1//===-- Constants.cpp - Implement Constant nodes --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Constant* classes.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/IR/Constants.h"
15#include "ConstantFold.h"
16#include "LLVMContextImpl.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/FoldingSet.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/StringExtras.h"
22#include "llvm/ADT/StringMap.h"
23#include "llvm/IR/DerivedTypes.h"
24#include "llvm/IR/GlobalValue.h"
25#include "llvm/IR/Instructions.h"
26#include "llvm/IR/Module.h"
27#include "llvm/IR/Operator.h"
28#include "llvm/Support/Compiler.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/GetElementPtrTypeIterator.h"
32#include "llvm/Support/ManagedStatic.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include <algorithm>
36#include <cstdarg>
37using namespace llvm;
38
39//===----------------------------------------------------------------------===//
40//                              Constant Class
41//===----------------------------------------------------------------------===//
42
43void Constant::anchor() { }
44
45bool Constant::isNegativeZeroValue() const {
46  // Floating point values have an explicit -0.0 value.
47  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
48    return CFP->isZero() && CFP->isNegative();
49
50  // Equivalent for a vector of -0.0's.
51  if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
52    if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
53      if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative())
54        return true;
55
56  // We've already handled true FP case; any other FP vectors can't represent -0.0.
57  if (getType()->isFPOrFPVectorTy())
58    return false;
59
60  // Otherwise, just use +0.0.
61  return isNullValue();
62}
63
64// Return true iff this constant is positive zero (floating point), negative
65// zero (floating point), or a null value.
66bool Constant::isZeroValue() const {
67  // Floating point values have an explicit -0.0 value.
68  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
69    return CFP->isZero();
70
71  // Otherwise, just use +0.0.
72  return isNullValue();
73}
74
75bool Constant::isNullValue() const {
76  // 0 is null.
77  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
78    return CI->isZero();
79
80  // +0.0 is null.
81  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
82    return CFP->isZero() && !CFP->isNegative();
83
84  // constant zero is zero for aggregates and cpnull is null for pointers.
85  return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this);
86}
87
88bool Constant::isAllOnesValue() const {
89  // Check for -1 integers
90  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
91    return CI->isMinusOne();
92
93  // Check for FP which are bitcasted from -1 integers
94  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
95    return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
96
97  // Check for constant vectors which are splats of -1 values.
98  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
99    if (Constant *Splat = CV->getSplatValue())
100      return Splat->isAllOnesValue();
101
102  // Check for constant vectors which are splats of -1 values.
103  if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
104    if (Constant *Splat = CV->getSplatValue())
105      return Splat->isAllOnesValue();
106
107  return false;
108}
109
110// Constructor to create a '0' constant of arbitrary type...
111Constant *Constant::getNullValue(Type *Ty) {
112  switch (Ty->getTypeID()) {
113  case Type::IntegerTyID:
114    return ConstantInt::get(Ty, 0);
115  case Type::HalfTyID:
116    return ConstantFP::get(Ty->getContext(),
117                           APFloat::getZero(APFloat::IEEEhalf));
118  case Type::FloatTyID:
119    return ConstantFP::get(Ty->getContext(),
120                           APFloat::getZero(APFloat::IEEEsingle));
121  case Type::DoubleTyID:
122    return ConstantFP::get(Ty->getContext(),
123                           APFloat::getZero(APFloat::IEEEdouble));
124  case Type::X86_FP80TyID:
125    return ConstantFP::get(Ty->getContext(),
126                           APFloat::getZero(APFloat::x87DoubleExtended));
127  case Type::FP128TyID:
128    return ConstantFP::get(Ty->getContext(),
129                           APFloat::getZero(APFloat::IEEEquad));
130  case Type::PPC_FP128TyID:
131    return ConstantFP::get(Ty->getContext(),
132                           APFloat(APFloat::PPCDoubleDouble,
133                                   APInt::getNullValue(128)));
134  case Type::PointerTyID:
135    return ConstantPointerNull::get(cast<PointerType>(Ty));
136  case Type::StructTyID:
137  case Type::ArrayTyID:
138  case Type::VectorTyID:
139    return ConstantAggregateZero::get(Ty);
140  default:
141    // Function, Label, or Opaque type?
142    llvm_unreachable("Cannot create a null constant of that type!");
143  }
144}
145
146Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
147  Type *ScalarTy = Ty->getScalarType();
148
149  // Create the base integer constant.
150  Constant *C = ConstantInt::get(Ty->getContext(), V);
151
152  // Convert an integer to a pointer, if necessary.
153  if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
154    C = ConstantExpr::getIntToPtr(C, PTy);
155
156  // Broadcast a scalar to a vector, if necessary.
157  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
158    C = ConstantVector::getSplat(VTy->getNumElements(), C);
159
160  return C;
161}
162
163Constant *Constant::getAllOnesValue(Type *Ty) {
164  if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
165    return ConstantInt::get(Ty->getContext(),
166                            APInt::getAllOnesValue(ITy->getBitWidth()));
167
168  if (Ty->isFloatingPointTy()) {
169    APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(),
170                                          !Ty->isPPC_FP128Ty());
171    return ConstantFP::get(Ty->getContext(), FL);
172  }
173
174  VectorType *VTy = cast<VectorType>(Ty);
175  return ConstantVector::getSplat(VTy->getNumElements(),
176                                  getAllOnesValue(VTy->getElementType()));
177}
178
179/// getAggregateElement - For aggregates (struct/array/vector) return the
180/// constant that corresponds to the specified element if possible, or null if
181/// not.  This can return null if the element index is a ConstantExpr, or if
182/// 'this' is a constant expr.
183Constant *Constant::getAggregateElement(unsigned Elt) const {
184  if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(this))
185    return Elt < CS->getNumOperands() ? CS->getOperand(Elt) : 0;
186
187  if (const ConstantArray *CA = dyn_cast<ConstantArray>(this))
188    return Elt < CA->getNumOperands() ? CA->getOperand(Elt) : 0;
189
190  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
191    return Elt < CV->getNumOperands() ? CV->getOperand(Elt) : 0;
192
193  if (const ConstantAggregateZero *CAZ =dyn_cast<ConstantAggregateZero>(this))
194    return CAZ->getElementValue(Elt);
195
196  if (const UndefValue *UV = dyn_cast<UndefValue>(this))
197    return UV->getElementValue(Elt);
198
199  if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this))
200    return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt) : 0;
201  return 0;
202}
203
204Constant *Constant::getAggregateElement(Constant *Elt) const {
205  assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
206  if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt))
207    return getAggregateElement(CI->getZExtValue());
208  return 0;
209}
210
211
212void Constant::destroyConstantImpl() {
213  // When a Constant is destroyed, there may be lingering
214  // references to the constant by other constants in the constant pool.  These
215  // constants are implicitly dependent on the module that is being deleted,
216  // but they don't know that.  Because we only find out when the CPV is
217  // deleted, we must now notify all of our users (that should only be
218  // Constants) that they are, in fact, invalid now and should be deleted.
219  //
220  while (!use_empty()) {
221    Value *V = use_back();
222#ifndef NDEBUG      // Only in -g mode...
223    if (!isa<Constant>(V)) {
224      dbgs() << "While deleting: " << *this
225             << "\n\nUse still stuck around after Def is destroyed: "
226             << *V << "\n\n";
227    }
228#endif
229    assert(isa<Constant>(V) && "References remain to Constant being destroyed");
230    cast<Constant>(V)->destroyConstant();
231
232    // The constant should remove itself from our use list...
233    assert((use_empty() || use_back() != V) && "Constant not removed!");
234  }
235
236  // Value has no outstanding references it is safe to delete it now...
237  delete this;
238}
239
240static bool canTrapImpl(const Constant *C,
241                        SmallPtrSet<const ConstantExpr *, 4> &NonTrappingOps) {
242  assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
243  // The only thing that could possibly trap are constant exprs.
244  const ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
245  if (!CE)
246    return false;
247
248  // ConstantExpr traps if any operands can trap.
249  for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
250    if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) {
251      if (NonTrappingOps.insert(Op) && canTrapImpl(Op, NonTrappingOps))
252        return true;
253    }
254  }
255
256  // Otherwise, only specific operations can trap.
257  switch (CE->getOpcode()) {
258  default:
259    return false;
260  case Instruction::UDiv:
261  case Instruction::SDiv:
262  case Instruction::FDiv:
263  case Instruction::URem:
264  case Instruction::SRem:
265  case Instruction::FRem:
266    // Div and rem can trap if the RHS is not known to be non-zero.
267    if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
268      return true;
269    return false;
270  }
271}
272
273/// canTrap - Return true if evaluation of this constant could trap.  This is
274/// true for things like constant expressions that could divide by zero.
275bool Constant::canTrap() const {
276  SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps;
277  return canTrapImpl(this, NonTrappingOps);
278}
279
280/// isThreadDependent - Return true if the value can vary between threads.
281bool Constant::isThreadDependent() const {
282  SmallPtrSet<const Constant*, 64> Visited;
283  SmallVector<const Constant*, 64> WorkList;
284  WorkList.push_back(this);
285  Visited.insert(this);
286
287  while (!WorkList.empty()) {
288    const Constant *C = WorkList.pop_back_val();
289
290    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
291      if (GV->isThreadLocal())
292        return true;
293    }
294
295    for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) {
296      const Constant *D = dyn_cast<Constant>(C->getOperand(I));
297      if (!D)
298        continue;
299      if (Visited.insert(D))
300        WorkList.push_back(D);
301    }
302  }
303
304  return false;
305}
306
307/// isConstantUsed - Return true if the constant has users other than constant
308/// exprs and other dangling things.
309bool Constant::isConstantUsed() const {
310  for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
311    const Constant *UC = dyn_cast<Constant>(*UI);
312    if (UC == 0 || isa<GlobalValue>(UC))
313      return true;
314
315    if (UC->isConstantUsed())
316      return true;
317  }
318  return false;
319}
320
321
322
323/// getRelocationInfo - This method classifies the entry according to
324/// whether or not it may generate a relocation entry.  This must be
325/// conservative, so if it might codegen to a relocatable entry, it should say
326/// so.  The return values are:
327///
328///  NoRelocation: This constant pool entry is guaranteed to never have a
329///     relocation applied to it (because it holds a simple constant like
330///     '4').
331///  LocalRelocation: This entry has relocations, but the entries are
332///     guaranteed to be resolvable by the static linker, so the dynamic
333///     linker will never see them.
334///  GlobalRelocations: This entry may have arbitrary relocations.
335///
336/// FIXME: This really should not be in IR.
337Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
338  if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
339    if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
340      return LocalRelocation;  // Local to this file/library.
341    return GlobalRelocations;    // Global reference.
342  }
343
344  if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
345    return BA->getFunction()->getRelocationInfo();
346
347  // While raw uses of blockaddress need to be relocated, differences between
348  // two of them don't when they are for labels in the same function.  This is a
349  // common idiom when creating a table for the indirect goto extension, so we
350  // handle it efficiently here.
351  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
352    if (CE->getOpcode() == Instruction::Sub) {
353      ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
354      ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
355      if (LHS && RHS &&
356          LHS->getOpcode() == Instruction::PtrToInt &&
357          RHS->getOpcode() == Instruction::PtrToInt &&
358          isa<BlockAddress>(LHS->getOperand(0)) &&
359          isa<BlockAddress>(RHS->getOperand(0)) &&
360          cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
361            cast<BlockAddress>(RHS->getOperand(0))->getFunction())
362        return NoRelocation;
363    }
364
365  PossibleRelocationsTy Result = NoRelocation;
366  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
367    Result = std::max(Result,
368                      cast<Constant>(getOperand(i))->getRelocationInfo());
369
370  return Result;
371}
372
373/// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove
374/// it.  This involves recursively eliminating any dead users of the
375/// constantexpr.
