1//===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements folding of constants for LLVM.  This implements the
11// (internal) ConstantFold.h interface, which is used by the
12// ConstantExpr::get* methods to automatically fold constants when possible.
13//
14// The current constant folding implementation is implemented in two pieces: the
15// pieces that don't need DataLayout, and the pieces that do. This is to avoid
16// a dependence in IR on Target.
17//
18//===----------------------------------------------------------------------===//
19
20#include "ConstantFold.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/IR/Constants.h"
23#include "llvm/IR/DerivedTypes.h"
24#include "llvm/IR/Function.h"
25#include "llvm/IR/GlobalAlias.h"
26#include "llvm/IR/GlobalVariable.h"
27#include "llvm/IR/Instructions.h"
28#include "llvm/IR/Operator.h"
29#include "llvm/Support/Compiler.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/GetElementPtrTypeIterator.h"
32#include "llvm/Support/ManagedStatic.h"
33#include "llvm/Support/MathExtras.h"
34#include <limits>
35using namespace llvm;
36
37//===----------------------------------------------------------------------===//
38//                ConstantFold*Instruction Implementations
39//===----------------------------------------------------------------------===//
40
41/// BitCastConstantVector - Convert the specified vector Constant node to the
42/// specified vector type.  At this point, we know that the elements of the
43/// input vector constant are all simple integer or FP values.
44static Constant *BitCastConstantVector(Constant *CV, VectorType *DstTy) {
45
46  if (CV->isAllOnesValue()) return Constant::getAllOnesValue(DstTy);
47  if (CV->isNullValue()) return Constant::getNullValue(DstTy);
48
49  // If this cast changes element count then we can't handle it here:
50  // doing so requires endianness information.  This should be handled by
51  // Analysis/ConstantFolding.cpp
52  unsigned NumElts = DstTy->getNumElements();
53  if (NumElts != CV->getType()->getVectorNumElements())
54    return 0;
55
56  Type *DstEltTy = DstTy->getElementType();
57
58  SmallVector<Constant*, 16> Result;
59  Type *Ty = IntegerType::get(CV->getContext(), 32);
60  for (unsigned i = 0; i != NumElts; ++i) {
61    Constant *C =
62      ConstantExpr::getExtractElement(CV, ConstantInt::get(Ty, i));
63    C = ConstantExpr::getBitCast(C, DstEltTy);
64    Result.push_back(C);
65  }
66
67  return ConstantVector::get(Result);
68}
69
70/// This function determines which opcode to use to fold two constant cast
71/// expressions together. It uses CastInst::isEliminableCastPair to determine
72/// the opcode. Consequently its just a wrapper around that function.
73/// @brief Determine if it is valid to fold a cast of a cast
74static unsigned
75foldConstantCastPair(
76  unsigned opc,          ///< opcode of the second cast constant expression
77  ConstantExpr *Op,      ///< the first cast constant expression
78  Type *DstTy            ///< destination type of the first cast
79) {
80  assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
81  assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
82  assert(CastInst::isCast(opc) && "Invalid cast opcode");
83
84  // The the types and opcodes for the two Cast constant expressions
85  Type *SrcTy = Op->getOperand(0)->getType();
86  Type *MidTy = Op->getType();
87  Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
88  Instruction::CastOps secondOp = Instruction::CastOps(opc);
89
90  // Assume that pointers are never more than 64 bits wide, and only use this
91  // for the middle type. Otherwise we could end up folding away illegal
92  // bitcasts between address spaces with different sizes.
93  IntegerType *FakeIntPtrTy = Type::getInt64Ty(DstTy->getContext());
94
95  // Let CastInst::isEliminableCastPair do the heavy lifting.
96  return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
97                                        0, FakeIntPtrTy, 0);
98}
99
100static Constant *FoldBitCast(Constant *V, Type *DestTy) {
101  Type *SrcTy = V->getType();
102  if (SrcTy == DestTy)
103    return V; // no-op cast
104
105  // Check to see if we are casting a pointer to an aggregate to a pointer to
106  // the first element.  If so, return the appropriate GEP instruction.
107  if (PointerType *PTy = dyn_cast<PointerType>(V->getType()))
108    if (PointerType *DPTy = dyn_cast<PointerType>(DestTy))
109      if (PTy->getAddressSpace() == DPTy->getAddressSpace()
110          && DPTy->getElementType()->isSized()) {
111        SmallVector<Value*, 8> IdxList;
112        Value *Zero =
113          Constant::getNullValue(Type::getInt32Ty(DPTy->getContext()));
114        IdxList.push_back(Zero);
115        Type *ElTy = PTy->getElementType();
116        while (ElTy != DPTy->getElementType()) {
117          if (StructType *STy = dyn_cast<StructType>(ElTy)) {
118            if (STy->getNumElements() == 0) break;
119            ElTy = STy->getElementType(0);
120            IdxList.push_back(Zero);
121          } else if (SequentialType *STy =
122                     dyn_cast<SequentialType>(ElTy)) {
123            if (ElTy->isPointerTy()) break;  // Can't index into pointers!
124            ElTy = STy->getElementType();
125            IdxList.push_back(Zero);
126          } else {
127            break;
128          }
129        }
130
131        if (ElTy == DPTy->getElementType())
132          // This GEP is inbounds because all indices are zero.
133          return ConstantExpr::getInBoundsGetElementPtr(V, IdxList);
134      }
135
136  // Handle casts from one vector constant to another.  We know that the src
137  // and dest type have the same size (otherwise its an illegal cast).
138  if (VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
139    if (VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
140      assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
141             "Not cast between same sized vectors!");
142      SrcTy = NULL;
143      // First, check for null.  Undef is already handled.
144      if (isa<ConstantAggregateZero>(V))
145        return Constant::getNullValue(DestTy);
146
147      // Handle ConstantVector and ConstantAggregateVector.
148      return BitCastConstantVector(V, DestPTy);
149    }
150
151    // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
152    // This allows for other simplifications (although some of them
153    // can only be handled by Analysis/ConstantFolding.cpp).
154    if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
155      return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy);
156  }
157
158  // Finally, implement bitcast folding now.   The code below doesn't handle
159  // bitcast right.
160  if (isa<ConstantPointerNull>(V))  // ptr->ptr cast.
161    return ConstantPointerNull::get(cast<PointerType>(DestTy));
162
163  // Handle integral constant input.
164  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
165    if (DestTy->isIntegerTy())
166      // Integral -> Integral. This is a no-op because the bit widths must
167      // be the same. Consequently, we just fold to V.
168      return V;
169
170    if (DestTy->isFloatingPointTy())
171      return ConstantFP::get(DestTy->getContext(),
172                             APFloat(DestTy->getFltSemantics(),
173                                     CI->getValue()));
174
175    // Otherwise, can't fold this (vector?)
176    return 0;
177  }
178
179  // Handle ConstantFP input: FP -> Integral.
180  if (ConstantFP *FP = dyn_cast<ConstantFP>(V))
181    return ConstantInt::get(FP->getContext(),
182                            FP->getValueAPF().bitcastToAPInt());
183
184  return 0;
185}
186
187
188/// ExtractConstantBytes - V is an integer constant which only has a subset of
189/// its bytes used.  The bytes used are indicated by ByteStart (which is the
190/// first byte used, counting from the least significant byte) and ByteSize,
191/// which is the number of bytes used.
192///
193/// This function analyzes the specified constant to see if the specified byte
194/// range can be returned as a simplified constant.  If so, the constant is
195/// returned, otherwise null is returned.
196///
197static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart,
198                                      unsigned ByteSize) {
199  assert(C->getType()->isIntegerTy() &&
200         (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 &&
201         "Non-byte sized integer input");
202  unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8;
203  assert(ByteSize && "Must be accessing some piece");
204  assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input");
205  assert(ByteSize != CSize && "Should not extract everything");
206
207  // Constant Integers are simple.
208  if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
209    APInt V = CI->getValue();
210    if (ByteStart)
211      V = V.lshr(ByteStart*8);
212    V = V.trunc(ByteSize*8);
213    return ConstantInt::get(CI->getContext(), V);
214  }
215
216  // In the input is a constant expr, we might be able to recursively simplify.
217  // If not, we definitely can't do anything.
218  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
219  if (CE == 0) return 0;
220
221  switch (CE->getOpcode()) {
222  default: return 0;
223  case Instruction::Or: {
224    Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
225    if (RHS == 0)
226      return 0;
227
228    // X | -1 -> -1.
229    if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS))
230      if (RHSC->isAllOnesValue())
231        return RHSC;
232
233    Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
234    if (LHS == 0)
235      return 0;
236    return ConstantExpr::getOr(LHS, RHS);
237  }
238  case Instruction::And: {
239    Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
240    if (RHS == 0)
241      return 0;
242
243    // X & 0 -> 0.
244    if (RHS->isNullValue())
245      return RHS;
246
247    Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
248    if (LHS == 0)
249      return 0;
250    return ConstantExpr::getAnd(LHS, RHS);
251  }
252  case Instruction::LShr: {
253    ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
254    if (Amt == 0)
255      return 0;
256    unsigned ShAmt = Amt->getZExtValue();
257    // Cannot analyze non-byte shifts.
258    if ((ShAmt & 7) != 0)
259      return 0;
260    ShAmt >>= 3;
261
262    // If the extract is known to be all zeros, return zero.
263    if (ByteStart >= CSize-ShAmt)
264      return Constant::getNullValue(IntegerType::get(CE->getContext(),
265                                                     ByteSize*8));
266    // If the extract is known to be fully in the input, extract it.
267    if (ByteStart+ByteSize+ShAmt <= CSize)
268      return ExtractConstantBytes(CE->getOperand(0), ByteStart+ShAmt, ByteSize);
269
270    // TODO: Handle the 'partially zero' case.
271    return 0;
272  }
273
274  case Instruction::Shl: {
275    ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
276    if (Amt == 0)
277      return 0;
278    unsigned ShAmt = Amt->getZExtValue();
279    // Cannot analyze non-byte shifts.
280    if ((ShAmt & 7) != 0)
281      return 0;
282    ShAmt >>= 3;
283
284    // If the extract is known to be all zeros, return zero.
285    if (ByteStart+ByteSize <= ShAmt)
286      return Constant::getNullValue(IntegerType::get(CE->getContext(),
287                                                     ByteSize*8));
288    // If the extract is known to be fully in the input, extract it.
