1//===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of TargetFrameLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86FrameLowering.h"
15#include "X86InstrBuilder.h"
16#include "X86InstrInfo.h"
17#include "X86MachineFunctionInfo.h"
18#include "X86Subtarget.h"
19#include "X86TargetMachine.h"
20#include "llvm/ADT/SmallSet.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/MachineInstrBuilder.h"
24#include "llvm/CodeGen/MachineModuleInfo.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/IR/DataLayout.h"
27#include "llvm/IR/Function.h"
28#include "llvm/MC/MCAsmInfo.h"
29#include "llvm/MC/MCSymbol.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Target/TargetOptions.h"
32
33using namespace llvm;
34
35// FIXME: completely move here.
36extern cl::opt<bool> ForceStackAlign;
37
38bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
39  return !MF.getFrameInfo()->hasVarSizedObjects();
40}
41
42/// hasFP - Return true if the specified function should have a dedicated frame
43/// pointer register.  This is true if the function has variable sized allocas
44/// or if frame pointer elimination is disabled.
45bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
46  const MachineFrameInfo *MFI = MF.getFrameInfo();
47  const MachineModuleInfo &MMI = MF.getMMI();
48  const TargetRegisterInfo *RegInfo = TM.getRegisterInfo();
49
50  return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
51          RegInfo->needsStackRealignment(MF) ||
52          MFI->hasVarSizedObjects() ||
53          MFI->isFrameAddressTaken() || MF.hasMSInlineAsm() ||
54          MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
55          MMI.callsUnwindInit() || MMI.callsEHReturn());
56}
57
58static unsigned getSUBriOpcode(unsigned IsLP64, int64_t Imm) {
59  if (IsLP64) {
60    if (isInt<8>(Imm))
61      return X86::SUB64ri8;
62    return X86::SUB64ri32;
63  } else {
64    if (isInt<8>(Imm))
65      return X86::SUB32ri8;
66    return X86::SUB32ri;
67  }
68}
69
70static unsigned getADDriOpcode(unsigned IsLP64, int64_t Imm) {
71  if (IsLP64) {
72    if (isInt<8>(Imm))
73      return X86::ADD64ri8;
74    return X86::ADD64ri32;
75  } else {
76    if (isInt<8>(Imm))
77      return X86::ADD32ri8;
78    return X86::ADD32ri;
79  }
80}
81
82static unsigned getLEArOpcode(unsigned IsLP64) {
83  return IsLP64 ? X86::LEA64r : X86::LEA32r;
84}
85
86/// findDeadCallerSavedReg - Return a caller-saved register that isn't live
87/// when it reaches the "return" instruction. We can then pop a stack object
88/// to this register without worry about clobbering it.
89static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB,
90                                       MachineBasicBlock::iterator &MBBI,
91                                       const TargetRegisterInfo &TRI,
92                                       bool Is64Bit) {
93  const MachineFunction *MF = MBB.getParent();
94  const Function *F = MF->getFunction();
95  if (!F || MF->getMMI().callsEHReturn())
96    return 0;
97
98  static const uint16_t CallerSavedRegs32Bit[] = {
99    X86::EAX, X86::EDX, X86::ECX, 0
100  };
101
102  static const uint16_t CallerSavedRegs64Bit[] = {
103    X86::RAX, X86::RDX, X86::RCX, X86::RSI, X86::RDI,
104    X86::R8,  X86::R9,  X86::R10, X86::R11, 0
105  };
106
107  unsigned Opc = MBBI->getOpcode();
108  switch (Opc) {
109  default: return 0;
110  case X86::RET:
111  case X86::RETI:
112  case X86::TCRETURNdi:
113  case X86::TCRETURNri:
114  case X86::TCRETURNmi:
115  case X86::TCRETURNdi64:
116  case X86::TCRETURNri64:
117  case X86::TCRETURNmi64:
118  case X86::EH_RETURN:
119  case X86::EH_RETURN64: {
120    SmallSet<uint16_t, 8> Uses;
121    for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) {
122      MachineOperand &MO = MBBI->getOperand(i);
123      if (!MO.isReg() || MO.isDef())
124        continue;
125      unsigned Reg = MO.getReg();
126      if (!Reg)
127        continue;
128      for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI)
129        Uses.insert(*AI);
130    }
131
132    const uint16_t *CS = Is64Bit ? CallerSavedRegs64Bit : CallerSavedRegs32Bit;
133    for (; *CS; ++CS)
134      if (!Uses.count(*CS))
135        return *CS;
136  }
137  }
138
139  return 0;
140}
141
142
143/// emitSPUpdate - Emit a series of instructions to increment / decrement the
144/// stack pointer by a constant value.
145static
146void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
147                  unsigned StackPtr, int64_t NumBytes,
148                  bool Is64Bit, bool IsLP64, bool UseLEA,
149                  const TargetInstrInfo &TII, const TargetRegisterInfo &TRI) {
150  bool isSub = NumBytes < 0;
151  uint64_t Offset = isSub ? -NumBytes : NumBytes;
152  unsigned Opc;
153  if (UseLEA)
154    Opc = getLEArOpcode(IsLP64);
155  else
156    Opc = isSub
157      ? getSUBriOpcode(IsLP64, Offset)
158      : getADDriOpcode(IsLP64, Offset);
159
160  uint64_t Chunk = (1LL << 31) - 1;
161  DebugLoc DL = MBB.findDebugLoc(MBBI);
162
163  while (Offset) {
164    uint64_t ThisVal = (Offset > Chunk) ? Chunk : Offset;
165    if (ThisVal == (Is64Bit ? 8 : 4)) {
166      // Use push / pop instead.
167      unsigned Reg = isSub
168        ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX)
169        : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
170      if (Reg) {
171        Opc = isSub
172          ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r)
173          : (Is64Bit ? X86::POP64r  : X86::POP32r);
174        MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc))
175          .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub));
176        if (isSub)
177          MI->setFlag(MachineInstr::FrameSetup);
178        Offset -= ThisVal;
179        continue;
180      }
181    }
182
183    MachineInstr *MI = NULL;
184
185    if (UseLEA) {
186      MI =  addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
187                          StackPtr, false, isSub ? -ThisVal : ThisVal);
188    } else {
189      MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
190            .addReg(StackPtr)
191            .addImm(ThisVal);
192      MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
193    }
194
195    if (isSub)
196      MI->setFlag(MachineInstr::FrameSetup);
197
198    Offset -= ThisVal;
199  }
200}
201
202/// mergeSPUpdatesUp - Merge two stack-manipulating instructions upper iterator.
203static
204void mergeSPUpdatesUp(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
205                      unsigned StackPtr, uint64_t *NumBytes = NULL) {
206  if (MBBI == MBB.begin()) return;
207
208  MachineBasicBlock::iterator PI = prior(MBBI);
209  unsigned Opc = PI->getOpcode();
210  if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
211       Opc == X86::ADD32ri || Opc == X86::ADD32ri8 ||
212       Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
213      PI->getOperand(0).getReg() == StackPtr) {
214    if (NumBytes)
215      *NumBytes += PI->getOperand(2).getImm();
216    MBB.erase(PI);
217  } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
218              Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
219             PI->getOperand(0).getReg() == StackPtr) {
220    if (NumBytes)
221      *NumBytes -= PI->getOperand(2).getImm();
222    MBB.erase(PI);
223  }
224}
225
226/// mergeSPUpdatesDown - Merge two stack-manipulating instructions lower iterator.