376static bool removeDeadUsersOfConstant(const Constant *C) {
377  if (isa<GlobalValue>(C)) return false; // Cannot remove this
378
379  while (!C->use_empty()) {
380    const Constant *User = dyn_cast<Constant>(C->use_back());
381    if (!User) return false; // Non-constant usage;
382    if (!removeDeadUsersOfConstant(User))
383      return false; // Constant wasn't dead
384  }
385
386  const_cast<Constant*>(C)->destroyConstant();
387  return true;
388}
389
390
391/// removeDeadConstantUsers - If there are any dead constant users dangling
392/// off of this constant, remove them.  This method is useful for clients
393/// that want to check to see if a global is unused, but don't want to deal
394/// with potentially dead constants hanging off of the globals.
395void Constant::removeDeadConstantUsers() const {
396  Value::const_use_iterator I = use_begin(), E = use_end();
397  Value::const_use_iterator LastNonDeadUser = E;
398  while (I != E) {
399    const Constant *User = dyn_cast<Constant>(*I);
400    if (User == 0) {
401      LastNonDeadUser = I;
402      ++I;
403      continue;
404    }
405
406    if (!removeDeadUsersOfConstant(User)) {
407      // If the constant wasn't dead, remember that this was the last live use
408      // and move on to the next constant.
409      LastNonDeadUser = I;
410      ++I;
411      continue;
412    }
413
414    // If the constant was dead, then the iterator is invalidated.
415    if (LastNonDeadUser == E) {
416      I = use_begin();
417      if (I == E) break;
418    } else {
419      I = LastNonDeadUser;
420      ++I;
421    }
422  }
423}
424
425
426
427//===----------------------------------------------------------------------===//
428//                                ConstantInt
429//===----------------------------------------------------------------------===//
430
431void ConstantInt::anchor() { }
432
433ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V)
434  : Constant(Ty, ConstantIntVal, 0, 0), Val(V) {
435  assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
436}
437
438ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
439  LLVMContextImpl *pImpl = Context.pImpl;
440  if (!pImpl->TheTrueVal)
441    pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
442  return pImpl->TheTrueVal;
443}
444
445ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
446  LLVMContextImpl *pImpl = Context.pImpl;
447  if (!pImpl->TheFalseVal)
448    pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
449  return pImpl->TheFalseVal;
450}
451
452Constant *ConstantInt::getTrue(Type *Ty) {
453  VectorType *VTy = dyn_cast<VectorType>(Ty);
454  if (!VTy) {
455    assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1.");
456    return ConstantInt::getTrue(Ty->getContext());
457  }
458  assert(VTy->getElementType()->isIntegerTy(1) &&
459         "True must be vector of i1 or i1.");
460  return ConstantVector::getSplat(VTy->getNumElements(),
461                                  ConstantInt::getTrue(Ty->getContext()));
462}
463
464Constant *ConstantInt::getFalse(Type *Ty) {
465  VectorType *VTy = dyn_cast<VectorType>(Ty);
466  if (!VTy) {
467    assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1.");
468    return ConstantInt::getFalse(Ty->getContext());
469  }
470  assert(VTy->getElementType()->isIntegerTy(1) &&
471         "False must be vector of i1 or i1.");
472  return ConstantVector::getSplat(VTy->getNumElements(),
473                                  ConstantInt::getFalse(Ty->getContext()));
474}
475
476
477// Get a ConstantInt from an APInt. Note that the value stored in the DenseMap
478// as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
479// operator== and operator!= to ensure that the DenseMap doesn't attempt to
480// compare APInt's of different widths, which would violate an APInt class
481// invariant which generates an assertion.
482ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
483  // Get the corresponding integer type for the bit width of the value.
484  IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
485  // get an existing value or the insertion position
486  LLVMContextImpl *pImpl = Context.pImpl;
487  ConstantInt *&Slot = pImpl->IntConstants[DenseMapAPIntKeyInfo::KeyTy(V, ITy)];
488  if (!Slot) Slot = new ConstantInt(ITy, V);
489  return Slot;
490}
491
492Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
493  Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
494
495  // For vectors, broadcast the value.
496  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
497    return ConstantVector::getSplat(VTy->getNumElements(), C);
498
499  return C;
500}
501
502ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V,
503                              bool isSigned) {
504  return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
505}
506
507ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
508  return get(Ty, V, true);
509}
510
511Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
512  return get(Ty, V, true);
513}
514
515Constant *ConstantInt::get(Type *Ty, const APInt& V) {
516  ConstantInt *C = get(Ty->getContext(), V);
517  assert(C->getType() == Ty->getScalarType() &&
518         "ConstantInt type doesn't match the type implied by its value!");
519
520  // For vectors, broadcast the value.
521  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
522    return ConstantVector::getSplat(VTy->getNumElements(), C);
523
524  return C;
525}
526
527ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str,
528                              uint8_t radix) {
529  return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
530}
531
532//===----------------------------------------------------------------------===//
533//                                ConstantFP
534//===----------------------------------------------------------------------===//
535
536static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
537  if (Ty->isHalfTy())
538    return &APFloat::IEEEhalf;
539  if (Ty->isFloatTy())
540    return &APFloat::IEEEsingle;
541  if (Ty->isDoubleTy())
542    return &APFloat::IEEEdouble;
543  if (Ty->isX86_FP80Ty())
544    return &APFloat::x87DoubleExtended;
545  else if (Ty->isFP128Ty())
546    return &APFloat::IEEEquad;
547
548  assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
549  return &APFloat::PPCDoubleDouble;
550}
551
552void ConstantFP::anchor() { }
553
554/// get() - This returns a constant fp for the specified value in the
555/// specified type.  This should only be used for simple constant values like
556/// 2.0/1.0 etc, that are known-valid both as double and as the target format.
557Constant *ConstantFP::get(Type *Ty, double V) {
558  LLVMContext &Context = Ty->getContext();
559
560  APFloat FV(V);
561  bool ignored;
562  FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
563             APFloat::rmNearestTiesToEven, &ignored);
564  Constant *C = get(Context, FV);
565
566  // For vectors, broadcast the value.
567  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
568    return ConstantVector::getSplat(VTy->getNumElements(), C);
569
570  return C;
571}
572
573
574Constant *ConstantFP::get(Type *Ty, StringRef Str) {
575  LLVMContext &Context = Ty->getContext();
576
577  APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
578  Constant *C = get(Context, FV);
579
580  // For vectors, broadcast the value.
581  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
582    return ConstantVector::getSplat(VTy->getNumElements(), C);
583
584  return C;
585}
586
587
588ConstantFP *ConstantFP::getNegativeZero(Type *Ty) {
589  LLVMContext &Context = Ty->getContext();
590  APFloat apf = cast<ConstantFP>(Constant::getNullValue(Ty))->getValueAPF();
591  apf.changeSign();
592  return get(Context, apf);
593}
594
595
596Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
597  Type *ScalarTy = Ty->getScalarType();
598  if (ScalarTy->isFloatingPointTy()) {
599    Constant *C = getNegativeZero(ScalarTy);
600    if (VectorType *VTy = dyn_cast<VectorType>(Ty))
601      return ConstantVector::getSplat(VTy->getNumElements(), C);
602    return C;
603  }
604
605  return Constant::getNullValue(Ty);
606}
607
608
609// ConstantFP accessors.
610ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
611  LLVMContextImpl* pImpl = Context.pImpl;
612
613  ConstantFP *&Slot = pImpl->FPConstants[DenseMapAPFloatKeyInfo::KeyTy(V)];
614
615  if (!Slot) {
616    Type *Ty;
617    if (&V.getSemantics() == &APFloat::IEEEhalf)
618      Ty = Type::getHalfTy(Context);
619    else if (&V.getSemantics() == &APFloat::IEEEsingle)
620      Ty = Type::getFloatTy(Context);
621    else if (&V.getSemantics() == &APFloat::IEEEdouble)
622      Ty = Type::getDoubleTy(Context);
623    else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
624      Ty = Type::getX86_FP80Ty(Context);
625    else if (&V.getSemantics() == &APFloat::IEEEquad)
626      Ty = Type::getFP128Ty(Context);
627    else {
628      assert(&V.getSemantics() == &APFloat::PPCDoubleDouble &&
629             "Unknown FP format");
630      Ty = Type::getPPC_FP128Ty(Context);
631    }
632    Slot = new ConstantFP(Ty, V);
633  }
634
635  return Slot;
636}
637
638ConstantFP *ConstantFP::getInfinity(Type *Ty, bool Negative) {
639  const fltSemantics &Semantics = *TypeToFloatSemantics(Ty);
640  return ConstantFP::get(Ty->getContext(),
641                         APFloat::getInf(Semantics, Negative));
642}
643
644ConstantFP::ConstantFP(Type *Ty, const APFloat& V)
645  : Constant(Ty, ConstantFPVal, 0, 0), Val(V) {
646  assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
647         "FP type Mismatch");
648}
649
650bool ConstantFP::isExactlyValue(const APFloat &V) const {
651  return Val.bitwiseIsEqual(V);
652}
653
654//===----------------------------------------------------------------------===//
655//                   ConstantAggregateZero Implementation
656//===----------------------------------------------------------------------===//
657
658/// getSequentialElement - If this CAZ has array or vector type, return a zero
659/// with the right element type.
660Constant *ConstantAggregateZero::getSequentialElement() const {
661  return Constant::getNullValue(getType()->getSequentialElementType());
662}
663
664/// getStructElement - If this CAZ has struct type, return a zero with the
665/// right element type for the specified element.
666Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
667  return Constant::getNullValue(getType()->getStructElementType(Elt));
668}
669
670/// getElementValue - Return a zero of the right value for the specified GEP
671/// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
672Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
673  if (isa<SequentialType>(getType()))
674    return getSequentialElement();
675  return getStructElement(cast<ConstantInt>(C)->getZExtValue());
676}
677
678/// getElementValue - Return a zero of the right value for the specified GEP
679/// index.
680Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
681  if (isa<SequentialType>(getType()))
682    return getSequentialElement();
683  return getStructElement(Idx);
684}
685
686
687//===----------------------------------------------------------------------===//
688//                         UndefValue Implementation
689//===----------------------------------------------------------------------===//
690
691/// getSequentialElement - If this undef has array or vector type, return an
692/// undef with the right element type.
693UndefValue *UndefValue::getSequentialElement() const {
694  return UndefValue::get(getType()->getSequentialElementType());
695}
696
697/// getStructElement - If this undef has struct type, return a zero with the
698/// right element type for the specified element.
699UndefValue *UndefValue::getStructElement(unsigned Elt) const {
700  return UndefValue::get(getType()->getStructElementType(Elt));
701}
702
703/// getElementValue - Return an undef of the right value for the specified GEP
704/// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
705UndefValue *UndefValue::getElementValue(Constant *C) const {
706  if (isa<SequentialType>(getType()))
707    return getSequentialElement();
708  return getStructElement(cast<ConstantInt>(C)->getZExtValue());
709}
710
711/// getElementValue - Return an undef of the right value for the specified GEP
712/// index.
713UndefValue *UndefValue::getElementValue(unsigned Idx) const {
714  if (isa<SequentialType>(getType()))
715    return getSequentialElement();
716  return getStructElement(Idx);
717}
718
719
720
721//===----------------------------------------------------------------------===//
722//                            ConstantXXX Classes
723//===----------------------------------------------------------------------===//
724
725template <typename ItTy, typename EltTy>
726static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
727  for (; Start != End; ++Start)
728    if (*Start != Elt)
729      return false;
730  return true;
731}
732
733ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
734  : Constant(T, ConstantArrayVal,
735             OperandTraits<ConstantArray>::op_end(this) - V.size(),
736             V.size()) {
737  assert(V.size() == T->getNumElements() &&
738         "Invalid initializer vector for constant array");
739  for (unsigned i = 0, e = V.size(); i != e; ++i)
740    assert(V[i]->getType() == T->getElementType() &&
741           "Initializer for array element doesn't match array element type!");
742  std::copy(V.begin(), V.end(), op_begin());
743}
744
745Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
746  // Empty arrays are canonicalized to ConstantAggregateZero.
747  if (V.empty())
748    return ConstantAggregateZero::get(Ty);
749
750  for (unsigned i = 0, e = V.size(); i != e; ++i) {
751    assert(V[i]->getType() == Ty->getElementType() &&
752           "Wrong type in array element initializer");
753  }
754  LLVMContextImpl *pImpl = Ty->getContext().pImpl;
755
756  // If this is an all-zero array, return a ConstantAggregateZero object.  If
757  // all undef, return an UndefValue, if "all simple", then return a
758  // ConstantDataArray.