289    if (ByteStart >= ShAmt)
290      return ExtractConstantBytes(CE->getOperand(0), ByteStart-ShAmt, ByteSize);
291
292    // TODO: Handle the 'partially zero' case.
293    return 0;
294  }
295
296  case Instruction::ZExt: {
297    unsigned SrcBitSize =
298      cast<IntegerType>(CE->getOperand(0)->getType())->getBitWidth();
299
300    // If extracting something that is completely zero, return 0.
301    if (ByteStart*8 >= SrcBitSize)
302      return Constant::getNullValue(IntegerType::get(CE->getContext(),
303                                                     ByteSize*8));
304
305    // If exactly extracting the input, return it.
306    if (ByteStart == 0 && ByteSize*8 == SrcBitSize)
307      return CE->getOperand(0);
308
309    // If extracting something completely in the input, if if the input is a
310    // multiple of 8 bits, recurse.
311    if ((SrcBitSize&7) == 0 && (ByteStart+ByteSize)*8 <= SrcBitSize)
312      return ExtractConstantBytes(CE->getOperand(0), ByteStart, ByteSize);
313
314    // Otherwise, if extracting a subset of the input, which is not multiple of
315    // 8 bits, do a shift and trunc to get the bits.
316    if ((ByteStart+ByteSize)*8 < SrcBitSize) {
317      assert((SrcBitSize&7) && "Shouldn't get byte sized case here");
318      Constant *Res = CE->getOperand(0);
319      if (ByteStart)
320        Res = ConstantExpr::getLShr(Res,
321                                 ConstantInt::get(Res->getType(), ByteStart*8));
322      return ConstantExpr::getTrunc(Res, IntegerType::get(C->getContext(),
323                                                          ByteSize*8));
324    }
325
326    // TODO: Handle the 'partially zero' case.
327    return 0;
328  }
329  }
330}
331
332/// getFoldedSizeOf - Return a ConstantExpr with type DestTy for sizeof
333/// on Ty, with any known factors factored out. If Folded is false,
334/// return null if no factoring was possible, to avoid endlessly
335/// bouncing an unfoldable expression back into the top-level folder.
336///
337static Constant *getFoldedSizeOf(Type *Ty, Type *DestTy,
338                                 bool Folded) {
339  if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
340    Constant *N = ConstantInt::get(DestTy, ATy->getNumElements());
341    Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
342    return ConstantExpr::getNUWMul(E, N);
343  }
344
345  if (StructType *STy = dyn_cast<StructType>(Ty))
346    if (!STy->isPacked()) {
347      unsigned NumElems = STy->getNumElements();
348      // An empty struct has size zero.
349      if (NumElems == 0)
350        return ConstantExpr::getNullValue(DestTy);
351      // Check for a struct with all members having the same size.
352      Constant *MemberSize =
353        getFoldedSizeOf(STy->getElementType(0), DestTy, true);
354      bool AllSame = true;
355      for (unsigned i = 1; i != NumElems; ++i)
356        if (MemberSize !=
357            getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
358          AllSame = false;
359          break;
360        }
361      if (AllSame) {
362        Constant *N = ConstantInt::get(DestTy, NumElems);
363        return ConstantExpr::getNUWMul(MemberSize, N);
364      }
365    }
366
367  // Pointer size doesn't depend on the pointee type, so canonicalize them
368  // to an arbitrary pointee.
369  if (PointerType *PTy = dyn_cast<PointerType>(Ty))
370    if (!PTy->getElementType()->isIntegerTy(1))
371      return
372        getFoldedSizeOf(PointerType::get(IntegerType::get(PTy->getContext(), 1),
373                                         PTy->getAddressSpace()),
374                        DestTy, true);
375
376  // If there's no interesting folding happening, bail so that we don't create
377  // a constant that looks like it needs folding but really doesn't.
378  if (!Folded)
379    return 0;
380
381  // Base case: Get a regular sizeof expression.
382  Constant *C = ConstantExpr::getSizeOf(Ty);
383  C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
384                                                    DestTy, false),
385                            C, DestTy);
386  return C;
387}
388
389/// getFoldedAlignOf - Return a ConstantExpr with type DestTy for alignof
390/// on Ty, with any known factors factored out. If Folded is false,
391/// return null if no factoring was possible, to avoid endlessly
392/// bouncing an unfoldable expression back into the top-level folder.
393///
394static Constant *getFoldedAlignOf(Type *Ty, Type *DestTy,
395                                  bool Folded) {
396  // The alignment of an array is equal to the alignment of the
397  // array element. Note that this is not always true for vectors.
398  if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
399    Constant *C = ConstantExpr::getAlignOf(ATy->getElementType());
400    C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
401                                                      DestTy,
402                                                      false),
403                              C, DestTy);
404    return C;
405  }
406
407  if (StructType *STy = dyn_cast<StructType>(Ty)) {
408    // Packed structs always have an alignment of 1.
409    if (STy->isPacked())
410      return ConstantInt::get(DestTy, 1);
411
412    // Otherwise, struct alignment is the maximum alignment of any member.
413    // Without target data, we can't compare much, but we can check to see
414    // if all the members have the same alignment.
415    unsigned NumElems = STy->getNumElements();
416    // An empty struct has minimal alignment.
417    if (NumElems == 0)
418      return ConstantInt::get(DestTy, 1);
419    // Check for a struct with all members having the same alignment.
420    Constant *MemberAlign =
421      getFoldedAlignOf(STy->getElementType(0), DestTy, true);
422    bool AllSame = true;
423    for (unsigned i = 1; i != NumElems; ++i)
424      if (MemberAlign != getFoldedAlignOf(STy->getElementType(i), DestTy, true)) {
425        AllSame = false;
426        break;
427      }
428    if (AllSame)
429      return MemberAlign;
430  }
431
432  // Pointer alignment doesn't depend on the pointee type, so canonicalize them
433  // to an arbitrary pointee.
434  if (PointerType *PTy = dyn_cast<PointerType>(Ty))
435    if (!PTy->getElementType()->isIntegerTy(1))
436      return
437        getFoldedAlignOf(PointerType::get(IntegerType::get(PTy->getContext(),
438                                                           1),
439                                          PTy->getAddressSpace()),
440                         DestTy, true);
441
442  // If there's no interesting folding happening, bail so that we don't create
443  // a constant that looks like it needs folding but really doesn't.
444  if (!Folded)
445    return 0;
446
447  // Base case: Get a regular alignof expression.
448  Constant *C = ConstantExpr::getAlignOf(Ty);
449  C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
450                                                    DestTy, false),
451                            C, DestTy);
452  return C;
453}
454
455/// getFoldedOffsetOf - Return a ConstantExpr with type DestTy for offsetof
456/// on Ty and FieldNo, with any known factors factored out. If Folded is false,
457/// return null if no factoring was possible, to avoid endlessly
458/// bouncing an unfoldable expression back into the top-level folder.
459///
460static Constant *getFoldedOffsetOf(Type *Ty, Constant *FieldNo,
461                                   Type *DestTy,
462                                   bool Folded) {
463  if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
464    Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, false,
465                                                                DestTy, false),
466                                        FieldNo, DestTy);
467    Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
468    return ConstantExpr::getNUWMul(E, N);
469  }
470
471  if (StructType *STy = dyn_cast<StructType>(Ty))
472    if (!STy->isPacked()) {
473      unsigned NumElems = STy->getNumElements();
474      // An empty struct has no members.
475      if (NumElems == 0)
476        return 0;
477      // Check for a struct with all members having the same size.
478      Constant *MemberSize =
479        getFoldedSizeOf(STy->getElementType(0), DestTy, true);
480      bool AllSame = true;
481      for (unsigned i = 1; i != NumElems; ++i)
482        if (MemberSize !=
483            getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
484          AllSame = false;
485          break;
486        }
487      if (AllSame) {
488        Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo,
489                                                                    false,
490                                                                    DestTy,
491                                                                    false),
492                                            FieldNo, DestTy);
493        return ConstantExpr::getNUWMul(MemberSize, N);
494      }
495    }
496
497  // If there's no interesting folding happening, bail so that we don't create
498  // a constant that looks like it needs folding but really doesn't.
499  if (!Folded)
500    return 0;
501
502  // Base case: Get a regular offsetof expression.
503  Constant *C = ConstantExpr::getOffsetOf(Ty, FieldNo);
504  C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
505                                                    DestTy, false),
506                            C, DestTy);
507  return C;
508}
509
510Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V,
511                                            Type *DestTy) {
512  if (isa<UndefValue>(V)) {
513    // zext(undef) = 0, because the top bits will be zero.
514    // sext(undef) = 0, because the top bits will all be the same.
515    // [us]itofp(undef) = 0, because the result value is bounded.
516    if (opc == Instruction::ZExt || opc == Instruction::SExt ||
517        opc == Instruction::UIToFP || opc == Instruction::SIToFP)
518      return Constant::getNullValue(DestTy);
519    return UndefValue::get(DestTy);
520  }
521
522  if (V->isNullValue() && !DestTy->isX86_MMXTy())
523    return Constant::getNullValue(DestTy);
524
525  // If the cast operand is a constant expression, there's a few things we can
526  // do to try to simplify it.
527  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
528    if (CE->isCast()) {
529      // Try hard to fold cast of cast because they are often eliminable.
530      if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
531        return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
532    } else if (CE->getOpcode() == Instruction::GetElementPtr) {
533      // If all of the indexes in the GEP are null values, there is no pointer
534      // adjustment going on.  We might as well cast the source pointer.
535      bool isAllNull = true;
536      for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
537        if (!CE->getOperand(i)->isNullValue()) {
538          isAllNull = false;
539          break;
540        }
541      if (isAllNull)
542        // This is casting one pointer type to another, always BitCast
543        return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
544    }
545  }
546
547  // If the cast operand is a constant vector, perform the cast by
548  // operating on each element. In the cast of bitcasts, the element
549  // count may be mismatched; don't attempt to handle that here.
550  if ((isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) &&
551      DestTy->isVectorTy() &&
552      DestTy->getVectorNumElements() == V->getType()->getVectorNumElements()) {
553    SmallVector<Constant*, 16> res;
554    VectorType *DestVecTy = cast<VectorType>(DestTy);
555    Type *DstEltTy = DestVecTy->getElementType();
556    Type *Ty = IntegerType::get(V->getContext(), 32);
557    for (unsigned i = 0, e = V->getType()->getVectorNumElements(); i != e; ++i) {
558      Constant *C =
559        ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i));
560      res.push_back(ConstantExpr::getCast(opc, C, DstEltTy));
561    }
562    return ConstantVector::get(res);
563  }
564
565  // We actually have to do a cast now. Perform the cast according to the
566  // opcode specified.