227static
228void mergeSPUpdatesDown(MachineBasicBlock &MBB,
229                        MachineBasicBlock::iterator &MBBI,
230                        unsigned StackPtr, uint64_t *NumBytes = NULL) {
231  // FIXME:  THIS ISN'T RUN!!!
232  return;
233
234  if (MBBI == MBB.end()) return;
235
236  MachineBasicBlock::iterator NI = llvm::next(MBBI);
237  if (NI == MBB.end()) return;
238
239  unsigned Opc = NI->getOpcode();
240  if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
241       Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
242      NI->getOperand(0).getReg() == StackPtr) {
243    if (NumBytes)
244      *NumBytes -= NI->getOperand(2).getImm();
245    MBB.erase(NI);
246    MBBI = NI;
247  } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
248              Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
249             NI->getOperand(0).getReg() == StackPtr) {
250    if (NumBytes)
251      *NumBytes += NI->getOperand(2).getImm();
252    MBB.erase(NI);
253    MBBI = NI;
254  }
255}
256
257/// mergeSPUpdates - Checks the instruction before/after the passed
258/// instruction. If it is an ADD/SUB/LEA instruction it is deleted argument and the
259/// stack adjustment is returned as a positive value for ADD/LEA and a negative for
260/// SUB.
261static int mergeSPUpdates(MachineBasicBlock &MBB,
262                           MachineBasicBlock::iterator &MBBI,
263                           unsigned StackPtr,
264                           bool doMergeWithPrevious) {
265  if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
266      (!doMergeWithPrevious && MBBI == MBB.end()))
267    return 0;
268
269  MachineBasicBlock::iterator PI = doMergeWithPrevious ? prior(MBBI) : MBBI;
270  MachineBasicBlock::iterator NI = doMergeWithPrevious ? 0 : llvm::next(MBBI);
271  unsigned Opc = PI->getOpcode();
272  int Offset = 0;
273
274  if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
275       Opc == X86::ADD32ri || Opc == X86::ADD32ri8 ||
276       Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
277      PI->getOperand(0).getReg() == StackPtr){
278    Offset += PI->getOperand(2).getImm();
279    MBB.erase(PI);
280    if (!doMergeWithPrevious) MBBI = NI;
281  } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
282              Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
283             PI->getOperand(0).getReg() == StackPtr) {
284    Offset -= PI->getOperand(2).getImm();
285    MBB.erase(PI);
286    if (!doMergeWithPrevious) MBBI = NI;
287  }
288
289  return Offset;
290}
291
292static bool isEAXLiveIn(MachineFunction &MF) {
293  for (MachineRegisterInfo::livein_iterator II = MF.getRegInfo().livein_begin(),
294       EE = MF.getRegInfo().livein_end(); II != EE; ++II) {
295    unsigned Reg = II->first;
296
297    if (Reg == X86::EAX || Reg == X86::AX ||
298        Reg == X86::AH || Reg == X86::AL)
299      return true;
300  }
301
302  return false;
303}
304
305void X86FrameLowering::emitCalleeSavedFrameMoves(MachineFunction &MF,
306                                                 MCSymbol *Label,
307                                                 unsigned FramePtr) const {
308  MachineFrameInfo *MFI = MF.getFrameInfo();
309  MachineModuleInfo &MMI = MF.getMMI();
310  const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
311
312  // Add callee saved registers to move list.
313  const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
314  if (CSI.empty()) return;
315
316  const X86RegisterInfo *RegInfo = TM.getRegisterInfo();
317  bool HasFP = hasFP(MF);
318
319  // Calculate amount of bytes used for return address storing.
320  int stackGrowth = -RegInfo->getSlotSize();
321
322  // FIXME: This is dirty hack. The code itself is pretty mess right now.
323  // It should be rewritten from scratch and generalized sometimes.
324
325  // Determine maximum offset (minimum due to stack growth).
326  int64_t MaxOffset = 0;
327  for (std::vector<CalleeSavedInfo>::const_iterator
328         I = CSI.begin(), E = CSI.end(); I != E; ++I)
329    MaxOffset = std::min(MaxOffset,
330                         MFI->getObjectOffset(I->getFrameIdx()));
331
332  // Calculate offsets.
333  int64_t saveAreaOffset = (HasFP ? 3 : 2) * stackGrowth;
334  for (std::vector<CalleeSavedInfo>::const_iterator
335         I = CSI.begin(), E = CSI.end(); I != E; ++I) {
336    int64_t Offset = MFI->getObjectOffset(I->getFrameIdx());
337    unsigned Reg = I->getReg();
338    Offset = MaxOffset - Offset + saveAreaOffset;
339
340    // Don't output a new machine move if we're re-saving the frame
341    // pointer. This happens when the PrologEpilogInserter has inserted an extra
342    // "PUSH" of the frame pointer -- the "emitPrologue" method automatically
343    // generates one when frame pointers are used. If we generate a "machine
344    // move" for this extra "PUSH", the linker will lose track of the fact that
345    // the frame pointer should have the value of the first "PUSH" when it's
346    // trying to unwind.
347    //
348    // FIXME: This looks inelegant. It's possibly correct, but it's covering up
349    //        another bug. I.e., one where we generate a prolog like this:
350    //
351    //          pushl  %ebp
352    //          movl   %esp, %ebp
353    //          pushl  %ebp
354    //          pushl  %esi
355    //           ...
356    //
357    //        The immediate re-push of EBP is unnecessary. At the least, it's an
358    //        optimization bug. EBP can be used as a scratch register in certain
359    //        cases, but probably not when we have a frame pointer.
360    if (HasFP && FramePtr == Reg)
361      continue;
362
363    unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
364    MMI.addFrameInst(MCCFIInstruction::createOffset(Label, DwarfReg, Offset));
365  }
366}
367
368/// getCompactUnwindRegNum - Get the compact unwind number for a given
369/// register. The number corresponds to the enum lists in
370/// compact_unwind_encoding.h.
371static int getCompactUnwindRegNum(unsigned Reg, bool is64Bit) {
372  static const uint16_t CU32BitRegs[] = {
373    X86::EBX, X86::ECX, X86::EDX, X86::EDI, X86::ESI, X86::EBP, 0
374  };
375  static const uint16_t CU64BitRegs[] = {
376    X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
377  };
378  const uint16_t *CURegs = is64Bit ? CU64BitRegs : CU32BitRegs;
379  for (int Idx = 1; *CURegs; ++CURegs, ++Idx)
380    if (*CURegs == Reg)
381      return Idx;
382
383  return -1;
384}
385
386// Number of registers that can be saved in a compact unwind encoding.
387#define CU_NUM_SAVED_REGS 6
388
389/// encodeCompactUnwindRegistersWithoutFrame - Create the permutation encoding
390/// used with frameless stacks. It is passed the number of registers to be saved
391/// and an array of the registers saved.
