1//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file defines the pass which converts floating point instructions from 11// pseudo registers into register stack instructions. This pass uses live 12// variable information to indicate where the FPn registers are used and their 13// lifetimes. 14// 15// The x87 hardware tracks liveness of the stack registers, so it is necessary 16// to implement exact liveness tracking between basic blocks. The CFG edges are 17// partitioned into bundles where the same FP registers must be live in 18// identical stack positions. Instructions are inserted at the end of each basic 19// block to rearrange the live registers to match the outgoing bundle. 20// 21// This approach avoids splitting critical edges at the potential cost of more 22// live register shuffling instructions when critical edges are present. 23// 24//===----------------------------------------------------------------------===// 25 26#define DEBUG_TYPE "x86-codegen" 27#include "X86.h" 28#include "X86InstrInfo.h" 29#include "llvm/ADT/DepthFirstIterator.h" 30#include "llvm/ADT/STLExtras.h" 31#include "llvm/ADT/SmallPtrSet.h" 32#include "llvm/ADT/SmallVector.h" 33#include "llvm/ADT/Statistic.h" 34#include "llvm/CodeGen/EdgeBundles.h" 35#include "llvm/CodeGen/MachineFunctionPass.h" 36#include "llvm/CodeGen/MachineInstrBuilder.h" 37#include "llvm/CodeGen/MachineRegisterInfo.h" 38#include "llvm/CodeGen/Passes.h" 39#include "llvm/IR/InlineAsm.h" 40#include "llvm/Support/Debug.h" 41#include "llvm/Support/ErrorHandling.h" 42#include "llvm/Support/raw_ostream.h" 43#include "llvm/Target/TargetInstrInfo.h" 44#include "llvm/Target/TargetMachine.h" 45#include <algorithm> 46using namespace llvm; 47 48STATISTIC(NumFXCH, "Number of fxch instructions inserted"); 49STATISTIC(NumFP , "Number of floating point instructions"); 50 51namespace { 52 struct FPS : public MachineFunctionPass { 53 static char ID; 54 FPS() : MachineFunctionPass(ID) { 55 initializeEdgeBundlesPass(*PassRegistry::getPassRegistry()); 56 // This is really only to keep valgrind quiet. 57 // The logic in isLive() is too much for it. 58 memset(Stack, 0, sizeof(Stack)); 59 memset(RegMap, 0, sizeof(RegMap)); 60 } 61 62 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 63 AU.setPreservesCFG(); 64 AU.addRequired<EdgeBundles>(); 65 AU.addPreservedID(MachineLoopInfoID); 66 AU.addPreservedID(MachineDominatorsID); 67 MachineFunctionPass::getAnalysisUsage(AU); 68 } 69 70 virtual bool runOnMachineFunction(MachineFunction &MF); 71 72 virtual const char *getPassName() const { return "X86 FP Stackifier"; } 73 74 private: 75 const TargetInstrInfo *TII; // Machine instruction info. 76 77 // Two CFG edges are related if they leave the same block, or enter the same 78 // block. The transitive closure of an edge under this relation is a 79 // LiveBundle. It represents a set of CFG edges where the live FP stack 80 // registers must be allocated identically in the x87 stack. 81 // 82 // A LiveBundle is usually all the edges leaving a block, or all the edges 83 // entering a block, but it can contain more edges if critical edges are 84 // present. 85 // 86 // The set of live FP registers in a LiveBundle is calculated by bundleCFG, 87 // but the exact mapping of FP registers to stack slots is fixed later. 88 struct LiveBundle { 89 // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c. 90 unsigned Mask; 91 92 // Number of pre-assigned live registers in FixStack. This is 0 when the 93 // stack order has not yet been fixed. 94 unsigned FixCount; 95 96 // Assigned stack order for live-in registers. 97 // FixStack[i] == getStackEntry(i) for all i < FixCount. 98 unsigned char FixStack[8]; 99 100 LiveBundle() : Mask(0), FixCount(0) {} 101 102 // Have the live registers been assigned a stack order yet? 103 bool isFixed() const { return !Mask || FixCount; } 104 }; 105 106 // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges 107 // with no live FP registers. 108 SmallVector<LiveBundle, 8> LiveBundles; 109 110 // The edge bundle analysis provides indices into the LiveBundles vector. 111 EdgeBundles *Bundles; 112 113 // Return a bitmask of FP registers in block's live-in list. 114 static unsigned calcLiveInMask(MachineBasicBlock *MBB) { 115 unsigned Mask = 0; 116 for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(), 117 E = MBB->livein_end(); I != E; ++I) { 118 unsigned Reg = *I; 119 if (Reg < X86::FP0 || Reg > X86::FP6) 120 continue; 121 Mask |= 1 << (Reg - X86::FP0); 122 } 123 return Mask; 124 } 125 126 // Partition all the CFG edges into LiveBundles. 127 void bundleCFG(MachineFunction &MF); 128 129 MachineBasicBlock *MBB; // Current basic block 130 131 // The hardware keeps track of how many FP registers are live, so we have 132 // to model that exactly. Usually, each live register corresponds to an 133 // FP<n> register, but when dealing with calls, returns, and inline 134 // assembly, it is sometimes necessary to have live scratch registers. 135 unsigned Stack[8]; // FP<n> Registers in each stack slot... 136 unsigned StackTop; // The current top of the FP stack. 137 138 enum { 139 NumFPRegs = 16 // Including scratch pseudo-registers. 140 }; 141 142 // For each live FP<n> register, point to its Stack[] entry. 143 // The first entries correspond to FP0-FP6, the rest are scratch registers 144 // used when we need slightly different live registers than what the 145 // register allocator thinks. 146 unsigned RegMap[NumFPRegs]; 147 148 // Pending fixed registers - Inline assembly needs FP registers to appear 149 // in fixed stack slot positions. This is handled by copying FP registers 150 // to ST registers before the instruction, and copying back after the 151 // instruction. 152 // 153 // This is modeled with pending ST registers. NumPendingSTs is the number 154 // of ST registers (ST0-STn) we are tracking. PendingST[n] points to an FP 155 // register that holds the ST value. The ST registers are not moved into 156 // place until immediately before the instruction that needs them. 157 // 158 // It can happen that we need an ST register to be live when no FP register 159 // holds the value: 160 // 161 // %ST0 = COPY %FP4<kill> 162 // 163 // When that happens, we allocate a scratch FP register to hold the ST 164 // value. That means every register in PendingST must be live. 165 166 unsigned NumPendingSTs; 167 unsigned char PendingST[8]; 168 169 // Set up our stack model to match the incoming registers to MBB. 170 void setupBlockStack(); 171 172 // Shuffle live registers to match the expectations of successor blocks. 173 void finishBlockStack(); 174 175#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 176 void dumpStack() const { 177 dbgs() << "Stack contents:"; 178 for (unsigned i = 0; i != StackTop; ++i) { 179 dbgs() << " FP" << Stack[i]; 180 assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!"); 181 } 182 for (unsigned i = 0; i != NumPendingSTs; ++i) 183 dbgs() << ", ST" << i << " in FP" << unsigned(PendingST[i]); 184 dbgs() << "\n"; 185 } 186#endif 187 188 /// getSlot - Return the stack slot number a particular register number is 189 /// in. 190 unsigned getSlot(unsigned RegNo) const { 191 assert(RegNo < NumFPRegs && "Regno out of range!"); 192 return RegMap[RegNo]; 193 } 194 195 /// isLive - Is RegNo currently live in the stack? 196 bool isLive(unsigned RegNo) const { 197 unsigned Slot = getSlot(RegNo); 198 return Slot < StackTop && Stack[Slot] == RegNo; 199 } 200 201 /// getScratchReg - Return an FP register that is not currently in use. 202 unsigned getScratchReg() const { 203 for (int i = NumFPRegs - 1; i >= 8; --i) 204 if (!isLive(i)) 205 return i; 206 llvm_unreachable("Ran out of scratch FP registers"); 207 } 208 209 /// isScratchReg - Returns trus if RegNo is a scratch FP register. 210 static bool isScratchReg(unsigned RegNo) { 211 return RegNo > 8 && RegNo < NumFPRegs; 212 } 213 214 /// getStackEntry - Return the X86::FP<n> register in register ST(i). 215 unsigned getStackEntry(unsigned STi) const { 216 if (STi >= StackTop) 217 report_fatal_error("Access past stack top!"); 218 return Stack[StackTop-1-STi]; 219 } 220 221 /// getSTReg - Return the X86::ST(i) register which contains the specified 222 /// FP<RegNo> register. 223 unsigned getSTReg(unsigned RegNo) const { 224 return StackTop - 1 - getSlot(RegNo) + X86::ST0; 225 } 226 227 // pushReg - Push the specified FP<n> register onto the stack. 