567  switch (opc) {
568  default:
569    llvm_unreachable("Failed to cast constant expression");
570  case Instruction::FPTrunc:
571  case Instruction::FPExt:
572    if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
573      bool ignored;
574      APFloat Val = FPC->getValueAPF();
575      Val.convert(DestTy->isHalfTy() ? APFloat::IEEEhalf :
576                  DestTy->isFloatTy() ? APFloat::IEEEsingle :
577                  DestTy->isDoubleTy() ? APFloat::IEEEdouble :
578                  DestTy->isX86_FP80Ty() ? APFloat::x87DoubleExtended :
579                  DestTy->isFP128Ty() ? APFloat::IEEEquad :
580                  DestTy->isPPC_FP128Ty() ? APFloat::PPCDoubleDouble :
581                  APFloat::Bogus,
582                  APFloat::rmNearestTiesToEven, &ignored);
583      return ConstantFP::get(V->getContext(), Val);
584    }
585    return 0; // Can't fold.
586  case Instruction::FPToUI:
587  case Instruction::FPToSI:
588    if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
589      const APFloat &V = FPC->getValueAPF();
590      bool ignored;
591      uint64_t x[2];
592      uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
593      (void) V.convertToInteger(x, DestBitWidth, opc==Instruction::FPToSI,
594                                APFloat::rmTowardZero, &ignored);
595      APInt Val(DestBitWidth, x);
596      return ConstantInt::get(FPC->getContext(), Val);
597    }
598    return 0; // Can't fold.
599  case Instruction::IntToPtr:   //always treated as unsigned
600    if (V->isNullValue())       // Is it an integral null value?
601      return ConstantPointerNull::get(cast<PointerType>(DestTy));
602    return 0;                   // Other pointer types cannot be casted
603  case Instruction::PtrToInt:   // always treated as unsigned
604    // Is it a null pointer value?
605    if (V->isNullValue())
606      return ConstantInt::get(DestTy, 0);
607    // If this is a sizeof-like expression, pull out multiplications by
608    // known factors to expose them to subsequent folding. If it's an
609    // alignof-like expression, factor out known factors.
610    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
611      if (CE->getOpcode() == Instruction::GetElementPtr &&
612          CE->getOperand(0)->isNullValue()) {
613        Type *Ty =
614          cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
615        if (CE->getNumOperands() == 2) {
616          // Handle a sizeof-like expression.
617          Constant *Idx = CE->getOperand(1);
618          bool isOne = isa<ConstantInt>(Idx) && cast<ConstantInt>(Idx)->isOne();
619          if (Constant *C = getFoldedSizeOf(Ty, DestTy, !isOne)) {
620            Idx = ConstantExpr::getCast(CastInst::getCastOpcode(Idx, true,
621                                                                DestTy, false),
622                                        Idx, DestTy);
623            return ConstantExpr::getMul(C, Idx);
624          }
625        } else if (CE->getNumOperands() == 3 &&
626                   CE->getOperand(1)->isNullValue()) {
627          // Handle an alignof-like expression.
628          if (StructType *STy = dyn_cast<StructType>(Ty))
629            if (!STy->isPacked()) {
630              ConstantInt *CI = cast<ConstantInt>(CE->getOperand(2));
631              if (CI->isOne() &&
632                  STy->getNumElements() == 2 &&
633                  STy->getElementType(0)->isIntegerTy(1)) {
634                return getFoldedAlignOf(STy->getElementType(1), DestTy, false);
635              }
636            }
637          // Handle an offsetof-like expression.
638          if (Ty->isStructTy() || Ty->isArrayTy()) {
639            if (Constant *C = getFoldedOffsetOf(Ty, CE->getOperand(2),
640                                                DestTy, false))
641              return C;
642          }
643        }
644      }
645    // Other pointer types cannot be casted
646    return 0;
647  case Instruction::UIToFP:
648  case Instruction::SIToFP:
649    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
650      APInt api = CI->getValue();
651      APFloat apf(DestTy->getFltSemantics(),
652                  APInt::getNullValue(DestTy->getPrimitiveSizeInBits()));
653      (void)apf.convertFromAPInt(api,
654                                 opc==Instruction::SIToFP,
655                                 APFloat::rmNearestTiesToEven);
656      return ConstantFP::get(V->getContext(), apf);
657    }
658    return 0;
659  case Instruction::ZExt:
660    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
661      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
662      return ConstantInt::get(V->getContext(),
663                              CI->getValue().zext(BitWidth));
664    }
665    return 0;
666  case Instruction::SExt:
667    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
668      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
669      return ConstantInt::get(V->getContext(),
670                              CI->getValue().sext(BitWidth));
671    }
672    return 0;
673  case Instruction::Trunc: {
674    uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
675    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
676      return ConstantInt::get(V->getContext(),
677                              CI->getValue().trunc(DestBitWidth));
678    }
679
680    // The input must be a constantexpr.  See if we can simplify this based on
681    // the bytes we are demanding.  Only do this if the source and dest are an
682    // even multiple of a byte.
683    if ((DestBitWidth & 7) == 0 &&
684        (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0)
685      if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8))
686        return Res;
687
688    return 0;
689  }
690  case Instruction::BitCast:
691    return FoldBitCast(V, DestTy);
692  }
693}
694
695Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond,
696                                              Constant *V1, Constant *V2) {
697  // Check for i1 and vector true/false conditions.
698  if (Cond->isNullValue()) return V2;
699  if (Cond->isAllOnesValue()) return V1;
700
701  // If the condition is a vector constant, fold the result elementwise.
702  if (ConstantVector *CondV = dyn_cast<ConstantVector>(Cond)) {
703    SmallVector<Constant*, 16> Result;
704    Type *Ty = IntegerType::get(CondV->getContext(), 32);
705    for (unsigned i = 0, e = V1->getType()->getVectorNumElements(); i != e;++i){
706      ConstantInt *Cond = dyn_cast<ConstantInt>(CondV->getOperand(i));
707      if (Cond == 0) break;
708
709      Constant *V = Cond->isNullValue() ? V2 : V1;
710      Constant *Res = ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i));
711      Result.push_back(Res);
712    }
713
714    // If we were able to build the vector, return it.
715    if (Result.size() == V1->getType()->getVectorNumElements())
716      return ConstantVector::get(Result);
717  }
718
719  if (isa<UndefValue>(Cond)) {
720    if (isa<UndefValue>(V1)) return V1;
721    return V2;
722  }
723  if (isa<UndefValue>(V1)) return V2;
724  if (isa<UndefValue>(V2)) return V1;
725  if (V1 == V2) return V1;
726
727  if (ConstantExpr *TrueVal = dyn_cast<ConstantExpr>(V1)) {
728    if (TrueVal->getOpcode() == Instruction::Select)
729      if (TrueVal->getOperand(0) == Cond)
730        return ConstantExpr::getSelect(Cond, TrueVal->getOperand(1), V2);
731  }
732  if (ConstantExpr *FalseVal = dyn_cast<ConstantExpr>(V2)) {
733    if (FalseVal->getOpcode() == Instruction::Select)
734      if (FalseVal->getOperand(0) == Cond)
735        return ConstantExpr::getSelect(Cond, V1, FalseVal->getOperand(2));
736  }
737
738  return 0;
739}
740
741Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val,
742                                                      Constant *Idx) {
743  if (isa<UndefValue>(Val))  // ee(undef, x) -> undef
744    return UndefValue::get(Val->getType()->getVectorElementType());
745  if (Val->isNullValue())  // ee(zero, x) -> zero
746    return Constant::getNullValue(Val->getType()->getVectorElementType());
747  // ee({w,x,y,z}, undef) -> undef
748  if (isa<UndefValue>(Idx))
749    return UndefValue::get(Val->getType()->getVectorElementType());
750
751  if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
752    uint64_t Index = CIdx->getZExtValue();
753    // ee({w,x,y,z}, wrong_value) -> undef
754    if (Index >= Val->getType()->getVectorNumElements())
755      return UndefValue::get(Val->getType()->getVectorElementType());
756    return Val->getAggregateElement(Index);
757  }
758  return 0;
759}
760
761Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val,
762                                                     Constant *Elt,
763                                                     Constant *Idx) {
764  ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
765  if (!CIdx) return 0;
766  const APInt &IdxVal = CIdx->getValue();
767
768  SmallVector<Constant*, 16> Result;
769  Type *Ty = IntegerType::get(Val->getContext(), 32);
770  for (unsigned i = 0, e = Val->getType()->getVectorNumElements(); i != e; ++i){
771    if (i == IdxVal) {
772      Result.push_back(Elt);
773      continue;
774    }
775
776    Constant *C =
777      ConstantExpr::getExtractElement(Val, ConstantInt::get(Ty, i));
778    Result.push_back(C);
779  }
780
781  return ConstantVector::get(Result);
782}
783
784Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1,
785                                                     Constant *V2,
786                                                     Constant *Mask) {
787  unsigned MaskNumElts = Mask->getType()->getVectorNumElements();
788  Type *EltTy = V1->getType()->getVectorElementType();
789
790  // Undefined shuffle mask -> undefined value.
791  if (isa<UndefValue>(Mask))
792    return UndefValue::get(VectorType::get(EltTy, MaskNumElts));
793
794  // Don't break the bitcode reader hack.
795  if (isa<ConstantExpr>(Mask)) return 0;
796
797  unsigned SrcNumElts = V1->getType()->getVectorNumElements();
798
799  // Loop over the shuffle mask, evaluating each element.
800  SmallVector<Constant*, 32> Result;
801  for (unsigned i = 0; i != MaskNumElts; ++i) {
802    int Elt = ShuffleVectorInst::getMaskValue(Mask, i);
803    if (Elt == -1) {
804      Result.push_back(UndefValue::get(EltTy));
805      continue;
806    }
807    Constant *InElt;
808    if (unsigned(Elt) >= SrcNumElts*2)
809      InElt = UndefValue::get(EltTy);
810    else if (unsigned(Elt) >= SrcNumElts) {
811      Type *Ty = IntegerType::get(V2->getContext(), 32);
812      InElt =
813        ConstantExpr::getExtractElement(V2,
814                                        ConstantInt::get(Ty, Elt - SrcNumElts));
815    } else {
816      Type *Ty = IntegerType::get(V1->getContext(), 32);
817      InElt = ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, Elt));
818    }
819    Result.push_back(InElt);
820  }
821
822  return ConstantVector::get(Result);
823}
824
825Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg,
826                                                    ArrayRef<unsigned> Idxs) {
827  // Base case: no indices, so return the entire value.