759  Constant *C = V[0];
760  if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
761    return UndefValue::get(Ty);
762
763  if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
764    return ConstantAggregateZero::get(Ty);
765
766  // Check to see if all of the elements are ConstantFP or ConstantInt and if
767  // the element type is compatible with ConstantDataVector.  If so, use it.
768  if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
769    // We speculatively build the elements here even if it turns out that there
770    // is a constantexpr or something else weird in the array, since it is so
771    // uncommon for that to happen.
772    if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
773      if (CI->getType()->isIntegerTy(8)) {
774        SmallVector<uint8_t, 16> Elts;
775        for (unsigned i = 0, e = V.size(); i != e; ++i)
776          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
777            Elts.push_back(CI->getZExtValue());
778          else
779            break;
780        if (Elts.size() == V.size())
781          return ConstantDataArray::get(C->getContext(), Elts);
782      } else if (CI->getType()->isIntegerTy(16)) {
783        SmallVector<uint16_t, 16> Elts;
784        for (unsigned i = 0, e = V.size(); i != e; ++i)
785          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
786            Elts.push_back(CI->getZExtValue());
787          else
788            break;
789        if (Elts.size() == V.size())
790          return ConstantDataArray::get(C->getContext(), Elts);
791      } else if (CI->getType()->isIntegerTy(32)) {
792        SmallVector<uint32_t, 16> Elts;
793        for (unsigned i = 0, e = V.size(); i != e; ++i)
794          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
795            Elts.push_back(CI->getZExtValue());
796          else
797            break;
798        if (Elts.size() == V.size())
799          return ConstantDataArray::get(C->getContext(), Elts);
800      } else if (CI->getType()->isIntegerTy(64)) {
801        SmallVector<uint64_t, 16> Elts;
802        for (unsigned i = 0, e = V.size(); i != e; ++i)
803          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
804            Elts.push_back(CI->getZExtValue());
805          else
806            break;
807        if (Elts.size() == V.size())
808          return ConstantDataArray::get(C->getContext(), Elts);
809      }
810    }
811
812    if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
813      if (CFP->getType()->isFloatTy()) {
814        SmallVector<float, 16> Elts;
815        for (unsigned i = 0, e = V.size(); i != e; ++i)
816          if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
817            Elts.push_back(CFP->getValueAPF().convertToFloat());
818          else
819            break;
820        if (Elts.size() == V.size())
821          return ConstantDataArray::get(C->getContext(), Elts);
822      } else if (CFP->getType()->isDoubleTy()) {
823        SmallVector<double, 16> Elts;
824        for (unsigned i = 0, e = V.size(); i != e; ++i)
825          if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
826            Elts.push_back(CFP->getValueAPF().convertToDouble());
827          else
828            break;
829        if (Elts.size() == V.size())
830          return ConstantDataArray::get(C->getContext(), Elts);
831      }
832    }
833  }
834
835  // Otherwise, we really do want to create a ConstantArray.
836  return pImpl->ArrayConstants.getOrCreate(Ty, V);
837}
838
839/// getTypeForElements - Return an anonymous struct type to use for a constant
840/// with the specified set of elements.  The list must not be empty.
841StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
842                                               ArrayRef<Constant*> V,
843                                               bool Packed) {
844  unsigned VecSize = V.size();
845  SmallVector<Type*, 16> EltTypes(VecSize);
846  for (unsigned i = 0; i != VecSize; ++i)
847    EltTypes[i] = V[i]->getType();
848
849  return StructType::get(Context, EltTypes, Packed);
850}
851
852
853StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
854                                               bool Packed) {
855  assert(!V.empty() &&
856         "ConstantStruct::getTypeForElements cannot be called on empty list");
857  return getTypeForElements(V[0]->getContext(), V, Packed);
858}
859
860
861ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
862  : Constant(T, ConstantStructVal,
863             OperandTraits<ConstantStruct>::op_end(this) - V.size(),
864             V.size()) {
865  assert(V.size() == T->getNumElements() &&
866         "Invalid initializer vector for constant structure");
867  for (unsigned i = 0, e = V.size(); i != e; ++i)
868    assert((T->isOpaque() || V[i]->getType() == T->getElementType(i)) &&
869           "Initializer for struct element doesn't match struct element type!");
870  std::copy(V.begin(), V.end(), op_begin());
871}
872
873// ConstantStruct accessors.
874Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
875  assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
876         "Incorrect # elements specified to ConstantStruct::get");
877
878  // Create a ConstantAggregateZero value if all elements are zeros.
879  bool isZero = true;
880  bool isUndef = false;
881
882  if (!V.empty()) {
883    isUndef = isa<UndefValue>(V[0]);
884    isZero = V[0]->isNullValue();
885    if (isUndef || isZero) {
886      for (unsigned i = 0, e = V.size(); i != e; ++i) {
887        if (!V[i]->isNullValue())
888          isZero = false;
889        if (!isa<UndefValue>(V[i]))
890          isUndef = false;
891      }
892    }
893  }
894  if (isZero)
895    return ConstantAggregateZero::get(ST);
896  if (isUndef)
897    return UndefValue::get(ST);
898
899  return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
900}
901
902Constant *ConstantStruct::get(StructType *T, ...) {
903  va_list ap;
904  SmallVector<Constant*, 8> Values;
905  va_start(ap, T);
906  while (Constant *Val = va_arg(ap, llvm::Constant*))
907    Values.push_back(Val);
908  va_end(ap);
909  return get(T, Values);
910}
911
912ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
913  : Constant(T, ConstantVectorVal,
914             OperandTraits<ConstantVector>::op_end(this) - V.size(),
915             V.size()) {
916  for (size_t i = 0, e = V.size(); i != e; i++)
917    assert(V[i]->getType() == T->getElementType() &&
918           "Initializer for vector element doesn't match vector element type!");
919  std::copy(V.begin(), V.end(), op_begin());
920}
921
922// ConstantVector accessors.
923Constant *ConstantVector::get(ArrayRef<Constant*> V) {
924  assert(!V.empty() && "Vectors can't be empty");
925  VectorType *T = VectorType::get(V.front()->getType(), V.size());
926  LLVMContextImpl *pImpl = T->getContext().pImpl;
927
928  // If this is an all-undef or all-zero vector, return a
929  // ConstantAggregateZero or UndefValue.
930  Constant *C = V[0];
931  bool isZero = C->isNullValue();
932  bool isUndef = isa<UndefValue>(C);
933
934  if (isZero || isUndef) {
935    for (unsigned i = 1, e = V.size(); i != e; ++i)
936      if (V[i] != C) {
937        isZero = isUndef = false;
938        break;
939      }
940  }
941
942  if (isZero)
943    return ConstantAggregateZero::get(T);
944  if (isUndef)
945    return UndefValue::get(T);
946
947  // Check to see if all of the elements are ConstantFP or ConstantInt and if
948  // the element type is compatible with ConstantDataVector.  If so, use it.
949  if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
950    // We speculatively build the elements here even if it turns out that there
951    // is a constantexpr or something else weird in the array, since it is so
952    // uncommon for that to happen.
953    if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
954      if (CI->getType()->isIntegerTy(8)) {
955        SmallVector<uint8_t, 16> Elts;
956        for (unsigned i = 0, e = V.size(); i != e; ++i)
957          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
958            Elts.push_back(CI->getZExtValue());
959          else
960            break;
961        if (Elts.size() == V.size())
962          return ConstantDataVector::get(C->getContext(), Elts);
963      } else if (CI->getType()->isIntegerTy(16)) {
964        SmallVector<uint16_t, 16> Elts;
965        for (unsigned i = 0, e = V.size(); i != e; ++i)
966          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
967            Elts.push_back(CI->getZExtValue());
968          else
969            break;
970        if (Elts.size() == V.size())
971          return ConstantDataVector::get(C->getContext(), Elts);
972      } else if (CI->getType()->isIntegerTy(32)) {
973        SmallVector<uint32_t, 16> Elts;
974        for (unsigned i = 0, e = V.size(); i != e; ++i)
975          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
976            Elts.push_back(CI->getZExtValue());
977          else
978            break;
979        if (Elts.size() == V.size())
980          return ConstantDataVector::get(C->getContext(), Elts);
981      } else if (CI->getType()->isIntegerTy(64)) {
982        SmallVector<uint64_t, 16> Elts;
983        for (unsigned i = 0, e = V.size(); i != e; ++i)
984          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
985            Elts.push_back(CI->getZExtValue());
986          else
987            break;
988        if (Elts.size() == V.size())
989          return ConstantDataVector::get(C->getContext(), Elts);
990      }
991    }
992
993    if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
994      if (CFP->getType()->isFloatTy()) {
995        SmallVector<float, 16> Elts;
996        for (unsigned i = 0, e = V.size(); i != e; ++i)
997          if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
998            Elts.push_back(CFP->getValueAPF().convertToFloat());
999          else
1000            break;
1001        if (Elts.size() == V.size())
1002          return ConstantDataVector::get(C->getContext(), Elts);
1003      } else if (CFP->getType()->isDoubleTy()) {
1004        SmallVector<double, 16> Elts;
1005        for (unsigned i = 0, e = V.size(); i != e; ++i)
1006          if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
1007            Elts.push_back(CFP->getValueAPF().convertToDouble());
1008          else
1009            break;
1010        if (Elts.size() == V.size())
1011          return ConstantDataVector::get(C->getContext(), Elts);
1012      }
1013    }
1014  }
1015
1016  // Otherwise, the element type isn't compatible with ConstantDataVector, or
1017  // the operand list constants a ConstantExpr or something else strange.
1018  return pImpl->VectorConstants.getOrCreate(T, V);
1019}
1020
1021Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) {
1022  // If this splat is compatible with ConstantDataVector, use it instead of
1023  // ConstantVector.
1024  if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
1025      ConstantDataSequential::isElementTypeCompatible(V->getType()))
1026    return ConstantDataVector::getSplat(NumElts, V);
1027
1028  SmallVector<Constant*, 32> Elts(NumElts, V);
1029  return get(Elts);
1030}
1031
1032
1033// Utility function for determining if a ConstantExpr is a CastOp or not. This
1034// can't be inline because we don't want to #include Instruction.h into
1035// Constant.h
1036bool ConstantExpr::isCast() const {
1037  return Instruction::isCast(getOpcode());
1038}
1039
1040bool ConstantExpr::isCompare() const {
1041  return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
1042}
1043
1044bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
1045  if (getOpcode() != Instruction::GetElementPtr) return false;
1046
1047  gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
1048  User::const_op_iterator OI = llvm::next(this->op_begin());
1049
1050  // Skip the first index, as it has no static limit.
1051  ++GEPI;
1052  ++OI;
1053
1054  // The remaining indices must be compile-time known integers within the
1055  // bounds of the corresponding notional static array types.
1056  for (; GEPI != E; ++GEPI, ++OI) {
1057    ConstantInt *CI = dyn_cast<ConstantInt>(*OI);
1058    if (!CI) return false;
1059    if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI))
1060      if (CI->getValue().getActiveBits() > 64 ||
1061          CI->getZExtValue() >= ATy->getNumElements())
1062        return false;
1063  }
1064
1065  // All the indices checked out.
1066  return true;
1067}
1068
1069bool ConstantExpr::hasIndices() const {
1070  return getOpcode() == Instruction::ExtractValue ||
1071         getOpcode() == Instruction::InsertValue;
1072}
1073
1074ArrayRef<unsigned> ConstantExpr::getIndices() const {
1075  if (const ExtractValueConstantExpr *EVCE =
1076        dyn_cast<ExtractValueConstantExpr>(this))
1077    return EVCE->Indices;
1078
1079  return cast<InsertValueConstantExpr>(this)->Indices;
1080}
1081
1082unsigned ConstantExpr::getPredicate() const {
1083  assert(isCompare());
1084  return ((const CompareConstantExpr*)this)->predicate;
1085}
1086
1087/// getWithOperandReplaced - Return a constant expression identical to this
1088/// one, but with the specified operand set to the specified value.