228 void pushReg(unsigned Reg) { 229 assert(Reg < NumFPRegs && "Register number out of range!"); 230 if (StackTop >= 8) 231 report_fatal_error("Stack overflow!"); 232 Stack[StackTop] = Reg; 233 RegMap[Reg] = StackTop++; 234 } 235 236 bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; } 237 void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) { 238 DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc(); 239 if (isAtTop(RegNo)) return; 240 241 unsigned STReg = getSTReg(RegNo); 242 unsigned RegOnTop = getStackEntry(0); 243 244 // Swap the slots the regs are in. 245 std::swap(RegMap[RegNo], RegMap[RegOnTop]); 246 247 // Swap stack slot contents. 248 if (RegMap[RegOnTop] >= StackTop) 249 report_fatal_error("Access past stack top!"); 250 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]); 251 252 // Emit an fxch to update the runtime processors version of the state. 253 BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg); 254 ++NumFXCH; 255 } 256 257 void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) { 258 DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc(); 259 unsigned STReg = getSTReg(RegNo); 260 pushReg(AsReg); // New register on top of stack 261 262 BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg); 263 } 264 265 /// duplicatePendingSTBeforeKill - The instruction at I is about to kill 266 /// RegNo. If any PendingST registers still need the RegNo value, duplicate 267 /// them to new scratch registers. 268 void duplicatePendingSTBeforeKill(unsigned RegNo, MachineInstr *I) { 269 for (unsigned i = 0; i != NumPendingSTs; ++i) { 270 if (PendingST[i] != RegNo) 271 continue; 272 unsigned SR = getScratchReg(); 273 DEBUG(dbgs() << "Duplicating pending ST" << i 274 << " in FP" << RegNo << " to FP" << SR << '\n'); 275 duplicateToTop(RegNo, SR, I); 276 PendingST[i] = SR; 277 } 278 } 279 280 /// popStackAfter - Pop the current value off of the top of the FP stack 281 /// after the specified instruction. 282 void popStackAfter(MachineBasicBlock::iterator &I); 283 284 /// freeStackSlotAfter - Free the specified register from the register 285 /// stack, so that it is no longer in a register. If the register is 286 /// currently at the top of the stack, we just pop the current instruction, 287 /// otherwise we store the current top-of-stack into the specified slot, 288 /// then pop the top of stack. 289 void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg); 290 291 /// freeStackSlotBefore - Just the pop, no folding. Return the inserted 292 /// instruction. 293 MachineBasicBlock::iterator 294 freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo); 295 296 /// Adjust the live registers to be the set in Mask. 297 void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I); 298 299 /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is 300 /// st(0), FP reg FixStack[1] is st(1) etc. 301 void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount, 302 MachineBasicBlock::iterator I); 303 304 bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB); 305 306 void handleZeroArgFP(MachineBasicBlock::iterator &I); 307 void handleOneArgFP(MachineBasicBlock::iterator &I); 308 void handleOneArgFPRW(MachineBasicBlock::iterator &I); 309 void handleTwoArgFP(MachineBasicBlock::iterator &I); 310 void handleCompareFP(MachineBasicBlock::iterator &I); 311 void handleCondMovFP(MachineBasicBlock::iterator &I); 312 void handleSpecialFP(MachineBasicBlock::iterator &I); 313 314 // Check if a COPY instruction is using FP registers. 315 static bool isFPCopy(MachineInstr *MI) { 316 unsigned DstReg = MI->getOperand(0).getReg(); 317 unsigned SrcReg = MI->getOperand(1).getReg(); 318 319 return X86::RFP80RegClass.contains(DstReg) || 320 X86::RFP80RegClass.contains(SrcReg); 321 } 322 }; 323 char FPS::ID = 0; 324} 325 326FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); } 327 328/// getFPReg - Return the X86::FPx register number for the specified operand. 329/// For example, this returns 3 for X86::FP3. 330static unsigned getFPReg(const MachineOperand &MO) { 331 assert(MO.isReg() && "Expected an FP register!"); 332 unsigned Reg = MO.getReg(); 333 assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!"); 334 return Reg - X86::FP0; 335} 336 337/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP 338/// register references into FP stack references. 339/// 340bool FPS::runOnMachineFunction(MachineFunction &MF) { 341 // We only need to run this pass if there are any FP registers used in this 342 // function. If it is all integer, there is nothing for us to do! 343 bool FPIsUsed = false; 344 345 assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!"); 346 for (unsigned i = 0; i <= 6; ++i) 347 if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) { 348 FPIsUsed = true; 349 break; 350 } 351 352 // Early exit. 353 if (!FPIsUsed) return false; 354 355 Bundles = &getAnalysis<EdgeBundles>(); 356 TII = MF.getTarget().getInstrInfo(); 357 358 // Prepare cross-MBB liveness. 359 bundleCFG(MF); 360 361 StackTop = 0; 362 363 // Process the function in depth first order so that we process at least one 364 // of the predecessors for every reachable block in the function. 365 SmallPtrSet<MachineBasicBlock*, 8> Processed; 366 MachineBasicBlock *Entry = MF.begin(); 367 368 bool Changed = false; 369 for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> > 370 I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed); 371 I != E; ++I) 372 Changed |= processBasicBlock(MF, **I); 373 374 // Process any unreachable blocks in arbitrary order now. 375 if (MF.size() != Processed.size()) 376 for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB) 377 if (Processed.insert(BB)) 378 Changed |= processBasicBlock(MF, *BB); 379 380 LiveBundles.clear(); 381 382 return Changed; 383} 384 385/// bundleCFG - Scan all the basic blocks to determine consistent live-in and 386/// live-out sets for the FP registers. Consistent means that the set of 387/// registers live-out from a block is identical to the live-in set of all 388/// successors. This is not enforced by the normal live-in lists since 389/// registers may be implicitly defined, or not used by all successors. 390void FPS::bundleCFG(MachineFunction &MF) { 391 assert(LiveBundles.empty() && "Stale data in LiveBundles"); 392 LiveBundles.resize(Bundles->getNumBundles()); 393 394 // Gather the actual live-in masks for all MBBs. 395 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) { 396 MachineBasicBlock *MBB = I; 397 const unsigned Mask = calcLiveInMask(MBB); 398 if (!Mask) 399 continue; 400 // Update MBB ingoing bundle mask. 401 LiveBundles[Bundles->getBundle(MBB->getNumber(), false)].Mask |= Mask; 402 } 403} 404 405/// processBasicBlock - Loop over all of the instructions in the basic block, 406/// transforming FP instructions into their stack form. 407/// 408bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) { 409 bool Changed = false; 410 MBB = &BB; 411 NumPendingSTs = 0; 412 413 setupBlockStack(); 414 415 for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) { 416 MachineInstr *MI = I; 417 uint64_t Flags = MI->getDesc().TSFlags; 418 419 unsigned FPInstClass = Flags & X86II::FPTypeMask; 420 if (MI->isInlineAsm()) 421 FPInstClass = X86II::SpecialFP; 422 423 if (MI->isCopy() && isFPCopy(MI)) 424 FPInstClass = X86II::SpecialFP; 425 426 if (MI->isImplicitDef() && 427 X86::RFP80RegClass.contains(MI->getOperand(0).getReg())) 428 FPInstClass = X86II::SpecialFP; 429 430 if (FPInstClass == X86II::NotFP) 431 continue; // Efficiently ignore non-fp insts! 432 433 MachineInstr *PrevMI = 0; 434 if (I != BB.begin()) 435 PrevMI = prior(I); 436 437 ++NumFP; // Keep track of # of pseudo instrs 438 DEBUG(dbgs() << "\nFPInst:\t" << *MI); 439 440 // Get dead variables list now because the MI pointer may be deleted as part 441 // of processing! 