828  if (Idxs.empty())
829    return Agg;
830
831  if (Constant *C = Agg->getAggregateElement(Idxs[0]))
832    return ConstantFoldExtractValueInstruction(C, Idxs.slice(1));
833
834  return 0;
835}
836
837Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg,
838                                                   Constant *Val,
839                                                   ArrayRef<unsigned> Idxs) {
840  // Base case: no indices, so replace the entire value.
841  if (Idxs.empty())
842    return Val;
843
844  unsigned NumElts;
845  if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
846    NumElts = ST->getNumElements();
847  else if (ArrayType *AT = dyn_cast<ArrayType>(Agg->getType()))
848    NumElts = AT->getNumElements();
849  else
850    NumElts = Agg->getType()->getVectorNumElements();
851
852  SmallVector<Constant*, 32> Result;
853  for (unsigned i = 0; i != NumElts; ++i) {
854    Constant *C = Agg->getAggregateElement(i);
855    if (C == 0) return 0;
856
857    if (Idxs[0] == i)
858      C = ConstantFoldInsertValueInstruction(C, Val, Idxs.slice(1));
859
860    Result.push_back(C);
861  }
862
863  if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
864    return ConstantStruct::get(ST, Result);
865  if (ArrayType *AT = dyn_cast<ArrayType>(Agg->getType()))
866    return ConstantArray::get(AT, Result);
867  return ConstantVector::get(Result);
868}
869
870
871Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
872                                              Constant *C1, Constant *C2) {
873  // Handle UndefValue up front.
874  if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
875    switch (Opcode) {
876    case Instruction::Xor:
877      if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
878        // Handle undef ^ undef -> 0 special case. This is a common
879        // idiom (misuse).
880        return Constant::getNullValue(C1->getType());
881      // Fallthrough
882    case Instruction::Add:
883    case Instruction::Sub:
884      return UndefValue::get(C1->getType());
885    case Instruction::And:
886      if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef
887        return C1;
888      return Constant::getNullValue(C1->getType());   // undef & X -> 0
889    case Instruction::Mul: {
890      ConstantInt *CI;
891      // X * undef -> undef   if X is odd or undef
892      if (((CI = dyn_cast<ConstantInt>(C1)) && CI->getValue()[0]) ||
893          ((CI = dyn_cast<ConstantInt>(C2)) && CI->getValue()[0]) ||
894          (isa<UndefValue>(C1) && isa<UndefValue>(C2)))
895        return UndefValue::get(C1->getType());
896
897      // X * undef -> 0       otherwise
898      return Constant::getNullValue(C1->getType());
899    }
900    case Instruction::UDiv:
901    case Instruction::SDiv:
902      // undef / 1 -> undef
903      if (Opcode == Instruction::UDiv || Opcode == Instruction::SDiv)
904        if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2))
905          if (CI2->isOne())
906            return C1;
907      // FALL THROUGH
908    case Instruction::URem:
909    case Instruction::SRem:
910      if (!isa<UndefValue>(C2))                    // undef / X -> 0
911        return Constant::getNullValue(C1->getType());
912      return C2;                                   // X / undef -> undef
913    case Instruction::Or:                          // X | undef -> -1
914      if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef
915        return C1;
916      return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0
917    case Instruction::LShr:
918      if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
919        return C1;                                  // undef lshr undef -> undef
920      return Constant::getNullValue(C1->getType()); // X lshr undef -> 0
921                                                    // undef lshr X -> 0
922    case Instruction::AShr:
923      if (!isa<UndefValue>(C2))                     // undef ashr X --> all ones
924        return Constant::getAllOnesValue(C1->getType());
925      else if (isa<UndefValue>(C1))
926        return C1;                                  // undef ashr undef -> undef
927      else
928        return C1;                                  // X ashr undef --> X
929    case Instruction::Shl:
930      if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
931        return C1;                                  // undef shl undef -> undef
932      // undef << X -> 0   or   X << undef -> 0
933      return Constant::getNullValue(C1->getType());
934    }
935  }
936
937  // Handle simplifications when the RHS is a constant int.
938  if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
939    switch (Opcode) {
940    case Instruction::Add:
941      if (CI2->equalsInt(0)) return C1;                         // X + 0 == X
942      break;
943    case Instruction::Sub:
944      if (CI2->equalsInt(0)) return C1;                         // X - 0 == X
945      break;
946    case Instruction::Mul:
947      if (CI2->equalsInt(0)) return C2;                         // X * 0 == 0
948      if (CI2->equalsInt(1))
949        return C1;                                              // X * 1 == X
950      break;
951    case Instruction::UDiv:
952    case Instruction::SDiv:
953      if (CI2->equalsInt(1))
954        return C1;                                            // X / 1 == X
955      if (CI2->equalsInt(0))
956        return UndefValue::get(CI2->getType());               // X / 0 == undef
957      break;
958    case Instruction::URem:
959    case Instruction::SRem:
960      if (CI2->equalsInt(1))
961        return Constant::getNullValue(CI2->getType());        // X % 1 == 0
962      if (CI2->equalsInt(0))
963        return UndefValue::get(CI2->getType());               // X % 0 == undef
964      break;
965    case Instruction::And:
966      if (CI2->isZero()) return C2;                           // X & 0 == 0
967      if (CI2->isAllOnesValue())
968        return C1;                                            // X & -1 == X
969
970      if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
971        // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
972        if (CE1->getOpcode() == Instruction::ZExt) {
973          unsigned DstWidth = CI2->getType()->getBitWidth();
974          unsigned SrcWidth =
975            CE1->getOperand(0)->getType()->getPrimitiveSizeInBits();
976          APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth));
977          if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits)
978            return C1;
979        }
980
981        // If and'ing the address of a global with a constant, fold it.
982        if (CE1->getOpcode() == Instruction::PtrToInt &&
983            isa<GlobalValue>(CE1->getOperand(0))) {
984          GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
985
986          // Functions are at least 4-byte aligned.
987          unsigned GVAlign = GV->getAlignment();
988          if (isa<Function>(GV))
989            GVAlign = std::max(GVAlign, 4U);
990
991          if (GVAlign > 1) {
992            unsigned DstWidth = CI2->getType()->getBitWidth();
993            unsigned SrcWidth = std::min(DstWidth, Log2_32(GVAlign));
994            APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
995
996            // If checking bits we know are clear, return zero.
997            if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
998              return Constant::getNullValue(CI2->getType());
999          }
1000        }
1001      }
1002      break;
1003    case Instruction::Or:
1004      if (CI2->equalsInt(0)) return C1;    // X | 0 == X
1005      if (CI2->isAllOnesValue())
1006        return C2;                         // X | -1 == -1
1007      break;
1008    case Instruction::Xor:
1009      if (CI2->equalsInt(0)) return C1;    // X ^ 0 == X
1010
1011      if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1012        switch (CE1->getOpcode()) {
1013        default: break;
1014        case Instruction::ICmp:
1015        case Instruction::FCmp:
1016          // cmp pred ^ true -> cmp !pred
1017          assert(CI2->equalsInt(1));
1018          CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate();
1019          pred = CmpInst::getInversePredicate(pred);
1020          return ConstantExpr::getCompare(pred, CE1->getOperand(0),
1021                                          CE1->getOperand(1));
1022        }
1023      }
1024      break;
1025    case Instruction::AShr:
1026      // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
1027      if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
1028        if (CE1->getOpcode() == Instruction::ZExt)  // Top bits known zero.
1029          return ConstantExpr::getLShr(C1, C2);
1030      break;
1031    }
1032  } else if (isa<ConstantInt>(C1)) {
1033    // If C1 is a ConstantInt and C2 is not, swap the operands.
1034    if (Instruction::isCommutative(Opcode))
1035      return ConstantExpr::get(Opcode, C2, C1);
1036  }
1037
1038  // At this point we know neither constant is an UndefValue.