1089Constant *
1090ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
1091  assert(Op->getType() == getOperand(OpNo)->getType() &&
1092         "Replacing operand with value of different type!");
1093  if (getOperand(OpNo) == Op)
1094    return const_cast<ConstantExpr*>(this);
1095
1096  SmallVector<Constant*, 8> NewOps;
1097  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1098    NewOps.push_back(i == OpNo ? Op : getOperand(i));
1099
1100  return getWithOperands(NewOps);
1101}
1102
1103/// getWithOperands - This returns the current constant expression with the
1104/// operands replaced with the specified values.  The specified array must
1105/// have the same number of operands as our current one.
1106Constant *ConstantExpr::
1107getWithOperands(ArrayRef<Constant*> Ops, Type *Ty) const {
1108  assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
1109  bool AnyChange = Ty != getType();
1110  for (unsigned i = 0; i != Ops.size(); ++i)
1111    AnyChange |= Ops[i] != getOperand(i);
1112
1113  if (!AnyChange)  // No operands changed, return self.
1114    return const_cast<ConstantExpr*>(this);
1115
1116  switch (getOpcode()) {
1117  case Instruction::Trunc:
1118  case Instruction::ZExt:
1119  case Instruction::SExt:
1120  case Instruction::FPTrunc:
1121  case Instruction::FPExt:
1122  case Instruction::UIToFP:
1123  case Instruction::SIToFP:
1124  case Instruction::FPToUI:
1125  case Instruction::FPToSI:
1126  case Instruction::PtrToInt:
1127  case Instruction::IntToPtr:
1128  case Instruction::BitCast:
1129    return ConstantExpr::getCast(getOpcode(), Ops[0], Ty);
1130  case Instruction::Select:
1131    return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
1132  case Instruction::InsertElement:
1133    return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1134  case Instruction::ExtractElement:
1135    return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1136  case Instruction::InsertValue:
1137    return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices());
1138  case Instruction::ExtractValue:
1139    return ConstantExpr::getExtractValue(Ops[0], getIndices());
1140  case Instruction::ShuffleVector:
1141    return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
1142  case Instruction::GetElementPtr:
1143    return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1),
1144                                      cast<GEPOperator>(this)->isInBounds());
1145  case Instruction::ICmp:
1146  case Instruction::FCmp:
1147    return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]);
1148  default:
1149    assert(getNumOperands() == 2 && "Must be binary operator?");
1150    return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData);
1151  }
1152}
1153
1154
1155//===----------------------------------------------------------------------===//
1156//                      isValueValidForType implementations
1157
1158bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
1159  unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
1160  if (Ty->isIntegerTy(1))
1161    return Val == 0 || Val == 1;
1162  if (NumBits >= 64)
1163    return true; // always true, has to fit in largest type
1164  uint64_t Max = (1ll << NumBits) - 1;
1165  return Val <= Max;
1166}
1167
1168bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
1169  unsigned NumBits = Ty->getIntegerBitWidth();
1170  if (Ty->isIntegerTy(1))
1171    return Val == 0 || Val == 1 || Val == -1;
1172  if (NumBits >= 64)
1173    return true; // always true, has to fit in largest type
1174  int64_t Min = -(1ll << (NumBits-1));
1175  int64_t Max = (1ll << (NumBits-1)) - 1;
1176  return (Val >= Min && Val <= Max);
1177}
1178
1179bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
1180  // convert modifies in place, so make a copy.
1181  APFloat Val2 = APFloat(Val);
1182  bool losesInfo;
1183  switch (Ty->getTypeID()) {
1184  default:
1185    return false;         // These can't be represented as floating point!
1186
1187  // FIXME rounding mode needs to be more flexible
1188  case Type::HalfTyID: {
1189    if (&Val2.getSemantics() == &APFloat::IEEEhalf)
1190      return true;
1191    Val2.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &losesInfo);
1192    return !losesInfo;
1193  }
1194  case Type::FloatTyID: {
1195    if (&Val2.getSemantics() == &APFloat::IEEEsingle)
1196      return true;
1197    Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
1198    return !losesInfo;
1199  }
1200  case Type::DoubleTyID: {
1201    if (&Val2.getSemantics() == &APFloat::IEEEhalf ||
1202        &Val2.getSemantics() == &APFloat::IEEEsingle ||
1203        &Val2.getSemantics() == &APFloat::IEEEdouble)
1204      return true;
1205    Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
1206    return !losesInfo;
1207  }
1208  case Type::X86_FP80TyID:
1209    return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1210           &Val2.getSemantics() == &APFloat::IEEEsingle ||
1211           &Val2.getSemantics() == &APFloat::IEEEdouble ||
1212           &Val2.getSemantics() == &APFloat::x87DoubleExtended;
1213  case Type::FP128TyID:
1214    return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1215           &Val2.getSemantics() == &APFloat::IEEEsingle ||
1216           &Val2.getSemantics() == &APFloat::IEEEdouble ||
1217           &Val2.getSemantics() == &APFloat::IEEEquad;
1218  case Type::PPC_FP128TyID:
1219    return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1220           &Val2.getSemantics() == &APFloat::IEEEsingle ||
1221           &Val2.getSemantics() == &APFloat::IEEEdouble ||
1222           &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
1223  }
1224}
1225
1226
1227//===----------------------------------------------------------------------===//
1228//                      Factory Function Implementation
1229
1230ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
1231  assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
1232         "Cannot create an aggregate zero of non-aggregate type!");
1233
1234  ConstantAggregateZero *&Entry = Ty->getContext().pImpl->CAZConstants[Ty];
1235  if (Entry == 0)
1236    Entry = new ConstantAggregateZero(Ty);
1237
1238  return Entry;
1239}
1240
1241/// destroyConstant - Remove the constant from the constant table.
1242///
1243void ConstantAggregateZero::destroyConstant() {
1244  getContext().pImpl->CAZConstants.erase(getType());
1245  destroyConstantImpl();
1246}
1247
1248/// destroyConstant - Remove the constant from the constant table...
1249///
1250void ConstantArray::destroyConstant() {
1251  getType()->getContext().pImpl->ArrayConstants.remove(this);
1252  destroyConstantImpl();
1253}
1254
1255
1256//---- ConstantStruct::get() implementation...
1257//
1258
1259// destroyConstant - Remove the constant from the constant table...
1260//
1261void ConstantStruct::destroyConstant() {
1262  getType()->getContext().pImpl->StructConstants.remove(this);
1263  destroyConstantImpl();
1264}
1265
1266// destroyConstant - Remove the constant from the constant table...
1267//
1268void ConstantVector::destroyConstant() {
1269  getType()->getContext().pImpl->VectorConstants.remove(this);
1270  destroyConstantImpl();
1271}
1272
1273/// getSplatValue - If this is a splat vector constant, meaning that all of
1274/// the elements have the same value, return that value. Otherwise return 0.
1275Constant *Constant::getSplatValue() const {
1276  assert(this->getType()->isVectorTy() && "Only valid for vectors!");
1277  if (isa<ConstantAggregateZero>(this))
1278    return getNullValue(this->getType()->getVectorElementType());
1279  if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
1280    return CV->getSplatValue();
1281  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
1282    return CV->getSplatValue();
1283  return 0;
1284}
1285
1286/// getSplatValue - If this is a splat constant, where all of the
1287/// elements have the same value, return that value. Otherwise return null.
1288Constant *ConstantVector::getSplatValue() const {
1289  // Check out first element.
1290  Constant *Elt = getOperand(0);
1291  // Then make sure all remaining elements point to the same value.
1292  for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
1293    if (getOperand(I) != Elt)
1294      return 0;
1295  return Elt;
1296}
1297
1298/// If C is a constant integer then return its value, otherwise C must be a
1299/// vector of constant integers, all equal, and the common value is returned.
1300const APInt &Constant::getUniqueInteger() const {
1301  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
1302    return CI->getValue();
1303  assert(this->getSplatValue() && "Doesn't contain a unique integer!");
1304  const Constant *C = this->getAggregateElement(0U);
1305  assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
1306  return cast<ConstantInt>(C)->getValue();
1307}
1308
1309
1310//---- ConstantPointerNull::get() implementation.
1311//
1312
1313ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
1314  ConstantPointerNull *&Entry = Ty->getContext().pImpl->CPNConstants[Ty];
1315  if (Entry == 0)
1316    Entry = new ConstantPointerNull(Ty);
1317
1318  return Entry;
1319}
1320
1321// destroyConstant - Remove the constant from the constant table...
1322//
1323void ConstantPointerNull::destroyConstant() {
1324  getContext().pImpl->CPNConstants.erase(getType());
1325  // Free the constant and any dangling references to it.
1326  destroyConstantImpl();
1327}
1328
1329
1330//---- UndefValue::get() implementation.
1331//
1332
1333UndefValue *UndefValue::get(Type *Ty) {
1334  UndefValue *&Entry = Ty->getContext().pImpl->UVConstants[Ty];
1335  if (Entry == 0)
1336    Entry = new UndefValue(Ty);
1337
1338  return Entry;
1339}
1340
1341// destroyConstant - Remove the constant from the constant table.
1342//
1343void UndefValue::destroyConstant() {
1344  // Free the constant and any dangling references to it.
1345  getContext().pImpl->UVConstants.erase(getType());
1346  destroyConstantImpl();
1347}
1348
1349//---- BlockAddress::get() implementation.
1350//
1351
1352BlockAddress *BlockAddress::get(BasicBlock *BB) {
1353  assert(BB->getParent() != 0 && "Block must have a parent");
1354  return get(BB->getParent(), BB);
1355}
1356
1357BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
1358  BlockAddress *&BA =
1359    F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
1360  if (BA == 0)
1361    BA = new BlockAddress(F, BB);
1362
1363  assert(BA->getFunction() == F && "Basic block moved between functions");
1364  return BA;
1365}
1366
1367BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
1368: Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
1369           &Op<0>(), 2) {
1370  setOperand(0, F);
1371  setOperand(1, BB);
1372  BB->AdjustBlockAddressRefCount(1);
1373}
1374
1375
1376// destroyConstant - Remove the constant from the constant table.
1377//
1378void BlockAddress::destroyConstant() {
1379  getFunction()->getType()->getContext().pImpl
1380    ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
1381  getBasicBlock()->AdjustBlockAddressRefCount(-1);
1382  destroyConstantImpl();
1383}
1384
1385void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) {
1386  // This could be replacing either the Basic Block or the Function.  In either
1387  // case, we have to remove the map entry.
1388  Function *NewF = getFunction();
1389  BasicBlock *NewBB = getBasicBlock();
1390
1391  if (U == &Op<0>())
1392    NewF = cast<Function>(To->stripPointerCasts());
1393  else
1394    NewBB = cast<BasicBlock>(To);
1395
1396  // See if the 'new' entry already exists, if not, just update this in place
1397  // and return early.
1398  BlockAddress *&NewBA =
1399    getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
1400  if (NewBA == 0) {
1401    getBasicBlock()->AdjustBlockAddressRefCount(-1);
1402
1403    // Remove the old entry, this can't cause the map to rehash (just a
1404    // tombstone will get added).
1405    getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
1406                                                            getBasicBlock()));
1407    NewBA = this;
1408    setOperand(0, NewF);
1409    setOperand(1, NewBB);
1410    getBasicBlock()->AdjustBlockAddressRefCount(1);
1411    return;
1412  }
1413
1414  // Otherwise, I do need to replace this with an existing value.
1415  assert(NewBA != this && "I didn't contain From!");
1416
1417  // Everyone using this now uses the replacement.
1418  replaceAllUsesWith(NewBA);
1419
1420  destroyConstant();
1421}
1422
1423//---- ConstantExpr::get() implementations.
1424//
1425
1426/// This is a utility function to handle folding of casts and lookup of the
1427/// cast in the ExprConstants map. It is used by the various get* methods below.