442 SmallVector<unsigned, 8> DeadRegs; 443 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 444 const MachineOperand &MO = MI->getOperand(i); 445 if (MO.isReg() && MO.isDead()) 446 DeadRegs.push_back(MO.getReg()); 447 } 448 449 switch (FPInstClass) { 450 case X86II::ZeroArgFP: handleZeroArgFP(I); break; 451 case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0) 452 case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0)) 453 case X86II::TwoArgFP: handleTwoArgFP(I); break; 454 case X86II::CompareFP: handleCompareFP(I); break; 455 case X86II::CondMovFP: handleCondMovFP(I); break; 456 case X86II::SpecialFP: handleSpecialFP(I); break; 457 default: llvm_unreachable("Unknown FP Type!"); 458 } 459 460 // Check to see if any of the values defined by this instruction are dead 461 // after definition. If so, pop them. 462 for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) { 463 unsigned Reg = DeadRegs[i]; 464 if (Reg >= X86::FP0 && Reg <= X86::FP6) { 465 DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n"); 466 freeStackSlotAfter(I, Reg-X86::FP0); 467 } 468 } 469 470 // Print out all of the instructions expanded to if -debug 471 DEBUG( 472 MachineBasicBlock::iterator PrevI(PrevMI); 473 if (I == PrevI) { 474 dbgs() << "Just deleted pseudo instruction\n"; 475 } else { 476 MachineBasicBlock::iterator Start = I; 477 // Rewind to first instruction newly inserted. 478 while (Start != BB.begin() && prior(Start) != PrevI) --Start; 479 dbgs() << "Inserted instructions:\n\t"; 480 Start->print(dbgs(), &MF.getTarget()); 481 while (++Start != llvm::next(I)) {} 482 } 483 dumpStack(); 484 ); 485 (void)PrevMI; 486 487 Changed = true; 488 } 489 490 finishBlockStack(); 491 492 return Changed; 493} 494 495/// setupBlockStack - Use the live bundles to set up our model of the stack 496/// to match predecessors' live out stack. 497void FPS::setupBlockStack() { 498 DEBUG(dbgs() << "\nSetting up live-ins for BB#" << MBB->getNumber() 499 << " derived from " << MBB->getName() << ".\n"); 500 StackTop = 0; 501 // Get the live-in bundle for MBB. 502 const LiveBundle &Bundle = 503 LiveBundles[Bundles->getBundle(MBB->getNumber(), false)]; 504 505 if (!Bundle.Mask) { 506 DEBUG(dbgs() << "Block has no FP live-ins.\n"); 507 return; 508 } 509 510 // Depth-first iteration should ensure that we always have an assigned stack. 511 assert(Bundle.isFixed() && "Reached block before any predecessors"); 512 513 // Push the fixed live-in registers. 514 for (unsigned i = Bundle.FixCount; i > 0; --i) { 515 MBB->addLiveIn(X86::ST0+i-1); 516 DEBUG(dbgs() << "Live-in st(" << (i-1) << "): %FP" 517 << unsigned(Bundle.FixStack[i-1]) << '\n'); 518 pushReg(Bundle.FixStack[i-1]); 519 } 520 521 // Kill off unwanted live-ins. This can happen with a critical edge. 522 // FIXME: We could keep these live registers around as zombies. They may need 523 // to be revived at the end of a short block. It might save a few instrs. 524 adjustLiveRegs(calcLiveInMask(MBB), MBB->begin()); 525 DEBUG(MBB->dump()); 526} 527 528/// finishBlockStack - Revive live-outs that are implicitly defined out of 529/// MBB. Shuffle live registers to match the expected fixed stack of any 530/// predecessors, and ensure that all predecessors are expecting the same 531/// stack. 532void FPS::finishBlockStack() { 533 // The RET handling below takes care of return blocks for us. 534 if (MBB->succ_empty()) 535 return; 536 537 DEBUG(dbgs() << "Setting up live-outs for BB#" << MBB->getNumber() 538 << " derived from " << MBB->getName() << ".\n"); 539 540 // Get MBB's live-out bundle. 541 unsigned BundleIdx = Bundles->getBundle(MBB->getNumber(), true); 542 LiveBundle &Bundle = LiveBundles[BundleIdx]; 543 544 // We may need to kill and define some registers to match successors. 545 // FIXME: This can probably be combined with the shuffle below. 546 MachineBasicBlock::iterator Term = MBB->getFirstTerminator(); 547 adjustLiveRegs(Bundle.Mask, Term); 548 549 if (!Bundle.Mask) { 550 DEBUG(dbgs() << "No live-outs.\n"); 551 return; 552 } 553 554 // Has the stack order been fixed yet? 555 DEBUG(dbgs() << "LB#" << BundleIdx << ": "); 556 if (Bundle.isFixed()) { 557 DEBUG(dbgs() << "Shuffling stack to match.\n"); 558 shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term); 559 } else { 560 // Not fixed yet, we get to choose. 561 DEBUG(dbgs() << "Fixing stack order now.\n"); 562 Bundle.FixCount = StackTop; 563 for (unsigned i = 0; i < StackTop; ++i) 564 Bundle.FixStack[i] = getStackEntry(i); 565 } 566} 567 568 569//===----------------------------------------------------------------------===// 570// Efficient Lookup Table Support 571//===----------------------------------------------------------------------===// 572 573namespace { 574 struct TableEntry { 575 uint16_t from; 576 uint16_t to; 577 bool operator<(const TableEntry &TE) const { return from < TE.from; } 578 friend bool operator<(const TableEntry &TE, unsigned V) { 579 return TE.from < V; 580 } 581 friend bool LLVM_ATTRIBUTE_UNUSED operator<(unsigned V, 582 const TableEntry &TE) { 583 return V < TE.from; 584 } 585 }; 586} 587 588#ifndef NDEBUG 589static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) { 590 for (unsigned i = 0; i != NumEntries-1; ++i) 591 if (!(Table[i] < Table[i+1])) return false; 592 return true; 593} 594#endif 595 596static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) { 597 const TableEntry *I = std::lower_bound(Table, Table+N, Opcode); 598 if (I != Table+N && I->from == Opcode) 599 return I->to; 600 return -1; 601} 602 603#ifdef NDEBUG 604#define ASSERT_SORTED(TABLE) 605#else 606#define ASSERT_SORTED(TABLE) \ 607 { static bool TABLE##Checked = false; \ 608 if (!TABLE##Checked) { \ 609 assert(TableIsSorted(TABLE, array_lengthof(TABLE)) && \ 610 "All lookup tables must be sorted for efficient access!"); \ 611 TABLE##Checked = true; \ 612 } \ 613 } 614#endif 615 616//===----------------------------------------------------------------------===// 617// Register File -> Register Stack Mapping Methods 618//===----------------------------------------------------------------------===// 619 620// OpcodeTable - Sorted map of register instructions to their stack version. 621// The first element is an register file pseudo instruction, the second is the 622// concrete X86 instruction which uses the register stack. 623// 624static const TableEntry OpcodeTable[] = { 625 { X86::ABS_Fp32 , X86::ABS_F }, 626 { X86::ABS_Fp64 , X86::ABS_F }, 627 { X86::ABS_Fp80 , X86::ABS_F }, 628 { X86::ADD_Fp32m , X86::ADD_F32m }, 629 { X86::ADD_Fp64m , X86::ADD_F64m }, 630 { X86::ADD_Fp64m32 , X86::ADD_F32m }, 631 { X86::ADD_Fp80m32 , X86::ADD_F32m }, 632 { X86::ADD_Fp80m64 , X86::ADD_F64m }, 633 { X86::ADD_FpI16m32 , X86::ADD_FI16m }, 634 { X86::ADD_FpI16m64 , X86::ADD_FI16m }, 635 { X86::ADD_FpI16m80 , X86::ADD_FI16m }, 636 { X86::ADD_FpI32m32 , X86::ADD_FI32m }, 637 { X86::ADD_FpI32m64 , X86::ADD_FI32m }, 638 { X86::ADD_FpI32m80 , X86::ADD_FI32m }, 639 { X86::CHS_Fp32 , X86::CHS_F }, 640 { X86::CHS_Fp64 , X86::CHS_F }, 641 { X86::CHS_Fp80 , X86::CHS_F }, 642 { X86::CMOVBE_Fp32 , X86::CMOVBE_F }, 643 { X86::CMOVBE_Fp64 , X86::CMOVBE_F }, 644 { X86::CMOVBE_Fp80 , X86::CMOVBE_F }, 645 { X86::CMOVB_Fp32 , X86::CMOVB_F }, 646 { X86::CMOVB_Fp64 , X86::CMOVB_F }, 647 { X86::CMOVB_Fp80 , X86::CMOVB_F }, 648 { X86::CMOVE_Fp32 , X86::CMOVE_F }, 649 { X86::CMOVE_Fp64 , X86::CMOVE_F }, 650 { X86::CMOVE_Fp80 , X86::CMOVE_F }, 651 { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F }, 652 { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F }, 653 { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F }, 654 { X86::CMOVNB_Fp32 , X86::CMOVNB_F }, 655 { X86::CMOVNB_Fp64 , X86::CMOVNB_F }, 656 { X86::CMOVNB_Fp80 , X86::CMOVNB_F }, 657 { X86::CMOVNE_Fp32 , X86::CMOVNE_F }, 658 { X86::CMOVNE_Fp64 , X86::CMOVNE_F }, 659 { X86::CMOVNE_Fp80 , X86::CMOVNE_F }, 660 { X86::CMOVNP_Fp32 , X86::CMOVNP_F }, 661 { X86::CMOVNP_Fp64 , X86::CMOVNP_F }, 662 { X86::CMOVNP_Fp80 , X86::CMOVNP_F }, 663 { X86::CMOVP_Fp32 , X86::CMOVP_F }, 664 { X86::CMOVP_Fp64 , X86::CMOVP_F }, 665 { X86::CMOVP_Fp80 , X86::CMOVP_F }, 666 { X86::COS_Fp32 , X86::COS_F }, 667 { X86::COS_Fp64 , X86::COS_F }, 668 { X86::COS_Fp80 , X86::COS_F }, 669 { X86::DIVR_Fp32m , X86::DIVR_F32m }, 670 { X86::DIVR_Fp64m , X86::DIVR_F64m }, 671 { X86::DIVR_Fp64m32 , X86::DIVR_F32m }, 672 { X86::DIVR_Fp80m32 , X86::DIVR_F32m }, 673 { X86::DIVR_Fp80m64 , X86::DIVR_F64m }, 674 { X86::DIVR_FpI16m32, X86::DIVR_FI16m}, 675 { X86::DIVR_FpI16m64, X86::DIVR_FI16m}, 676 { X86::DIVR_FpI16m80, X86::DIVR_FI16m}, 677 { X86::DIVR_FpI32m32, X86::DIVR_FI32m}, 678 { X86::DIVR_FpI32m64, X86::DIVR_FI32m}, 679 { X86::DIVR_FpI32m80, X86::DIVR_FI32m}, 680 { X86::DIV_Fp32m , X86::DIV_F32m }, 681 { X86::DIV_Fp64m , X86::DIV_F64m }, 682 { X86::DIV_Fp64m32 , X86::DIV_F32m }, 683 { X86::DIV_Fp80m32 , X86::DIV_F32m }, 684 { X86::DIV_Fp80m64 , X86::DIV_F64m }, 685 { X86::DIV_FpI16m32 , X86::DIV_FI16m }, 686 { X86::DIV_FpI16m64 , X86::DIV_FI16m }, 687 { X86::DIV_FpI16m80 , X86::DIV_FI16m }, 688 { X86::DIV_FpI32m32 , X86::DIV_FI32m }, 689 { X86::DIV_FpI32m64 , X86::DIV_FI32m }, 690 { X86::DIV_FpI32m80 , X86::DIV_FI32m }, 691 { X86::ILD_Fp16m32 , X86::ILD_F16m }, 692 { X86::ILD_Fp16m64 , X86::ILD_F16m }, 693 { X86::ILD_Fp16m80 , X86::ILD_F16m }, 694 { X86::ILD_Fp32m32 , X86::ILD_F32m }, 695 { X86::ILD_Fp32m64 , X86::ILD_F32m }, 696 { X86::ILD_Fp32m80 , X86::ILD_F32m }, 697 { X86::ILD_Fp64m32 , X86::ILD_F64m }, 698 { X86::ILD_Fp64m64 , X86::ILD_F64m }, 699 { X86::ILD_Fp64m80 , X86::ILD_F64m }, 700 { X86::ISTT_Fp16m32 , X86::ISTT_FP16m}, 701 { X86::ISTT_Fp16m64 , X86::ISTT_FP16m}, 702 { X86::ISTT_Fp16m80 , X86::ISTT_FP16m}, 703 { X86::ISTT_Fp32m32 , X86::ISTT_FP32m}, 704 { X86::ISTT_Fp32m64 , X86::ISTT_FP32m}, 705 { X86::ISTT_Fp32m80 , X86::ISTT_FP32m}, 706 { X86::ISTT_Fp64m32 , X86::ISTT_FP64m}, 707 { X86::ISTT_Fp64m64 , X86::ISTT_FP64m}, 708 { X86::ISTT_Fp64m80 , X86::ISTT_FP64m}, 709 { X86::IST_Fp16m32 , X86::IST_F16m }, 710 { X86::IST_Fp16m64 , X86::IST_F16m }, 711 { X86::IST_Fp16m80 , X86::IST_F16m }, 712 { X86::IST_Fp32m32 , X86::IST_F32m }, 713 { X86::IST_Fp32m64 , X86::IST_F32m }, 714 { X86::IST_Fp32m80 , X86::IST_F32m }, 715 { X86::IST_Fp64m32 , X86::IST_FP64m }, 716 { X86::IST_Fp64m64 , X86::IST_FP64m }, 717 { X86::IST_Fp64m80 , X86::IST_FP64m }, 718 { X86::LD_Fp032 , X86::LD_F0 }, 719 { X86::LD_Fp064 , X86::LD_F0 }, 720 { X86::LD_Fp080 , X86::LD_F0 }, 721 { X86::LD_Fp132 , X86::LD_F1 }, 722 { X86::LD_Fp164 , X86::LD_F1 }, 723 { X86::LD_Fp180 , X86::LD_F1 }, 724 { X86::LD_Fp32m , X86::LD_F32m }, 725 { X86::LD_Fp32m64 , X86::LD_F32m }, 726 { X86::LD_Fp32m80 , X86::LD_F32m }, 727 { X86::LD_Fp64m , X86::LD_F64m }, 728 { X86::LD_Fp64m80 , X86::LD_F64m }, 729 { X86::LD_Fp80m , X86::LD_F80m }, 730 { X86::MUL_Fp32m , X86::MUL_F32m }, 731 { X86::MUL_Fp64m , X86::MUL_F64m }, 732 { X86::MUL_Fp64m32 , X86::MUL_F32m }, 733 { X86::MUL_Fp80m32 , X86::MUL_F32m }, 734 { X86::MUL_Fp80m64 , X86::MUL_F64m }, 735 { X86::MUL_FpI16m32 , X86::MUL_FI16m }, 736 { X86::MUL_FpI16m64 , X86::MUL_FI16m }, 737 { X86::MUL_FpI16m80 , X86::MUL_FI16m }, 738 { X86::MUL_FpI32m32 , X86::MUL_FI32m }, 739 { X86::MUL_FpI32m64 , X86::MUL_FI32m }, 740 { X86::MUL_FpI32m80 , X86::MUL_FI32m }, 741 { X86::SIN_Fp32 , X86::SIN_F }, 742 { X86::SIN_Fp64 , X86::SIN_F }, 743 { X86::SIN_Fp80 , X86::SIN_F }, 744 { X86::SQRT_Fp32 , X86::SQRT_F }, 745 { X86::SQRT_Fp64 , X86::SQRT_F }, 746 { X86::SQRT_Fp80 , X86::SQRT_F }, 747 { X86::ST_Fp32m , X86::ST_F32m }, 748 { X86::ST_Fp64m , X86::ST_F64m }, 749 { X86::ST_Fp64m32 , X86::ST_F32m }, 750 { X86::ST_Fp80m32 , X86::ST_F32m }, 751 { X86::ST_Fp80m64 , X86::ST_F64m }, 752 { X86::ST_FpP80m , X86::ST_FP80m }, 753 { X86::SUBR_Fp32m , X86::SUBR_F32m }, 754 { X86::SUBR_Fp64m , X86::SUBR_F64m }, 755 { X86::SUBR_Fp64m32 , X86::SUBR_F32m }, 756 { X86::SUBR_Fp80m32 , X86::SUBR_F32m }, 757 { X86::SUBR_Fp80m64 , X86::SUBR_F64m }, 758 { X86::SUBR_FpI16m32, X86::SUBR_FI16m}, 759 { X86::SUBR_FpI16m64, X86::SUBR_FI16m}, 760 { X86::SUBR_FpI16m80, X86::SUBR_FI16m}, 761 { X86::SUBR_FpI32m32, X86::SUBR_FI32m}, 762 { X86::SUBR_FpI32m64, X86::SUBR_FI32m}, 763 { X86::SUBR_FpI32m80, X86::SUBR_FI32m}, 764 { X86::SUB_Fp32m , X86::SUB_F32m }, 765 { X86::SUB_Fp64m , X86::SUB_F64m }, 766 { X86::SUB_Fp64m32 , X86::SUB_F32m }, 767 { X86::SUB_Fp80m32 , X86::SUB_F32m }, 768 { X86::SUB_Fp80m64 , X86::SUB_F64m }, 769 { X86::SUB_FpI16m32 , X86::SUB_FI16m }, 770 { X86::SUB_FpI16m64 , X86::SUB_FI16m }, 771 { X86::SUB_FpI16m80 , X86::SUB_FI16m }, 772 { X86::SUB_FpI32m32 , X86::SUB_FI32m }, 773 { X86::SUB_FpI32m64 , X86::SUB_FI32m }, 774 { X86::SUB_FpI32m80 , X86::SUB_FI32m }, 775 { X86::TST_Fp32 , X86::TST_F }, 776 { X86::TST_Fp64 , X86::TST_F }, 777 { X86::TST_Fp80 , X86::TST_F }, 778 { X86::UCOM_FpIr32 , X86::UCOM_FIr }, 779 { X86::UCOM_FpIr64 , X86::UCOM_FIr }, 780 { X86::UCOM_FpIr80 , X86::UCOM_FIr }, 781 { X86::UCOM_Fpr32 , X86::UCOM_Fr }, 782 { X86::UCOM_Fpr64 , X86::UCOM_Fr }, 783 { X86::UCOM_Fpr80 , X86::UCOM_Fr }, 784}; 785 786static unsigned getConcreteOpcode(unsigned Opcode) { 787 ASSERT_SORTED(OpcodeTable); 788 int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode); 789 assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!"); 790 return Opc; 791} 792 793//===----------------------------------------------------------------------===// 794// Helper Methods 795//===----------------------------------------------------------------------===// 796 797// PopTable - Sorted map of instructions to their popping version. The first 798// element is an instruction, the second is the version which pops. 799// 800static const TableEntry PopTable[] = { 801 { X86::ADD_FrST0 , X86::ADD_FPrST0 }, 802 803 { X86::DIVR_FrST0, X86::DIVR_FPrST0 }, 804 { X86::DIV_FrST0 , X86::DIV_FPrST0 }, 805 806 { X86::IST_F16m , X86::IST_FP16m }, 807 { X86::IST_F32m , X86::IST_FP32m }, 808 809 { X86::MUL_FrST0 , X86::MUL_FPrST0 }, 810 811 { X86::ST_F32m , X86::ST_FP32m }, 812 { X86::ST_F64m , X86::ST_FP64m }, 813 { X86::ST_Frr , X86::ST_FPrr }, 814 815 { X86::SUBR_FrST0, X86::SUBR_FPrST0 }, 816 { X86::SUB_FrST0 , X86::SUB_FPrST0 }, 817 818 { X86::UCOM_FIr , X86::UCOM_FIPr }, 819 820 { X86::UCOM_FPr , X86::UCOM_FPPr }, 821 { X86::UCOM_Fr , X86::UCOM_FPr }, 822}; 823 824/// popStackAfter - Pop the current value off of the top of the FP stack after 825/// the specified instruction. This attempts to be sneaky and combine the pop 826/// into the instruction itself if possible. The iterator is left pointing to 827/// the last instruction, be it a new pop instruction inserted, or the old 828/// instruction if it was modified in place. 829/// 830void FPS::popStackAfter(MachineBasicBlock::iterator &I) { 831 MachineInstr* MI = I; 832 DebugLoc dl = MI->getDebugLoc(); 833 ASSERT_SORTED(PopTable); 834 if (StackTop == 0) 835 report_fatal_error("Cannot pop empty stack!"); 836 RegMap[Stack[--StackTop]] = ~0; // Update state 837 838 // Check to see if there is a popping version of this instruction... 839 int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode()); 840 if (Opcode != -1) { 841 I->setDesc(TII->get(Opcode)); 842 if (Opcode == X86::UCOM_FPPr) 843 I->RemoveOperand(0); 844 } else { // Insert an explicit pop 845 I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0); 846 } 847} 848 849/// freeStackSlotAfter - Free the specified register from the register stack, so 850/// that it is no longer in a register. If the register is currently at the top 851/// of the stack, we just pop the current instruction, otherwise we store the 852/// current top-of-stack into the specified slot, then pop the top of stack. 853void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) { 854 if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy. 855 popStackAfter(I); 856 return; 857 } 858 859 // Otherwise, store the top of stack into the dead slot, killing the operand 860 // without having to add in an explicit xchg then pop. 861 // 862 I = freeStackSlotBefore(++I, FPRegNo); 863} 864 865/// freeStackSlotBefore - Free the specified register without trying any 866/// folding. 867MachineBasicBlock::iterator 868FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) { 869 unsigned STReg = getSTReg(FPRegNo); 870 unsigned OldSlot = getSlot(FPRegNo); 871 unsigned TopReg = Stack[StackTop-1]; 872 Stack[OldSlot] = TopReg; 873 RegMap[TopReg] = OldSlot; 874 RegMap[FPRegNo] = ~0; 875 Stack[--StackTop] = ~0; 876 return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr)).addReg(STReg); 877} 878 879/// adjustLiveRegs - Kill and revive registers such that exactly the FP 880/// registers with a bit in Mask are live. 881void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) { 882 unsigned Defs = Mask; 883 unsigned Kills = 0; 884 for (unsigned i = 0; i < StackTop; ++i) { 885 unsigned RegNo = Stack[i]; 886 if (!(Defs & (1 << RegNo))) 887 // This register is live, but we don't want it. 888 Kills |= (1 << RegNo); 889 else 890 // We don't need to imp-def this live register. 891 Defs &= ~(1 << RegNo); 892 } 893 assert((Kills & Defs) == 0 && "Register needs killing and def'ing?"); 894 895 // Produce implicit-defs for free by using killed registers. 896 while (Kills && Defs) { 897 unsigned KReg = countTrailingZeros(Kills); 898 unsigned DReg = countTrailingZeros(Defs); 899 DEBUG(dbgs() << "Renaming %FP" << KReg << " as imp %FP" << DReg << "\n"); 900 std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]); 901 std::swap(RegMap[KReg], RegMap[DReg]); 902 Kills &= ~(1 << KReg); 903 Defs &= ~(1 << DReg); 904 } 905 906 // Kill registers by popping. 