1039  if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
1040    if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1041      const APInt &C1V = CI1->getValue();
1042      const APInt &C2V = CI2->getValue();
1043      switch (Opcode) {
1044      default:
1045        break;
1046      case Instruction::Add:
1047        return ConstantInt::get(CI1->getContext(), C1V + C2V);
1048      case Instruction::Sub:
1049        return ConstantInt::get(CI1->getContext(), C1V - C2V);
1050      case Instruction::Mul:
1051        return ConstantInt::get(CI1->getContext(), C1V * C2V);
1052      case Instruction::UDiv:
1053        assert(!CI2->isNullValue() && "Div by zero handled above");
1054        return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V));
1055      case Instruction::SDiv:
1056        assert(!CI2->isNullValue() && "Div by zero handled above");
1057        if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1058          return UndefValue::get(CI1->getType());   // MIN_INT / -1 -> undef
1059        return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V));
1060      case Instruction::URem:
1061        assert(!CI2->isNullValue() && "Div by zero handled above");
1062        return ConstantInt::get(CI1->getContext(), C1V.urem(C2V));
1063      case Instruction::SRem:
1064        assert(!CI2->isNullValue() && "Div by zero handled above");
1065        if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1066          return UndefValue::get(CI1->getType());   // MIN_INT % -1 -> undef
1067        return ConstantInt::get(CI1->getContext(), C1V.srem(C2V));
1068      case Instruction::And:
1069        return ConstantInt::get(CI1->getContext(), C1V & C2V);
1070      case Instruction::Or:
1071        return ConstantInt::get(CI1->getContext(), C1V | C2V);
1072      case Instruction::Xor:
1073        return ConstantInt::get(CI1->getContext(), C1V ^ C2V);
1074      case Instruction::Shl: {
1075        uint32_t shiftAmt = C2V.getZExtValue();
1076        if (shiftAmt < C1V.getBitWidth())
1077          return ConstantInt::get(CI1->getContext(), C1V.shl(shiftAmt));
1078        else
1079          return UndefValue::get(C1->getType()); // too big shift is undef
1080      }
1081      case Instruction::LShr: {
1082        uint32_t shiftAmt = C2V.getZExtValue();
1083        if (shiftAmt < C1V.getBitWidth())
1084          return ConstantInt::get(CI1->getContext(), C1V.lshr(shiftAmt));
1085        else
1086          return UndefValue::get(C1->getType()); // too big shift is undef
1087      }
1088      case Instruction::AShr: {
1089        uint32_t shiftAmt = C2V.getZExtValue();
1090        if (shiftAmt < C1V.getBitWidth())
1091          return ConstantInt::get(CI1->getContext(), C1V.ashr(shiftAmt));
1092        else
1093          return UndefValue::get(C1->getType()); // too big shift is undef
1094      }
1095      }
1096    }
1097
1098    switch (Opcode) {
1099    case Instruction::SDiv:
1100    case Instruction::UDiv:
1101    case Instruction::URem:
1102    case Instruction::SRem:
1103    case Instruction::LShr:
1104    case Instruction::AShr:
1105    case Instruction::Shl:
1106      if (CI1->equalsInt(0)) return C1;
1107      break;
1108    default:
1109      break;
1110    }
1111  } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
1112    if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
1113      APFloat C1V = CFP1->getValueAPF();
1114      APFloat C2V = CFP2->getValueAPF();
1115      APFloat C3V = C1V;  // copy for modification
1116      switch (Opcode) {
1117      default:
1118        break;
1119      case Instruction::FAdd:
1120        (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
1121        return ConstantFP::get(C1->getContext(), C3V);
1122      case Instruction::FSub:
1123        (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
1124        return ConstantFP::get(C1->getContext(), C3V);
1125      case Instruction::FMul:
1126        (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
1127        return ConstantFP::get(C1->getContext(), C3V);
1128      case Instruction::FDiv:
1129        (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
1130        return ConstantFP::get(C1->getContext(), C3V);
1131      case Instruction::FRem:
1132        (void)C3V.mod(C2V, APFloat::rmNearestTiesToEven);
1133        return ConstantFP::get(C1->getContext(), C3V);
1134      }
1135    }
1136  } else if (VectorType *VTy = dyn_cast<VectorType>(C1->getType())) {
1137    // Perform elementwise folding.
1138    SmallVector<Constant*, 16> Result;
1139    Type *Ty = IntegerType::get(VTy->getContext(), 32);
1140    for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1141      Constant *LHS =
1142        ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, i));
1143      Constant *RHS =
1144        ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, i));
1145
1146      Result.push_back(ConstantExpr::get(Opcode, LHS, RHS));
1147    }
1148
1149    return ConstantVector::get(Result);
1150  }
1151
1152  if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1153    // There are many possible foldings we could do here.  We should probably
1154    // at least fold add of a pointer with an integer into the appropriate
1155    // getelementptr.  This will improve alias analysis a bit.
1156
1157    // Given ((a + b) + c), if (b + c) folds to something interesting, return
1158    // (a + (b + c)).
1159    if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) {
1160      Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2);
1161      if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode)
1162        return ConstantExpr::get(Opcode, CE1->getOperand(0), T);
1163    }
1164  } else if (isa<ConstantExpr>(C2)) {
1165    // If C2 is a constant expr and C1 isn't, flop them around and fold the
1166    // other way if possible.
1167    if (Instruction::isCommutative(Opcode))
1168      return ConstantFoldBinaryInstruction(Opcode, C2, C1);
1169  }
1170
1171  // i1 can be simplified in many cases.
1172  if (C1->getType()->isIntegerTy(1)) {
1173    switch (Opcode) {
1174    case Instruction::Add:
1175    case Instruction::Sub:
1176      return ConstantExpr::getXor(C1, C2);
1177    case Instruction::Mul:
1178      return ConstantExpr::getAnd(C1, C2);
1179    case Instruction::Shl:
1180    case Instruction::LShr:
1181    case Instruction::AShr:
1182      // We can assume that C2 == 0.  If it were one the result would be
1183      // undefined because the shift value is as large as the bitwidth.
1184      return C1;
1185    case Instruction::SDiv:
1186    case Instruction::UDiv:
1187      // We can assume that C2 == 1.  If it were zero the result would be
1188      // undefined through division by zero.
1189      return C1;
1190    case Instruction::URem:
1191    case Instruction::SRem:
1192      // We can assume that C2 == 1.  If it were zero the result would be
1193      // undefined through division by zero.
1194      return ConstantInt::getFalse(C1->getContext());
1195    default:
1196      break;
1197    }
1198  }
1199
1200  // We don't know how to fold this.
1201  return 0;
1202}
1203
1204/// isZeroSizedType - This type is zero sized if its an array or structure of
1205/// zero sized types.  The only leaf zero sized type is an empty structure.
1206static bool isMaybeZeroSizedType(Type *Ty) {
1207  if (StructType *STy = dyn_cast<StructType>(Ty)) {
1208    if (STy->isOpaque()) return true;  // Can't say.
1209
1210    // If all of elements have zero size, this does too.
1211    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1212      if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
1213    return true;
1214
1215  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1216    return isMaybeZeroSizedType(ATy->getElementType());
1217  }
1218  return false;
1219}
1220
1221/// IdxCompare - Compare the two constants as though they were getelementptr
1222/// indices.  This allows coersion of the types to be the same thing.
1223///
1224/// If the two constants are the "same" (after coersion), return 0.  If the
1225/// first is less than the second, return -1, if the second is less than the
1226/// first, return 1.  If the constants are not integral, return -2.
1227///
1228static int IdxCompare(Constant *C1, Constant *C2, Type *ElTy) {
1229  if (C1 == C2) return 0;
1230
1231  // Ok, we found a different index.  If they are not ConstantInt, we can't do
1232  // anything with them.
1233  if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
1234    return -2; // don't know!
1235
1236  // Ok, we have two differing integer indices.  Sign extend them to be the same
1237  // type.  Long is always big enough, so we use it.
1238  if (!C1->getType()->isIntegerTy(64))
1239    C1 = ConstantExpr::getSExt(C1, Type::getInt64Ty(C1->getContext()));
1240
1241  if (!C2->getType()->isIntegerTy(64))
1242    C2 = ConstantExpr::getSExt(C2, Type::getInt64Ty(C1->getContext()));
1243
1244  if (C1 == C2) return 0;  // They are equal
1245
1246  // If the type being indexed over is really just a zero sized type, there is
1247  // no pointer difference being made here.
1248  if (isMaybeZeroSizedType(ElTy))
1249    return -2; // dunno.
1250
1251  // If they are really different, now that they are the same type, then we
1252  // found a difference!
1253  if (cast<ConstantInt>(C1)->getSExtValue() <
1254      cast<ConstantInt>(C2)->getSExtValue())
1255    return -1;
1256  else
1257    return 1;
1258}
1259
1260/// evaluateFCmpRelation - This function determines if there is anything we can
1261/// decide about the two constants provided.  This doesn't need to handle simple
1262/// things like ConstantFP comparisons, but should instead handle ConstantExprs.
1263/// If we can determine that the two constants have a particular relation to
1264/// each other, we should return the corresponding FCmpInst predicate,
1265/// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
1266/// ConstantFoldCompareInstruction.
1267///
1268/// To simplify this code we canonicalize the relation so that the first
1269/// operand is always the most "complex" of the two.  We consider ConstantFP
1270/// to be the simplest, and ConstantExprs to be the most complex.
1271static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) {
1272  assert(V1->getType() == V2->getType() &&
1273         "Cannot compare values of different types!");
1274
1275  // Handle degenerate case quickly
1276  if (V1 == V2) return FCmpInst::FCMP_OEQ;
1277
1278  if (!isa<ConstantExpr>(V1)) {
1279    if (!isa<ConstantExpr>(V2)) {
1280      // We distilled thisUse the standard constant folder for a few cases
1281      ConstantInt *R = 0;
1282      R = dyn_cast<ConstantInt>(
1283                      ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2));
1284      if (R && !R->isZero())
1285        return FCmpInst::FCMP_OEQ;
1286      R = dyn_cast<ConstantInt>(
1287                      ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2));
1288      if (R && !R->isZero())
1289        return FCmpInst::FCMP_OLT;
1290      R = dyn_cast<ConstantInt>(
1291                      ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2));
1292      if (R && !R->isZero())
1293        return FCmpInst::FCMP_OGT;
1294
1295      // Nothing more we can do
1296      return FCmpInst::BAD_FCMP_PREDICATE;
1297    }
1298
1299    // If the first operand is simple and second is ConstantExpr, swap operands.
1300    FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
1301    if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
1302      return FCmpInst::getSwappedPredicate(SwappedRelation);
1303  } else {
1304    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1305    // constantexpr or a simple constant.
1306    ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1307    switch (CE1->getOpcode()) {
1308    case Instruction::FPTrunc:
1309    case Instruction::FPExt:
1310    case Instruction::UIToFP:
1311    case Instruction::SIToFP:
1312      // We might be able to do something with these but we don't right now.
1313      break;
1314    default:
1315      break;
1316    }
1317  }
1318  // There are MANY other foldings that we could perform here.  They will
1319  // probably be added on demand, as they seem needed.
1320  return FCmpInst::BAD_FCMP_PREDICATE;
1321}
1322
1323/// evaluateICmpRelation - This function determines if there is anything we can
1324/// decide about the two constants provided.  This doesn't need to handle simple
1325/// things like integer comparisons, but should instead handle ConstantExprs
1326/// and GlobalValues.  If we can determine that the two constants have a
1327/// particular relation to each other, we should return the corresponding ICmp
1328/// predicate, otherwise return ICmpInst::BAD_ICMP_PREDICATE.
1329///
1330/// To simplify this code we canonicalize the relation so that the first
1331/// operand is always the most "complex" of the two.  We consider simple
1332/// constants (like ConstantInt) to be the simplest, followed by
1333/// GlobalValues, followed by ConstantExpr's (the most complex).
1334///
1335static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2,
1336                                                bool isSigned) {
1337  assert(V1->getType() == V2->getType() &&
1338         "Cannot compare different types of values!");
1339  if (V1 == V2) return ICmpInst::ICMP_EQ;
1340
1341  if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1) &&
1342      !isa<BlockAddress>(V1)) {
1343    if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2) &&
1344        !isa<BlockAddress>(V2)) {
1345      // We distilled this down to a simple case, use the standard constant
1346      // folder.