392static uint32_t
393encodeCompactUnwindRegistersWithoutFrame(unsigned SavedRegs[CU_NUM_SAVED_REGS],
394                                         unsigned RegCount, bool Is64Bit) {
395  // The saved registers are numbered from 1 to 6. In order to encode the order
396  // in which they were saved, we re-number them according to their place in the
397  // register order. The re-numbering is relative to the last re-numbered
398  // register. E.g., if we have registers {6, 2, 4, 5} saved in that order:
399  //
400  //    Orig  Re-Num
401  //    ----  ------
402  //     6       6
403  //     2       2
404  //     4       3
405  //     5       3
406  //
407  for (unsigned i = 0; i != CU_NUM_SAVED_REGS; ++i) {
408    int CUReg = getCompactUnwindRegNum(SavedRegs[i], Is64Bit);
409    if (CUReg == -1) return ~0U;
410    SavedRegs[i] = CUReg;
411  }
412
413  // Reverse the list.
414  std::swap(SavedRegs[0], SavedRegs[5]);
415  std::swap(SavedRegs[1], SavedRegs[4]);
416  std::swap(SavedRegs[2], SavedRegs[3]);
417
418  uint32_t RenumRegs[CU_NUM_SAVED_REGS];
419  for (unsigned i = CU_NUM_SAVED_REGS - RegCount; i < CU_NUM_SAVED_REGS; ++i) {
420    unsigned Countless = 0;
421    for (unsigned j = CU_NUM_SAVED_REGS - RegCount; j < i; ++j)
422      if (SavedRegs[j] < SavedRegs[i])
423        ++Countless;
424
425    RenumRegs[i] = SavedRegs[i] - Countless - 1;
426  }
427
428  // Take the renumbered values and encode them into a 10-bit number.
429  uint32_t permutationEncoding = 0;
430  switch (RegCount) {
431  case 6:
432    permutationEncoding |= 120 * RenumRegs[0] + 24 * RenumRegs[1]
433                           + 6 * RenumRegs[2] +  2 * RenumRegs[3]
434                           +     RenumRegs[4];
435    break;
436  case 5:
437    permutationEncoding |= 120 * RenumRegs[1] + 24 * RenumRegs[2]
438                           + 6 * RenumRegs[3] +  2 * RenumRegs[4]
439                           +     RenumRegs[5];
440    break;
441  case 4:
442    permutationEncoding |=  60 * RenumRegs[2] + 12 * RenumRegs[3]
443                           + 3 * RenumRegs[4] +      RenumRegs[5];
444    break;
445  case 3:
446    permutationEncoding |=  20 * RenumRegs[3] +  4 * RenumRegs[4]
447                           +     RenumRegs[5];
448    break;
449  case 2:
450    permutationEncoding |=   5 * RenumRegs[4] +      RenumRegs[5];
451    break;
452  case 1:
453    permutationEncoding |=       RenumRegs[5];
454    break;
455  }
456
457  assert((permutationEncoding & 0x3FF) == permutationEncoding &&
458         "Invalid compact register encoding!");
459  return permutationEncoding;
460}
461
462/// encodeCompactUnwindRegistersWithFrame - Return the registers encoded for a
463/// compact encoding with a frame pointer.
464static uint32_t
465encodeCompactUnwindRegistersWithFrame(unsigned SavedRegs[CU_NUM_SAVED_REGS],
466                                      bool Is64Bit) {
467  // Encode the registers in the order they were saved, 3-bits per register. The
468  // registers are numbered from 1 to CU_NUM_SAVED_REGS.
469  uint32_t RegEnc = 0;
470  for (int I = CU_NUM_SAVED_REGS - 1, Idx = 0; I != -1; --I) {
471    unsigned Reg = SavedRegs[I];
472    if (Reg == 0) continue;
473
474    int CURegNum = getCompactUnwindRegNum(Reg, Is64Bit);
475    if (CURegNum == -1) return ~0U;
476
477    // Encode the 3-bit register number in order, skipping over 3-bits for each
478    // register.
479    RegEnc |= (CURegNum & 0x7) << (Idx++ * 3);
480  }
481
482  assert((RegEnc & 0x3FFFF) == RegEnc && "Invalid compact register encoding!");
483  return RegEnc;
484}
485
486uint32_t X86FrameLowering::getCompactUnwindEncoding(MachineFunction &MF) const {
487  const X86RegisterInfo *RegInfo = TM.getRegisterInfo();
488  unsigned FramePtr = RegInfo->getFrameRegister(MF);
489  unsigned StackPtr = RegInfo->getStackRegister();
490
491  bool Is64Bit = STI.is64Bit();
492  bool HasFP = hasFP(MF);
493
494  unsigned SavedRegs[CU_NUM_SAVED_REGS] = { 0, 0, 0, 0, 0, 0 };
495  unsigned SavedRegIdx = 0;
496
497  unsigned OffsetSize = (Is64Bit ? 8 : 4);
498
499  unsigned PushInstr = (Is64Bit ? X86::PUSH64r : X86::PUSH32r);
500  unsigned PushInstrSize = 1;
501  unsigned MoveInstr = (Is64Bit ? X86::MOV64rr : X86::MOV32rr);
502  unsigned MoveInstrSize = (Is64Bit ? 3 : 2);
503  unsigned SubtractInstrIdx = (Is64Bit ? 3 : 2);
504
505  unsigned StackDivide = (Is64Bit ? 8 : 4);
506
507  unsigned InstrOffset = 0;
508  unsigned StackAdjust = 0;
509  unsigned StackSize = 0;
510
511  MachineBasicBlock &MBB = MF.front(); // Prologue is in entry BB.
512  bool ExpectEnd = false;
513  for (MachineBasicBlock::iterator
514         MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ++MBBI) {
515    MachineInstr &MI = *MBBI;
516    unsigned Opc = MI.getOpcode();
517    if (Opc == X86::PROLOG_LABEL) continue;
518    if (!MI.getFlag(MachineInstr::FrameSetup)) break;
519
520    // We don't exect any more prolog instructions.
521    if (ExpectEnd) return CU::UNWIND_MODE_DWARF;
522
523    if (Opc == PushInstr) {
524      // If there are too many saved registers, we cannot use compact encoding.
525      if (SavedRegIdx >= CU_NUM_SAVED_REGS) return CU::UNWIND_MODE_DWARF;
526
527      unsigned Reg = MI.getOperand(0).getReg();
528      if (Reg == (Is64Bit ? X86::RAX : X86::EAX)) {
529        ExpectEnd = true;
530        continue;
531      }
532
533      SavedRegs[SavedRegIdx++] = MI.getOperand(0).getReg();
534      StackAdjust += OffsetSize;
535      InstrOffset += PushInstrSize;
536    } else if (Opc == MoveInstr) {
537      unsigned SrcReg = MI.getOperand(1).getReg();
538      unsigned DstReg = MI.getOperand(0).getReg();
539
540      if (DstReg != FramePtr || SrcReg != StackPtr)
541        return CU::UNWIND_MODE_DWARF;
542
543      StackAdjust = 0;
544      memset(SavedRegs, 0, sizeof(SavedRegs));
545      SavedRegIdx = 0;
546      InstrOffset += MoveInstrSize;
547    } else if (Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
548               Opc == X86::SUB32ri || Opc == X86::SUB32ri8) {
549      if (StackSize)
550        // We already have a stack size.