907 if (Kills && I != MBB->begin()) { 908 MachineBasicBlock::iterator I2 = llvm::prior(I); 909 while (StackTop) { 910 unsigned KReg = getStackEntry(0); 911 if (!(Kills & (1 << KReg))) 912 break; 913 DEBUG(dbgs() << "Popping %FP" << KReg << "\n"); 914 popStackAfter(I2); 915 Kills &= ~(1 << KReg); 916 } 917 } 918 919 // Manually kill the rest. 920 while (Kills) { 921 unsigned KReg = countTrailingZeros(Kills); 922 DEBUG(dbgs() << "Killing %FP" << KReg << "\n"); 923 freeStackSlotBefore(I, KReg); 924 Kills &= ~(1 << KReg); 925 } 926 927 // Load zeros for all the imp-defs. 928 while(Defs) { 929 unsigned DReg = countTrailingZeros(Defs); 930 DEBUG(dbgs() << "Defining %FP" << DReg << " as 0\n"); 931 BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0)); 932 pushReg(DReg); 933 Defs &= ~(1 << DReg); 934 } 935 936 // Now we should have the correct registers live. 937 DEBUG(dumpStack()); 938 assert(StackTop == CountPopulation_32(Mask) && "Live count mismatch"); 939} 940 941/// shuffleStackTop - emit fxch instructions before I to shuffle the top 942/// FixCount entries into the order given by FixStack. 943/// FIXME: Is there a better algorithm than insertion sort? 944void FPS::shuffleStackTop(const unsigned char *FixStack, 945 unsigned FixCount, 946 MachineBasicBlock::iterator I) { 947 // Move items into place, starting from the desired stack bottom. 948 while (FixCount--) { 949 // Old register at position FixCount. 950 unsigned OldReg = getStackEntry(FixCount); 951 // Desired register at position FixCount. 952 unsigned Reg = FixStack[FixCount]; 953 if (Reg == OldReg) 954 continue; 955 // (Reg st0) (OldReg st0) = (Reg OldReg st0) 956 moveToTop(Reg, I); 957 if (FixCount > 0) 958 moveToTop(OldReg, I); 959 } 960 DEBUG(dumpStack()); 961} 962 963 964//===----------------------------------------------------------------------===// 965// Instruction transformation implementation 966//===----------------------------------------------------------------------===// 967 968/// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem> 969/// 970void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) { 971 MachineInstr *MI = I; 972 unsigned DestReg = getFPReg(MI->getOperand(0)); 973 974 // Change from the pseudo instruction to the concrete instruction. 975 MI->RemoveOperand(0); // Remove the explicit ST(0) operand 976 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode()))); 977 978 // Result gets pushed on the stack. 979 pushReg(DestReg); 980} 981 982/// handleOneArgFP - fst <mem>, ST(0) 983/// 984void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) { 985 MachineInstr *MI = I; 986 unsigned NumOps = MI->getDesc().getNumOperands(); 987 assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) && 988 "Can only handle fst* & ftst instructions!"); 989 990 // Is this the last use of the source register? 991 unsigned Reg = getFPReg(MI->getOperand(NumOps-1)); 992 bool KillsSrc = MI->killsRegister(X86::FP0+Reg); 993 994 if (KillsSrc) 995 duplicatePendingSTBeforeKill(Reg, I); 996 997 // FISTP64m is strange because there isn't a non-popping versions. 998 // If we have one _and_ we don't want to pop the operand, duplicate the value 999 // on the stack instead of moving it. This ensure that popping the value is 1000 // always ok. 1001 // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m. 1002 // 1003 if (!KillsSrc && 1004 (MI->getOpcode() == X86::IST_Fp64m32 || 1005 MI->getOpcode() == X86::ISTT_Fp16m32 || 1006 MI->getOpcode() == X86::ISTT_Fp32m32 || 1007 MI->getOpcode() == X86::ISTT_Fp64m32 || 1008 MI->getOpcode() == X86::IST_Fp64m64 || 1009 MI->getOpcode() == X86::ISTT_Fp16m64 || 1010 MI->getOpcode() == X86::ISTT_Fp32m64 || 1011 MI->getOpcode() == X86::ISTT_Fp64m64 || 1012 MI->getOpcode() == X86::IST_Fp64m80 || 1013 MI->getOpcode() == X86::ISTT_Fp16m80 || 1014 MI->getOpcode() == X86::ISTT_Fp32m80 || 1015 MI->getOpcode() == X86::ISTT_Fp64m80 || 1016 MI->getOpcode() == X86::ST_FpP80m)) { 1017 duplicateToTop(Reg, getScratchReg(), I); 1018 } else { 1019 moveToTop(Reg, I); // Move to the top of the stack... 1020 } 1021 1022 // Convert from the pseudo instruction to the concrete instruction. 1023 MI->RemoveOperand(NumOps-1); // Remove explicit ST(0) operand 1024 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode()))); 1025 1026 if (MI->getOpcode() == X86::IST_FP64m || 1027 MI->getOpcode() == X86::ISTT_FP16m || 1028 MI->getOpcode() == X86::ISTT_FP32m || 1029 MI->getOpcode() == X86::ISTT_FP64m || 1030 MI->getOpcode() == X86::ST_FP80m) { 1031 if (StackTop == 0) 1032 report_fatal_error("Stack empty??"); 1033 --StackTop; 1034 } else if (KillsSrc) { // Last use of operand? 1035 popStackAfter(I); 1036 } 1037} 1038 1039 1040/// handleOneArgFPRW: Handle instructions that read from the top of stack and 1041/// replace the value with a newly computed value. These instructions may have 1042/// non-fp operands after their FP operands. 1043/// 1044/// Examples: 1045/// R1 = fchs R2 1046/// R1 = fadd R2, [mem] 1047/// 1048void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) { 1049 MachineInstr *MI = I; 1050#ifndef NDEBUG 1051 unsigned NumOps = MI->getDesc().getNumOperands(); 1052 assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!"); 1053#endif 1054 1055 // Is this the last use of the source register? 1056 unsigned Reg = getFPReg(MI->getOperand(1)); 1057 bool KillsSrc = MI->killsRegister(X86::FP0+Reg); 1058 1059 if (KillsSrc) { 1060 duplicatePendingSTBeforeKill(Reg, I); 1061 // If this is the last use of the source register, just make sure it's on 1062 // the top of the stack. 1063 moveToTop(Reg, I); 1064 if (StackTop == 0) 1065 report_fatal_error("Stack cannot be empty!"); 1066 --StackTop; 1067 pushReg(getFPReg(MI->getOperand(0))); 1068 } else { 1069 // If this is not the last use of the source register, _copy_ it to the top 1070 // of the stack. 1071 duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I); 1072 } 1073 1074 // Change from the pseudo instruction to the concrete instruction. 1075 MI->RemoveOperand(1); // Drop the source operand. 1076 MI->RemoveOperand(0); // Drop the destination operand. 1077 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode()))); 1078} 1079 1080 1081//===----------------------------------------------------------------------===// 1082// Define tables of various ways to map pseudo instructions 1083// 1084 1085// ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i) 1086static const TableEntry ForwardST0Table[] = { 1087 { X86::ADD_Fp32 , X86::ADD_FST0r }, 1088 { X86::ADD_Fp64 , X86::ADD_FST0r }, 1089 { X86::ADD_Fp80 , X86::ADD_FST0r }, 1090 { X86::DIV_Fp32 , X86::DIV_FST0r }, 1091 { X86::DIV_Fp64 , X86::DIV_FST0r }, 1092 { X86::DIV_Fp80 , X86::DIV_FST0r }, 1093 { X86::MUL_Fp32 , X86::MUL_FST0r }, 1094 { X86::MUL_Fp64 , X86::MUL_FST0r }, 1095 { X86::MUL_Fp80 , X86::MUL_FST0r }, 1096 { X86::SUB_Fp32 , X86::SUB_FST0r }, 1097 { X86::SUB_Fp64 , X86::SUB_FST0r }, 1098 { X86::SUB_Fp80 , X86::SUB_FST0r }, 1099}; 1100 1101// ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0) 1102static const TableEntry ReverseST0Table[] = { 1103 { X86::ADD_Fp32 , X86::ADD_FST0r }, // commutative 1104 { X86::ADD_Fp64 , X86::ADD_FST0r }, // commutative 1105 { X86::ADD_Fp80 , X86::ADD_FST0r }, // commutative 1106 { X86::DIV_Fp32 , X86::DIVR_FST0r }, 1107 { X86::DIV_Fp64 , X86::DIVR_FST0r }, 1108 { X86::DIV_Fp80 , X86::DIVR_FST0r }, 1109 { X86::MUL_Fp32 , X86::MUL_FST0r }, // commutative 1110 { X86::MUL_Fp64 , X86::MUL_FST0r }, // commutative 1111 { X86::MUL_Fp80 , X86::MUL_FST0r }, // commutative 1112 { X86::SUB_Fp32 , X86::SUBR_FST0r }, 1113 { X86::SUB_Fp64 , X86::SUBR_FST0r }, 1114 { X86::SUB_Fp80 , X86::SUBR_FST0r }, 1115}; 1116 1117// ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i) 1118static const TableEntry ForwardSTiTable[] = { 1119 { X86::ADD_Fp32 , X86::ADD_FrST0 }, // commutative 1120 { X86::ADD_Fp64 , X86::ADD_FrST0 }, // commutative 1121 { X86::ADD_Fp80 , X86::ADD_FrST0 }, // commutative 1122 { X86::DIV_Fp32 , X86::DIVR_FrST0 }, 1123 { X86::DIV_Fp64 , X86::DIVR_FrST0 }, 1124 { X86::DIV_Fp80 , X86::DIVR_FrST0 }, 1125 { X86::MUL_Fp32 , X86::MUL_FrST0 }, // commutative 1126 { X86::MUL_Fp64 , X86::MUL_FrST0 }, // commutative 1127 { X86::MUL_Fp80 , X86::MUL_FrST0 }, // commutative 1128 { X86::SUB_Fp32 , X86::SUBR_FrST0 }, 1129 { X86::SUB_Fp64 , X86::SUBR_FrST0 }, 1130 { X86::SUB_Fp80 , X86::SUBR_FrST0 }, 1131}; 1132 1133// ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0) 1134static const TableEntry ReverseSTiTable[] = { 1135 { X86::ADD_Fp32 , X86::ADD_FrST0 }, 1136 { X86::ADD_Fp64 , X86::ADD_FrST0 }, 1137 { X86::ADD_Fp80 , X86::ADD_FrST0 }, 1138 { X86::DIV_Fp32 , X86::DIV_FrST0 }, 1139 { X86::DIV_Fp64 , X86::DIV_FrST0 }, 1140 { X86::DIV_Fp80 , X86::DIV_FrST0 }, 1141 { X86::MUL_Fp32 , X86::MUL_FrST0 }, 1142 { X86::MUL_Fp64 , X86::MUL_FrST0 }, 1143 { X86::MUL_Fp80 , X86::MUL_FrST0 }, 1144 { X86::SUB_Fp32 , X86::SUB_FrST0 }, 1145 { X86::SUB_Fp64 , X86::SUB_FrST0 }, 1146 { X86::SUB_Fp80 , X86::SUB_FrST0 }, 1147}; 1148 1149 1150/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual 1151/// instructions which need to be simplified and possibly transformed. 