1428static inline Constant *getFoldedCast(
1429  Instruction::CastOps opc, Constant *C, Type *Ty) {
1430  assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1431  // Fold a few common cases
1432  if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
1433    return FC;
1434
1435  LLVMContextImpl *pImpl = Ty->getContext().pImpl;
1436
1437  // Look up the constant in the table first to ensure uniqueness.
1438  ExprMapKeyType Key(opc, C);
1439
1440  return pImpl->ExprConstants.getOrCreate(Ty, Key);
1441}
1442
1443Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty) {
1444  Instruction::CastOps opc = Instruction::CastOps(oc);
1445  assert(Instruction::isCast(opc) && "opcode out of range");
1446  assert(C && Ty && "Null arguments to getCast");
1447  assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
1448
1449  switch (opc) {
1450  default:
1451    llvm_unreachable("Invalid cast opcode");
1452  case Instruction::Trunc:    return getTrunc(C, Ty);
1453  case Instruction::ZExt:     return getZExt(C, Ty);
1454  case Instruction::SExt:     return getSExt(C, Ty);
1455  case Instruction::FPTrunc:  return getFPTrunc(C, Ty);
1456  case Instruction::FPExt:    return getFPExtend(C, Ty);
1457  case Instruction::UIToFP:   return getUIToFP(C, Ty);
1458  case Instruction::SIToFP:   return getSIToFP(C, Ty);
1459  case Instruction::FPToUI:   return getFPToUI(C, Ty);
1460  case Instruction::FPToSI:   return getFPToSI(C, Ty);
1461  case Instruction::PtrToInt: return getPtrToInt(C, Ty);
1462  case Instruction::IntToPtr: return getIntToPtr(C, Ty);
1463  case Instruction::BitCast:  return getBitCast(C, Ty);
1464  }
1465}
1466
1467Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
1468  if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1469    return getBitCast(C, Ty);
1470  return getZExt(C, Ty);
1471}
1472
1473Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
1474  if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1475    return getBitCast(C, Ty);
1476  return getSExt(C, Ty);
1477}
1478
1479Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
1480  if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1481    return getBitCast(C, Ty);
1482  return getTrunc(C, Ty);
1483}
1484
1485Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
1486  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1487  assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
1488          "Invalid cast");
1489
1490  if (Ty->isIntOrIntVectorTy())
1491    return getPtrToInt(S, Ty);
1492  return getBitCast(S, Ty);
1493}
1494
1495Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty,
1496                                       bool isSigned) {
1497  assert(C->getType()->isIntOrIntVectorTy() &&
1498         Ty->isIntOrIntVectorTy() && "Invalid cast");
1499  unsigned SrcBits = C->getType()->getScalarSizeInBits();
1500  unsigned DstBits = Ty->getScalarSizeInBits();
1501  Instruction::CastOps opcode =
1502    (SrcBits == DstBits ? Instruction::BitCast :
1503     (SrcBits > DstBits ? Instruction::Trunc :
1504      (isSigned ? Instruction::SExt : Instruction::ZExt)));
1505  return getCast(opcode, C, Ty);
1506}
1507
1508Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
1509  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1510         "Invalid cast");
1511  unsigned SrcBits = C->getType()->getScalarSizeInBits();
1512  unsigned DstBits = Ty->getScalarSizeInBits();
1513  if (SrcBits == DstBits)
1514    return C; // Avoid a useless cast
1515  Instruction::CastOps opcode =
1516    (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
1517  return getCast(opcode, C, Ty);
1518}
1519
1520Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty) {
1521#ifndef NDEBUG
1522  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1523  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1524#endif
1525  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1526  assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
1527  assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
1528  assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1529         "SrcTy must be larger than DestTy for Trunc!");
1530
1531  return getFoldedCast(Instruction::Trunc, C, Ty);
1532}
1533
1534Constant *ConstantExpr::getSExt(Constant *C, Type *Ty) {
1535#ifndef NDEBUG
1536  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1537  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1538#endif
1539  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1540  assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
1541  assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
1542  assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1543         "SrcTy must be smaller than DestTy for SExt!");
1544
1545  return getFoldedCast(Instruction::SExt, C, Ty);
1546}
1547
1548Constant *ConstantExpr::getZExt(Constant *C, Type *Ty) {
1549#ifndef NDEBUG
1550  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1551  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1552#endif
1553  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1554  assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
1555  assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
1556  assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1557         "SrcTy must be smaller than DestTy for ZExt!");
1558
1559  return getFoldedCast(Instruction::ZExt, C, Ty);
1560}
1561
1562Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty) {
1563#ifndef NDEBUG
1564  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1565  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1566#endif
1567  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1568  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1569         C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1570         "This is an illegal floating point truncation!");
1571  return getFoldedCast(Instruction::FPTrunc, C, Ty);
1572}
1573
1574Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty) {
1575#ifndef NDEBUG
1576  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1577  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1578#endif
1579  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1580  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1581         C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1582         "This is an illegal floating point extension!");
1583  return getFoldedCast(Instruction::FPExt, C, Ty);
1584}
1585
1586Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty) {
1587#ifndef NDEBUG
1588  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1589  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1590#endif
1591  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1592  assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1593         "This is an illegal uint to floating point cast!");
1594  return getFoldedCast(Instruction::UIToFP, C, Ty);
1595}
1596
1597Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty) {
1598#ifndef NDEBUG
1599  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1600  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1601#endif
1602  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1603  assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1604         "This is an illegal sint to floating point cast!");
1605  return getFoldedCast(Instruction::SIToFP, C, Ty);
1606}
1607
1608Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty) {
1609#ifndef NDEBUG
1610  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1611  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1612#endif
1613  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1614  assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1615         "This is an illegal floating point to uint cast!");
1616  return getFoldedCast(Instruction::FPToUI, C, Ty);
1617}
1618
1619Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty) {
1620#ifndef NDEBUG
1621  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1622  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1623#endif
1624  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1625  assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1626         "This is an illegal floating point to sint cast!");
1627  return getFoldedCast(Instruction::FPToSI, C, Ty);
1628}
1629
1630Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy) {
1631  assert(C->getType()->getScalarType()->isPointerTy() &&
1632         "PtrToInt source must be pointer or pointer vector");
1633  assert(DstTy->getScalarType()->isIntegerTy() &&
1634         "PtrToInt destination must be integer or integer vector");
1635  assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1636  if (isa<VectorType>(C->getType()))
1637    assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1638           "Invalid cast between a different number of vector elements");
1639  return getFoldedCast(Instruction::PtrToInt, C, DstTy);
1640}
1641
1642Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy) {
1643  assert(C->getType()->getScalarType()->isIntegerTy() &&
1644         "IntToPtr source must be integer or integer vector");
1645  assert(DstTy->getScalarType()->isPointerTy() &&
1646         "IntToPtr destination must be a pointer or pointer vector");
1647  assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1648  if (isa<VectorType>(C->getType()))
1649    assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1650           "Invalid cast between a different number of vector elements");
1651  return getFoldedCast(Instruction::IntToPtr, C, DstTy);
1652}
1653
1654Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy) {
1655  assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
1656         "Invalid constantexpr bitcast!");
1657
1658  // It is common to ask for a bitcast of a value to its own type, handle this
1659  // speedily.
1660  if (C->getType() == DstTy) return C;
1661
1662  return getFoldedCast(Instruction::BitCast, C, DstTy);
1663}
1664
1665Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
1666                            unsigned Flags) {
1667  // Check the operands for consistency first.
1668  assert(Opcode >= Instruction::BinaryOpsBegin &&
1669         Opcode <  Instruction::BinaryOpsEnd   &&
1670         "Invalid opcode in binary constant expression");
1671  assert(C1->getType() == C2->getType() &&
1672         "Operand types in binary constant expression should match");
1673
1674#ifndef NDEBUG
1675  switch (Opcode) {
1676  case Instruction::Add:
1677  case Instruction::Sub:
1678  case Instruction::Mul:
1679    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1680    assert(C1->getType()->isIntOrIntVectorTy() &&
1681           "Tried to create an integer operation on a non-integer type!");
1682    break;
1683  case Instruction::FAdd:
1684  case Instruction::FSub:
1685  case Instruction::FMul:
1686    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1687    assert(C1->getType()->isFPOrFPVectorTy() &&
1688           "Tried to create a floating-point operation on a "
1689           "non-floating-point type!");
1690    break;
1691  case Instruction::UDiv:
1692  case Instruction::SDiv:
1693    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1694    assert(C1->getType()->isIntOrIntVectorTy() &&
1695           "Tried to create an arithmetic operation on a non-arithmetic type!");
1696    break;
1697  case Instruction::FDiv:
1698    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1699    assert(C1->getType()->isFPOrFPVectorTy() &&
1700           "Tried to create an arithmetic operation on a non-arithmetic type!");
1701    break;
1702  case Instruction::URem:
1703  case Instruction::SRem:
1704    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1705    assert(C1->getType()->isIntOrIntVectorTy() &&
1706           "Tried to create an arithmetic operation on a non-arithmetic type!");
1707    break;
1708  case Instruction::FRem:
1709    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1710    assert(C1->getType()->isFPOrFPVectorTy() &&
1711           "Tried to create an arithmetic operation on a non-arithmetic type!");
1712    break;
1713  case Instruction::And:
1714  case Instruction::Or:
1715  case Instruction::Xor:
1716    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1717    assert(C1->getType()->isIntOrIntVectorTy() &&
1718           "Tried to create a logical operation on a non-integral type!");
1719    break;
1720  case Instruction::Shl:
1721  case Instruction::LShr:
1722  case Instruction::AShr:
1723    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1724    assert(C1->getType()->isIntOrIntVectorTy() &&
1725           "Tried to create a shift operation on a non-integer type!");
1726    break;
1727  default:
1728    break;
1729  }
1730#endif
1731
1732  if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
1733    return FC;          // Fold a few common cases.
1734
1735  Constant *ArgVec[] = { C1, C2 };
1736  ExprMapKeyType Key(Opcode, ArgVec, 0, Flags);
1737
1738  LLVMContextImpl *pImpl = C1->getContext().pImpl;
1739  return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
1740}
1741
1742Constant *ConstantExpr::getSizeOf(Type* Ty) {
1743  // sizeof is implemented as: (i64) gep (Ty*)null, 1
1744  // Note that a non-inbounds gep is used, as null isn't within any object.
1745  Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1746  Constant *GEP = getGetElementPtr(
1747                 Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1748  return getPtrToInt(GEP,
1749                     Type::getInt64Ty(Ty->getContext()));
1750}
1751
1752Constant *ConstantExpr::getAlignOf(Type* Ty) {
1753  // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
1754  // Note that a non-inbounds gep is used, as null isn't within any object.
1755  Type *AligningTy =
1756    StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, NULL);
1757  Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo());
1758  Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
1759  Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1760  Constant *Indices[2] = { Zero, One };
1761  Constant *GEP = getGetElementPtr(NullPtr, Indices);
1762  return getPtrToInt(GEP,
1763                     Type::getInt64Ty(Ty->getContext()));
1764}
1765
1766Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
1767  return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
1768                                           FieldNo));
1769}
1770
1771Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
1772  // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
1773  // Note that a non-inbounds gep is used, as null isn't within any object.
