicCmpXchg: NumFastIselFailAtomicCmpXchg++; return;
898  case Instruction::AtomicRMW:     NumFastIselFailAtomicRMW++; return;
899  case Instruction::Fence:         NumFastIselFailFence++; return;
900  case Instruction::GetElementPtr: NumFastIselFailGetElementPtr++; return;
901
902  // Convert instructions...
903  case Instruction::Trunc:    NumFastIselFailTrunc++; return;
904  case Instruction::ZExt:     NumFastIselFailZExt++; return;
905  case Instruction::SExt:     NumFastIselFailSExt++; return;
906  case Instruction::FPTrunc:  NumFastIselFailFPTrunc++; return;
907  case Instruction::FPExt:    NumFastIselFailFPExt++; return;
908  case Instruction::FPToUI:   NumFastIselFailFPToUI++; return;
909  case Instruction::FPToSI:   NumFastIselFailFPToSI++; return;
910  case Instruction::UIToFP:   NumFastIselFailUIToFP++; return;
911  case Instruction::SIToFP:   NumFastIselFailSIToFP++; return;
912  case Instruction::IntToPtr: NumFastIselFailIntToPtr++; return;
913  case Instruction::PtrToInt: NumFastIselFailPtrToInt++; return;
914  case Instruction::BitCast:  NumFastIselFailBitCast++; return;
915
916  // Other instructions...
917  case Instruction::ICmp:           NumFastIselFailICmp++; return;
918  case Instruction::FCmp:           NumFastIselFailFCmp++; return;
919  case Instruction::PHI:            NumFastIselFailPHI++; return;
920  case Instruction::Select:         NumFastIselFailSelect++; return;
921  case Instruction::Call:           NumFastIselFailCall++; return;
922  case Instruction::Shl:            NumFastIselFailShl++; return;
923  case Instruction::LShr:           NumFastIselFailLShr++; return;
924  case Instruction::AShr:           NumFastIselFailAShr++; return;
925  case Instruction::VAArg:          NumFastIselFailVAArg++; return;
926  case Instruction::ExtractElement: NumFastIselFailExtractElement++; return;
927  case Instruction::InsertElement:  NumFastIselFailInsertElement++; return;
928  case Instruction::ShuffleVector:  NumFastIselFailShuffleVector++; return;
929  case Instruction::ExtractValue:   NumFastIselFailExtractValue++; return;
930  case Instruction::InsertValue:    NumFastIselFailInsertValue++; return;
931  case Instruction::LandingPad:     NumFastIselFailLandingPad++; return;
932  }
933}
934#endif
935
936void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
937  // Initialize the Fast-ISel state, if needed.
938  FastISel *FastIS = 0;
939  if (TM.Options.EnableFastISel)
940    FastIS = getTargetLowering()->createFastISel(*FuncInfo, LibInfo);
941
942  // Iterate over all basic blocks in the function.
943  ReversePostOrderTraversal<const Function*> RPOT(&Fn);
944  for (ReversePostOrderTraversal<const Function*>::rpo_iterator
945       I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
946    const BasicBlock *LLVMBB = *I;
947
948    if (OptLevel != CodeGenOpt::None) {
949      bool AllPredsVisited = true;
950      for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
951           PI != PE; ++PI) {
952        if (!FuncInfo->VisitedBBs.count(*PI)) {
953          AllPredsVisited = false;
954          break;
955        }
956      }
957
958      if (AllPredsVisited) {
959        for (BasicBlock::const_iterator I = LLVMBB->begin();
960             const PHINode *PN = dyn_cast<PHINode>(I); ++I)
961          FuncInfo->ComputePHILiveOutRegInfo(PN);
962      } else {
963        for (BasicBlock::const_iterator I = LLVMBB->begin();
964             const PHINode *PN = dyn_cast<PHINode>(I); ++I)
965          FuncInfo->InvalidatePHILiveOutRegInfo(PN);
966      }
967
968      FuncInfo->VisitedBBs.insert(LLVMBB);
969    }
970
971    BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
972    BasicBlock::const_iterator const End = LLVMBB->end();
973    BasicBlock::const_iterator BI = End;
974
975    FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
976    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
977
978    // Setup an EH landing-pad block.
979    FuncInfo->ExceptionPointerVirtReg = 0;
980    FuncInfo->ExceptionSelectorVirtReg = 0;
981    if (FuncInfo->MBB->isLandingPad())
982      PrepareEHLandingPad();
983
984    // Before doing SelectionDAG ISel, see if FastISel has been requested.
985    if (FastIS) {
986      FastIS->startNewBlock();
987
988      // Emit code for any incoming arguments. This must happen before
989      // beginning FastISel on the entry block.
990      if (LLVMBB == &Fn.getEntryBlock()) {
991        ++NumEntryBlocks;
992
993        // Lower any arguments needed in this block if this is the entry block.
994        if (!FastIS->LowerArguments()) {
995          // Fast isel failed to lower these arguments
996          ++NumFastIselFailLowerArguments;
997          if (EnableFastISelAbortArgs)
998            llvm_unreachable("FastISel didn't lower all arguments");
999
1000          // Use SelectionDAG argument lowering
1001          LowerArguments(Fn);
1002          CurDAG->setRoot(SDB->getControlRoot());
1003          SDB->clear();
1004          CodeGenAndEmitDAG();
1005        }
1006
1007        // If we inserted any instructions at the beginning, make a note of
1008        // where they are, so we can be sure to emit subsequent instructions
1009        // after them.
1010        if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1011          FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt));
1012        else
1013          FastIS->setLastLocalValue(0);
1014      }
1015
1016      unsigned NumFastIselRemaining = std::distance(Begin, End);
1017      // Do FastISel on as many instructions as possible.
1018      for (; BI != Begin; --BI) {
1019        const Instruction *Inst = llvm::prior(BI);
1020
1021        // If we no longer require this instruction, skip it.
1022        if (isFoldedOrDeadInstruction(Inst, FuncInfo)) {
1023          --NumFastIselRemaining;
1024          continue;
1025        }
1026
1027        // Bottom-up: reset the insert pos at the top, after any local-value
1028        // instructions.
1029        FastIS->recomputeInsertPt();
1030
1031        // Try to select the instruction with FastISel.
1032        if (FastIS->SelectInstruction(Inst)) {
1033          --NumFastIselRemaining;
1034          ++NumFastIselSuccess;
1035          // If fast isel succeeded, skip over all the folded instructions, and
1036          // then see if there is a load right before the selected instructions.
1037          // Try to fold the load if so.
1038          const Instruction *BeforeInst = Inst;
1039          while (BeforeInst != Begin) {
1040            BeforeInst = llvm::prior(BasicBlock::const_iterator(BeforeInst));
1041            if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
1042              break;
1043          }
1044          if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1045              BeforeInst->hasOneUse() &&
1046              FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
1047            // If we succeeded, don't re-select the load.
1048            BI = llvm::next(BasicBlock::const_iterator(BeforeInst));
1049            --NumFastIselRemaining;
1050            ++NumFastIselSuccess;
1051          }
1052          continue;
1053        }
1054
1055#ifndef NDEBUG
1056        if (EnableFastISelVerbose2)
1057          collectFailStats(Inst);
1058#endif
1059
1060        // Then handle certain instructions as single-LLVM-Instruction blocks.
1061        if (isa<CallInst>(Inst)) {
1062
1063          if (EnableFastISelVerbose || EnableFastISelAbort) {
1064            dbgs() << "FastISel missed call: ";
1065            Inst->dump();
1066          }
1067
1068          if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) {
1069            unsigned &R = FuncInfo->ValueMap[Inst];
1070            if (!R)
1071              R = FuncInfo->CreateRegs(Inst->getType());
1072          }
1073
1074          bool HadTailCall = false;
1075          MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
1076          SelectBasicBlock(Inst, BI, HadTailCall);
1077
1078          // If the call was emitted as a tail call, we're done with the block.
1079          // We also need to delete any previously emitted instructions.
1080          if (HadTailCall) {
1081            FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
1082            --BI;
1083            break;
1084          }
1085
1086          // Recompute NumFastIselRemaining as Selection DAG instruction
1087          // selection may have handled the call, input args, etc.
1088          unsigned RemainingNow = std::distance(Begin, BI);
1089          NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1090          NumFastIselRemaining = RemainingNow;
1091          continue;
1092        }
1093
1094        if (isa<TerminatorInst>(Inst) && !isa<BranchInst>(Inst)) {
1095          // Don't abort, and use a different message for terminator misses.
1096          NumFastIselFailures += NumFastIselRemaining;
1097          if (EnableFastISelVerbose || EnableFastISelAbort) {
1098            dbgs() << "FastISel missed terminator: ";
1099            Inst->dump();
1100          }
1101        } else {
1102          NumFastIselFailures += NumFastIselRemaining;
1103          if (EnableFastISelVerbose || EnableFastISelAbort) {
1104            dbgs() << "FastISel miss: ";
1105            Inst->dump();
1106          }
1107          if (EnableFastISelAbort)
1108            // The "fast" selector couldn't handle something and bailed.
1109            // For the purpose of debugging, just abort.