1152/// 1153/// Result: ST(0) = fsub ST(0), ST(i) 1154/// ST(i) = fsub ST(0), ST(i) 1155/// ST(0) = fsubr ST(0), ST(i) 1156/// ST(i) = fsubr ST(0), ST(i) 1157/// 1158void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) { 1159 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table); 1160 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable); 1161 MachineInstr *MI = I; 1162 1163 unsigned NumOperands = MI->getDesc().getNumOperands(); 1164 assert(NumOperands == 3 && "Illegal TwoArgFP instruction!"); 1165 unsigned Dest = getFPReg(MI->getOperand(0)); 1166 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2)); 1167 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1)); 1168 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0); 1169 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1); 1170 DebugLoc dl = MI->getDebugLoc(); 1171 1172 unsigned TOS = getStackEntry(0); 1173 1174 // One of our operands must be on the top of the stack. If neither is yet, we 1175 // need to move one. 1176 if (Op0 != TOS && Op1 != TOS) { // No operand at TOS? 1177 // We can choose to move either operand to the top of the stack. If one of 1178 // the operands is killed by this instruction, we want that one so that we 1179 // can update right on top of the old version. 1180 if (KillsOp0) { 1181 moveToTop(Op0, I); // Move dead operand to TOS. 1182 TOS = Op0; 1183 } else if (KillsOp1) { 1184 moveToTop(Op1, I); 1185 TOS = Op1; 1186 } else { 1187 // All of the operands are live after this instruction executes, so we 1188 // cannot update on top of any operand. Because of this, we must 1189 // duplicate one of the stack elements to the top. It doesn't matter 1190 // which one we pick. 1191 // 1192 duplicateToTop(Op0, Dest, I); 1193 Op0 = TOS = Dest; 1194 KillsOp0 = true; 1195 } 1196 } else if (!KillsOp0 && !KillsOp1) { 1197 // If we DO have one of our operands at the top of the stack, but we don't 1198 // have a dead operand, we must duplicate one of the operands to a new slot 1199 // on the stack. 1200 duplicateToTop(Op0, Dest, I); 1201 Op0 = TOS = Dest; 1202 KillsOp0 = true; 1203 } 1204 1205 // Now we know that one of our operands is on the top of the stack, and at 1206 // least one of our operands is killed by this instruction. 1207 assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) && 1208 "Stack conditions not set up right!"); 1209 1210 // We decide which form to use based on what is on the top of the stack, and 1211 // which operand is killed by this instruction. 1212 const TableEntry *InstTable; 1213 bool isForward = TOS == Op0; 1214 bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0); 1215 if (updateST0) { 1216 if (isForward) 1217 InstTable = ForwardST0Table; 1218 else 1219 InstTable = ReverseST0Table; 1220 } else { 1221 if (isForward) 1222 InstTable = ForwardSTiTable; 1223 else 1224 InstTable = ReverseSTiTable; 1225 } 1226 1227 int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table), 1228 MI->getOpcode()); 1229 assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!"); 1230 1231 // NotTOS - The register which is not on the top of stack... 1232 unsigned NotTOS = (TOS == Op0) ? Op1 : Op0; 1233 1234 // Replace the old instruction with a new instruction 1235 MBB->remove(I++); 1236 I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS)); 1237 1238 // If both operands are killed, pop one off of the stack in addition to 1239 // overwriting the other one. 1240 if (KillsOp0 && KillsOp1 && Op0 != Op1) { 1241 assert(!updateST0 && "Should have updated other operand!"); 1242 popStackAfter(I); // Pop the top of stack 1243 } 1244 1245 // Update stack information so that we know the destination register is now on 1246 // the stack. 1247 unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS); 1248 assert(UpdatedSlot < StackTop && Dest < 7); 1249 Stack[UpdatedSlot] = Dest; 1250 RegMap[Dest] = UpdatedSlot; 1251 MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction 1252} 1253 1254/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP 1255/// register arguments and no explicit destinations. 1256/// 1257void FPS::handleCompareFP(MachineBasicBlock::iterator &I) { 1258 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table); 1259 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable); 1260 MachineInstr *MI = I; 1261 1262 unsigned NumOperands = MI->getDesc().getNumOperands(); 1263 assert(NumOperands == 2 && "Illegal FUCOM* instruction!"); 1264 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2)); 1265 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1)); 1266 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0); 1267 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1); 1268 1269 // Make sure the first operand is on the top of stack, the other one can be 1270 // anywhere. 1271 moveToTop(Op0, I); 1272 1273 // Change from the pseudo instruction to the concrete instruction. 1274 MI->getOperand(0).setReg(getSTReg(Op1)); 1275 MI->RemoveOperand(1); 1276 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode()))); 1277 1278 // If any of the operands are killed by this instruction, free them. 1279 if (KillsOp0) freeStackSlotAfter(I, Op0); 1280 if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1); 1281} 1282 1283/// handleCondMovFP - Handle two address conditional move instructions. These 1284/// instructions move a st(i) register to st(0) iff a condition is true. These 1285/// instructions require that the first operand is at the top of the stack, but 1286/// otherwise don't modify the stack at all. 1287void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) { 1288 MachineInstr *MI = I; 1289 1290 unsigned Op0 = getFPReg(MI->getOperand(0)); 1291 unsigned Op1 = getFPReg(MI->getOperand(2)); 1292 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1); 1293 1294 // The first operand *must* be on the top of the stack. 1295 moveToTop(Op0, I); 1296 1297 // Change the second operand to the stack register that the operand is in. 1298 // Change from the pseudo instruction to the concrete instruction. 1299 MI->RemoveOperand(0); 1300 MI->RemoveOperand(1); 1301 MI->getOperand(0).setReg(getSTReg(Op1)); 1302 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode()))); 1303 1304 // If we kill the second operand, make sure to pop it from the stack. 1305 if (Op0 != Op1 && KillsOp1) { 1306 // Get this value off of the register stack. 1307 freeStackSlotAfter(I, Op1); 1308 } 1309} 1310 1311 1312/// handleSpecialFP - Handle special instructions which behave unlike other 1313/// floating point instructions. This is primarily intended for use by pseudo 1314/// instructions. 1315/// 1316void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) { 1317 MachineInstr *MI = I; 1318 switch (MI->getOpcode()) { 1319 default: llvm_unreachable("Unknown SpecialFP instruction!"); 1320 case TargetOpcode::COPY: { 1321 // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP. 1322 const MachineOperand &MO1 = MI->getOperand(1); 1323 const MachineOperand &MO0 = MI->getOperand(0); 1324 unsigned DstST = MO0.getReg() - X86::ST0; 1325 unsigned SrcST = MO1.getReg() - X86::ST0; 1326 bool KillsSrc = MI->killsRegister(MO1.getReg()); 1327 1328 // ST = COPY FP. Set up a pending ST register. 1329 if (DstST < 8) { 1330 unsigned SrcFP = getFPReg(MO1); 1331 assert(isLive(SrcFP) && "Cannot copy dead register"); 1332 assert(!MO0.isDead() && "Cannot copy to dead ST register"); 1333 1334 // Unallocated STs are marked as the nonexistent FP255. 