1347      ConstantInt *R = 0;
1348      ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
1349      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1350      if (R && !R->isZero())
1351        return pred;
1352      pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1353      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1354      if (R && !R->isZero())
1355        return pred;
1356      pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1357      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1358      if (R && !R->isZero())
1359        return pred;
1360
1361      // If we couldn't figure it out, bail.
1362      return ICmpInst::BAD_ICMP_PREDICATE;
1363    }
1364
1365    // If the first operand is simple, swap operands.
1366    ICmpInst::Predicate SwappedRelation =
1367      evaluateICmpRelation(V2, V1, isSigned);
1368    if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1369      return ICmpInst::getSwappedPredicate(SwappedRelation);
1370
1371  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) {
1372    if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
1373      ICmpInst::Predicate SwappedRelation =
1374        evaluateICmpRelation(V2, V1, isSigned);
1375      if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1376        return ICmpInst::getSwappedPredicate(SwappedRelation);
1377      return ICmpInst::BAD_ICMP_PREDICATE;
1378    }
1379
1380    // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1381    // constant (which, since the types must match, means that it's a
1382    // ConstantPointerNull).
1383    if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1384      // Don't try to decide equality of aliases.
1385      if (!isa<GlobalAlias>(GV) && !isa<GlobalAlias>(GV2))
1386        if (!GV->hasExternalWeakLinkage() || !GV2->hasExternalWeakLinkage())
1387          return ICmpInst::ICMP_NE;
1388    } else if (isa<BlockAddress>(V2)) {
1389      return ICmpInst::ICMP_NE; // Globals never equal labels.
1390    } else {
1391      assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
1392      // GlobalVals can never be null unless they have external weak linkage.
1393      // We don't try to evaluate aliases here.
1394      if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV))
1395        return ICmpInst::ICMP_NE;
1396    }
1397  } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) {
1398    if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
1399      ICmpInst::Predicate SwappedRelation =
1400        evaluateICmpRelation(V2, V1, isSigned);
1401      if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1402        return ICmpInst::getSwappedPredicate(SwappedRelation);
1403      return ICmpInst::BAD_ICMP_PREDICATE;
1404    }
1405
1406    // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1407    // constant (which, since the types must match, means that it is a
1408    // ConstantPointerNull).
1409    if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) {
1410      // Block address in another function can't equal this one, but block
1411      // addresses in the current function might be the same if blocks are
1412      // empty.
1413      if (BA2->getFunction() != BA->getFunction())
1414        return ICmpInst::ICMP_NE;
1415    } else {
1416      // Block addresses aren't null, don't equal the address of globals.
1417      assert((isa<ConstantPointerNull>(V2) || isa<GlobalValue>(V2)) &&
1418             "Canonicalization guarantee!");
1419      return ICmpInst::ICMP_NE;
1420    }
1421  } else {
1422    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1423    // constantexpr, a global, block address, or a simple constant.
1424    ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1425    Constant *CE1Op0 = CE1->getOperand(0);
1426
1427    switch (CE1->getOpcode()) {
1428    case Instruction::Trunc:
1429    case Instruction::FPTrunc:
1430    case Instruction::FPExt:
1431    case Instruction::FPToUI:
1432    case Instruction::FPToSI:
1433      break; // We can't evaluate floating point casts or truncations.
1434
1435    case Instruction::UIToFP:
1436    case Instruction::SIToFP:
1437    case Instruction::BitCast:
1438    case Instruction::ZExt:
1439    case Instruction::SExt:
1440      // If the cast is not actually changing bits, and the second operand is a
1441      // null pointer, do the comparison with the pre-casted value.
1442      if (V2->isNullValue() &&
1443          (CE1->getType()->isPointerTy() || CE1->getType()->isIntegerTy())) {
1444        if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
1445        if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
1446        return evaluateICmpRelation(CE1Op0,
1447                                    Constant::getNullValue(CE1Op0->getType()),
1448                                    isSigned);
1449      }
1450      break;
1451
1452    case Instruction::GetElementPtr:
1453      // Ok, since this is a getelementptr, we know that the constant has a
1454      // pointer type.  Check the various cases.
1455      if (isa<ConstantPointerNull>(V2)) {
1456        // If we are comparing a GEP to a null pointer, check to see if the base
1457        // of the GEP equals the null pointer.
1458        if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1459          if (GV->hasExternalWeakLinkage())
1460            // Weak linkage GVals could be zero or not. We're comparing that
1461            // to null pointer so its greater-or-equal
1462            return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
1463          else
1464            // If its not weak linkage, the GVal must have a non-zero address
1465            // so the result is greater-than
1466            return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1467        } else if (isa<ConstantPointerNull>(CE1Op0)) {
1468          // If we are indexing from a null pointer, check to see if we have any
1469          // non-zero indices.
1470          for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
1471            if (!CE1->getOperand(i)->isNullValue())
1472              // Offsetting from null, must not be equal.
1473              return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1474          // Only zero indexes from null, must still be zero.
1475          return ICmpInst::ICMP_EQ;
1476        }
1477        // Otherwise, we can't really say if the first operand is null or not.
1478      } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1479        if (isa<ConstantPointerNull>(CE1Op0)) {
1480          if (GV2->hasExternalWeakLinkage())
1481            // Weak linkage GVals could be zero or not. We're comparing it to
1482            // a null pointer, so its less-or-equal
1483            return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1484          else
1485            // If its not weak linkage, the GVal must have a non-zero address
1486            // so the result is less-than
1487            return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1488        } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1489          if (GV == GV2) {
1490            // If this is a getelementptr of the same global, then it must be
1491            // different.  Because the types must match, the getelementptr could
1492            // only have at most one index, and because we fold getelementptr's
1493            // with a single zero index, it must be nonzero.
1494            assert(CE1->getNumOperands() == 2 &&
1495                   !CE1->getOperand(1)->isNullValue() &&
1496                   "Surprising getelementptr!");
1497            return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1498          } else {
1499            // If they are different globals, we don't know what the value is.
1500            return ICmpInst::BAD_ICMP_PREDICATE;
1501          }
1502        }
1503      } else {
1504        ConstantExpr *CE2 = cast<ConstantExpr>(V2);
1505        Constant *CE2Op0 = CE2->getOperand(0);
1506
1507        // There are MANY other foldings that we could perform here.  They will
1508        // probably be added on demand, as they seem needed.
1509        switch (CE2->getOpcode()) {
1510        default: break;
1511        case Instruction::GetElementPtr:
1512          // By far the most common case to handle is when the base pointers are
1513          // obviously to the same global.
1514          if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
1515            if (CE1Op0 != CE2Op0) // Don't know relative ordering.
1516              return ICmpInst::BAD_ICMP_PREDICATE;
1517            // Ok, we know that both getelementptr instructions are based on the
1518            // same global.  From this, we can precisely determine the relative
1519            // ordering of the resultant pointers.
1520            unsigned i = 1;
1521
1522            // The logic below assumes that the result of the comparison
1523            // can be determined by finding the first index that differs.
1524            // This doesn't work if there is over-indexing in any
1525            // subsequent indices, so check for that case first.
1526            if (!CE1->isGEPWithNoNotionalOverIndexing() ||
1527                !CE2->isGEPWithNoNotionalOverIndexing())
1528               return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1529
1530            // Compare all of the operands the GEP's have in common.
1531            gep_type_iterator GTI = gep_type_begin(CE1);
1532            for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
1533                 ++i, ++GTI)
1534              switch (IdxCompare(CE1->getOperand(i),
1535                                 CE2->getOperand(i), GTI.getIndexedType())) {
1536              case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
1537              case 1:  return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
1538              case -2: return ICmpInst::BAD_ICMP_PREDICATE;
1539              }
1540
1541            // Ok, we ran out of things they have in common.  If any leftovers
1542            // are non-zero then we have a difference, otherwise we are equal.
1543            for (; i < CE1->getNumOperands(); ++i)
1544              if (!CE1->getOperand(i)->isNullValue()) {
1545                if (isa<ConstantInt>(CE1->getOperand(i)))
1546                  return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1547                else
1548                  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1549              }
1550
1551            for (; i < CE2->getNumOperands(); ++i)
1552              if (!CE2->getOperand(i)->isNullValue()) {
1553                if (isa<ConstantInt>(CE2->getOperand(i)))
1554                  return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1555                else
1556                  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1557              }
1558            return ICmpInst::ICMP_EQ;
1559          }
1560        }
1561      }
1562    default:
1563      break;
1564    }
1565  }
1566
1567  return ICmpInst::BAD_ICMP_PREDICATE;
1568}
1569
1570Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
1571                                               Constant *C1, Constant *C2) {
1572  Type *ResultTy;
1573  if (VectorType *VT = dyn_cast<VectorType>(C1->getType()))
1574    ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()),
1575                               VT->getNumElements());
1576  else
1577    ResultTy = Type::getInt1Ty(C1->getContext());
1578
1579  // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1580  if (pred == FCmpInst::FCMP_FALSE)
1581    return Constant::getNullValue(ResultTy);
1582
1583  if (pred == FCmpInst::FCMP_TRUE)
1584    return Constant::getAllOnesValue(ResultTy);
1585
1586  // Handle some degenerate cases first
1587  if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
1588    // For EQ and NE, we can always pick a value for the undef to make the
1589    // predicate pass or fail, so we can return undef.
1590    // Also, if both operands are undef, we can return undef.
1591    if (ICmpInst::isEquality(ICmpInst::Predicate(pred)) ||
1592        (isa<UndefValue>(C1) && isa<UndefValue>(C2)))
1593      return UndefValue::get(ResultTy);
1594    // Otherwise, pick the same value as the non-undef operand, and fold
1595    // it to true or false.
1596    return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(pred));
1597  }
1598
1599  // icmp eq/ne(null,GV) -> false/true
1600  if (C1->isNullValue()) {
1601    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
1602      // Don't try to evaluate aliases.  External weak GV can be null.
1603      if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1604        if (pred == ICmpInst::ICMP_EQ)
1605          return ConstantInt::getFalse(C1->getContext());
1606        else if (pred == ICmpInst::ICMP_NE)
1607          return ConstantInt::getTrue(C1->getContext());
1608      }
1609  // icmp eq/ne(GV,null) -> false/true
1610  } else if (C2->isNullValue()) {
1611    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1))
1612      // Don't try to evaluate aliases.  External weak GV can be null.