1110            llvm_unreachable("FastISel didn't select the entire block");
1111        }
1112        break;
1113      }
1114
1115      FastIS->recomputeInsertPt();
1116    } else {
1117      // Lower any arguments needed in this block if this is the entry block.
1118      if (LLVMBB == &Fn.getEntryBlock()) {
1119        ++NumEntryBlocks;
1120        LowerArguments(Fn);
1121      }
1122    }
1123
1124    if (Begin != BI)
1125      ++NumDAGBlocks;
1126    else
1127      ++NumFastIselBlocks;
1128
1129    if (Begin != BI) {
1130      // Run SelectionDAG instruction selection on the remainder of the block
1131      // not handled by FastISel. If FastISel is not run, this is the entire
1132      // block.
1133      bool HadTailCall;
1134      SelectBasicBlock(Begin, BI, HadTailCall);
1135    }
1136
1137    FinishBasicBlock();
1138    FuncInfo->PHINodesToUpdate.clear();
1139  }
1140
1141  delete FastIS;
1142  SDB->clearDanglingDebugInfo();
1143}
1144
1145void
1146SelectionDAGISel::FinishBasicBlock() {
1147
1148  DEBUG(dbgs() << "Total amount of phi nodes to update: "
1149               << FuncInfo->PHINodesToUpdate.size() << "\n";
1150        for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
1151          dbgs() << "Node " << i << " : ("
1152                 << FuncInfo->PHINodesToUpdate[i].first
1153                 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1154
1155  // Next, now that we know what the last MBB the LLVM BB expanded is, update
1156  // PHI nodes in successors.
1157  if (SDB->SwitchCases.empty() &&
1158      SDB->JTCases.empty() &&
1159      SDB->BitTestCases.empty()) {
1160    for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1161      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1162      assert(PHI->isPHI() &&
1163             "This is not a machine PHI node that we are updating!");
1164      if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1165        continue;
1166      PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1167    }
1168    return;
1169  }
1170
1171  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
1172    // Lower header first, if it wasn't already lowered
1173    if (!SDB->BitTestCases[i].Emitted) {
1174      // Set the current basic block to the mbb we wish to insert the code into
1175      FuncInfo->MBB = SDB->BitTestCases[i].Parent;
1176      FuncInfo->InsertPt = FuncInfo->MBB->end();
1177      // Emit the code
1178      SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
1179      CurDAG->setRoot(SDB->getRoot());
1180      SDB->clear();
1181      CodeGenAndEmitDAG();
1182    }
1183
1184    uint32_t UnhandledWeight = 0;
1185    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j)
1186      UnhandledWeight += SDB->BitTestCases[i].Cases[j].ExtraWeight;
1187
1188    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
1189      UnhandledWeight -= SDB->BitTestCases[i].Cases[j].ExtraWeight;
1190      // Set the current basic block to the mbb we wish to insert the code into
1191      FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1192      FuncInfo->InsertPt = FuncInfo->MBB->end();
1193      // Emit the code
1194      if (j+1 != ej)
1195        SDB->visitBitTestCase(SDB->BitTestCases[i],
1196                              SDB->BitTestCases[i].Cases[j+1].ThisBB,
1197                              UnhandledWeight,
1198                              SDB->BitTestCases[i].Reg,
1199                              SDB->BitTestCases[i].Cases[j],
1200                              FuncInfo->MBB);
1201      else
1202        SDB->visitBitTestCase(SDB->BitTestCases[i],
1203                              SDB->BitTestCases[i].Default,
1204                              UnhandledWeight,
1205                              SDB->BitTestCases[i].Reg,
1206                              SDB->BitTestCases[i].Cases[j],
1207                              FuncInfo->MBB);
1208
1209
1210      CurDAG->setRoot(SDB->getRoot());
1211      SDB->clear();
1212      CodeGenAndEmitDAG();
1213    }
1214
1215    // Update PHI Nodes
1216    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1217         pi != pe; ++pi) {
1218      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1219      MachineBasicBlock *PHIBB = PHI->getParent();
1220      assert(PHI->isPHI() &&
1221             "This is not a machine PHI node that we are updating!");
1222      // This is "default" BB. We have two jumps to it. From "header" BB and
1223      // from last "case" BB.
1224      if (PHIBB == SDB->BitTestCases[i].Default)
1225        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1226           .addMBB(SDB->BitTestCases[i].Parent)
1227           .addReg(FuncInfo->PHINodesToUpdate[pi].second)
1228           .addMBB(SDB->BitTestCases[i].Cases.back().ThisBB);
1229      // One of "cases" BB.
1230      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1231           j != ej; ++j) {
1232        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1233        if (cBB->isSuccessor(PHIBB))
1234          PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
1235      }
1236    }
1237  }
1238  SDB->BitTestCases.clear();
1239
1240  // If the JumpTable record is filled in, then we need to emit a jump table.
1241  // Updating the PHI nodes is tricky in this case, since we need to determine
1242  // whether the PHI is a successor of the range check MBB or the jump table MBB
1243  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1244    // Lower header first, if it wasn't already lowered
1245    if (!SDB->JTCases[i].first.Emitted) {
1246      // Set the current basic block to the mbb we wish to insert the code into
1247      FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
1248      FuncInfo->InsertPt = FuncInfo->MBB->end();
1249      // Emit the code
1250      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
1251                                FuncInfo->MBB);
1252      CurDAG->setRoot(SDB->getRoot());
1253      SDB->clear();
1254      CodeGenAndEmitDAG();
1255    }
1256
1257    // Set the current basic block to the mbb we wish to insert the code into
1258    FuncInfo->MBB = SDB->JTCases[i].second.MBB;
1259    FuncInfo->InsertPt = FuncInfo->MBB->end();
1260    // Emit the code
1261    SDB->visitJumpTable(SDB->JTCases[i].second);
1262    CurDAG->setRoot(SDB->getRoot());
1263    SDB->clear();
1264    CodeGenAndEmitDAG();
1265
1266    // Update PHI Nodes
1267    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1268         pi != pe; ++pi) {
1269      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1270      MachineBasicBlock *PHIBB = PHI->getParent();
1271      assert(PHI->isPHI() &&
1272             "This is not a machine PHI node that we are updating!");
1273      // "default" BB. We can go there only from header BB.
1274      if (PHIBB == SDB->JTCases[i].second.Default)
1275        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1276           .addMBB(SDB->JTCases[i].first.HeaderBB);
1277      // JT BB. Just iterate over successors here
1278      if (FuncInfo->MBB->isSuccessor(PHIBB))
1279        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
1280    }
1281  }
1282  SDB->JTCases.clear();
1283
1284  // If the switch block involved a branch to one of the actual successors, we
1285  // need to update PHI nodes in that block.
1286  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1287    MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1288    assert(PHI->isPHI() &&
1289           "This is not a machine PHI node that we are updating!");
1290    if (FuncInfo->MBB->isSuccessor(PHI->getParent()))
1291      PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1292  }
1293
1294  // If we generated any switch lowering information, build and codegen any
1295  // additional DAGs necessary.
1296  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1297    // Set the current basic block to the mbb we wish to insert the code into
1298    FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
1299    FuncInfo->InsertPt = FuncInfo->MBB->end();
1300
1301    // Determine the unique successors.
1302    SmallVector<MachineBasicBlock *, 2> Succs;
1303    Succs.push_back(SDB->SwitchCases[i].TrueBB);
1304    if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1305      Succs.push_back(SDB->SwitchCases[i].FalseBB);
1306
1307    // Emit the code. Note that this could result in FuncInfo->MBB being split.
1308    SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
1309    CurDAG->setRoot(SDB->getRoot());
1310    SDB->clear();
1311    CodeGenAndEmitDAG();
1312
1313    // Remember the last block, now that any splitting is done, for use in
1314    // populating PHI nodes in successors.
1315    MachineBasicBlock *ThisBB = FuncInfo->MBB;
1316
1317    // Handle any PHI nodes in successors of this chunk, as if we were coming
1318    // from the original BB before switch expansion.  Note that PHI nodes can
1319    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1320    // handle them the right number of times.
1321    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1322      FuncInfo->MBB = Succs[i];
1323      FuncInfo->InsertPt = FuncInfo->MBB->end();
1324      // FuncInfo->MBB may have been removed from the CFG if a branch was
1325      // constant folded.
1326      if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1327        for (MachineBasicBlock::iterator
1328             MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
1329             MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
1330          MachineInstrBuilder PHI(*MF, MBBI);
1331          // This value for this PHI node is recorded in PHINodesToUpdate.
1332          for (unsigned pn = 0; ; ++pn) {
1333            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1334                   "Didn't find PHI entry!");
1335            if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
1336              PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
1337              break;
1338            }
1339          }
1340        }
1341      }
1342    }
1343  }
1344  SDB->SwitchCases.clear();
1345}
1346
1347
1348/// Create the scheduler. If a specific scheduler was specified
1349/// via the SchedulerRegistry, use it, otherwise select the
1350/// one preferred by the target.