1335 while (NumPendingSTs <= DstST) 1336 PendingST[NumPendingSTs++] = NumFPRegs; 1337 1338 // STi could still be live from a previous inline asm. 1339 if (isScratchReg(PendingST[DstST])) { 1340 DEBUG(dbgs() << "Clobbering old ST in FP" << unsigned(PendingST[DstST]) 1341 << '\n'); 1342 freeStackSlotBefore(MI, PendingST[DstST]); 1343 } 1344 1345 // When the source is killed, allocate a scratch FP register. 1346 if (KillsSrc) { 1347 duplicatePendingSTBeforeKill(SrcFP, I); 1348 unsigned Slot = getSlot(SrcFP); 1349 unsigned SR = getScratchReg(); 1350 PendingST[DstST] = SR; 1351 Stack[Slot] = SR; 1352 RegMap[SR] = Slot; 1353 } else 1354 PendingST[DstST] = SrcFP; 1355 break; 1356 } 1357 1358 // FP = COPY ST. Extract fixed stack value. 1359 // Any instruction defining ST registers must have assigned them to a 1360 // scratch register. 1361 if (SrcST < 8) { 1362 unsigned DstFP = getFPReg(MO0); 1363 assert(!isLive(DstFP) && "Cannot copy ST to live FP register"); 1364 assert(NumPendingSTs > SrcST && "Cannot copy from dead ST register"); 1365 unsigned SrcFP = PendingST[SrcST]; 1366 assert(isScratchReg(SrcFP) && "Expected ST in a scratch register"); 1367 assert(isLive(SrcFP) && "Scratch holding ST is dead"); 1368 1369 // DstFP steals the stack slot from SrcFP. 1370 unsigned Slot = getSlot(SrcFP); 1371 Stack[Slot] = DstFP; 1372 RegMap[DstFP] = Slot; 1373 1374 // Always treat the ST as killed. 1375 PendingST[SrcST] = NumFPRegs; 1376 while (NumPendingSTs && PendingST[NumPendingSTs - 1] == NumFPRegs) 1377 --NumPendingSTs; 1378 break; 1379 } 1380 1381 // FP <- FP copy. 1382 unsigned DstFP = getFPReg(MO0); 1383 unsigned SrcFP = getFPReg(MO1); 1384 assert(isLive(SrcFP) && "Cannot copy dead register"); 1385 if (KillsSrc) { 1386 // If the input operand is killed, we can just change the owner of the 1387 // incoming stack slot into the result. 1388 unsigned Slot = getSlot(SrcFP); 1389 Stack[Slot] = DstFP; 1390 RegMap[DstFP] = Slot; 1391 } else { 1392 // For COPY we just duplicate the specified value to a new stack slot. 1393 // This could be made better, but would require substantial changes. 1394 duplicateToTop(SrcFP, DstFP, I); 1395 } 1396 break; 1397 } 1398 1399 case TargetOpcode::IMPLICIT_DEF: { 1400 // All FP registers must be explicitly defined, so load a 0 instead. 1401 unsigned Reg = MI->getOperand(0).getReg() - X86::FP0; 1402 DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg << '\n'); 1403 BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::LD_F0)); 1404 pushReg(Reg); 1405 break; 1406 } 1407 1408 case X86::FpPOP_RETVAL: { 1409 // The FpPOP_RETVAL instruction is used after calls that return a value on 1410 // the floating point stack. We cannot model this with ST defs since CALL 1411 // instructions have fixed clobber lists. This instruction is interpreted 1412 // to mean that there is one more live register on the stack than we 1413 // thought. 1414 // 1415 // This means that StackTop does not match the hardware stack between a 1416 // call and the FpPOP_RETVAL instructions. We do tolerate FP instructions 1417 // between CALL and FpPOP_RETVAL as long as they don't overflow the 1418 // hardware stack. 1419 unsigned DstFP = getFPReg(MI->getOperand(0)); 1420 1421 // Move existing stack elements up to reflect reality. 1422 assert(StackTop < 8 && "Stack overflowed before FpPOP_RETVAL"); 1423 if (StackTop) { 1424 std::copy_backward(Stack, Stack + StackTop, Stack + StackTop + 1); 1425 for (unsigned i = 0; i != NumFPRegs; ++i) 1426 ++RegMap[i]; 1427 } 1428 ++StackTop; 1429 1430 // DstFP is the new bottom of the stack. 1431 Stack[0] = DstFP; 1432 RegMap[DstFP] = 0; 1433 1434 // DstFP will be killed by processBasicBlock if this was a dead def. 1435 break; 1436 } 1437 1438 case TargetOpcode::INLINEASM: { 1439 // The inline asm MachineInstr currently only *uses* FP registers for the 1440 // 'f' constraint. These should be turned into the current ST(x) register 1441 // in the machine instr. 1442 // 1443 // There are special rules for x87 inline assembly. The compiler must know 1444 // exactly how many registers are popped and pushed implicitly by the asm. 1445 // Otherwise it is not possible to restore the stack state after the inline 1446 // asm. 1447 // 1448 // There are 3 kinds of input operands: 1449 // 1450 // 1. Popped inputs. These must appear at the stack top in ST0-STn. A 1451 // popped input operand must be in a fixed stack slot, and it is either 1452 // tied to an output operand, or in the clobber list. The MI has ST use 1453 // and def operands for these inputs. 1454 // 1455 // 2. Fixed inputs. These inputs appear in fixed stack slots, but are 1456 // preserved by the inline asm. The fixed stack slots must be STn-STm 1457 // following the popped inputs. A fixed input operand cannot be tied to 1458 // an output or appear in the clobber list. The MI has ST use operands 1459 // and no defs for these inputs. 1460 // 1461 // 3. Preserved inputs. These inputs use the "f" constraint which is 1462 // represented as an FP register. The inline asm won't change these 1463 // stack slots. 1464 // 1465 // Outputs must be in ST registers, FP outputs are not allowed. Clobbered 1466 // registers do not count as output operands. The inline asm changes the 1467 // stack as if it popped all the popped inputs and then pushed all the 1468 // output operands. 1469 1470 // Scan the assembly for ST registers used, defined and clobbered. We can 1471 // only tell clobbers from defs by looking at the asm descriptor. 1472 unsigned STUses = 0, STDefs = 0, STClobbers = 0, STDeadDefs = 0; 1473 unsigned NumOps = 0; 1474 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI->getNumOperands(); 1475 i != e && MI->getOperand(i).isImm(); i += 1 + NumOps) { 1476 unsigned Flags = MI->getOperand(i).getImm(); 1477 NumOps = InlineAsm::getNumOperandRegisters(Flags); 1478 if (NumOps != 1) 1479 continue; 1480 const MachineOperand &MO = MI->getOperand(i + 1); 1481 if (!MO.isReg()) 1482 continue; 1483 unsigned STReg = MO.getReg() - X86::ST0; 1484 if (STReg >= 8) 1485 continue; 1486 1487 switch (InlineAsm::getKind(Flags)) { 1488 case InlineAsm::Kind_RegUse: 1489 STUses |= (1u << STReg); 1490 break; 1491 case InlineAsm::Kind_RegDef: 1492 case InlineAsm::Kind_RegDefEarlyClobber: 1493 STDefs |= (1u << STReg); 1494 if (MO.isDead()) 1495 STDeadDefs |= (1u << STReg); 1496 break; 1497 case InlineAsm::Kind_Clobber: 1498 STClobbers |= (1u << STReg); 1499 break; 1500 default: 1501 break; 1502 } 1503 } 1504 1505 if (STUses && !isMask_32(STUses)) 1506 MI->emitError("fixed input regs must be last on the x87 stack"); 1507 unsigned NumSTUses = CountTrailingOnes_32(STUses); 1508 1509 // Defs must be contiguous from the stack top. ST0-STn. 1510 if (STDefs && !isMask_32(STDefs)) { 1511 MI->emitError("output regs must be last on the x87 stack"); 1512 STDefs = NextPowerOf2(STDefs) - 1; 1513 } 1514 unsigned NumSTDefs = CountTrailingOnes_32(STDefs); 1515 1516 // So must the clobbered stack slots. ST0-STm, m >= n. 1517 if (STClobbers && !isMask_32(STDefs | STClobbers)) 1518 MI->emitError("clobbers must be last on the x87 stack"); 1519 1520 // Popped inputs are the ones that are also clobbered or defined. 1521 unsigned STPopped = STUses & (STDefs | STClobbers); 1522 if (STPopped && !isMask_32(STPopped)) 1523 MI->emitError("implicitly popped regs must be last on the x87 stack"); 1524 unsigned NumSTPopped = CountTrailingOnes_32(STPopped); 1525 1526 DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops " 1527 << NumSTPopped << ", and defines " << NumSTDefs << " regs.\n"); 1528 1529 // Scan the instruction for FP uses corresponding to "f" constraints. 1530 // Collect FP registers to kill afer the instruction. 1531 // Always kill all the scratch regs. 1532 unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff; 1533 unsigned FPUsed = 0; 1534 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1535 MachineOperand &Op = MI->getOperand(i); 1536 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6) 1537 continue; 1538 if (!Op.isUse()) 1539 MI->emitError("illegal \"f\" output constraint"); 1540 unsigned FPReg = getFPReg(Op); 1541 FPUsed |= 1U << FPReg; 1542 1543 // If we kill this operand, make sure to pop it from the stack after the 1544 // asm. We just remember it for now, and pop them all off at the end in 1545 // a batch. 