551        return CU::UNWIND_MODE_DWARF;
552
553      if (!MI.getOperand(0).isReg() ||
554          MI.getOperand(0).getReg() != MI.getOperand(1).getReg() ||
555          MI.getOperand(0).getReg() != StackPtr || !MI.getOperand(2).isImm())
556        // We need this to be a stack adjustment pointer. Something like:
557        //
558        //   %RSP<def> = SUB64ri8 %RSP, 48
559        return CU::UNWIND_MODE_DWARF;
560
561      StackSize = MI.getOperand(2).getImm() / StackDivide;
562      SubtractInstrIdx += InstrOffset;
563      ExpectEnd = true;
564    }
565  }
566
567  // Encode that we are using EBP/RBP as the frame pointer.
568  uint32_t CompactUnwindEncoding = 0;
569  StackAdjust /= StackDivide;
570  if (HasFP) {
571    if ((StackAdjust & 0xFF) != StackAdjust)
572      // Offset was too big for compact encoding.
573      return CU::UNWIND_MODE_DWARF;
574
575    // Get the encoding of the saved registers when we have a frame pointer.
576    uint32_t RegEnc = encodeCompactUnwindRegistersWithFrame(SavedRegs, Is64Bit);
577    if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF;
578
579    CompactUnwindEncoding |= CU::UNWIND_MODE_BP_FRAME;
580    CompactUnwindEncoding |= (StackAdjust & 0xFF) << 16;
581    CompactUnwindEncoding |= RegEnc & CU::UNWIND_BP_FRAME_REGISTERS;
582  } else {
583    ++StackAdjust;
584    uint32_t TotalStackSize = StackAdjust + StackSize;
585    if ((TotalStackSize & 0xFF) == TotalStackSize) {
586      // Frameless stack with a small stack size.
587      CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IMMD;
588
589      // Encode the stack size.
590      CompactUnwindEncoding |= (TotalStackSize & 0xFF) << 16;
591    } else {
592      if ((StackAdjust & 0x7) != StackAdjust)
593        // The extra stack adjustments are too big for us to handle.
594        return CU::UNWIND_MODE_DWARF;
595
596      // Frameless stack with an offset too large for us to encode compactly.
597      CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IND;
598
599      // Encode the offset to the nnnnnn value in the 'subl $nnnnnn, ESP'
600      // instruction.
601      CompactUnwindEncoding |= (SubtractInstrIdx & 0xFF) << 16;
602
603      // Encode any extra stack stack adjustments (done via push instructions).
604      CompactUnwindEncoding |= (StackAdjust & 0x7) << 13;
605    }
606
607    // Encode the number of registers saved.
608    CompactUnwindEncoding |= (SavedRegIdx & 0x7) << 10;
609
610    // Get the encoding of the saved registers when we don't have a frame
611    // pointer.
612    uint32_t RegEnc =
613      encodeCompactUnwindRegistersWithoutFrame(SavedRegs, SavedRegIdx,
614                                               Is64Bit);
615    if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF;
616
617    // Encode the register encoding.
618    CompactUnwindEncoding |=
619      RegEnc & CU::UNWIND_FRAMELESS_STACK_REG_PERMUTATION;
620  }
621
622  return CompactUnwindEncoding;
623}
624
625/// usesTheStack - This function checks if any of the users of EFLAGS
626/// copies the EFLAGS. We know that the code that lowers COPY of EFLAGS has
627/// to use the stack, and if we don't adjust the stack we clobber the first
628/// frame index.
629/// See X86InstrInfo::copyPhysReg.
630static bool usesTheStack(MachineFunction &MF) {
631  MachineRegisterInfo &MRI = MF.getRegInfo();
632
633  for (MachineRegisterInfo::reg_iterator ri = MRI.reg_begin(X86::EFLAGS),
634       re = MRI.reg_end(); ri != re; ++ri)
635    if (ri->isCopy())
636      return true;
637
638  return false;
639}
640
641/// emitPrologue - Push callee-saved registers onto the stack, which
642/// automatically adjust the stack pointer. Adjust the stack pointer to allocate
643/// space for local variables. Also emit labels used by the exception handler to
644/// generate the exception handling frames.
645void X86FrameLowering::emitPrologue(MachineFunction &MF) const {
646  MachineBasicBlock &MBB = MF.front(); // Prologue goes in entry BB.
647  MachineBasicBlock::iterator MBBI = MBB.begin();
648  MachineFrameInfo *MFI = MF.getFrameInfo();
649  const Function *Fn = MF.getFunction();
650  const X86RegisterInfo *RegInfo = TM.getRegisterInfo();
651  const X86InstrInfo &TII = *TM.getInstrInfo();
652  MachineModuleInfo &MMI = MF.getMMI();
653  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
654  bool needsFrameMoves = MMI.hasDebugInfo() ||
655    Fn->needsUnwindTableEntry();
656  uint64_t MaxAlign  = MFI->getMaxAlignment(); // Desired stack alignment.
657  uint64_t StackSize = MFI->getStackSize();    // Number of bytes to allocate.
658  bool HasFP = hasFP(MF);
659  bool Is64Bit = STI.is64Bit();
660  bool IsLP64 = STI.isTarget64BitLP64();
661  bool IsWin64 = STI.isTargetWin64();
662  bool UseLEA = STI.useLeaForSP();
663  unsigned StackAlign = getStackAlignment();
664  unsigned SlotSize = RegInfo->getSlotSize();
665  unsigned FramePtr = RegInfo->getFrameRegister(MF);
666  unsigned StackPtr = RegInfo->getStackRegister();
667  unsigned BasePtr = RegInfo->getBaseRegister();
668  DebugLoc DL;
669
670  // If we're forcing a stack realignment we can't rely on just the frame
671  // info, we need to know the ABI stack alignment as well in case we
672  // have a call out.  Otherwise just make sure we have some alignment - we'll
673  // go with the minimum SlotSize.
674  if (ForceStackAlign) {
675    if (MFI->hasCalls())
676      MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
677    else if (MaxAlign < SlotSize)
678      MaxAlign = SlotSize;
679  }
680
681  // Add RETADDR move area to callee saved frame size.
682  int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
683  if (TailCallReturnAddrDelta < 0)
684    X86FI->setCalleeSavedFrameSize(
685      X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta);
686
687  // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
688  // function, and use up to 128 bytes of stack space, don't have a frame
689  // pointer, calls, or dynamic alloca then we do not need to adjust the
690  // stack pointer (we fit in the Red Zone). We also check that we don't
691  // push and pop from the stack.
692  if (Is64Bit && !Fn->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
693                                                   Attribute::NoRedZone) &&
694      !RegInfo->needsStackRealignment(MF) &&
695      !MFI->hasVarSizedObjects() &&                     // No dynamic alloca.
696      !MFI->adjustsStack() &&                           // No calls.
697      !IsWin64 &&                                       // Win64 has no Red Zone
698      !usesTheStack(MF) &&                              // Don't push and pop.
699      !MF.getTarget().Options.EnableSegmentedStacks) {  // Regular stack
700    uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
701    if (HasFP) MinSize += SlotSize;
702    StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
703    MFI->setStackSize(StackSize);
704  }
705
706  // Insert stack pointer adjustment for later moving of return addr.  Only
707  // applies to tail call optimized functions where the callee argument stack
708  // size is bigger than the callers.