1774  Constant *GEPIdx[] = {
1775    ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
1776    FieldNo
1777  };
1778  Constant *GEP = getGetElementPtr(
1779                Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1780  return getPtrToInt(GEP,
1781                     Type::getInt64Ty(Ty->getContext()));
1782}
1783
1784Constant *ConstantExpr::getCompare(unsigned short Predicate,
1785                                   Constant *C1, Constant *C2) {
1786  assert(C1->getType() == C2->getType() && "Op types should be identical!");
1787
1788  switch (Predicate) {
1789  default: llvm_unreachable("Invalid CmpInst predicate");
1790  case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
1791  case CmpInst::FCMP_OGE:   case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
1792  case CmpInst::FCMP_ONE:   case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
1793  case CmpInst::FCMP_UEQ:   case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
1794  case CmpInst::FCMP_ULT:   case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
1795  case CmpInst::FCMP_TRUE:
1796    return getFCmp(Predicate, C1, C2);
1797
1798  case CmpInst::ICMP_EQ:  case CmpInst::ICMP_NE:  case CmpInst::ICMP_UGT:
1799  case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
1800  case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
1801  case CmpInst::ICMP_SLE:
1802    return getICmp(Predicate, C1, C2);
1803  }
1804}
1805
1806Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2) {
1807  assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
1808
1809  if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
1810    return SC;        // Fold common cases
1811
1812  Constant *ArgVec[] = { C, V1, V2 };
1813  ExprMapKeyType Key(Instruction::Select, ArgVec);
1814
1815  LLVMContextImpl *pImpl = C->getContext().pImpl;
1816  return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
1817}
1818
1819Constant *ConstantExpr::getGetElementPtr(Constant *C, ArrayRef<Value *> Idxs,
1820                                         bool InBounds) {
1821  assert(C->getType()->isPtrOrPtrVectorTy() &&
1822         "Non-pointer type for constant GetElementPtr expression");
1823
1824  if (Constant *FC = ConstantFoldGetElementPtr(C, InBounds, Idxs))
1825    return FC;          // Fold a few common cases.
1826
1827  // Get the result type of the getelementptr!
1828  Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), Idxs);
1829  assert(Ty && "GEP indices invalid!");
1830  unsigned AS = C->getType()->getPointerAddressSpace();
1831  Type *ReqTy = Ty->getPointerTo(AS);
1832  if (VectorType *VecTy = dyn_cast<VectorType>(C->getType()))
1833    ReqTy = VectorType::get(ReqTy, VecTy->getNumElements());
1834
1835  // Look up the constant in the table first to ensure uniqueness
1836  std::vector<Constant*> ArgVec;
1837  ArgVec.reserve(1 + Idxs.size());
1838  ArgVec.push_back(C);
1839  for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
1840    assert(Idxs[i]->getType()->isVectorTy() == ReqTy->isVectorTy() &&
1841           "getelementptr index type missmatch");
1842    assert((!Idxs[i]->getType()->isVectorTy() ||
1843            ReqTy->getVectorNumElements() ==
1844            Idxs[i]->getType()->getVectorNumElements()) &&
1845           "getelementptr index type missmatch");
1846    ArgVec.push_back(cast<Constant>(Idxs[i]));
1847  }
1848  const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
1849                           InBounds ? GEPOperator::IsInBounds : 0);
1850
1851  LLVMContextImpl *pImpl = C->getContext().pImpl;
1852  return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1853}
1854
1855Constant *
1856ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS) {
1857  assert(LHS->getType() == RHS->getType());
1858  assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&
1859         pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
1860
1861  if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
1862    return FC;          // Fold a few common cases...
1863
1864  // Look up the constant in the table first to ensure uniqueness
1865  Constant *ArgVec[] = { LHS, RHS };
1866  // Get the key type with both the opcode and predicate
1867  const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);
1868
1869  Type *ResultTy = Type::getInt1Ty(LHS->getContext());
1870  if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
1871    ResultTy = VectorType::get(ResultTy, VT->getNumElements());
1872
1873  LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1874  return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
1875}
1876
1877Constant *
1878ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, Constant *RHS) {
1879  assert(LHS->getType() == RHS->getType());
1880  assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
1881
1882  if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
1883    return FC;          // Fold a few common cases...
1884
1885  // Look up the constant in the table first to ensure uniqueness
1886  Constant *ArgVec[] = { LHS, RHS };
1887  // Get the key type with both the opcode and predicate
1888  const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);
1889
1890  Type *ResultTy = Type::getInt1Ty(LHS->getContext());
1891  if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
1892    ResultTy = VectorType::get(ResultTy, VT->getNumElements());
1893
1894  LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1895  return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
1896}
1897
1898Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
1899  assert(Val->getType()->isVectorTy() &&
1900         "Tried to create extractelement operation on non-vector type!");
1901  assert(Idx->getType()->isIntegerTy(32) &&
1902         "Extractelement index must be i32 type!");
1903
1904  if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
1905    return FC;          // Fold a few common cases.
1906
1907  // Look up the constant in the table first to ensure uniqueness
1908  Constant *ArgVec[] = { Val, Idx };
1909  const ExprMapKeyType Key(Instruction::ExtractElement, ArgVec);
1910
1911  LLVMContextImpl *pImpl = Val->getContext().pImpl;
1912  Type *ReqTy = Val->getType()->getVectorElementType();
1913  return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1914}
1915
1916Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
1917                                         Constant *Idx) {
1918  assert(Val->getType()->isVectorTy() &&
1919         "Tried to create insertelement operation on non-vector type!");
1920  assert(Elt->getType() == Val->getType()->getVectorElementType() &&
1921         "Insertelement types must match!");
1922  assert(Idx->getType()->isIntegerTy(32) &&
1923         "Insertelement index must be i32 type!");
1924
1925  if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
1926    return FC;          // Fold a few common cases.
1927  // Look up the constant in the table first to ensure uniqueness
1928  Constant *ArgVec[] = { Val, Elt, Idx };
1929  const ExprMapKeyType Key(Instruction::InsertElement, ArgVec);
1930
1931  LLVMContextImpl *pImpl = Val->getContext().pImpl;
1932  return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
1933}
1934
1935Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
1936                                         Constant *Mask) {
1937  assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
1938         "Invalid shuffle vector constant expr operands!");
1939
1940  if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
1941    return FC;          // Fold a few common cases.
1942
1943  unsigned NElts = Mask->getType()->getVectorNumElements();
1944  Type *EltTy = V1->getType()->getVectorElementType();
1945  Type *ShufTy = VectorType::get(EltTy, NElts);
1946
1947  // Look up the constant in the table first to ensure uniqueness
1948  Constant *ArgVec[] = { V1, V2, Mask };
1949  const ExprMapKeyType Key(Instruction::ShuffleVector, ArgVec);
1950
1951  LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
1952  return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
1953}
1954
1955Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
1956                                       ArrayRef<unsigned> Idxs) {
1957  assert(Agg->getType()->isFirstClassType() &&
1958         "Non-first-class type for constant insertvalue expression");
1959
1960  assert(ExtractValueInst::getIndexedType(Agg->getType(),
1961                                          Idxs) == Val->getType() &&
1962         "insertvalue indices invalid!");
1963  Type *ReqTy = Val->getType();
1964
1965  if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs))
1966    return FC;
1967
1968  Constant *ArgVec[] = { Agg, Val };
1969  const ExprMapKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
1970
1971  LLVMContextImpl *pImpl = Agg->getContext().pImpl;
1972  return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1973}
1974
1975Constant *ConstantExpr::getExtractValue(Constant *Agg,
1976                                        ArrayRef<unsigned> Idxs) {
1977  assert(Agg->getType()->isFirstClassType() &&
1978         "Tried to create extractelement operation on non-first-class type!");
1979
1980  Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
1981  (void)ReqTy;
1982  assert(ReqTy && "extractvalue indices invalid!");
1983
1984  assert(Agg->getType()->isFirstClassType() &&
1985         "Non-first-class type for constant extractvalue expression");
1986  if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs))
1987    return FC;
1988
1989  Constant *ArgVec[] = { Agg };
1990  const ExprMapKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
1991
1992  LLVMContextImpl *pImpl = Agg->getContext().pImpl;
1993  return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1994}
1995
1996Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
1997  assert(C->getType()->isIntOrIntVectorTy() &&
1998         "Cannot NEG a nonintegral value!");
1999  return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
2000                C, HasNUW, HasNSW);
2001}
2002
2003Constant *ConstantExpr::getFNeg(Constant *C) {
2004  assert(C->getType()->isFPOrFPVectorTy() &&
2005         "Cannot FNEG a non-floating-point value!");
2006  return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C);
2007}
2008
2009Constant *ConstantExpr::getNot(Constant *C) {
2010  assert(C->getType()->isIntOrIntVectorTy() &&
2011         "Cannot NOT a nonintegral value!");
2012  return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
2013}
2014
2015Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
2016                               bool HasNUW, bool HasNSW) {
2017  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2018                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2019  return get(Instruction::Add, C1, C2, Flags);
2020}
2021
2022Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
2023  return get(Instruction::FAdd, C1, C2);
2024}
2025
2026Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
2027                               bool HasNUW, bool HasNSW) {
2028  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2029                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2030  return get(Instruction::Sub, C1, C2, Flags);
2031}
2032
2033Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
2034  return get(Instruction::FSub, C1, C2);
2035}
2036
2037Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
2038                               bool HasNUW, bool HasNSW) {
2039  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2040                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2041  return get(Instruction::Mul, C1, C2, Flags);
2042}
2043
2044Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
2045  return get(Instruction::FMul, C1, C2);
2046}
2047
2048Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
2049  return get(Instruction::UDiv, C1, C2,
2050             isExact ? PossiblyExactOperator::IsExact : 0);
2051}
2052
2053Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
2054  return get(Instruction::SDiv, C1, C2,
2055             isExact ? PossiblyExactOperator::IsExact : 0);
2056}
2057
2058Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
2059  return get(Instruction::FDiv, C1, C2);
2060}
2061
2062Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
2063  return get(Instruction::URem, C1, C2);
2064}
2065
2066Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
2067  return get(Instruction::SRem, C1, C2);
2068}
2069
2070Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
2071  return get(Instruction::FRem, C1, C2);
2072}
2073
2074Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
2075  return get(Instruction::And, C1, C2);
2076}
2077
2078Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
2079  return get(Instruction::Or, C1, C2);
2080}
2081
2082Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
2083  return get(Instruction::Xor, C1, C2);
2084}
2085
2086Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
2087                               bool HasNUW, bool HasNSW) {
2088  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2089                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2090  return get(Instruction::Shl, C1, C2, Flags);
2091}
2092
2093Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
2094  return get(Instruction::LShr, C1, C2,
2095             isExact ? PossiblyExactOperator::IsExact : 0);
2096}
2097
2098Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
2099  return get(Instruction::AShr, C1, C2,
2100             isExact ? PossiblyExactOperator::IsExact : 0);
2101}
2102
2103/// getBinOpIdentity - Return the identity for the given binary operation,
2104/// i.e. a constant C such that X op C = X and C op X = X for every X.  It
2105/// returns null if the operator doesn't have an identity.
2106Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty) {
2107  switch (Opcode) {
2108  default:
2109    // Doesn't have an identity.
2110    return 0;
2111
2112  case Instruction::Add:
2113  case Instruction::Or:
2114  case Instruction::Xor:
2115    return Constant::getNullValue(Ty);
2116
2117  case Instruction::Mul:
2118    return ConstantInt::get(Ty, 1);
2119
2120  case Instruction::And:
2121    return Constant::getAllOnesValue(Ty);
2122  }
2123}
2124
2125/// getBinOpAbsorber - Return the absorbing element for the given binary
2126/// operation, i.e. a constant C such that X op C = C and C op X = C for
2127/// every X.  For example, this returns zero for integer multiplication.
2128/// It returns null if the operator doesn't have an absorbing element.
2129Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
2130  switch (Opcode) {
2131  default:
2132    // Doesn't have an absorber.
2133    return 0;
2134
2135  case Instruction::Or:
2136    return Constant::getAllOnesValue(Ty);
2137
2138  case Instruction::And:
2139  case Instruction::Mul:
2140    return Constant::getNullValue(Ty);
2141  }
2142}
2143
2144// destroyConstant - Remove the constant from the constant table...
2145//
2146void ConstantExpr::destroyConstant() {
2147  getType()->getContext().pImpl->ExprConstants.remove(this);
2148  destroyConstantImpl();
2149}
2150
2151const char *ConstantExpr::getOpcodeName() const {
2152  return Instruction::getOpcodeName(getOpcode());
2153}
2154
2155
2156
2157GetElementPtrConstantExpr::
2158GetElementPtrConstantExpr(Constant *C, ArrayRef<Constant*> IdxList,
2159                          Type *DestTy)
2160  : ConstantExpr(DestTy, Instruction::GetElementPtr,
2161                 OperandTraits<GetElementPtrConstantExpr>::op_end(this)
2162                 - (IdxList.size()+1), IdxList.size()+1) {
2163  OperandList[0] = C;
2164  for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
2165    OperandList[i+1] = IdxList[i];
2166}
2167
2168//===----------------------------------------------------------------------===//
2169//                       ConstantData* implementations
2170
2171void ConstantDataArray::anchor() {}
2172void ConstantDataVector::anchor() {}
2173
2174/// getElementType - Return the element type of the array/vector.