1351///
1352ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1353  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1354
1355  if (!Ctor) {
1356    Ctor = ISHeuristic;
1357    RegisterScheduler::setDefault(Ctor);
1358  }
1359
1360  return Ctor(this, OptLevel);
1361}
1362
1363//===----------------------------------------------------------------------===//
1364// Helper functions used by the generated instruction selector.
1365//===----------------------------------------------------------------------===//
1366// Calls to these methods are generated by tblgen.
1367
1368/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1369/// the dag combiner simplified the 255, we still want to match.  RHS is the
1370/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1371/// specified in the .td file (e.g. 255).
1372bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1373                                    int64_t DesiredMaskS) const {
1374  const APInt &ActualMask = RHS->getAPIntValue();
1375  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1376
1377  // If the actual mask exactly matches, success!
1378  if (ActualMask == DesiredMask)
1379    return true;
1380
1381  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1382  if (ActualMask.intersects(~DesiredMask))
1383    return false;
1384
1385  // Otherwise, the DAG Combiner may have proven that the value coming in is
1386  // either already zero or is not demanded.  Check for known zero input bits.
1387  APInt NeededMask = DesiredMask & ~ActualMask;
1388  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1389    return true;
1390
1391  // TODO: check to see if missing bits are just not demanded.
1392
1393  // Otherwise, this pattern doesn't match.
1394  return false;
1395}
1396
1397/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1398/// the dag combiner simplified the 255, we still want to match.  RHS is the
1399/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1400/// specified in the .td file (e.g. 255).
1401bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1402                                   int64_t DesiredMaskS) const {
1403  const APInt &ActualMask = RHS->getAPIntValue();
1404  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1405
1406  // If the actual mask exactly matches, success!
1407  if (ActualMask == DesiredMask)
1408    return true;
1409
1410  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1411  if (ActualMask.intersects(~DesiredMask))
1412    return false;
1413
1414  // Otherwise, the DAG Combiner may have proven that the value coming in is
1415  // either already zero or is not demanded.  Check for known zero input bits.
1416  APInt NeededMask = DesiredMask & ~ActualMask;
1417
1418  APInt KnownZero, KnownOne;
1419  CurDAG->ComputeMaskedBits(LHS, KnownZero, KnownOne);
1420
1421  // If all the missing bits in the or are already known to be set, match!
1422  if ((NeededMask & KnownOne) == NeededMask)
1423    return true;
1424
1425  // TODO: check to see if missing bits are just not demanded.
1426
1427  // Otherwise, this pattern doesn't match.
1428  return false;
1429}
1430
1431
1432/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1433/// by tblgen.  Others should not call it.
1434void SelectionDAGISel::
1435SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1436  std::vector<SDValue> InOps;
1437  std::swap(InOps, Ops);
1438
1439  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1440  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1441  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1442  Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
1443
1444  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1445  if (InOps[e-1].getValueType() == MVT::Glue)
1446    --e;  // Don't process a glue operand if it is here.
1447
1448  while (i != e) {
1449    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1450    if (!InlineAsm::isMemKind(Flags)) {
1451      // Just skip over this operand, copying the operands verbatim.
1452      Ops.insert(Ops.end(), InOps.begin()+i,
1453                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1454      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1455    } else {
1456      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1457             "Memory operand with multiple values?");
1458      // Otherwise, this is a memory operand.  Ask the target to select it.
1459      std::vector<SDValue> SelOps;
1460      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1461        report_fatal_error("Could not match memory address.  Inline asm"
1462                           " failure!");
1463
1464      // Add this to the output node.
1465      unsigned NewFlags =
1466        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1467      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1468      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1469      i += 2;
1470    }
1471  }
1472
1473  // Add the glue input back if present.
1474  if (e != InOps.size())
1475    Ops.push_back(InOps.back());
1476}
1477
1478/// findGlueUse - Return use of MVT::Glue value produced by the specified
1479/// SDNode.
1480///
1481static SDNode *findGlueUse(SDNode *N) {
1482  unsigned FlagResNo = N->getNumValues()-1;
1483  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1484    SDUse &Use = I.getUse();
1485    if (Use.getResNo() == FlagResNo)
1486      return Use.getUser();
1487  }
1488  return NULL;
1489}
1490
1491/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1492/// This function recursively traverses up the operand chain, ignoring
1493/// certain nodes.
1494static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1495                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1496                          bool IgnoreChains) {
1497  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1498  // greater than all of its (recursive) operands.  If we scan to a point where
1499  // 'use' is smaller than the node we're scanning for, then we know we will
1500  // never find it.
1501  //
1502  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1503  // happen because we scan down to newly selected nodes in the case of glue
1504  // uses.
1505  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1506    return false;
1507
1508  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1509  // won't fail if we scan it again.
1510  if (!Visited.insert(Use))
1511    return false;
1512
1513  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1514    // Ignore chain uses, they are validated by HandleMergeInputChains.
1515    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1516      continue;
1517
1518    SDNode *N = Use->getOperand(i).getNode();
1519    if (N == Def) {
1520      if (Use == ImmedUse || Use == Root)
1521        continue;  // We are not looking for immediate use.
1522      assert(N != Root);
1523      return true;
1524    }
1525
1526    // Traverse up the operand chain.
1527    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1528      return true;
1529  }
1530  return false;
1531}
1532
1533/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1534/// operand node N of U during instruction selection that starts at Root.
1535bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1536                                          SDNode *Root) const {
1537  if (OptLevel == CodeGenOpt::None) return false;
1538  return N.hasOneUse();
1539}
1540
1541/// IsLegalToFold - Returns true if the specific operand node N of
1542/// U can be folded during instruction selection that starts at Root.
1543bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1544                                     CodeGenOpt::Level OptLevel,
1545                                     bool IgnoreChains) {
1546  if (OptLevel == CodeGenOpt::None) return false;
1547
1548  // If Root use can somehow reach N through a path that that doesn't contain
1549  // U then folding N would create a cycle. e.g. In the following
1550  // diagram, Root can reach N through X. If N is folded into into Root, then
1551  // X is both a predecessor and a successor of U.
1552  //
1553  //          [N*]           //
1554  //         ^   ^           //
1555  //        /     \          //
1556  //      [U*]    [X]?       //
1557  //        ^     ^          //
1558  //         \   /           //
1559  //          \ /            //
1560  //         [Root*]         //
1561  //
1562  // * indicates nodes to be folded together.
1563  //
1564  // If Root produces glue, then it gets (even more) interesting. Since it
1565  // will be "glued" together with its glue use in the scheduler, we need to
1566  // check if it might reach N.
1567  //
1568  //          [N*]           //
1569  //         ^   ^           //
1570  //        /     \          //
1571  //      [U*]    [X]?       //
1572  //        ^       ^        //
1573  //         \       \       //
1574  //          \      |       //
1575  //         [Root*] |       //
1576  //          ^      |       //
1577  //          f      |       //
1578  //          |      /       //
1579  //         [Y]    /        //
1580  //           ^   /         //
1581  //           f  /          //
1582  //           | /           //
1583  //          [GU]           //
1584  //
1585  // If GU (glue use) indirectly reaches N (the load), and Root folds N
1586  // (call it Fold), then X is a predecessor of GU and a successor of
1587  // Fold. But since Fold and GU are glued together, this will create
1588  // a cycle in the scheduling graph.
1589
1590  // If the node has glue, walk down the graph to the "lowest" node in the
1591  // glueged set.
1592  EVT VT = Root->getValueType(Root->getNumValues()-1);
1593  while (VT == MVT::Glue) {
1594    SDNode *GU = findGlueUse(Root);
1595    if (GU == NULL)
1596      break;
1597    Root = GU;
1598    VT = Root->getValueType(Root->getNumValues()-1);
1599
1600    // If our query node has a glue result with a use, we've walked up it.  If
1601    // the user (which has already been selected) has a chain or indirectly uses
1602    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1603    // this, we cannot ignore chains in this predicate.
1604    IgnoreChains = false;
1605  }
1606
1607
1608  SmallPtrSet<SDNode*, 16> Visited;
1609  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1610}
1611
1612SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1613  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1614  SelectInlineAsmMemoryOperands(Ops);
1615
1616  EVT VTs[] = { MVT::Other, MVT::Glue };
1617  SDValue New = CurDAG->getNode(ISD::INLINEASM, SDLoc(N),
1618                                VTs, &Ops[0], Ops.size());
1619  New->setNodeId(-1);
1620  return New.getNode();
1621}
1622
1623SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1624  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1625}
1626
1627/// GetVBR - decode a vbr encoding whose top bit is set.
1628LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
1629GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1630  assert(Val >= 128 && "Not a VBR");
1631  Val &= 127;  // Remove first vbr bit.
1632
1633  unsigned Shift = 7;
1634  uint64_t NextBits;
1635  do {
1636    NextBits = MatcherTable[Idx++];
1637    Val |= (NextBits&127) << Shift;
1638    Shift += 7;
1639  } while (NextBits & 128);
1640
1641  return Val;
1642}
1643
1644
1645/// UpdateChainsAndGlue - When a match is complete, this method updates uses of
1646/// interior glue and chain results to use the new glue and chain results.