709  if (TailCallReturnAddrDelta < 0) {
710    MachineInstr *MI =
711      BuildMI(MBB, MBBI, DL,
712              TII.get(getSUBriOpcode(IsLP64, -TailCallReturnAddrDelta)),
713              StackPtr)
714        .addReg(StackPtr)
715        .addImm(-TailCallReturnAddrDelta)
716        .setMIFlag(MachineInstr::FrameSetup);
717    MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
718  }
719
720  // Mapping for machine moves:
721  //
722  //   DST: VirtualFP AND
723  //        SRC: VirtualFP              => DW_CFA_def_cfa_offset
724  //        ELSE                        => DW_CFA_def_cfa
725  //
726  //   SRC: VirtualFP AND
727  //        DST: Register               => DW_CFA_def_cfa_register
728  //
729  //   ELSE
730  //        OFFSET < 0                  => DW_CFA_offset_extended_sf
731  //        REG < 64                    => DW_CFA_offset + Reg
732  //        ELSE                        => DW_CFA_offset_extended
733
734  uint64_t NumBytes = 0;
735  int stackGrowth = -SlotSize;
736
737  if (HasFP) {
738    // Calculate required stack adjustment.
739    uint64_t FrameSize = StackSize - SlotSize;
740    if (RegInfo->needsStackRealignment(MF)) {
741      // Callee-saved registers are pushed on stack before the stack
742      // is realigned.
743      FrameSize -= X86FI->getCalleeSavedFrameSize();
744      NumBytes = (FrameSize + MaxAlign - 1) / MaxAlign * MaxAlign;
745    } else {
746      NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
747    }
748
749    // Get the offset of the stack slot for the EBP register, which is
750    // guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
751    // Update the frame offset adjustment.
752    MFI->setOffsetAdjustment(-NumBytes);
753
754    // Save EBP/RBP into the appropriate stack slot.
755    BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
756      .addReg(FramePtr, RegState::Kill)
757      .setMIFlag(MachineInstr::FrameSetup);
758
759    if (needsFrameMoves) {
760      // Mark the place where EBP/RBP was saved.
761      MCSymbol *FrameLabel = MMI.getContext().CreateTempSymbol();
762      BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL))
763        .addSym(FrameLabel);
764
765      // Define the current CFA rule to use the provided offset.
766      assert(StackSize);
767      MMI.addFrameInst(
768          MCCFIInstruction::createDefCfaOffset(FrameLabel, 2 * stackGrowth));
769
770      // Change the rule for the FramePtr to be an "offset" rule.
771      unsigned DwarfFramePtr = RegInfo->getDwarfRegNum(FramePtr, true);
772      MMI.addFrameInst(MCCFIInstruction::createOffset(FrameLabel, DwarfFramePtr,
773                                                      2 * stackGrowth));
774    }
775
776    // Update EBP with the new base value.
777    BuildMI(MBB, MBBI, DL,
778            TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), FramePtr)
779        .addReg(StackPtr)
780        .setMIFlag(MachineInstr::FrameSetup);
781
782    if (needsFrameMoves) {
783      // Mark effective beginning of when frame pointer becomes valid.
784      MCSymbol *FrameLabel = MMI.getContext().CreateTempSymbol();
785      BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL))
786        .addSym(FrameLabel);
787
788      // Define the current CFA to use the EBP/RBP register.
789      unsigned DwarfFramePtr = RegInfo->getDwarfRegNum(FramePtr, true);
790      MMI.addFrameInst(
791          MCCFIInstruction::createDefCfaRegister(FrameLabel, DwarfFramePtr));
792    }
793
794    // Mark the FramePtr as live-in in every block except the entry.
795    for (MachineFunction::iterator I = llvm::next(MF.begin()), E = MF.end();
796         I != E; ++I)
797      I->addLiveIn(FramePtr);
798  } else {
799    NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
800  }
801
802  // Skip the callee-saved push instructions.
803  bool PushedRegs = false;
804  int StackOffset = 2 * stackGrowth;
805
806  while (MBBI != MBB.end() &&
807         (MBBI->getOpcode() == X86::PUSH32r ||
808          MBBI->getOpcode() == X86::PUSH64r)) {
809    PushedRegs = true;
810    MBBI->setFlag(MachineInstr::FrameSetup);
811    ++MBBI;
812
813    if (!HasFP && needsFrameMoves) {
814      // Mark callee-saved push instruction.
815      MCSymbol *Label = MMI.getContext().CreateTempSymbol();
816      BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL)).addSym(Label);
817
818      // Define the current CFA rule to use the provided offset.
819      assert(StackSize);
820      MMI.addFrameInst(
821          MCCFIInstruction::createDefCfaOffset(Label, StackOffset));
822      StackOffset += stackGrowth;
823    }
824  }
825
826  // Realign stack after we pushed callee-saved registers (so that we'll be
827  // able to calculate their offsets from the frame pointer).
828
829  // NOTE: We push the registers before realigning the stack, so
830  // vector callee-saved (xmm) registers may be saved w/o proper
831  // alignment in this way. However, currently these regs are saved in
832  // stack slots (see X86FrameLowering::spillCalleeSavedRegisters()), so
833  // this shouldn't be a problem.
834  if (RegInfo->needsStackRealignment(MF)) {
835    assert(HasFP && "There should be a frame pointer if stack is realigned.");
836    MachineInstr *MI =
837      BuildMI(MBB, MBBI, DL,
838              TII.get(Is64Bit ? X86::AND64ri32 : X86::AND32ri), StackPtr)
839      .addReg(StackPtr)
840      .addImm(-MaxAlign)
841      .setMIFlag(MachineInstr::FrameSetup);
842
843    // The EFLAGS implicit def is dead.
844    MI->getOperand(3).setIsDead();
845  }
846
847  // If there is an SUB32ri of ESP immediately before this instruction, merge
848  // the two. This can be the case when tail call elimination is enabled and
849  // the callee has more arguments then the caller.
850  NumBytes -= mergeSPUpdates(MBB, MBBI, StackPtr, true);
851
852  // If there is an ADD32ri or SUB32ri of ESP immediately after this
853  // instruction, merge the two instructions.
854  mergeSPUpdatesDown(MBB, MBBI, StackPtr, &NumBytes);
855
856  // Adjust stack pointer: ESP -= numbytes.
857
858  // Windows and cygwin/mingw require a prologue helper routine when allocating
859  // more than 4K bytes on the stack.  Windows uses __chkstk and cygwin/mingw
860  // uses __alloca.  __alloca and the 32-bit version of __chkstk will probe the
861  // stack and adjust the stack pointer in one go.  The 64-bit version of
862  // __chkstk is only responsible for probing the stack.  The 64-bit prologue is
863  // responsible for adjusting the stack pointer.  Touching the stack at 4K
864  // increments is necessary to ensure that the guard pages used by the OS
865  // virtual memory manager are allocated in correct sequence.
866  if (NumBytes >= 4096 && STI.isTargetCOFF() && !STI.isTargetEnvMacho()) {
867    const char *StackProbeSymbol;
868    bool isSPUpdateNeeded = false;
869
870    if (Is64Bit) {
871      if (STI.isTargetCygMing())
872        StackProbeSymbol = "___chkstk";
873      else {
874        StackProbeSymbol = "__chkstk";
875        isSPUpdateNeeded = true;
876      }
877    } else if (STI.isTargetCygMing())
878      StackProbeSymbol = "_alloca";
879    else
880      StackProbeSymbol = "_chkstk";
881
882    // Check whether EAX is livein for this function.