2175Type *ConstantDataSequential::getElementType() const {
2176  return getType()->getElementType();
2177}
2178
2179StringRef ConstantDataSequential::getRawDataValues() const {
2180  return StringRef(DataElements, getNumElements()*getElementByteSize());
2181}
2182
2183/// isElementTypeCompatible - Return true if a ConstantDataSequential can be
2184/// formed with a vector or array of the specified element type.
2185/// ConstantDataArray only works with normal float and int types that are
2186/// stored densely in memory, not with things like i42 or x86_f80.
2187bool ConstantDataSequential::isElementTypeCompatible(const Type *Ty) {
2188  if (Ty->isFloatTy() || Ty->isDoubleTy()) return true;
2189  if (const IntegerType *IT = dyn_cast<IntegerType>(Ty)) {
2190    switch (IT->getBitWidth()) {
2191    case 8:
2192    case 16:
2193    case 32:
2194    case 64:
2195      return true;
2196    default: break;
2197    }
2198  }
2199  return false;
2200}
2201
2202/// getNumElements - Return the number of elements in the array or vector.
2203unsigned ConstantDataSequential::getNumElements() const {
2204  if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
2205    return AT->getNumElements();
2206  return getType()->getVectorNumElements();
2207}
2208
2209
2210/// getElementByteSize - Return the size in bytes of the elements in the data.
2211uint64_t ConstantDataSequential::getElementByteSize() const {
2212  return getElementType()->getPrimitiveSizeInBits()/8;
2213}
2214
2215/// getElementPointer - Return the start of the specified element.
2216const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
2217  assert(Elt < getNumElements() && "Invalid Elt");
2218  return DataElements+Elt*getElementByteSize();
2219}
2220
2221
2222/// isAllZeros - return true if the array is empty or all zeros.
2223static bool isAllZeros(StringRef Arr) {
2224  for (StringRef::iterator I = Arr.begin(), E = Arr.end(); I != E; ++I)
2225    if (*I != 0)
2226      return false;
2227  return true;
2228}
2229
2230/// getImpl - This is the underlying implementation of all of the
2231/// ConstantDataSequential::get methods.  They all thunk down to here, providing
2232/// the correct element type.  We take the bytes in as a StringRef because
2233/// we *want* an underlying "char*" to avoid TBAA type punning violations.
2234Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
2235  assert(isElementTypeCompatible(Ty->getSequentialElementType()));
2236  // If the elements are all zero or there are no elements, return a CAZ, which
2237  // is more dense and canonical.
2238  if (isAllZeros(Elements))
2239    return ConstantAggregateZero::get(Ty);
2240
2241  // Do a lookup to see if we have already formed one of these.
2242  StringMap<ConstantDataSequential*>::MapEntryTy &Slot =
2243    Ty->getContext().pImpl->CDSConstants.GetOrCreateValue(Elements);
2244
2245  // The bucket can point to a linked list of different CDS's that have the same
2246  // body but different types.  For example, 0,0,0,1 could be a 4 element array
2247  // of i8, or a 1-element array of i32.  They'll both end up in the same
2248  /// StringMap bucket, linked up by their Next pointers.  Walk the list.
2249  ConstantDataSequential **Entry = &Slot.getValue();
2250  for (ConstantDataSequential *Node = *Entry; Node != 0;
2251       Entry = &Node->Next, Node = *Entry)
2252    if (Node->getType() == Ty)
2253      return Node;
2254
2255  // Okay, we didn't get a hit.  Create a node of the right class, link it in,
2256  // and return it.
2257  if (isa<ArrayType>(Ty))
2258    return *Entry = new ConstantDataArray(Ty, Slot.getKeyData());
2259
2260  assert(isa<VectorType>(Ty));
2261  return *Entry = new ConstantDataVector(Ty, Slot.getKeyData());
2262}
2263
2264void ConstantDataSequential::destroyConstant() {
2265  // Remove the constant from the StringMap.
2266  StringMap<ConstantDataSequential*> &CDSConstants =
2267    getType()->getContext().pImpl->CDSConstants;
2268
2269  StringMap<ConstantDataSequential*>::iterator Slot =
2270    CDSConstants.find(getRawDataValues());
2271
2272  assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
2273
2274  ConstantDataSequential **Entry = &Slot->getValue();
2275
2276  // Remove the entry from the hash table.
2277  if ((*Entry)->Next == 0) {
2278    // If there is only one value in the bucket (common case) it must be this
2279    // entry, and removing the entry should remove the bucket completely.
2280    assert((*Entry) == this && "Hash mismatch in ConstantDataSequential");
2281    getContext().pImpl->CDSConstants.erase(Slot);
2282  } else {
2283    // Otherwise, there are multiple entries linked off the bucket, unlink the
2284    // node we care about but keep the bucket around.
2285    for (ConstantDataSequential *Node = *Entry; ;
2286         Entry = &Node->Next, Node = *Entry) {
2287      assert(Node && "Didn't find entry in its uniquing hash table!");
2288      // If we found our entry, unlink it from the list and we're done.
2289      if (Node == this) {
2290        *Entry = Node->Next;
2291        break;
2292      }
2293    }
2294  }
2295
2296  // If we were part of a list, make sure that we don't delete the list that is
2297  // still owned by the uniquing map.
2298  Next = 0;
2299
2300  // Finally, actually delete it.
2301  destroyConstantImpl();
2302}
2303
2304/// get() constructors - Return a constant with array type with an element
2305/// count and element type matching the ArrayRef passed in.  Note that this
2306/// can return a ConstantAggregateZero object.
2307Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint8_t> Elts) {
2308  Type *Ty = ArrayType::get(Type::getInt8Ty(Context), Elts.size());
2309  const char *Data = reinterpret_cast<const char *>(Elts.data());
2310  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2311}
2312Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2313  Type *Ty = ArrayType::get(Type::getInt16Ty(Context), Elts.size());
2314  const char *Data = reinterpret_cast<const char *>(Elts.data());
2315  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2316}
2317Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2318  Type *Ty = ArrayType::get(Type::getInt32Ty(Context), Elts.size());
2319  const char *Data = reinterpret_cast<const char *>(Elts.data());
2320  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2321}
2322Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2323  Type *Ty = ArrayType::get(Type::getInt64Ty(Context), Elts.size());
2324  const char *Data = reinterpret_cast<const char *>(Elts.data());
2325  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2326}
2327Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<float> Elts) {
2328  Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
2329  const char *Data = reinterpret_cast<const char *>(Elts.data());
2330  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2331}
2332Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<double> Elts) {
2333  Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
2334  const char *Data = reinterpret_cast<const char *>(Elts.data());
2335  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2336}
2337
2338/// getString - This method constructs a CDS and initializes it with a text
2339/// string. The default behavior (AddNull==true) causes a null terminator to
2340/// be placed at the end of the array (increasing the length of the string by
2341/// one more than the StringRef would normally indicate.  Pass AddNull=false
2342/// to disable this behavior.
2343Constant *ConstantDataArray::getString(LLVMContext &Context,
2344                                       StringRef Str, bool AddNull) {
2345  if (!AddNull) {
2346    const uint8_t *Data = reinterpret_cast<const uint8_t *>(Str.data());
2347    return get(Context, ArrayRef<uint8_t>(const_cast<uint8_t *>(Data),
2348               Str.size()));
2349  }
2350
2351  SmallVector<uint8_t, 64> ElementVals;
2352  ElementVals.append(Str.begin(), Str.end());
2353  ElementVals.push_back(0);
2354  return get(Context, ElementVals);
2355}
2356
2357/// get() constructors - Return a constant with vector type with an element
2358/// count and element type matching the ArrayRef passed in.  Note that this
2359/// can return a ConstantAggregateZero object.
2360Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
2361  Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size());
2362  const char *Data = reinterpret_cast<const char *>(Elts.data());
2363  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2364}
2365Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2366  Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size());
2367  const char *Data = reinterpret_cast<const char *>(Elts.data());
2368  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2369}
2370Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2371  Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size());
2372  const char *Data = reinterpret_cast<const char *>(Elts.data());
2373  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2374}
2375Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2376  Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size());
2377  const char *Data = reinterpret_cast<const char *>(Elts.data());
2378  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2379}
2380Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
2381  Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
2382  const char *Data = reinterpret_cast<const char *>(Elts.data());
2383  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2384}
2385Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
2386  Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
2387  const char *Data = reinterpret_cast<const char *>(Elts.data());
2388  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2389}
2390
2391Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
2392  assert(isElementTypeCompatible(V->getType()) &&
2393         "Element type not compatible with ConstantData");
2394  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2395    if (CI->getType()->isIntegerTy(8)) {
2396      SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
2397      return get(V->getContext(), Elts);
2398    }
2399    if (CI->getType()->isIntegerTy(16)) {
2400      SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
2401      return get(V->getContext(), Elts);
2402    }
2403    if (CI->getType()->isIntegerTy(32)) {
2404      SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
2405      return get(V->getContext(), Elts);
2406    }
2407    assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
2408    SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
2409    return get(V->getContext(), Elts);
2410  }
2411
2412  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2413    if (CFP->getType()->isFloatTy()) {
2414      SmallVector<float, 16> Elts(NumElts, CFP->getValueAPF().convertToFloat());
2415      return get(V->getContext(), Elts);
2416    }
2417    if (CFP->getType()->isDoubleTy()) {
2418      SmallVector<double, 16> Elts(NumElts,
2419                                   CFP->getValueAPF().convertToDouble());
2420      return get(V->getContext(), Elts);
2421    }
2422  }
2423  return ConstantVector::getSplat(NumElts, V);
2424}
2425
2426
2427/// getElementAsInteger - If this is a sequential container of integers (of
2428/// any size), return the specified element in the low bits of a uint64_t.
2429uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
2430  assert(isa<IntegerType>(getElementType()) &&
2431         "Accessor can only be used when element is an integer");
2432  const char *EltPtr = getElementPointer(Elt);
2433
2434  // The data is stored in host byte order, make sure to cast back to the right
2435  // type to load with the right endianness.
2436  switch (getElementType()->getIntegerBitWidth()) {
2437  default: llvm_unreachable("Invalid bitwidth for CDS");
2438  case 8:
2439    return *const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(EltPtr));
2440  case 16:
2441    return *const_cast<uint16_t *>(reinterpret_cast<const uint16_t *>(EltPtr));
2442  case 32:
2443    return *const_cast<uint32_t *>(reinterpret_cast<const uint32_t *>(EltPtr));
2444  case 64:
2445    return *const_cast<uint64_t *>(reinterpret_cast<const uint64_t *>(EltPtr));
2446  }
2447}
2448
2449/// getElementAsAPFloat - If this is a sequential container of floating point
2450/// type, return the specified element as an APFloat.
2451APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
2452  const char *EltPtr = getElementPointer(Elt);
2453
2454  switch (getElementType()->getTypeID()) {
2455  default:
2456    llvm_unreachable("Accessor can only be used when element is float/double!");
2457  case Type::FloatTyID: {
2458      const float *FloatPrt = reinterpret_cast<const float *>(EltPtr);
2459      return APFloat(*const_cast<float *>(FloatPrt));
2460    }
2461  case Type::DoubleTyID: {
2462      const double *DoublePtr = reinterpret_cast<const double *>(EltPtr);
2463      return APFloat(*const_cast<double *>(DoublePtr));
2464    }
2465  }
2466}
2467
2468/// getElementAsFloat - If this is an sequential container of floats, return
2469/// the specified element as a float.
2470float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
2471  assert(getElementType()->isFloatTy() &&
2472         "Accessor can only be used when element is a 'float'");
2473  const float *EltPtr = reinterpret_cast<const float *>(getElementPointer(Elt));
2474  return *const_cast<float *>(EltPtr);
2475}
2476
2477/// getElementAsDouble - If this is an sequential container of doubles, return
2478/// the specified element as a float.