1613      if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1614        if (pred == ICmpInst::ICMP_EQ)
1615          return ConstantInt::getFalse(C1->getContext());
1616        else if (pred == ICmpInst::ICMP_NE)
1617          return ConstantInt::getTrue(C1->getContext());
1618      }
1619  }
1620
1621  // If the comparison is a comparison between two i1's, simplify it.
1622  if (C1->getType()->isIntegerTy(1)) {
1623    switch(pred) {
1624    case ICmpInst::ICMP_EQ:
1625      if (isa<ConstantInt>(C2))
1626        return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2));
1627      return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2);
1628    case ICmpInst::ICMP_NE:
1629      return ConstantExpr::getXor(C1, C2);
1630    default:
1631      break;
1632    }
1633  }
1634
1635  if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
1636    APInt V1 = cast<ConstantInt>(C1)->getValue();
1637    APInt V2 = cast<ConstantInt>(C2)->getValue();
1638    switch (pred) {
1639    default: llvm_unreachable("Invalid ICmp Predicate");
1640    case ICmpInst::ICMP_EQ:  return ConstantInt::get(ResultTy, V1 == V2);
1641    case ICmpInst::ICMP_NE:  return ConstantInt::get(ResultTy, V1 != V2);
1642    case ICmpInst::ICMP_SLT: return ConstantInt::get(ResultTy, V1.slt(V2));
1643    case ICmpInst::ICMP_SGT: return ConstantInt::get(ResultTy, V1.sgt(V2));
1644    case ICmpInst::ICMP_SLE: return ConstantInt::get(ResultTy, V1.sle(V2));
1645    case ICmpInst::ICMP_SGE: return ConstantInt::get(ResultTy, V1.sge(V2));
1646    case ICmpInst::ICMP_ULT: return ConstantInt::get(ResultTy, V1.ult(V2));
1647    case ICmpInst::ICMP_UGT: return ConstantInt::get(ResultTy, V1.ugt(V2));
1648    case ICmpInst::ICMP_ULE: return ConstantInt::get(ResultTy, V1.ule(V2));
1649    case ICmpInst::ICMP_UGE: return ConstantInt::get(ResultTy, V1.uge(V2));
1650    }
1651  } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
1652    APFloat C1V = cast<ConstantFP>(C1)->getValueAPF();
1653    APFloat C2V = cast<ConstantFP>(C2)->getValueAPF();
1654    APFloat::cmpResult R = C1V.compare(C2V);
1655    switch (pred) {
1656    default: llvm_unreachable("Invalid FCmp Predicate");
1657    case FCmpInst::FCMP_FALSE: return Constant::getNullValue(ResultTy);
1658    case FCmpInst::FCMP_TRUE:  return Constant::getAllOnesValue(ResultTy);
1659    case FCmpInst::FCMP_UNO:
1660      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered);
1661    case FCmpInst::FCMP_ORD:
1662      return ConstantInt::get(ResultTy, R!=APFloat::cmpUnordered);
1663    case FCmpInst::FCMP_UEQ:
1664      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1665                                        R==APFloat::cmpEqual);
1666    case FCmpInst::FCMP_OEQ:
1667      return ConstantInt::get(ResultTy, R==APFloat::cmpEqual);
1668    case FCmpInst::FCMP_UNE:
1669      return ConstantInt::get(ResultTy, R!=APFloat::cmpEqual);
1670    case FCmpInst::FCMP_ONE:
1671      return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1672                                        R==APFloat::cmpGreaterThan);
1673    case FCmpInst::FCMP_ULT:
1674      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1675                                        R==APFloat::cmpLessThan);
1676    case FCmpInst::FCMP_OLT:
1677      return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan);
1678    case FCmpInst::FCMP_UGT:
1679      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1680                                        R==APFloat::cmpGreaterThan);
1681    case FCmpInst::FCMP_OGT:
1682      return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan);
1683    case FCmpInst::FCMP_ULE:
1684      return ConstantInt::get(ResultTy, R!=APFloat::cmpGreaterThan);
1685    case FCmpInst::FCMP_OLE:
1686      return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1687                                        R==APFloat::cmpEqual);
1688    case FCmpInst::FCMP_UGE:
1689      return ConstantInt::get(ResultTy, R!=APFloat::cmpLessThan);
1690    case FCmpInst::FCMP_OGE:
1691      return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan ||
1692                                        R==APFloat::cmpEqual);
1693    }
1694  } else if (C1->getType()->isVectorTy()) {
1695    // If we can constant fold the comparison of each element, constant fold
1696    // the whole vector comparison.
1697    SmallVector<Constant*, 4> ResElts;
1698    Type *Ty = IntegerType::get(C1->getContext(), 32);
1699    // Compare the elements, producing an i1 result or constant expr.
1700    for (unsigned i = 0, e = C1->getType()->getVectorNumElements(); i != e;++i){
1701      Constant *C1E =
1702        ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, i));
1703      Constant *C2E =
1704        ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, i));
1705
1706      ResElts.push_back(ConstantExpr::getCompare(pred, C1E, C2E));
1707    }
1708
1709    return ConstantVector::get(ResElts);
1710  }
1711
1712  if (C1->getType()->isFloatingPointTy()) {
1713    int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
1714    switch (evaluateFCmpRelation(C1, C2)) {
1715    default: llvm_unreachable("Unknown relation!");
1716    case FCmpInst::FCMP_UNO:
1717    case FCmpInst::FCMP_ORD:
1718    case FCmpInst::FCMP_UEQ:
1719    case FCmpInst::FCMP_UNE:
1720    case FCmpInst::FCMP_ULT:
1721    case FCmpInst::FCMP_UGT:
1722    case FCmpInst::FCMP_ULE:
1723    case FCmpInst::FCMP_UGE:
1724    case FCmpInst::FCMP_TRUE:
1725    case FCmpInst::FCMP_FALSE:
1726    case FCmpInst::BAD_FCMP_PREDICATE:
1727      break; // Couldn't determine anything about these constants.
1728    case FCmpInst::FCMP_OEQ: // We know that C1 == C2
1729      Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
1730                pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
1731                pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1732      break;
1733    case FCmpInst::FCMP_OLT: // We know that C1 < C2
1734      Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1735                pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
1736                pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
1737      break;
1738    case FCmpInst::FCMP_OGT: // We know that C1 > C2
1739      Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1740                pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
1741                pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1742      break;
1743    case FCmpInst::FCMP_OLE: // We know that C1 <= C2
1744      // We can only partially decide this relation.
1745      if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1746        Result = 0;
1747      else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1748        Result = 1;
1749      break;
1750    case FCmpInst::FCMP_OGE: // We known that C1 >= C2
1751      // We can only partially decide this relation.
1752      if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1753        Result = 0;
1754      else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1755        Result = 1;
1756      break;
1757    case FCmpInst::FCMP_ONE: // We know that C1 != C2
1758      // We can only partially decide this relation.
1759      if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ)
1760        Result = 0;
1761      else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE)
1762        Result = 1;
1763      break;
1764    }
1765
1766    // If we evaluated the result, return it now.
1767    if (Result != -1)
1768      return ConstantInt::get(ResultTy, Result);
1769
1770  } else {
1771    // Evaluate the relation between the two constants, per the predicate.
1772    int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
1773    switch (evaluateICmpRelation(C1, C2, CmpInst::isSigned(pred))) {
1774    default: llvm_unreachable("Unknown relational!");
1775    case ICmpInst::BAD_ICMP_PREDICATE:
1776      break;  // Couldn't determine anything about these constants.
1777    case ICmpInst::ICMP_EQ:   // We know the constants are equal!
1778      // If we know the constants are equal, we can decide the result of this
1779      // computation precisely.
1780      Result = ICmpInst::isTrueWhenEqual((ICmpInst::Predicate)pred);
1781      break;
1782    case ICmpInst::ICMP_ULT:
1783      switch (pred) {
1784      case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE:
1785        Result = 1; break;
1786      case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE:
1787        Result = 0; break;
1788      }
1789      break;
1790    case ICmpInst::ICMP_SLT:
1791      switch (pred) {
1792      case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE:
1793        Result = 1; break;
1794      case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE:
1795        Result = 0; break;
1796      }
1797      break;
1798    case ICmpInst::ICMP_UGT:
1799      switch (pred) {
1800      case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE:
1801        Result = 1; break;
1802      case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE:
1803        Result = 0; break;
1804      }
1805      break;
1806    case ICmpInst::ICMP_SGT:
1807      switch (pred) {
1808      case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE:
1809        Result = 1; break;
1810      case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE:
1811        Result = 0; break;
1812      }
1813      break;
1814    case ICmpInst::ICMP_ULE:
1815      if (pred == ICmpInst::ICMP_UGT) Result = 0;
1816      if (pred == ICmpInst::ICMP_ULT || pred == ICmpInst::ICMP_ULE) Result = 1;
1817      break;
1818    case ICmpInst::ICMP_SLE:
1819      if (pred == ICmpInst::ICMP_SGT) Result = 0;
1820      if (pred == ICmpInst::ICMP_SLT || pred == ICmpInst::ICMP_SLE) Result = 1;
1821      break;
1822    case ICmpInst::ICMP_UGE:
1823      if (pred == ICmpInst::ICMP_ULT) Result = 0;
1824      if (pred == ICmpInst::ICMP_UGT || pred == ICmpInst::ICMP_UGE) Result = 1;
1825      break;
1826    case ICmpInst::ICMP_SGE:
1827      if (pred == ICmpInst::ICMP_SLT) Result = 0;
1828      if (pred == ICmpInst::ICMP_SGT || pred == ICmpInst::ICMP_SGE) Result = 1;
1829      break;
1830    case ICmpInst::ICMP_NE:
1831      if (pred == ICmpInst::ICMP_EQ) Result = 0;
1832      if (pred == ICmpInst::ICMP_NE) Result = 1;
1833      break;
1834    }
1835
1836    // If we evaluated the result, return it now.
1837    if (Result != -1)
1838      return ConstantInt::get(ResultTy, Result);
1839
1840    // If the right hand side is a bitcast, try using its inverse to simplify
1841    // it by moving it to the left hand side.  We can't do this if it would turn
1842    // a vector compare into a scalar compare or visa versa.