883    bool isEAXAlive = isEAXLiveIn(MF);
884
885    if (isEAXAlive) {
886      // Sanity check that EAX is not livein for this function.
887      // It should not be, so throw an assert.
888      assert(!Is64Bit && "EAX is livein in x64 case!");
889
890      // Save EAX
891      BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
892        .addReg(X86::EAX, RegState::Kill)
893        .setMIFlag(MachineInstr::FrameSetup);
894    }
895
896    if (Is64Bit) {
897      // Handle the 64-bit Windows ABI case where we need to call __chkstk.
898      // Function prologue is responsible for adjusting the stack pointer.
899      BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX)
900        .addImm(NumBytes)
901        .setMIFlag(MachineInstr::FrameSetup);
902    } else {
903      // Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
904      // We'll also use 4 already allocated bytes for EAX.
905      BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
906        .addImm(isEAXAlive ? NumBytes - 4 : NumBytes)
907        .setMIFlag(MachineInstr::FrameSetup);
908    }
909
910    BuildMI(MBB, MBBI, DL,
911            TII.get(Is64Bit ? X86::W64ALLOCA : X86::CALLpcrel32))
912      .addExternalSymbol(StackProbeSymbol)
913      .addReg(StackPtr,    RegState::Define | RegState::Implicit)
914      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit)
915      .setMIFlag(MachineInstr::FrameSetup);
916
917    // MSVC x64's __chkstk does not adjust %rsp itself.
918    // It also does not clobber %rax so we can reuse it when adjusting %rsp.
919    if (isSPUpdateNeeded) {
920      BuildMI(MBB, MBBI, DL, TII.get(X86::SUB64rr), StackPtr)
921        .addReg(StackPtr)
922        .addReg(X86::RAX)
923        .setMIFlag(MachineInstr::FrameSetup);
924    }
925
926    if (isEAXAlive) {
927        // Restore EAX
928        MachineInstr *MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm),
929                                                X86::EAX),
930                                        StackPtr, false, NumBytes - 4);
931        MI->setFlag(MachineInstr::FrameSetup);
932        MBB.insert(MBBI, MI);
933    }
934  } else if (NumBytes)
935    emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit, IsLP64,
936                 UseLEA, TII, *RegInfo);
937
938  // If we need a base pointer, set it up here. It's whatever the value
939  // of the stack pointer is at this point. Any variable size objects
940  // will be allocated after this, so we can still use the base pointer
941  // to reference locals.
942  if (RegInfo->hasBasePointer(MF)) {
943    // Update the frame pointer with the current stack pointer.
944    unsigned Opc = Is64Bit ? X86::MOV64rr : X86::MOV32rr;
945    BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr)
946      .addReg(StackPtr)
947      .setMIFlag(MachineInstr::FrameSetup);
948  }
949
950  if (( (!HasFP && NumBytes) || PushedRegs) && needsFrameMoves) {
951    // Mark end of stack pointer adjustment.
952    MCSymbol *Label = MMI.getContext().CreateTempSymbol();
953    BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL))
954      .addSym(Label);
955
956    if (!HasFP && NumBytes) {
957      // Define the current CFA rule to use the provided offset.
958      assert(StackSize);
959      MMI.addFrameInst(MCCFIInstruction::createDefCfaOffset(
960          Label, -StackSize + stackGrowth));
961    }
962
963    // Emit DWARF info specifying the offsets of the callee-saved registers.
964    if (PushedRegs)
965      emitCalleeSavedFrameMoves(MF, Label, HasFP ? FramePtr : StackPtr);
966  }
967
968  // Darwin 10.7 and greater has support for compact unwind encoding.
969  if (STI.getTargetTriple().isMacOSX() &&
970      !STI.getTargetTriple().isMacOSXVersionLT(10, 7))
971    MMI.setCompactUnwindEncoding(getCompactUnwindEncoding(MF));
972}
973
974void X86FrameLowering::emitEpilogue(MachineFunction &MF,
975                                    MachineBasicBlock &MBB) const {
976  const MachineFrameInfo *MFI = MF.getFrameInfo();
977  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
978  const X86RegisterInfo *RegInfo = TM.getRegisterInfo();
979  const X86InstrInfo &TII = *TM.getInstrInfo();
980  MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
981  assert(MBBI != MBB.end() && "Returning block has no instructions");
982  unsigned RetOpcode = MBBI->getOpcode();
983  DebugLoc DL = MBBI->getDebugLoc();
984  bool Is64Bit = STI.is64Bit();
985  bool IsLP64 = STI.isTarget64BitLP64();
986  bool UseLEA = STI.useLeaForSP();
987  unsigned StackAlign = getStackAlignment();
988  unsigned SlotSize = RegInfo->getSlotSize();
989  unsigned FramePtr = RegInfo->getFrameRegister(MF);
990  unsigned StackPtr = RegInfo->getStackRegister();
991
992  switch (RetOpcode) {
993  default:
994    llvm_unreachable("Can only insert epilog into returning blocks");
995  case X86::RET:
996  case X86::RETI:
997  case X86::TCRETURNdi:
998  case X86::TCRETURNri:
999  case X86::TCRETURNmi:
1000  case X86::TCRETURNdi64:
1001  case X86::TCRETURNri64:
1002  case X86::TCRETURNmi64:
1003  case X86::EH_RETURN:
1004  case X86::EH_RETURN64:
1005    break;  // These are ok
1006  }
1007
1008  // Get the number of bytes to allocate from the FrameInfo.
1009  uint64_t StackSize = MFI->getStackSize();
1010  uint64_t MaxAlign  = MFI->getMaxAlignment();
1011  unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1012  uint64_t NumBytes = 0;
1013
1014  // If we're forcing a stack realignment we can't rely on just the frame
1015  // info, we need to know the ABI stack alignment as well in case we
1016  // have a call out.  Otherwise just make sure we have some alignment - we'll
1017  // go with the minimum.
1018  if (ForceStackAlign) {
1019    if (MFI->hasCalls())
1020      MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
1021    else
1022      MaxAlign = MaxAlign ? MaxAlign : 4;
1023  }
1024
1025  if (hasFP(MF)) {
1026    // Calculate required stack adjustment.
1027    uint64_t FrameSize = StackSize - SlotSize;
1028    if (RegInfo->needsStackRealignment(MF)) {
1029      // Callee-saved registers were pushed on stack before the stack
1030      // was realigned.
1031      FrameSize -= CSSize;
1032      NumBytes = (FrameSize + MaxAlign - 1) / MaxAlign * MaxAlign;
1033    } else {
1034      NumBytes = FrameSize - CSSize;
1035    }
1036
1037    // Pop EBP.
1038    BuildMI(MBB, MBBI, DL,
1039            TII.get(Is64Bit ? X86::POP64r : X86::POP32r), FramePtr);
1040  } else {
1041    NumBytes = StackSize - CSSize;
1042  }
1043
1044  // Skip the callee-saved pop instructions.