2479double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
2480  assert(getElementType()->isDoubleTy() &&
2481         "Accessor can only be used when element is a 'float'");
2482  const double *EltPtr =
2483      reinterpret_cast<const double *>(getElementPointer(Elt));
2484  return *const_cast<double *>(EltPtr);
2485}
2486
2487/// getElementAsConstant - Return a Constant for a specified index's element.
2488/// Note that this has to compute a new constant to return, so it isn't as
2489/// efficient as getElementAsInteger/Float/Double.
2490Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
2491  if (getElementType()->isFloatTy() || getElementType()->isDoubleTy())
2492    return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
2493
2494  return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
2495}
2496
2497/// isString - This method returns true if this is an array of i8.
2498bool ConstantDataSequential::isString() const {
2499  return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(8);
2500}
2501
2502/// isCString - This method returns true if the array "isString", ends with a
2503/// nul byte, and does not contains any other nul bytes.
2504bool ConstantDataSequential::isCString() const {
2505  if (!isString())
2506    return false;
2507
2508  StringRef Str = getAsString();
2509
2510  // The last value must be nul.
2511  if (Str.back() != 0) return false;
2512
2513  // Other elements must be non-nul.
2514  return Str.drop_back().find(0) == StringRef::npos;
2515}
2516
2517/// getSplatValue - If this is a splat constant, meaning that all of the
2518/// elements have the same value, return that value. Otherwise return NULL.
2519Constant *ConstantDataVector::getSplatValue() const {
2520  const char *Base = getRawDataValues().data();
2521
2522  // Compare elements 1+ to the 0'th element.
2523  unsigned EltSize = getElementByteSize();
2524  for (unsigned i = 1, e = getNumElements(); i != e; ++i)
2525    if (memcmp(Base, Base+i*EltSize, EltSize))
2526      return 0;
2527
2528  // If they're all the same, return the 0th one as a representative.
2529  return getElementAsConstant(0);
2530}
2531
2532//===----------------------------------------------------------------------===//
2533//                replaceUsesOfWithOnConstant implementations
2534
2535/// replaceUsesOfWithOnConstant - Update this constant array to change uses of
2536/// 'From' to be uses of 'To'.  This must update the uniquing data structures
2537/// etc.
2538///
2539/// Note that we intentionally replace all uses of From with To here.  Consider
2540/// a large array that uses 'From' 1000 times.  By handling this case all here,
2541/// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
2542/// single invocation handles all 1000 uses.  Handling them one at a time would
2543/// work, but would be really slow because it would have to unique each updated
2544/// array instance.
2545///
2546void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
2547                                                Use *U) {
2548  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2549  Constant *ToC = cast<Constant>(To);
2550
2551  LLVMContextImpl *pImpl = getType()->getContext().pImpl;
2552
2553  SmallVector<Constant*, 8> Values;
2554  LLVMContextImpl::ArrayConstantsTy::LookupKey Lookup;
2555  Lookup.first = cast<ArrayType>(getType());
2556  Values.reserve(getNumOperands());  // Build replacement array.
2557
2558  // Fill values with the modified operands of the constant array.  Also,
2559  // compute whether this turns into an all-zeros array.
2560  unsigned NumUpdated = 0;
2561
2562  // Keep track of whether all the values in the array are "ToC".
2563  bool AllSame = true;
2564  for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2565    Constant *Val = cast<Constant>(O->get());
2566    if (Val == From) {
2567      Val = ToC;
2568      ++NumUpdated;
2569    }
2570    Values.push_back(Val);
2571    AllSame &= Val == ToC;
2572  }
2573
2574  Constant *Replacement = 0;
2575  if (AllSame && ToC->isNullValue()) {
2576    Replacement = ConstantAggregateZero::get(getType());
2577  } else if (AllSame && isa<UndefValue>(ToC)) {
2578    Replacement = UndefValue::get(getType());
2579  } else {
2580    // Check to see if we have this array type already.
2581    Lookup.second = makeArrayRef(Values);
2582    LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I =
2583      pImpl->ArrayConstants.find(Lookup);
2584
2585    if (I != pImpl->ArrayConstants.map_end()) {
2586      Replacement = I->first;
2587    } else {
2588      // Okay, the new shape doesn't exist in the system yet.  Instead of
2589      // creating a new constant array, inserting it, replaceallusesof'ing the
2590      // old with the new, then deleting the old... just update the current one
2591      // in place!
2592      pImpl->ArrayConstants.remove(this);
2593
2594      // Update to the new value.  Optimize for the case when we have a single
2595      // operand that we're changing, but handle bulk updates efficiently.
2596      if (NumUpdated == 1) {
2597        unsigned OperandToUpdate = U - OperandList;
2598        assert(getOperand(OperandToUpdate) == From &&
2599               "ReplaceAllUsesWith broken!");
2600        setOperand(OperandToUpdate, ToC);
2601      } else {
2602        for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2603          if (getOperand(i) == From)
2604            setOperand(i, ToC);
2605      }
2606      pImpl->ArrayConstants.insert(this);
2607      return;
2608    }
2609  }
2610
2611  // Otherwise, I do need to replace this with an existing value.
2612  assert(Replacement != this && "I didn't contain From!");
2613
2614  // Everyone using this now uses the replacement.
2615  replaceAllUsesWith(Replacement);
2616
2617  // Delete the old constant!
2618  destroyConstant();
2619}
2620
2621void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
2622                                                 Use *U) {
2623  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2624  Constant *ToC = cast<Constant>(To);
2625
2626  unsigned OperandToUpdate = U-OperandList;
2627  assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
2628
2629  SmallVector<Constant*, 8> Values;
2630  LLVMContextImpl::StructConstantsTy::LookupKey Lookup;
2631  Lookup.first = cast<StructType>(getType());
2632  Values.reserve(getNumOperands());  // Build replacement struct.
2633
2634  // Fill values with the modified operands of the constant struct.  Also,
2635  // compute whether this turns into an all-zeros struct.
2636  bool isAllZeros = false;
2637  bool isAllUndef = false;
2638  if (ToC->isNullValue()) {
2639    isAllZeros = true;
2640    for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2641      Constant *Val = cast<Constant>(O->get());
2642      Values.push_back(Val);
2643      if (isAllZeros) isAllZeros = Val->isNullValue();
2644    }
2645  } else if (isa<UndefValue>(ToC)) {
2646    isAllUndef = true;
2647    for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2648      Constant *Val = cast<Constant>(O->get());
2649      Values.push_back(Val);
2650      if (isAllUndef) isAllUndef = isa<UndefValue>(Val);
2651    }
2652  } else {
2653    for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O)
2654      Values.push_back(cast<Constant>(O->get()));
2655  }
2656  Values[OperandToUpdate] = ToC;
2657
2658  LLVMContextImpl *pImpl = getContext().pImpl;
2659
2660  Constant *Replacement = 0;
2661  if (isAllZeros) {
2662    Replacement = ConstantAggregateZero::get(getType());
2663  } else if (isAllUndef) {
2664    Replacement = UndefValue::get(getType());
2665  } else {
2666    // Check to see if we have this struct type already.
2667    Lookup.second = makeArrayRef(Values);
2668    LLVMContextImpl::StructConstantsTy::MapTy::iterator I =
2669      pImpl->StructConstants.find(Lookup);
2670
2671    if (I != pImpl->StructConstants.map_end()) {
2672      Replacement = I->first;
2673    } else {
2674      // Okay, the new shape doesn't exist in the system yet.  Instead of
2675      // creating a new constant struct, inserting it, replaceallusesof'ing the
2676      // old with the new, then deleting the old... just update the current one
2677      // in place!
2678      pImpl->StructConstants.remove(this);
2679
2680      // Update to the new value.
2681      setOperand(OperandToUpdate, ToC);
2682      pImpl->StructConstants.insert(this);
2683      return;
2684    }
2685  }
2686
2687  assert(Replacement != this && "I didn't contain From!");
2688
2689  // Everyone using this now uses the replacement.
2690  replaceAllUsesWith(Replacement);
2691
2692  // Delete the old constant!
2693  destroyConstant();
2694}
2695
2696void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
2697                                                 Use *U) {
2698  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2699
2700  SmallVector<Constant*, 8> Values;
2701  Values.reserve(getNumOperands());  // Build replacement array...
2702  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2703    Constant *Val = getOperand(i);
2704    if (Val == From) Val = cast<Constant>(To);
2705    Values.push_back(Val);
2706  }
2707
2708  Constant *Replacement = get(Values);
2709  assert(Replacement != this && "I didn't contain From!");
2710
2711  // Everyone using this now uses the replacement.
2712  replaceAllUsesWith(Replacement);
2713
2714  // Delete the old constant!
2715  destroyConstant();
2716}
2717
2718void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
2719                                               Use *U) {
2720  assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
2721  Constant *To = cast<Constant>(ToV);
2722
2723  SmallVector<Constant*, 8> NewOps;
2724  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2725    Constant *Op = getOperand(i);
2726    NewOps.push_back(Op == From ? To : Op);
2727  }
2728
2729  Constant *Replacement = getWithOperands(NewOps);
2730  assert(Replacement != this && "I didn't contain From!");
2731
2732  // Everyone using this now uses the replacement.
2733  replaceAllUsesWith(Replacement);
2734
2735  // Delete the old constant!
2736  destroyConstant();
2737}
2738
2739Instruction *ConstantExpr::getAsInstruction() {
2740  SmallVector<Value*,4> ValueOperands;
2741  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2742    ValueOperands.push_back(cast<Value>(I));
2743
2744  ArrayRef<Value*> Ops(ValueOperands);
2745
2746  switch (getOpcode()) {
2747  case Instruction::Trunc:
2748  case Instruction::ZExt:
2749  case Instruction::SExt:
2750  case Instruction::FPTrunc:
2751  case Instruction::FPExt:
2752  case Instruction::UIToFP:
2753  case Instruction::SIToFP:
2754  case Instruction::FPToUI:
2755  case Instruction::FPToSI:
2756  case Instruction::PtrToInt:
2757  case Instruction::IntToPtr:
2758  case Instruction::BitCast:
2759    return CastInst::Create((Instruction::CastOps)getOpcode(),
2760                            Ops[0], getType());
2761  case Instruction::Select:
2762    return SelectInst::Create(Ops[0], Ops[1], Ops[2]);
2763  case Instruction::InsertElement:
2764    return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]);
2765  case Instruction::ExtractElement:
2766    return ExtractElementInst::Create(Ops[0], Ops[1]);
2767  case Instruction::InsertValue:
2768    return InsertValueInst::Create(Ops[0], Ops[1], getIndices());
2769  case Instruction::ExtractValue:
2770    return ExtractValueInst::Create(Ops[0], getIndices());
2771  case Instruction::ShuffleVector:
2772    return new ShuffleVectorInst(Ops[0], Ops[1], Ops[2]);
2773
2774  case Instruction::GetElementPtr:
2775    if (cast<GEPOperator>(this)->isInBounds())
2776      return GetElementPtrInst::CreateInBounds(Ops[0], Ops.slice(1));
2777    else
2778      return GetElementPtrInst::Create(Ops[0], Ops.slice(1));
2779
2780  case Instruction::ICmp:
2781  case Instruction::FCmp:
2782    return CmpInst::Create((Instruction::OtherOps)getOpcode(),
2783                           getPredicate(), Ops[0], Ops[1]);
2784
2785  default:
2786    assert(getNumOperands() == 2 && "Must be binary operator?");
2787    BinaryOperator *BO =
2788      BinaryOperator::Create((Instruction::BinaryOps)getOpcode(),
2789                             Ops[0], Ops[1]);
2790    if (isa<OverflowingBinaryOperator>(BO)) {
2791      BO->setHasNoUnsignedWrap(SubclassOptionalData &
2792                               OverflowingBinaryOperator::NoUnsignedWrap);
2793      BO->setHasNoSignedWrap(SubclassOptionalData &
2794                             OverflowingBinaryOperator::NoSignedWrap);
2795    }
2796    if (isa<PossiblyExactOperator>(BO))
2797      BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact);
2798    return BO;
2799  }
2800}
2801