1647void SelectionDAGISel::
1648UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain,
1649                    const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1650                    SDValue InputGlue,
1651                    const SmallVectorImpl<SDNode*> &GlueResultNodesMatched,
1652                    bool isMorphNodeTo) {
1653  SmallVector<SDNode*, 4> NowDeadNodes;
1654
1655  // Now that all the normal results are replaced, we replace the chain and
1656  // glue results if present.
1657  if (!ChainNodesMatched.empty()) {
1658    assert(InputChain.getNode() != 0 &&
1659           "Matched input chains but didn't produce a chain");
1660    // Loop over all of the nodes we matched that produced a chain result.
1661    // Replace all the chain results with the final chain we ended up with.
1662    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1663      SDNode *ChainNode = ChainNodesMatched[i];
1664
1665      // If this node was already deleted, don't look at it.
1666      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1667        continue;
1668
1669      // Don't replace the results of the root node if we're doing a
1670      // MorphNodeTo.
1671      if (ChainNode == NodeToMatch && isMorphNodeTo)
1672        continue;
1673
1674      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1675      if (ChainVal.getValueType() == MVT::Glue)
1676        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1677      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1678      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain);
1679
1680      // If the node became dead and we haven't already seen it, delete it.
1681      if (ChainNode->use_empty() &&
1682          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1683        NowDeadNodes.push_back(ChainNode);
1684    }
1685  }
1686
1687  // If the result produces glue, update any glue results in the matched
1688  // pattern with the glue result.
1689  if (InputGlue.getNode() != 0) {
1690    // Handle any interior nodes explicitly marked.
1691    for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) {
1692      SDNode *FRN = GlueResultNodesMatched[i];
1693
1694      // If this node was already deleted, don't look at it.
1695      if (FRN->getOpcode() == ISD::DELETED_NODE)
1696        continue;
1697
1698      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue &&
1699             "Doesn't have a glue result");
1700      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1701                                        InputGlue);
1702
1703      // If the node became dead and we haven't already seen it, delete it.
1704      if (FRN->use_empty() &&
1705          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1706        NowDeadNodes.push_back(FRN);
1707    }
1708  }
1709
1710  if (!NowDeadNodes.empty())
1711    CurDAG->RemoveDeadNodes(NowDeadNodes);
1712
1713  DEBUG(dbgs() << "ISEL: Match complete!\n");
1714}
1715
1716enum ChainResult {
1717  CR_Simple,
1718  CR_InducesCycle,
1719  CR_LeadsToInteriorNode
1720};
1721
1722/// WalkChainUsers - Walk down the users of the specified chained node that is
1723/// part of the pattern we're matching, looking at all of the users we find.
1724/// This determines whether something is an interior node, whether we have a
1725/// non-pattern node in between two pattern nodes (which prevent folding because
1726/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1727/// between pattern nodes (in which case the TF becomes part of the pattern).
1728///
1729/// The walk we do here is guaranteed to be small because we quickly get down to
1730/// already selected nodes "below" us.
1731static ChainResult
1732WalkChainUsers(const SDNode *ChainedNode,
1733               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1734               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1735  ChainResult Result = CR_Simple;
1736
1737  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1738         E = ChainedNode->use_end(); UI != E; ++UI) {
1739    // Make sure the use is of the chain, not some other value we produce.
1740    if (UI.getUse().getValueType() != MVT::Other) continue;
1741
1742    SDNode *User = *UI;
1743
1744    // If we see an already-selected machine node, then we've gone beyond the
1745    // pattern that we're selecting down into the already selected chunk of the
1746    // DAG.
1747    if (User->isMachineOpcode() ||
1748        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1749      continue;
1750
1751    unsigned UserOpcode = User->getOpcode();
1752    if (UserOpcode == ISD::CopyToReg ||
1753        UserOpcode == ISD::CopyFromReg ||
1754        UserOpcode == ISD::INLINEASM ||
1755        UserOpcode == ISD::EH_LABEL ||
1756        UserOpcode == ISD::LIFETIME_START ||
1757        UserOpcode == ISD::LIFETIME_END) {
1758      // If their node ID got reset to -1 then they've already been selected.
1759      // Treat them like a MachineOpcode.
1760      if (User->getNodeId() == -1)
1761        continue;
1762    }
1763
1764    // If we have a TokenFactor, we handle it specially.
1765    if (User->getOpcode() != ISD::TokenFactor) {
1766      // If the node isn't a token factor and isn't part of our pattern, then it
1767      // must be a random chained node in between two nodes we're selecting.
1768      // This happens when we have something like:
1769      //   x = load ptr
1770      //   call
1771      //   y = x+4
1772      //   store y -> ptr
1773      // Because we structurally match the load/store as a read/modify/write,
1774      // but the call is chained between them.  We cannot fold in this case
1775      // because it would induce a cycle in the graph.
1776      if (!std::count(ChainedNodesInPattern.begin(),
1777                      ChainedNodesInPattern.end(), User))
1778        return CR_InducesCycle;
1779
1780      // Otherwise we found a node that is part of our pattern.  For example in:
1781      //   x = load ptr
1782      //   y = x+4
1783      //   store y -> ptr
1784      // This would happen when we're scanning down from the load and see the
1785      // store as a user.  Record that there is a use of ChainedNode that is
1786      // part of the pattern and keep scanning uses.
1787      Result = CR_LeadsToInteriorNode;
1788      InteriorChainedNodes.push_back(User);
1789      continue;
1790    }
1791
1792    // If we found a TokenFactor, there are two cases to consider: first if the
1793    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1794    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1795    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1796    //     [Load chain]
1797    //         ^
1798    //         |
1799    //       [Load]
1800    //       ^    ^
1801    //       |    \                    DAG's like cheese
1802    //      /       \                       do you?
1803    //     /         |
1804    // [TokenFactor] [Op]
1805    //     ^          ^
1806    //     |          |
1807    //      \        /
1808    //       \      /
1809    //       [Store]
1810    //
1811    // In this case, the TokenFactor becomes part of our match and we rewrite it
1812    // as a new TokenFactor.
1813    //
1814    // To distinguish these two cases, do a recursive walk down the uses.
1815    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1816    case CR_Simple:
1817      // If the uses of the TokenFactor are just already-selected nodes, ignore
1818      // it, it is "below" our pattern.
1819      continue;
1820    case CR_InducesCycle:
1821      // If the uses of the TokenFactor lead to nodes that are not part of our
1822      // pattern that are not selected, folding would turn this into a cycle,
1823      // bail out now.
1824      return CR_InducesCycle;
1825    case CR_LeadsToInteriorNode:
1826      break;  // Otherwise, keep processing.
1827    }
1828
1829    // Okay, we know we're in the interesting interior case.  The TokenFactor
1830    // is now going to be considered part of the pattern so that we rewrite its
1831    // uses (it may have uses that are not part of the pattern) with the
1832    // ultimate chain result of the generated code.  We will also add its chain
1833    // inputs as inputs to the ultimate TokenFactor we create.
1834    Result = CR_LeadsToInteriorNode;
1835    ChainedNodesInPattern.push_back(User);
1836    InteriorChainedNodes.push_back(User);
1837    continue;
1838  }
1839
1840  return Result;
1841}
1842
1843/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1844/// operation for when the pattern matched at least one node with a chains.  The
1845/// input vector contains a list of all of the chained nodes that we match.  We
1846/// must determine if this is a valid thing to cover (i.e. matching it won't
1847/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1848/// be used as the input node chain for the generated nodes.
1849static SDValue
1850HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1851                       SelectionDAG *CurDAG) {
1852  // Walk all of the chained nodes we've matched, recursively scanning down the
1853  // users of the chain result. This adds any TokenFactor nodes that are caught
1854  // in between chained nodes to the chained and interior nodes list.
1855  SmallVector<SDNode*, 3> InteriorChainedNodes;
1856  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1857    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1858                       InteriorChainedNodes) == CR_InducesCycle)
1859      return SDValue(); // Would induce a cycle.
1860  }
1861
1862  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1863  // that we are interested in.  Form our input TokenFactor node.
1864  SmallVector<SDValue, 3> InputChains;
1865  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1866    // Add the input chain of this node to the InputChains list (which will be
1867    // the operands of the generated TokenFactor) if it's not an interior node.
1868    SDNode *N = ChainNodesMatched[i];
1869    if (N->getOpcode() != ISD::TokenFactor) {
1870      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1871        continue;
1872
1873      // Otherwise, add the input chain.
1874      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1875      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1876      InputChains.push_back(InChain);
1877      continue;
1878    }
1879
1880    // If we have a token factor, we want to add all inputs of the token factor
1881    // that are not part of the pattern we're matching.
1882    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1883      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1884                      N->getOperand(op).getNode()))
1885        InputChains.push_back(N->getOperand(op));
1886    }
1887  }
1888
1889  SDValue Res;
1890  if (InputChains.size() == 1)
1891    return InputChains[0];
1892  return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
1893                         MVT::Other, &InputChains[0], InputChains.size());
1894}
1895
1896/// MorphNode - Handle morphing a node in place for the selector.
1897SDNode *SelectionDAGISel::
1898MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1899          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1900  // It is possible we're using MorphNodeTo to replace a node with no
1901  // normal results with one that has a normal result (or we could be
1902  // adding a chain) and the input could have glue and chains as well.