1045  while (MBBI != MBB.begin()) {
1046    MachineBasicBlock::iterator PI = prior(MBBI);
1047    unsigned Opc = PI->getOpcode();
1048
1049    if (Opc != X86::POP32r && Opc != X86::POP64r && Opc != X86::DBG_VALUE &&
1050        !PI->isTerminator())
1051      break;
1052
1053    --MBBI;
1054  }
1055  MachineBasicBlock::iterator FirstCSPop = MBBI;
1056
1057  DL = MBBI->getDebugLoc();
1058
1059  // If there is an ADD32ri or SUB32ri of ESP immediately before this
1060  // instruction, merge the two instructions.
1061  if (NumBytes || MFI->hasVarSizedObjects())
1062    mergeSPUpdatesUp(MBB, MBBI, StackPtr, &NumBytes);
1063
1064  // If dynamic alloca is used, then reset esp to point to the last callee-saved
1065  // slot before popping them off! Same applies for the case, when stack was
1066  // realigned.
1067  if (RegInfo->needsStackRealignment(MF) || MFI->hasVarSizedObjects()) {
1068    if (RegInfo->needsStackRealignment(MF))
1069      MBBI = FirstCSPop;
1070    if (CSSize != 0) {
1071      unsigned Opc = getLEArOpcode(IsLP64);
1072      addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
1073                   FramePtr, false, -CSSize);
1074    } else {
1075      unsigned Opc = (Is64Bit ? X86::MOV64rr : X86::MOV32rr);
1076      BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
1077        .addReg(FramePtr);
1078    }
1079  } else if (NumBytes) {
1080    // Adjust stack pointer back: ESP += numbytes.
1081    emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, IsLP64, UseLEA,
1082                 TII, *RegInfo);
1083  }
1084
1085  // We're returning from function via eh_return.
1086  if (RetOpcode == X86::EH_RETURN || RetOpcode == X86::EH_RETURN64) {
1087    MBBI = MBB.getLastNonDebugInstr();
1088    MachineOperand &DestAddr  = MBBI->getOperand(0);
1089    assert(DestAddr.isReg() && "Offset should be in register!");
1090    BuildMI(MBB, MBBI, DL,
1091            TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),
1092            StackPtr).addReg(DestAddr.getReg());
1093  } else if (RetOpcode == X86::TCRETURNri || RetOpcode == X86::TCRETURNdi ||
1094             RetOpcode == X86::TCRETURNmi ||
1095             RetOpcode == X86::TCRETURNri64 || RetOpcode == X86::TCRETURNdi64 ||
1096             RetOpcode == X86::TCRETURNmi64) {
1097    bool isMem = RetOpcode == X86::TCRETURNmi || RetOpcode == X86::TCRETURNmi64;
1098    // Tail call return: adjust the stack pointer and jump to callee.
1099    MBBI = MBB.getLastNonDebugInstr();
1100    MachineOperand &JumpTarget = MBBI->getOperand(0);
1101    MachineOperand &StackAdjust = MBBI->getOperand(isMem ? 5 : 1);
1102    assert(StackAdjust.isImm() && "Expecting immediate value.");
1103
1104    // Adjust stack pointer.
1105    int StackAdj = StackAdjust.getImm();
1106    int MaxTCDelta = X86FI->getTCReturnAddrDelta();
1107    int Offset = 0;
1108    assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive");
1109
1110    // Incoporate the retaddr area.
1111    Offset = StackAdj-MaxTCDelta;
1112    assert(Offset >= 0 && "Offset should never be negative");
1113
1114    if (Offset) {
1115      // Check for possible merge with preceding ADD instruction.
1116      Offset += mergeSPUpdates(MBB, MBBI, StackPtr, true);
1117      emitSPUpdate(MBB, MBBI, StackPtr, Offset, Is64Bit, IsLP64,
1118                   UseLEA, TII, *RegInfo);
1119    }
1120
1121    // Jump to label or value in register.
1122    if (RetOpcode == X86::TCRETURNdi || RetOpcode == X86::TCRETURNdi64) {
1123      MachineInstrBuilder MIB =
1124        BuildMI(MBB, MBBI, DL, TII.get((RetOpcode == X86::TCRETURNdi)
1125                                       ? X86::TAILJMPd : X86::TAILJMPd64));
1126      if (JumpTarget.isGlobal())
1127        MIB.addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(),
1128                             JumpTarget.getTargetFlags());
1129      else {
1130        assert(JumpTarget.isSymbol());
1131        MIB.addExternalSymbol(JumpTarget.getSymbolName(),
1132                              JumpTarget.getTargetFlags());
1133      }
1134    } else if (RetOpcode == X86::TCRETURNmi || RetOpcode == X86::TCRETURNmi64) {
1135      MachineInstrBuilder MIB =
1136        BuildMI(MBB, MBBI, DL, TII.get((RetOpcode == X86::TCRETURNmi)
1137                                       ? X86::TAILJMPm : X86::TAILJMPm64));
1138      for (unsigned i = 0; i != 5; ++i)
1139        MIB.addOperand(MBBI->getOperand(i));
1140    } else if (RetOpcode == X86::TCRETURNri64) {
1141      BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr64)).
1142        addReg(JumpTarget.getReg(), RegState::Kill);
1143    } else {
1144      BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr)).
1145        addReg(JumpTarget.getReg(), RegState::Kill);
1146    }
1147
1148    MachineInstr *NewMI = prior(MBBI);
1149    NewMI->copyImplicitOps(MF, MBBI);
1150
1151    // Delete the pseudo instruction TCRETURN.
1152    MBB.erase(MBBI);
1153  } else if ((RetOpcode == X86::RET || RetOpcode == X86::RETI) &&
1154             (X86FI->getTCReturnAddrDelta() < 0)) {
1155    // Add the return addr area delta back since we are not tail calling.
1156    int delta = -1*X86FI->getTCReturnAddrDelta();
1157    MBBI = MBB.getLastNonDebugInstr();
1158
1159    // Check for possible merge with preceding ADD instruction.
1160    delta += mergeSPUpdates(MBB, MBBI, StackPtr, true);
1161    emitSPUpdate(MBB, MBBI, StackPtr, delta, Is64Bit, IsLP64, UseLEA, TII,
1162                 *RegInfo);
1163  }
1164}
1165
1166int X86FrameLowering::getFrameIndexOffset(const MachineFunction &MF, int FI) const {
1167  const X86RegisterInfo *RegInfo =
1168    static_cast<const X86RegisterInfo*>(MF.getTarget().getRegisterInfo());
1169  const MachineFrameInfo *MFI = MF.getFrameInfo();
1170  int Offset = MFI->getObjectOffset(FI) - getOffsetOfLocalArea();
1171  uint64_t StackSize = MFI->getStackSize();
1172
1173  if (RegInfo->hasBasePointer(MF)) {
1174    assert (hasFP(MF) && "VLAs and dynamic stack realign, but no FP?!");
1175    if (FI < 0) {
1176      // Skip the saved EBP.
1177      return Offset + RegInfo->getSlotSize();
1178    } else {
1179      assert((-(Offset + StackSize)) % MFI->getObjectAlignment(FI) == 0);
1180      return Offset + StackSize;
1181    }
1182  } else if (RegInfo->needsStackRealignment(MF)) {
1183    if (FI < 0) {
1184      // Skip the saved EBP.