1843    if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) {
1844      Constant *CE2Op0 = CE2->getOperand(0);
1845      if (CE2->getOpcode() == Instruction::BitCast &&
1846          CE2->getType()->isVectorTy() == CE2Op0->getType()->isVectorTy()) {
1847        Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType());
1848        return ConstantExpr::getICmp(pred, Inverse, CE2Op0);
1849      }
1850    }
1851
1852    // If the left hand side is an extension, try eliminating it.
1853    if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1854      if ((CE1->getOpcode() == Instruction::SExt && ICmpInst::isSigned(pred)) ||
1855          (CE1->getOpcode() == Instruction::ZExt && !ICmpInst::isSigned(pred))){
1856        Constant *CE1Op0 = CE1->getOperand(0);
1857        Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType());
1858        if (CE1Inverse == CE1Op0) {
1859          // Check whether we can safely truncate the right hand side.
1860          Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType());
1861          if (ConstantExpr::getCast(CE1->getOpcode(), C2Inverse,
1862                                    C2->getType()) == C2)
1863            return ConstantExpr::getICmp(pred, CE1Inverse, C2Inverse);
1864        }
1865      }
1866    }
1867
1868    if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) ||
1869        (C1->isNullValue() && !C2->isNullValue())) {
1870      // If C2 is a constant expr and C1 isn't, flip them around and fold the
1871      // other way if possible.
1872      // Also, if C1 is null and C2 isn't, flip them around.
1873      pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
1874      return ConstantExpr::getICmp(pred, C2, C1);
1875    }
1876  }
1877  return 0;
1878}
1879
1880/// isInBoundsIndices - Test whether the given sequence of *normalized* indices
1881/// is "inbounds".
1882template<typename IndexTy>
1883static bool isInBoundsIndices(ArrayRef<IndexTy> Idxs) {
1884  // No indices means nothing that could be out of bounds.
1885  if (Idxs.empty()) return true;
1886
1887  // If the first index is zero, it's in bounds.
1888  if (cast<Constant>(Idxs[0])->isNullValue()) return true;
1889
1890  // If the first index is one and all the rest are zero, it's in bounds,
1891  // by the one-past-the-end rule.
1892  if (!cast<ConstantInt>(Idxs[0])->isOne())
1893    return false;
1894  for (unsigned i = 1, e = Idxs.size(); i != e; ++i)
1895    if (!cast<Constant>(Idxs[i])->isNullValue())
1896      return false;
1897  return true;
1898}
1899
1900template<typename IndexTy>
1901static Constant *ConstantFoldGetElementPtrImpl(Constant *C,
1902                                               bool inBounds,
1903                                               ArrayRef<IndexTy> Idxs) {
1904  if (Idxs.empty()) return C;
1905  Constant *Idx0 = cast<Constant>(Idxs[0]);
1906  if ((Idxs.size() == 1 && Idx0->isNullValue()))
1907    return C;
1908
1909  if (isa<UndefValue>(C)) {
1910    PointerType *Ptr = cast<PointerType>(C->getType());
1911    Type *Ty = GetElementPtrInst::getIndexedType(Ptr, Idxs);
1912    assert(Ty != 0 && "Invalid indices for GEP!");
1913    return UndefValue::get(PointerType::get(Ty, Ptr->getAddressSpace()));
1914  }
1915
1916  if (C->isNullValue()) {
1917    bool isNull = true;
1918    for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
1919      if (!cast<Constant>(Idxs[i])->isNullValue()) {
1920        isNull = false;
1921        break;
1922      }
1923    if (isNull) {
1924      PointerType *Ptr = cast<PointerType>(C->getType());
1925      Type *Ty = GetElementPtrInst::getIndexedType(Ptr, Idxs);
1926      assert(Ty != 0 && "Invalid indices for GEP!");
1927      return ConstantPointerNull::get(PointerType::get(Ty,
1928                                                       Ptr->getAddressSpace()));
1929    }
1930  }
1931
1932  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1933    // Combine Indices - If the source pointer to this getelementptr instruction
1934    // is a getelementptr instruction, combine the indices of the two
1935    // getelementptr instructions into a single instruction.
1936    //
1937    if (CE->getOpcode() == Instruction::GetElementPtr) {
1938      Type *LastTy = 0;
1939      for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
1940           I != E; ++I)
1941        LastTy = *I;
1942
1943      if ((LastTy && isa<SequentialType>(LastTy)) || Idx0->isNullValue()) {
1944        SmallVector<Value*, 16> NewIndices;
1945        NewIndices.reserve(Idxs.size() + CE->getNumOperands());
1946        for (unsigned i = 1, e = CE->getNumOperands()-1; i != e; ++i)
1947          NewIndices.push_back(CE->getOperand(i));
1948
1949        // Add the last index of the source with the first index of the new GEP.
1950        // Make sure to handle the case when they are actually different types.
1951        Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
1952        // Otherwise it must be an array.
1953        if (!Idx0->isNullValue()) {
1954          Type *IdxTy = Combined->getType();
1955          if (IdxTy != Idx0->getType()) {
1956            Type *Int64Ty = Type::getInt64Ty(IdxTy->getContext());
1957            Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, Int64Ty);
1958            Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined, Int64Ty);
1959            Combined = ConstantExpr::get(Instruction::Add, C1, C2);
1960          } else {
1961            Combined =
1962              ConstantExpr::get(Instruction::Add, Idx0, Combined);
1963          }
1964        }
1965
1966        NewIndices.push_back(Combined);
1967        NewIndices.append(Idxs.begin() + 1, Idxs.end());
1968        return
1969          ConstantExpr::getGetElementPtr(CE->getOperand(0), NewIndices,
1970                                         inBounds &&
1971                                           cast<GEPOperator>(CE)->isInBounds());
1972      }
1973    }
1974
1975    // Attempt to fold casts to the same type away.  For example, folding:
1976    //
1977    //   i32* getelementptr ([2 x i32]* bitcast ([3 x i32]* %X to [2 x i32]*),
1978    //                       i64 0, i64 0)
1979    // into:
1980    //
1981    //   i32* getelementptr ([3 x i32]* %X, i64 0, i64 0)
1982    //
1983    // Don't fold if the cast is changing address spaces.
1984    if (CE->isCast() && Idxs.size() > 1 && Idx0->isNullValue()) {
1985      PointerType *SrcPtrTy =
1986        dyn_cast<PointerType>(CE->getOperand(0)->getType());
1987      PointerType *DstPtrTy = dyn_cast<PointerType>(CE->getType());
1988      if (SrcPtrTy && DstPtrTy) {
1989        ArrayType *SrcArrayTy =
1990          dyn_cast<ArrayType>(SrcPtrTy->getElementType());
1991        ArrayType *DstArrayTy =
1992          dyn_cast<ArrayType>(DstPtrTy->getElementType());
1993        if (SrcArrayTy && DstArrayTy
1994            && SrcArrayTy->getElementType() == DstArrayTy->getElementType()
1995            && SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
1996          return ConstantExpr::getGetElementPtr((Constant*)CE->getOperand(0),
1997                                                Idxs, inBounds);
1998      }
1999    }
2000  }
2001
2002  // Check to see if any array indices are not within the corresponding
2003  // notional array bounds. If so, try to determine if they can be factored
2004  // out into preceding dimensions.
2005  bool Unknown = false;
2006  SmallVector<Constant *, 8> NewIdxs;
2007  Type *Ty = C->getType();
2008  Type *Prev = 0;
2009  for (unsigned i = 0, e = Idxs.size(); i != e;
2010       Prev = Ty, Ty = cast<CompositeType>(Ty)->getTypeAtIndex(Idxs[i]), ++i) {
2011    if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) {
2012      if (ArrayType *ATy = dyn_cast<ArrayType>(Ty))
2013        if (ATy->getNumElements() <= INT64_MAX &&
2014            ATy->getNumElements() != 0 &&
2015            CI->getSExtValue() >= (int64_t)ATy->getNumElements()) {
2016          if (isa<SequentialType>(Prev)) {
2017            // It's out of range, but we can factor it into the prior
2018            // dimension.
2019            NewIdxs.resize(Idxs.size());
2020            ConstantInt *Factor = ConstantInt::get(CI->getType(),
2021                                                   ATy->getNumElements());
2022            NewIdxs[i] = ConstantExpr::getSRem(CI, Factor);
2023
2024            Constant *PrevIdx = cast<Constant>(Idxs[i-1]);
2025            Constant *Div = ConstantExpr::getSDiv(CI, Factor);
2026
2027            // Before adding, extend both operands to i64 to avoid
2028            // overflow trouble.
2029            if (!PrevIdx->getType()->isIntegerTy(64))
2030              PrevIdx = ConstantExpr::getSExt(PrevIdx,
2031                                           Type::getInt64Ty(Div->getContext()));
2032            if (!Div->getType()->isIntegerTy(64))
2033              Div = ConstantExpr::getSExt(Div,
2034                                          Type::getInt64Ty(Div->getContext()));
2035
2036            NewIdxs[i-1] = ConstantExpr::getAdd(PrevIdx, Div);
2037          } else {
2038            // It's out of range, but the prior dimension is a struct
2039            // so we can't do anything about it.
2040            Unknown = true;
2041          }
2042        }
2043    } else {
2044      // We don't know if it's in range or not.
2045      Unknown = true;
2046    }
2047  }
2048
2049  // If we did any factoring, start over with the adjusted indices.
2050  if (!NewIdxs.empty()) {
2051    for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
2052      if (!NewIdxs[i]) NewIdxs[i] = cast<Constant>(Idxs[i]);
2053    return ConstantExpr::getGetElementPtr(C, NewIdxs, inBounds);
2054  }
2055
2056  // If all indices are known integers and normalized, we can do a simple
2057  // check for the "inbounds" property.
2058  if (!Unknown && !inBounds &&
2059      isa<GlobalVariable>(C) && isInBoundsIndices(Idxs))
2060    return ConstantExpr::getInBoundsGetElementPtr(C, Idxs);
2061
2062  return 0;
2063}
2064
2065Constant *llvm::ConstantFoldGetElementPtr(Constant *C,
2066                                          bool inBounds,
2067                                          ArrayRef<Constant *> Idxs) {
2068  return ConstantFoldGetElementPtrImpl(C, inBounds, Idxs);
2069}
2070
2071Constant *llvm::ConstantFoldGetElementPtr(Constant *C,
2072                                          bool inBounds,
2073                                          ArrayRef<Value *> Idxs) {
2074  return ConstantFoldGetElementPtrImpl(C, inBounds, Idxs);
2075}
2076