1903  // In this case we need to shift the operands down.
1904  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1905  // than the old isel though.
1906  int OldGlueResultNo = -1, OldChainResultNo = -1;
1907
1908  unsigned NTMNumResults = Node->getNumValues();
1909  if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
1910    OldGlueResultNo = NTMNumResults-1;
1911    if (NTMNumResults != 1 &&
1912        Node->getValueType(NTMNumResults-2) == MVT::Other)
1913      OldChainResultNo = NTMNumResults-2;
1914  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1915    OldChainResultNo = NTMNumResults-1;
1916
1917  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1918  // that this deletes operands of the old node that become dead.
1919  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1920
1921  // MorphNodeTo can operate in two ways: if an existing node with the
1922  // specified operands exists, it can just return it.  Otherwise, it
1923  // updates the node in place to have the requested operands.
1924  if (Res == Node) {
1925    // If we updated the node in place, reset the node ID.  To the isel,
1926    // this should be just like a newly allocated machine node.
1927    Res->setNodeId(-1);
1928  }
1929
1930  unsigned ResNumResults = Res->getNumValues();
1931  // Move the glue if needed.
1932  if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
1933      (unsigned)OldGlueResultNo != ResNumResults-1)
1934    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
1935                                      SDValue(Res, ResNumResults-1));
1936
1937  if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
1938    --ResNumResults;
1939
1940  // Move the chain reference if needed.
1941  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1942      (unsigned)OldChainResultNo != ResNumResults-1)
1943    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1944                                      SDValue(Res, ResNumResults-1));
1945
1946  // Otherwise, no replacement happened because the node already exists. Replace
1947  // Uses of the old node with the new one.
1948  if (Res != Node)
1949    CurDAG->ReplaceAllUsesWith(Node, Res);
1950
1951  return Res;
1952}
1953
1954/// CheckSame - Implements OP_CheckSame.
1955LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1956CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1957          SDValue N,
1958          const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
1959  // Accept if it is exactly the same as a previously recorded node.
1960  unsigned RecNo = MatcherTable[MatcherIndex++];
1961  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1962  return N == RecordedNodes[RecNo].first;
1963}
1964
1965/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1966LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1967CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1968                      const SelectionDAGISel &SDISel) {
1969  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
1970}
1971
1972/// CheckNodePredicate - Implements OP_CheckNodePredicate.
1973LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1974CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1975                   const SelectionDAGISel &SDISel, SDNode *N) {
1976  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
1977}
1978
1979LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1980CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1981            SDNode *N) {
1982  uint16_t Opc = MatcherTable[MatcherIndex++];
1983  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
1984  return N->getOpcode() == Opc;
1985}
1986
1987LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1988CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1989          SDValue N, const TargetLowering *TLI) {
1990  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1991  if (N.getValueType() == VT) return true;
1992
1993  // Handle the case when VT is iPTR.
1994  return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy();
1995}
1996
1997LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1998CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1999               SDValue N, const TargetLowering *TLI,
2000               unsigned ChildNo) {
2001  if (ChildNo >= N.getNumOperands())
2002    return false;  // Match fails if out of range child #.
2003  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
2004}
2005
2006LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2007CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2008              SDValue N) {
2009  return cast<CondCodeSDNode>(N)->get() ==
2010      (ISD::CondCode)MatcherTable[MatcherIndex++];
2011}
2012
2013LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2014CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2015               SDValue N, const TargetLowering *TLI) {
2016  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2017  if (cast<VTSDNode>(N)->getVT() == VT)
2018    return true;
2019
2020  // Handle the case when VT is iPTR.
2021  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy();
2022}
2023
2024LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2025CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2026             SDValue N) {
2027  int64_t Val = MatcherTable[MatcherIndex++];
2028  if (Val & 128)
2029    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2030
2031  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2032  return C != 0 && C->getSExtValue() == Val;
2033}
2034
2035LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2036CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2037            SDValue N, const SelectionDAGISel &SDISel) {
2038  int64_t Val = MatcherTable[MatcherIndex++];
2039  if (Val & 128)
2040    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2041
2042  if (N->getOpcode() != ISD::AND) return false;
2043
2044  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2045  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2046}
2047
2048LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2049CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2050           SDValue N, const SelectionDAGISel &SDISel) {
2051  int64_t Val = MatcherTable[MatcherIndex++];
2052  if (Val & 128)
2053    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2054
2055  if (N->getOpcode() != ISD::OR) return false;
2056
2057  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2058  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2059}
2060
2061/// IsPredicateKnownToFail - If we know how and can do so without pushing a
2062/// scope, evaluate the current node.  If the current predicate is known to
2063/// fail, set Result=true and return anything.  If the current predicate is
2064/// known to pass, set Result=false and return the MatcherIndex to continue
2065/// with.  If the current predicate is unknown, set Result=false and return the
2066/// MatcherIndex to continue with.
2067static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2068                                       unsigned Index, SDValue N,
2069                                       bool &Result,
2070                                       const SelectionDAGISel &SDISel,
2071                 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
2072  switch (Table[Index++]) {
2073  default:
2074    Result = false;
2075    return Index-1;  // Could not evaluate this predicate.
2076  case SelectionDAGISel::OPC_CheckSame:
2077    Result = !::CheckSame(Table, Index, N, RecordedNodes);
2078    return Index;
2079  case SelectionDAGISel::OPC_CheckPatternPredicate:
2080    Result = !::CheckPatternPredicate(Table, Index, SDISel);
2081    return Index;
2082  case SelectionDAGISel::OPC_CheckPredicate:
2083    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2084    return Index;
2085  case SelectionDAGISel::OPC_CheckOpcode:
2086    Result = !::CheckOpcode(Table, Index, N.getNode());
2087    return Index;
2088  case SelectionDAGISel::OPC_CheckType:
2089    Result = !::CheckType(Table, Index, N, SDISel.getTargetLowering());
2090    return Index;
2091  case SelectionDAGISel::OPC_CheckChild0Type:
2092  case SelectionDAGISel::OPC_CheckChild1Type:
2093  case SelectionDAGISel::OPC_CheckChild2Type:
2094  case SelectionDAGISel::OPC_CheckChild3Type:
2095  case SelectionDAGISel::OPC_CheckChild4Type:
2096  case SelectionDAGISel::OPC_CheckChild5Type:
2097  case SelectionDAGISel::OPC_CheckChild6Type:
2098  case SelectionDAGISel::OPC_CheckChild7Type:
2099    Result = !::CheckChildType(Table, Index, N, SDISel.getTargetLowering(),
2100                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
2101    return Index;
2102  case SelectionDAGISel::OPC_CheckCondCode:
2103    Result = !::CheckCondCode(Table, Index, N);
2104    return Index;
2105  case SelectionDAGISel::OPC_CheckValueType:
2106    Result = !::CheckValueType(Table, Index, N, SDISel.getTargetLowering());
2107    return Index;
2108  case SelectionDAGISel::OPC_CheckInteger:
2109    Result = !::CheckInteger(Table, Index, N);
2110    return Index;
2111  case SelectionDAGISel::OPC_CheckAndImm:
2112    Result = !::CheckAndImm(Table, Index, N, SDISel);
2113    return Index;
2114  case SelectionDAGISel::OPC_CheckOrImm:
2115    Result = !::CheckOrImm(Table, Index, N, SDISel);
2116    return Index;
2117  }
2118}
2119
2120namespace {
2121
2122struct MatchScope {
2123  /// FailIndex - If this match fails, this is the index to continue with.
2124  unsigned FailIndex;
2125
2126  /// NodeStack - The node stack when the scope was formed.
2127  SmallVector<SDValue, 4> NodeStack;
2128
2129  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2130  unsigned NumRecordedNodes;
2131
2132  /// NumMatchedMemRefs - The number of matched memref entries.
2133  unsigned NumMatchedMemRefs;
2134
2135  /// InputChain/InputGlue - The current chain/glue
2136  SDValue InputChain, InputGlue;
2137
2138  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2139  bool HasChainNodesMatched, HasGlueResultNodesMatched;
2140};
2141
2142}
2143
2144SDNode *SelectionDAGISel::
2145SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
2146                 unsigned TableSize) {
2147  // FIXME: Should these even be selected?  Handle these cases in the caller?
2148  switch (NodeToMatch->getOpcode()) {
2149  default:
2150    break;
2151  case ISD::EntryToken:       // These nodes remain the same.
2152  case ISD::BasicBlock:
2153  case ISD::Register:
2154  case ISD::RegisterMask:
2155  //case ISD::VALUETYPE:
2156  //case ISD::CONDCODE:
2157  case ISD::HANDLENODE:
2158  case ISD::MDNODE_SDNODE:
2159  case ISD::TargetConstant:
2160  case ISD::TargetConstantFP:
2161  case ISD::TargetConstantPool:
2162  case ISD::TargetFrameIndex:
2163  case ISD::TargetExternalSymbol:
2164  case ISD::TargetBlockAddress:
2165  case ISD::TargetJumpTable:
2166  case ISD::TargetGlobalTLSAddress:
2167  case ISD::TargetGlobalAddress:
2168  case ISD::TokenFactor:
2169  case ISD::CopyFromReg:
2170  case ISD::CopyToReg:
2171  case ISD::EH_LABEL:
2172  case ISD::LIFETIME_START:
2173  case ISD::LIFETIME_END:
2174    NodeToMatch->setNodeId(-1); // Mark selected.
2175    return 0;
2176  case ISD::AssertSext:
2177  case ISD::AssertZext:
2178    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
2179                                      NodeToMatch->getOperand(0));
2180    return 0;
2181  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
2182  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
2183  }
2184
2185  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2186
2187  // Set up the node stack with NodeToMatch as the only node on the stack.