1546 if (Op.isKill()) 1547 FPKills |= 1U << FPReg; 1548 } 1549 1550 // The popped inputs will be killed by the instruction, so duplicate them 1551 // if the FP register needs to be live after the instruction, or if it is 1552 // used in the instruction itself. We effectively treat the popped inputs 1553 // as early clobbers. 1554 for (unsigned i = 0; i < NumSTPopped; ++i) { 1555 if ((FPKills & ~FPUsed) & (1u << PendingST[i])) 1556 continue; 1557 unsigned SR = getScratchReg(); 1558 duplicateToTop(PendingST[i], SR, I); 1559 DEBUG(dbgs() << "Duplicating ST" << i << " in FP" 1560 << unsigned(PendingST[i]) << " to avoid clobbering it.\n"); 1561 PendingST[i] = SR; 1562 } 1563 1564 // Make sure we have a unique live register for every fixed use. Some of 1565 // them could be undef uses, and we need to emit LD_F0 instructions. 1566 for (unsigned i = 0; i < NumSTUses; ++i) { 1567 if (i < NumPendingSTs && PendingST[i] < NumFPRegs) { 1568 // Check for shared assignments. 1569 for (unsigned j = 0; j < i; ++j) { 1570 if (PendingST[j] != PendingST[i]) 1571 continue; 1572 // STi and STj are inn the same register, create a copy. 1573 unsigned SR = getScratchReg(); 1574 duplicateToTop(PendingST[i], SR, I); 1575 DEBUG(dbgs() << "Duplicating ST" << i << " in FP" 1576 << unsigned(PendingST[i]) 1577 << " to avoid collision with ST" << j << '\n'); 1578 PendingST[i] = SR; 1579 } 1580 continue; 1581 } 1582 unsigned SR = getScratchReg(); 1583 DEBUG(dbgs() << "Emitting LD_F0 for ST" << i << " in FP" << SR << '\n'); 1584 BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::LD_F0)); 1585 pushReg(SR); 1586 PendingST[i] = SR; 1587 if (NumPendingSTs == i) 1588 ++NumPendingSTs; 1589 } 1590 assert(NumPendingSTs >= NumSTUses && "Fixed registers should be assigned"); 1591 1592 // Now we can rearrange the live registers to match what was requested. 1593 shuffleStackTop(PendingST, NumPendingSTs, I); 1594 DEBUG({dbgs() << "Before asm: "; dumpStack();}); 1595 1596 // With the stack layout fixed, rewrite the FP registers. 1597 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1598 MachineOperand &Op = MI->getOperand(i); 1599 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6) 1600 continue; 1601 unsigned FPReg = getFPReg(Op); 1602 Op.setReg(getSTReg(FPReg)); 1603 } 1604 1605 // Simulate the inline asm popping its inputs and pushing its outputs. 1606 StackTop -= NumSTPopped; 1607 1608 // Hold the fixed output registers in scratch FP registers. They will be 1609 // transferred to real FP registers by copies. 1610 NumPendingSTs = 0; 1611 for (unsigned i = 0; i < NumSTDefs; ++i) { 1612 unsigned SR = getScratchReg(); 1613 pushReg(SR); 1614 FPKills &= ~(1u << SR); 1615 } 1616 for (unsigned i = 0; i < NumSTDefs; ++i) 1617 PendingST[NumPendingSTs++] = getStackEntry(i); 1618 DEBUG({dbgs() << "After asm: "; dumpStack();}); 1619 1620 // If any of the ST defs were dead, pop them immediately. Our caller only 1621 // handles dead FP defs. 1622 MachineBasicBlock::iterator InsertPt = MI; 1623 for (unsigned i = 0; STDefs & (1u << i); ++i) { 1624 if (!(STDeadDefs & (1u << i))) 1625 continue; 1626 freeStackSlotAfter(InsertPt, PendingST[i]); 1627 PendingST[i] = NumFPRegs; 1628 } 1629 while (NumPendingSTs && PendingST[NumPendingSTs - 1] == NumFPRegs) 1630 --NumPendingSTs; 1631 1632 // If this asm kills any FP registers (is the last use of them) we must 1633 // explicitly emit pop instructions for them. Do this now after the asm has 1634 // executed so that the ST(x) numbers are not off (which would happen if we 1635 // did this inline with operand rewriting). 1636 // 1637 // Note: this might be a non-optimal pop sequence. We might be able to do 1638 // better by trying to pop in stack order or something. 1639 while (FPKills) { 1640 unsigned FPReg = countTrailingZeros(FPKills); 1641 if (isLive(FPReg)) 1642 freeStackSlotAfter(InsertPt, FPReg); 1643 FPKills &= ~(1U << FPReg); 1644 } 1645 // Don't delete the inline asm! 1646 return; 1647 } 1648 1649 case X86::WIN_FTOL_32: 1650 case X86::WIN_FTOL_64: { 1651 // Push the operand into ST0. 1652 MachineOperand &Op = MI->getOperand(0); 1653 assert(Op.isUse() && Op.isReg() && 1654 Op.getReg() >= X86::FP0 && Op.getReg() <= X86::FP6); 1655 unsigned FPReg = getFPReg(Op); 1656 if (Op.isKill()) 1657 moveToTop(FPReg, I); 1658 else 1659 duplicateToTop(FPReg, FPReg, I); 1660 1661 // Emit the call. This will pop the operand. 1662 BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::CALLpcrel32)) 1663 .addExternalSymbol("_ftol2") 1664 .addReg(X86::ST0, RegState::ImplicitKill) 1665 .addReg(X86::ECX, RegState::ImplicitDefine) 1666 .addReg(X86::EAX, RegState::Define | RegState::Implicit) 1667 .addReg(X86::EDX, RegState::Define | RegState::Implicit) 1668 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); 1669 --StackTop; 1670 1671 break; 1672 } 1673 1674 case X86::RET: 1675 case X86::RETI: 1676 // If RET has an FP register use operand, pass the first one in ST(0) and 1677 // the second one in ST(1). 1678 1679 // Find the register operands. 1680 unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U; 1681 unsigned LiveMask = 0; 1682 1683 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1684 MachineOperand &Op = MI->getOperand(i); 1685 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6) 1686 continue; 1687 // FP Register uses must be kills unless there are two uses of the same 1688 // register, in which case only one will be a kill. 1689 assert(Op.isUse() && 1690 (Op.isKill() || // Marked kill. 1691 getFPReg(Op) == FirstFPRegOp || // Second instance. 1692 MI->killsRegister(Op.getReg())) && // Later use is marked kill. 1693 "Ret only defs operands, and values aren't live beyond it"); 1694 1695 if (FirstFPRegOp == ~0U) 1696 FirstFPRegOp = getFPReg(Op); 1697 else { 1698 assert(SecondFPRegOp == ~0U && "More than two fp operands!"); 1699 SecondFPRegOp = getFPReg(Op); 1700 } 1701 LiveMask |= (1 << getFPReg(Op)); 1702 1703 // Remove the operand so that later passes don't see it. 1704 MI->RemoveOperand(i); 1705 --i, --e; 1706 } 1707 1708 // We may have been carrying spurious live-ins, so make sure only the returned 1709 // registers are left live. 1710 adjustLiveRegs(LiveMask, MI); 1711 if (!LiveMask) return; // Quick check to see if any are possible. 1712 1713 // There are only four possibilities here: 1714 // 1) we are returning a single FP value. In this case, it has to be in 1715 // ST(0) already, so just declare success by removing the value from the 1716 // FP Stack. 1717 if (SecondFPRegOp == ~0U) { 1718 // Assert that the top of stack contains the right FP register. 1719 assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) && 1720 "Top of stack not the right register for RET!"); 1721 1722 // Ok, everything is good, mark the value as not being on the stack 1723 // anymore so that our assertion about the stack being empty at end of 1724 // block doesn't fire. 1725 StackTop = 0; 1726 return; 1727 } 1728 1729 // Otherwise, we are returning two values: 1730 // 2) If returning the same value for both, we only have one thing in the FP 1731 // stack. Consider: RET FP1, FP1 1732 if (StackTop == 1) { 1733 assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&& 1734 "Stack misconfiguration for RET!"); 1735 1736 // Duplicate the TOS so that we return it twice. Just pick some other FPx 1737 // register to hold it. 1738 unsigned NewReg = getScratchReg(); 1739 duplicateToTop(FirstFPRegOp, NewReg, MI); 1740 FirstFPRegOp = NewReg; 1741 } 1742 1743 /// Okay we know we have two different FPx operands now: 1744 assert(StackTop == 2 && "Must have two values live!"); 1745 1746 /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently 1747 /// in ST(1). In this case, emit an fxch. 1748 if (getStackEntry(0) == SecondFPRegOp) { 1749 assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live"); 1750 moveToTop(FirstFPRegOp, MI); 1751 } 1752 1753 /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in 1754 /// ST(1). Just remove both from our understanding of the stack and return. 1755 assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live"); 1756 assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live"); 1757 StackTop = 0; 1758 return; 1759 } 1760 1761 I = MBB->erase(I); // Remove the pseudo instruction 1762 1763 // We want to leave I pointing to the previous instruction, but what if we 1764 // just erased the first instruction? 1765 if (I == MBB->begin()) { 1766 DEBUG(dbgs() << "Inserting dummy KILL\n"); 1767 I = BuildMI(*MBB, I, DebugLoc(), TII->get(TargetOpcode::KILL)); 1768 } else 1769 --I; 1770} 1771