2188  SmallVector<SDValue, 8> NodeStack;
2189  SDValue N = SDValue(NodeToMatch, 0);
2190  NodeStack.push_back(N);
2191
2192  // MatchScopes - Scopes used when matching, if a match failure happens, this
2193  // indicates where to continue checking.
2194  SmallVector<MatchScope, 8> MatchScopes;
2195
2196  // RecordedNodes - This is the set of nodes that have been recorded by the
2197  // state machine.  The second value is the parent of the node, or null if the
2198  // root is recorded.
2199  SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2200
2201  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2202  // pattern.
2203  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2204
2205  // These are the current input chain and glue for use when generating nodes.
2206  // Various Emit operations change these.  For example, emitting a copytoreg
2207  // uses and updates these.
2208  SDValue InputChain, InputGlue;
2209
2210  // ChainNodesMatched - If a pattern matches nodes that have input/output
2211  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2212  // which ones they are.  The result is captured into this list so that we can
2213  // update the chain results when the pattern is complete.
2214  SmallVector<SDNode*, 3> ChainNodesMatched;
2215  SmallVector<SDNode*, 3> GlueResultNodesMatched;
2216
2217  DEBUG(dbgs() << "ISEL: Starting pattern match on root node: ";
2218        NodeToMatch->dump(CurDAG);
2219        dbgs() << '\n');
2220
2221  // Determine where to start the interpreter.  Normally we start at opcode #0,
2222  // but if the state machine starts with an OPC_SwitchOpcode, then we
2223  // accelerate the first lookup (which is guaranteed to be hot) with the
2224  // OpcodeOffset table.
2225  unsigned MatcherIndex = 0;
2226
2227  if (!OpcodeOffset.empty()) {
2228    // Already computed the OpcodeOffset table, just index into it.
2229    if (N.getOpcode() < OpcodeOffset.size())
2230      MatcherIndex = OpcodeOffset[N.getOpcode()];
2231    DEBUG(dbgs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2232
2233  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2234    // Otherwise, the table isn't computed, but the state machine does start
2235    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2236    // is the first time we're selecting an instruction.
2237    unsigned Idx = 1;
2238    while (1) {
2239      // Get the size of this case.
2240      unsigned CaseSize = MatcherTable[Idx++];
2241      if (CaseSize & 128)
2242        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2243      if (CaseSize == 0) break;
2244
2245      // Get the opcode, add the index to the table.
2246      uint16_t Opc = MatcherTable[Idx++];
2247      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2248      if (Opc >= OpcodeOffset.size())
2249        OpcodeOffset.resize((Opc+1)*2);
2250      OpcodeOffset[Opc] = Idx;
2251      Idx += CaseSize;
2252    }
2253
2254    // Okay, do the lookup for the first opcode.
2255    if (N.getOpcode() < OpcodeOffset.size())
2256      MatcherIndex = OpcodeOffset[N.getOpcode()];
2257  }
2258
2259  while (1) {
2260    assert(MatcherIndex < TableSize && "Invalid index");
2261#ifndef NDEBUG
2262    unsigned CurrentOpcodeIndex = MatcherIndex;
2263#endif
2264    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2265    switch (Opcode) {
2266    case OPC_Scope: {
2267      // Okay, the semantics of this operation are that we should push a scope
2268      // then evaluate the first child.  However, pushing a scope only to have
2269      // the first check fail (which then pops it) is inefficient.  If we can
2270      // determine immediately that the first check (or first several) will
2271      // immediately fail, don't even bother pushing a scope for them.
2272      unsigned FailIndex;
2273
2274      while (1) {
2275        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2276        if (NumToSkip & 128)
2277          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2278        // Found the end of the scope with no match.
2279        if (NumToSkip == 0) {
2280          FailIndex = 0;
2281          break;
2282        }
2283
2284        FailIndex = MatcherIndex+NumToSkip;
2285
2286        unsigned MatcherIndexOfPredicate = MatcherIndex;
2287        (void)MatcherIndexOfPredicate; // silence warning.
2288
2289        // If we can't evaluate this predicate without pushing a scope (e.g. if
2290        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2291        // push the scope and evaluate the full predicate chain.
2292        bool Result;
2293        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2294                                              Result, *this, RecordedNodes);
2295        if (!Result)
2296          break;
2297
2298        DEBUG(dbgs() << "  Skipped scope entry (due to false predicate) at "
2299                     << "index " << MatcherIndexOfPredicate
2300                     << ", continuing at " << FailIndex << "\n");
2301        ++NumDAGIselRetries;
2302
2303        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2304        // move to the next case.
2305        MatcherIndex = FailIndex;
2306      }
2307
2308      // If the whole scope failed to match, bail.
2309      if (FailIndex == 0) break;
2310
2311      // Push a MatchScope which indicates where to go if the first child fails
2312      // to match.
2313      MatchScope NewEntry;
2314      NewEntry.FailIndex = FailIndex;
2315      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2316      NewEntry.NumRecordedNodes = RecordedNodes.size();
2317      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2318      NewEntry.InputChain = InputChain;
2319      NewEntry.InputGlue = InputGlue;
2320      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2321      NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty();
2322      MatchScopes.push_back(NewEntry);
2323      continue;
2324    }
2325    case OPC_RecordNode: {
2326      // Remember this node, it may end up being an operand in the pattern.
2327      SDNode *Parent = 0;
2328      if (NodeStack.size() > 1)
2329        Parent = NodeStack[NodeStack.size()-2].getNode();
2330      RecordedNodes.push_back(std::make_pair(N, Parent));
2331      continue;
2332    }
2333
2334    case OPC_RecordChild0: case OPC_RecordChild1:
2335    case OPC_RecordChild2: case OPC_RecordChild3:
2336    case OPC_RecordChild4: case OPC_RecordChild5:
2337    case OPC_RecordChild6: case OPC_RecordChild7: {
2338      unsigned ChildNo = Opcode-OPC_RecordChild0;
2339      if (ChildNo >= N.getNumOperands())
2340        break;  // Match fails if out of range child #.
2341
2342      RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2343                                             N.getNode()));
2344      continue;
2345    }
2346    case OPC_RecordMemRef:
2347      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2348      continue;
2349
2350    case OPC_CaptureGlueInput:
2351      // If the current node has an input glue, capture it in InputGlue.
2352      if (N->getNumOperands() != 0 &&
2353          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
2354        InputGlue = N->getOperand(N->getNumOperands()-1);
2355      continue;
2356
2357    case OPC_MoveChild: {
2358      unsigned ChildNo = MatcherTable[MatcherIndex++];
2359      if (ChildNo >= N.getNumOperands())
2360        break;  // Match fails if out of range child #.
2361      N = N.getOperand(ChildNo);
2362      NodeStack.push_back(N);
2363      continue;
2364    }
2365
2366    case OPC_MoveParent:
2367      // Pop the current node off the NodeStack.
2368      NodeStack.pop_back();
2369      assert(!NodeStack.empty() && "Node stack imbalance!");
2370      N = NodeStack.back();
2371      continue;
2372
2373    case OPC_CheckSame:
2374      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2375      continue;
2376    case OPC_CheckPatternPredicate:
2377      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2378      continue;
2379    case OPC_CheckPredicate:
2380      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2381                                N.getNode()))
2382        break;
2383      continue;
2384    case OPC_CheckComplexPat: {
2385      unsigned CPNum = MatcherTable[MatcherIndex++];
2386      unsigned RecNo = MatcherTable[MatcherIndex++];
2387      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2388      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
2389                               RecordedNodes[RecNo].first, CPNum,
2390                               RecordedNodes))
2391        break;
2392      continue;
2393    }
2394    case OPC_CheckOpcode:
2395      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2396      continue;
2397
2398    case OPC_CheckType:
2399      if (!::CheckType(MatcherTable, MatcherIndex, N, getTargetLowering()))
2400        break;
2401      continue;
2402
2403    case OPC_SwitchOpcode: {
2404      unsigned CurNodeOpcode = N.getOpcode();
2405      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2406      unsigned CaseSize;
2407      while (1) {
2408        // Get the size of this case.
2409        CaseSize = MatcherTable[MatcherIndex++];
2410        if (CaseSize & 128)
2411          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2412        if (CaseSize == 0) break;
2413
2414        uint16_t Opc = MatcherTable[MatcherIndex++];
2415        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2416
2417        // If the opcode matches, then we will execute this case.
2418        if (CurNodeOpcode == Opc)
2419          break;
2420
2421        // Otherwise, skip over this case.
2422        MatcherIndex += CaseSize;
2423      }
2424
2425      // If no cases matched, bail out.
2426      if (CaseSize == 0) break;
2427
2428      // Otherwise, execute the case we found.
2429      DEBUG(dbgs() << "  OpcodeSwitch from " << SwitchStart
2430                   << " to " << MatcherIndex << "\n");
2431      continue;
2432    }
2433
2434    case OPC_SwitchType: {
2435      MVT CurNodeVT = N.getValueType().getSimpleVT();
2436      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2437      unsigned CaseSize;
2438      while (1) {
2439        // Get the size of this case.
2440        CaseSize = MatcherTable[MatcherIndex++];
2441        if (CaseSize & 128)
2442          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2443        if (CaseSize == 0) break;
2444
2445        MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2446        if (CaseVT == MVT::iPTR)
2447          CaseVT = getTargetLowering()->getPointerTy();
2448
2449        // If the VT matches, then we will execute this case.
2450        if (CurNodeVT == CaseVT)
2451          break;
2452
2453        // Otherwise, skip over this case.
2454        MatcherIndex += CaseSize;
2455      }
2456
2457      // If no cases matched, bail out.
2458      if (CaseSize == 0) break;
2459
2460      // Otherwise, execute the case we found.
2461      DEBUG(dbgs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2462                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2463      continue;
2464    }
2465    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2466    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2467    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2468    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2469      if (!::CheckChildType(MatcherTable, MatcherIndex, N, getTargetLowering(),
2470                            Opcode-OPC_CheckChild0Type))
2471        break;
2472      continue;
2473    case OPC_CheckCondCode:
2474      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2475      continue;
2476    case OPC_CheckValueType:
2477      if (!::CheckValueType(MatcherTable, MatcherIndex, N, getTargetLowering()))
2478        break;
2479      continue;
2480    case OPC_CheckInteger:
2481      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2482      continue;
2483    case OPC_CheckAndImm:
2484      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2485      continue;
2486    case OPC_CheckOrImm:
2487      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2488      continue;
2489
2490    case OPC_CheckFoldableChainNode: {
2491      assert(NodeStack.size() != 1 && "No parent node");
2492      // Verify that all intermediate nodes between the root and this one have
2493      // a single use.
2494      bool HasMultipleUses = false;
2495      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2496        if (!NodeStack[i].hasOneUse()) {
2497          HasMultipleUses = true;
2498          break;
2499        }
2500      if (HasMultipleUses) break;
2501
2502      // Check to see that the target thinks this is profitable to fold and that
2503      // we can fold it without inducing cycles in the graph.
2504      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2505                              NodeToMatch) ||
2506          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2507                         NodeToMatch, OptLevel,
2508                         true/*We validate our own chains*/))
2509        break;
2510
2511      continue;
2512    }
2513    case OPC_EmitInteger: {
2514      MVT::SimpleValueType VT =
2515        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2516      int64_t Val = MatcherTable[MatcherIndex++];
2517      if (Val & 128)
2518        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2519      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2520                              CurDAG->getTargetConstant(Val, VT), (SDNode*)0));
2521      continue;
2522    }
2523    case OPC_EmitRegister: {
2524      MVT::SimpleValueType VT =
2525        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2526      unsigned RegNo = MatcherTable[MatcherIndex++];
2527      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2528                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2529      continue;
2530    }
2531    case OPC_EmitRegister2: {
2532      // For targets w/ more than 256 register names, the register enum
2533      // values are stored in two bytes in the matcher table (just like
2534      // opcodes).
2535      MVT::SimpleValueType VT =
2536        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2537      unsigned RegNo = MatcherTable[MatcherIndex++];
2538      RegNo |= MatcherTable[MatcherIndex++] << 8;
2539      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2540                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2541      continue;
2542    }
2543
2544    case OPC_EmitConvertToTarget:  {
2545      // Convert from IMM/FPIMM to target version.
2546      unsigned RecNo = MatcherTable[MatcherIndex++];
2547      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2548      SDValue Imm = RecordedNodes[RecNo].first;
2549
2550      if (Imm->getOpcode() == ISD::Constant) {
2551        const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
2552        Imm = CurDAG->getConstant(*Val, Imm.getValueType(), true);
2553      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2554        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2555        Imm = CurDAG->getConstantFP(*Val, Imm.getValueType(), true);
2556      }
2557
2558      RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
2559      continue;
2560    }
2561
2562    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2563    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2564      // These are space-optimized forms of OPC_EmitMergeInputChains.
2565      assert(InputChain.getNode() == 0 &&
2566             "EmitMergeInputChains should be the first chain producing node");
2567      assert(ChainNodesMatched.empty() &&
2568             "Should only have one EmitMergeInputChains per match");
2569
2570      // Read all of the chained nodes.
2571      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2572      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2573      ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2574
2575      // FIXME: What if other value results of the node have uses not matched
2576      // by this pattern?
2577      if (ChainNodesMatched.back() != NodeToMatch &&
2578          !RecordedNodes[RecNo].first.hasOneUse()) {
2579        ChainNodesMatched.clear();
2580        break;
2581      }
2582
2583      // Merge the input chains if they are not intra-pattern references.
2584      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2585
2586      if (InputChain.getNode() == 0)
2587        break;  // Failed to merge.
2588      continue;
2589    }
2590
2591    case OPC_EmitMergeInputChains: {
2592      assert(InputChain.getNode() == 0 &&
2593             "EmitMergeInputChains should be the first chain producing node");
2594      // This node gets a list of nodes we matched in the input that have
2595      // chains.  We want to token factor all of the input chains to these nodes
2596      // together.  However, if any of the input chains is actually one of the
2597      // nodes matched in this pattern, then we have an intra-match reference.
2598      // Ignore these because the newly token factored chain should not refer to
2599      // the old nodes.
2600      unsigned NumChains = MatcherTable[MatcherIndex++];
2601      assert(NumChains != 0 && "Can't TF zero chains");
2602
2603      assert(ChainNodesMatched.empty() &&
2604             "Should only have one EmitMergeInputChains per match");
2605
2606      // Read all of the chained nodes.
2607      for (unsigned i = 0; i != NumChains; ++i) {
2608        unsigned RecNo = MatcherTable[MatcherIndex++];
2609        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2610        ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2611
2612        // FIXME: What if other value results of the node have uses not matched
2613        // by this pattern?
2614        if (ChainNodesMatched.back() != NodeToMatch &&
2615            !RecordedNodes[RecNo].first.hasOneUse()) {
2616          ChainNodesMatched.clear();
2617          break;
2618        }
2619      }
2620
2621      // If the inner loop broke out, the match fails.
2622      if (ChainNodesMatched.empty())
2623        break;
2624
2625      // Merge the input chains if they are not intra-pattern references.
2626      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2627
2628      if (InputChain.getNode() == 0)
2629        break;  // Failed to merge.
2630
2631      continue;
2632    }
2633
2634    case OPC_EmitCopyToReg: {
2635      unsigned RecNo = MatcherTable[MatcherIndex++];
2636      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2637      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2638
2639      if (InputChain.getNode() == 0)
2640        InputChain = CurDAG->getEntryNode();
2641
2642      InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch),
2643                                        DestPhysReg, RecordedNodes[RecNo].first,
2644                                        InputGlue);
2645
2646      InputGlue = InputChain.getValue(1);
2647      continue;
2648    }
2649
2650    case OPC_EmitNodeXForm: {
2651      unsigned XFormNo = MatcherTable[MatcherIndex++];
2652      unsigned RecNo = MatcherTable[MatcherIndex++];
2653      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2654      SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
2655      RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0));
2656      continue;
2657    }
2658
2659    case OPC_EmitNode:
2660    case OPC_MorphNodeTo: {
2661      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2662      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2663      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2664      // Get the result VT list.
2665      unsigned NumVTs = MatcherTable[MatcherIndex++];
2666      SmallVector<EVT, 4> VTs;
2667      for (unsigned i = 0; i != NumVTs; ++i) {
2668        MVT::SimpleValueType VT =
2669          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2670        if (VT == MVT::iPTR) VT = getTargetLowering()->getPointerTy().SimpleTy;
2671        VTs.push_back(VT);
2672      }
2673
2674      if (EmitNodeInfo & OPFL_Chain)
2675        VTs.push_back(MVT::Other);
2676      if (EmitNodeInfo & OPFL_GlueOutput)
2677        VTs.push_back(MVT::Glue);
2678
2679      // This is hot code, so optimize the two most common cases of 1 and 2
2680      // results.
2681      SDVTList VTList;
2682      if (VTs.size() == 1)
2683        VTList = CurDAG->getVTList(VTs[0]);
2684      else if (VTs.size() == 2)
2685        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2686      else
2687        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2688
2689      // Get the operand list.
2690      unsigned NumOps = MatcherTable[MatcherIndex++];
2691      SmallVector<SDValue, 8> Ops;
2692      for (unsigned i = 0; i != NumOps; ++i) {
2693        unsigned RecNo = MatcherTable[MatcherIndex++];
2694        if (RecNo & 128)
2695          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2696
2697        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2698        Ops.push_back(RecordedNodes[RecNo].first);
2699      }
2700
2701      // If there are variadic operands to add, handle them now.
2702      if (EmitNodeInfo & OPFL_VariadicInfo) {
2703        // Determine the start index to copy from.
2704        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2705        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2706        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2707               "Invalid variadic node");
2708        // Copy all of the variadic operands, not including a potential glue
2709        // input.
2710        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2711             i != e; ++i) {
2712          SDValue V = NodeToMatch->getOperand(i);
2713          if (V.getValueType() == MVT::Glue) break;
2714          Ops.push_back(V);
2715        }
2716      }
2717
2718      // If this has chain/glue inputs, add them.
2719      if (EmitNodeInfo & OPFL_Chain)
2720        Ops.push_back(InputChain);
2721      if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != 0)
2722        Ops.push_back(InputGlue);
2723
2724      // Create the node.
2725      SDNode *Res = 0;
2726      if (Opcode != OPC_MorphNodeTo) {
2727        // If this is a normal EmitNode command, just create the new node and
2728        // add the results to the RecordedNodes list.
2729        Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch),
2730                                     VTList, Ops);
2731
2732        // Add all the non-glue/non-chain results to the RecordedNodes list.
2733        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2734          if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
2735          RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
2736                                                             (SDNode*) 0));
2737        }
2738
2739      } else if (NodeToMatch->getOpcode() != ISD::DELETED_NODE) {
2740        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2741                        EmitNodeInfo);
2742      } else {
2743        // NodeToMatch was eliminated by CSE when the target changed the DAG.
2744        // We will visit the equivalent node later.
2745        DEBUG(dbgs() << "Node was eliminated by CSE\n");
2746        return 0;
2747      }
2748
2749      // If the node had chain/glue results, update our notion of the current
2750      // chain and glue.
2751      if (EmitNodeInfo & OPFL_GlueOutput) {
2752        InputGlue = SDValue(Res, VTs.size()-1);
2753        if (EmitNodeInfo & OPFL_Chain)
2754          InputChain = SDValue(Res, VTs.size()-2);
2755      } else if (EmitNodeInfo & OPFL_Chain)
2756        InputChain = SDValue(Res, VTs.size()-1);
2757
2758      // If the OPFL_MemRefs glue is set on this node, slap all of the
2759      // accumulated memrefs onto it.
2760      //
2761      // FIXME: This is vastly incorrect for patterns with multiple outputs
2762      // instructions that access memory and for ComplexPatterns that match
2763      // loads.
2764      if (EmitNodeInfo & OPFL_MemRefs) {
2765        // Only attach load or store memory operands if the generated
2766        // instruction may load or store.
2767        const MCInstrDesc &MCID = TM.getInstrInfo()->get(TargetOpc);
2768        bool mayLoad = MCID.mayLoad();
2769        bool mayStore = MCID.mayStore();
2770
2771        unsigned NumMemRefs = 0;
2772        for (SmallVectorImpl<MachineMemOperand *>::const_iterator I =
2773               MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2774          if ((*I)->isLoad()) {
2775            if (mayLoad)
2776              ++NumMemRefs;
2777          } else if ((*I)->isStore()) {
2778            if (mayStore)
2779              ++NumMemRefs;
2780          } else {
2781            ++NumMemRefs;
2782          }
2783        }
2784
2785        MachineSDNode::mmo_iterator MemRefs =
2786          MF->allocateMemRefsArray(NumMemRefs);
2787
2788        MachineSDNode::mmo_iterator MemRefsPos = MemRefs;
2789        for (SmallVectorImpl<MachineMemOperand *>::const_iterator I =
2790               MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2791          if ((*I)->isLoad()) {
2792            if (mayLoad)
2793              *MemRefsPos++ = *I;
2794          } else if ((*I)->isStore()) {
2795            if (mayStore)
2796              *MemRefsPos++ = *I;
2797          } else {
2798            *MemRefsPos++ = *I;
2799          }
2800        }
2801
2802        cast<MachineSDNode>(Res)
2803          ->setMemRefs(MemRefs, MemRefs + NumMemRefs);
2804      }
2805
2806      DEBUG(dbgs() << "  "
2807                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2808                   << " node: "; Res->dump(CurDAG); dbgs() << "\n");
2809
2810      // If this was a MorphNodeTo then we're completely done!
2811      if (Opcode == OPC_MorphNodeTo) {
2812        // Update chain and glue uses.
2813        UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2814                            InputGlue, GlueResultNodesMatched, true);
2815        return Res;
2816      }
2817
2818      continue;
2819    }
2820
2821    case OPC_MarkGlueResults: {
2822      unsigned NumNodes = MatcherTable[MatcherIndex++];
2823
2824      // Read and remember all the glue-result nodes.
2825      for (unsigned i = 0; i != NumNodes; ++i) {
2826        unsigned RecNo = MatcherTable[MatcherIndex++];
2827        if (RecNo & 128)
2828          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2829
2830        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2831        GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2832      }
2833      continue;
2834    }
2835
2836    case OPC_CompleteMatch: {
2837      // The match has been completed, and any new nodes (if any) have been
2838      // created.  Patch up references to the matched dag to use the newly
2839      // created nodes.
2840      unsigned NumResults = MatcherTable[MatcherIndex++];
2841
2842      for (unsigned i = 0; i != NumResults; ++i) {
2843        unsigned ResSlot = MatcherTable[MatcherIndex++];
2844        if (ResSlot & 128)
2845          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2846
2847        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2848        SDValue Res = RecordedNodes[ResSlot].first;
2849
2850        assert(i < NodeToMatch->getNumValues() &&
2851               NodeToMatch->getValueType(i) != MVT::Other &&
2852               NodeToMatch->getValueType(i) != MVT::Glue &&
2853               "Invalid number of results to complete!");
2854        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2855                NodeToMatch->getValueType(i) == MVT::iPTR ||
2856                Res.getValueType() == MVT::iPTR ||
2857                NodeToMatch->getValueType(i).getSizeInBits() ==
2858                    Res.getValueType().getSizeInBits()) &&
2859               "invalid replacement");
2860        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2861      }
2862
2863      // If the root node defines glue, add it to the glue nodes to update list.
2864      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue)
2865        GlueResultNodesMatched.push_back(NodeToMatch);
2866
2867      // Update chain and glue uses.
2868      UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2869                          InputGlue, GlueResultNodesMatched, false);
2870
2871      assert(NodeToMatch->use_empty() &&
2872             "Didn't replace all uses of the node?");
2873
2874      // FIXME: We just return here, which interacts correctly with SelectRoot
2875      // above.  We should fix this to not return an SDNode* anymore.
2876      return 0;
2877    }
2878    }
2879
2880    // If the code reached this point, then the match failed.  See if there is
2881    // another child to try in the current 'Scope', otherwise pop it until we
2882    // find a case to check.
2883    DEBUG(dbgs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2884    ++NumDAGIselRetries;
2885    while (1) {
2886      if (MatchScopes.empty()) {
2887        CannotYetSelect(NodeToMatch);
2888        return 0;
2889      }
2890
2891      // Restore the interpreter state back to the point where the scope was
2892      // formed.
2893      MatchScope &LastScope = MatchScopes.back();
2894      RecordedNodes.resize(LastScope.NumRecordedNodes);
2895      NodeStack.clear();
2896      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2897      N = NodeStack.back();
2898
2899      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2900        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2901      MatcherIndex = LastScope.FailIndex;
2902
2903      DEBUG(dbgs() << "  Continuing at " << MatcherIndex << "\n");
2904
2905      InputChain = LastScope.InputChain;
2906      InputGlue = LastScope.InputGlue;
2907      if (!LastScope.HasChainNodesMatched)
2908        ChainNodesMatched.clear();
2909      if (!LastScope.HasGlueResultNodesMatched)
2910        GlueResultNodesMatched.clear();
2911
2912      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2913      // we have reached the end of this scope, otherwise we have another child
2914      // in the current scope to try.
2915      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2916      if (NumToSkip & 128)
2917        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2918
2919      // If we have another child in this scope to match, update FailIndex and
2920      // try it.
2921      if (NumToSkip != 0) {
2922        LastScope.FailIndex = MatcherIndex+NumToSkip;
2923        break;
2924      }
2925
2926      // End of this scope, pop it and try the next child in the containing
2927      // scope.
2928      MatchScopes.pop_back();
2929    }
2930  }
2931}
2932
2933
2934
2935void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2936  std::string msg;
2937  raw_string_ostream Msg(msg);
2938  Msg << "Cannot select: ";
2939
2940  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2941      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2942      N->getOpcode() != ISD::INTRINSIC_VOID) {
2943    N->printrFull(Msg, CurDAG);
2944    Msg << "\nIn function: " << MF->getName();
2945  } else {
2946    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2947    unsigned iid =
2948      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
2949    if (iid < Intrinsic::num_intrinsics)
2950      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
2951    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
2952      Msg << "target intrinsic %" << TII->getName(iid);
2953    else
2954      Msg << "unknown intrinsic #" << iid;
2955  }
2956  report_fatal_error(Msg.str());
2957}
2958
2959char SelectionDAGISel::ID = 0;
2960