1185      return Offset + RegInfo->getSlotSize();
1186    } else {
1187      assert((-(Offset + StackSize)) % MFI->getObjectAlignment(FI) == 0);
1188      return Offset + StackSize;
1189    }
1190    // FIXME: Support tail calls
1191  } else {
1192    if (!hasFP(MF))
1193      return Offset + StackSize;
1194
1195    // Skip the saved EBP.
1196    Offset += RegInfo->getSlotSize();
1197
1198    // Skip the RETADDR move area
1199    const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1200    int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1201    if (TailCallReturnAddrDelta < 0)
1202      Offset -= TailCallReturnAddrDelta;
1203  }
1204
1205  return Offset;
1206}
1207
1208int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
1209                                             unsigned &FrameReg) const {
1210  const X86RegisterInfo *RegInfo =
1211      static_cast<const X86RegisterInfo*>(MF.getTarget().getRegisterInfo());
1212  // We can't calculate offset from frame pointer if the stack is realigned,
1213  // so enforce usage of stack/base pointer.  The base pointer is used when we
1214  // have dynamic allocas in addition to dynamic realignment.
1215  if (RegInfo->hasBasePointer(MF))
1216    FrameReg = RegInfo->getBaseRegister();
1217  else if (RegInfo->needsStackRealignment(MF))
1218    FrameReg = RegInfo->getStackRegister();
1219  else
1220    FrameReg = RegInfo->getFrameRegister(MF);
1221  return getFrameIndexOffset(MF, FI);
1222}
1223
1224bool X86FrameLowering::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
1225                                             MachineBasicBlock::iterator MI,
1226                                        const std::vector<CalleeSavedInfo> &CSI,
1227                                          const TargetRegisterInfo *TRI) const {
1228  if (CSI.empty())
1229    return false;
1230
1231  DebugLoc DL = MBB.findDebugLoc(MI);
1232
1233  MachineFunction &MF = *MBB.getParent();
1234
1235  unsigned SlotSize = STI.is64Bit() ? 8 : 4;
1236  unsigned FPReg = TRI->getFrameRegister(MF);
1237  unsigned CalleeFrameSize = 0;
1238
1239  const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
1240  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1241
1242  // Push GPRs. It increases frame size.
1243  unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r;
1244  for (unsigned i = CSI.size(); i != 0; --i) {
1245    unsigned Reg = CSI[i-1].getReg();
1246    if (!X86::GR64RegClass.contains(Reg) &&
1247        !X86::GR32RegClass.contains(Reg))
1248      continue;
1249    // Add the callee-saved register as live-in. It's killed at the spill.
1250    MBB.addLiveIn(Reg);
1251    if (Reg == FPReg)
1252      // X86RegisterInfo::emitPrologue will handle spilling of frame register.
1253      continue;
1254    CalleeFrameSize += SlotSize;
1255    BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, RegState::Kill)
1256      .setMIFlag(MachineInstr::FrameSetup);
1257  }
1258
1259  X86FI->setCalleeSavedFrameSize(CalleeFrameSize);
1260
1261  // Make XMM regs spilled. X86 does not have ability of push/pop XMM.
1262  // It can be done by spilling XMMs to stack frame.
1263  // Note that only Win64 ABI might spill XMMs.
1264  for (unsigned i = CSI.size(); i != 0; --i) {
1265    unsigned Reg = CSI[i-1].getReg();
1266    if (X86::GR64RegClass.contains(Reg) ||
1267        X86::GR32RegClass.contains(Reg))
1268      continue;
1269    // Add the callee-saved register as live-in. It's killed at the spill.
1270    MBB.addLiveIn(Reg);
1271    const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
1272    TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i-1].getFrameIdx(),
1273                            RC, TRI);
1274  }
1275
1276  return true;
1277}
1278
1279bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
1280                                               MachineBasicBlock::iterator MI,
1281                                        const std::vector<CalleeSavedInfo> &CSI,
1282                                          const TargetRegisterInfo *TRI) const {
1283  if (CSI.empty())
1284    return false;
1285
1286  DebugLoc DL = MBB.findDebugLoc(MI);
1287
1288  MachineFunction &MF = *MBB.getParent();
1289  const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
1290
1291  // Reload XMMs from stack frame.
1292  for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1293    unsigned Reg = CSI[i].getReg();
1294    if (X86::GR64RegClass.contains(Reg) ||
1295        X86::GR32RegClass.contains(Reg))
1296      continue;
1297    const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
1298    TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(),
1299                             RC, TRI);
1300  }
1301
1302  // POP GPRs.
1303  unsigned FPReg = TRI->getFrameRegister(MF);
1304  unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r;
1305  for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1306    unsigned Reg = CSI[i].getReg();
1307    if (!X86::GR64RegClass.contains(Reg) &&
1308        !X86::GR32RegClass.contains(Reg))
1309      continue;
1310    if (Reg == FPReg)
1311      // X86RegisterInfo::emitEpilogue will handle restoring of frame register.
1312      continue;
1313    BuildMI(MBB, MI, DL, TII.get(Opc), Reg);
1314  }
1315  return true;
1316}
1317
1318void
1319X86FrameLowering::processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
1320                                                   RegScavenger *RS) const {
1321  MachineFrameInfo *MFI = MF.getFrameInfo();
1322  const X86RegisterInfo *RegInfo = TM.getRegisterInfo();
1323  unsigned SlotSize = RegInfo->getSlotSize();
1324
1325  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1326  int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1327
1328  if (TailCallReturnAddrDelta < 0) {
1329    // create RETURNADDR area
1330    //   arg
1331    //   arg
1332    //   RETADDR
1333    //   { ...
1334    //     RETADDR area
1335    //     ...
1336    //   }
1337    //   [EBP]
1338    MFI->CreateFixedObject(-TailCallReturnAddrDelta,
1339                           TailCallReturnAddrDelta - SlotSize, true);
1340  }
1341
1342  if (hasFP(MF)) {
1343    assert((TailCallReturnAddrDelta <= 0) &&
1344           "The Delta should always be zero or negative");
1345    const TargetFrameLowering &TFI = *MF.getTarget().getFrameLowering();
1346
1347    // Create a frame entry for the EBP register that must be saved.
1348    int FrameIdx = MFI->CreateFixedObject(SlotSize,
1349                                          -(int)SlotSize +
1350                                          TFI.getOffsetOfLocalArea() +
1351                                          TailCallReturnAddrDelta,
1352                                          true);
1353    assert(FrameIdx == MFI->getObjectIndexBegin() &&
1354           "Slot for EBP register must be last in order to be found!");
1355    (void)FrameIdx;
1356  }
1357
1358  // Spill the BasePtr if it's used.
1359  if (RegInfo->hasBasePointer(MF))
1360    MF.getRegInfo().setPhysRegUsed(RegInfo->getBaseRegister());
1361}
1362
1363static bool
1364HasNestArgument(const MachineFunction *MF) {
1365  const Function *F = MF->getFunction();
1366  for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1367       I != E; I++) {
1368    if (I->hasNestAttr())
1369      return true;
1370  }
1371  return false;
1372}
1373
1374/// GetScratchRegister - Get a temp register for performing work in the
1375/// segmented stack and the Erlang/HiPE stack prologue. Depending on platform
1376/// and the properties of the function either one or two registers will be
1377/// needed. Set primary to true for the first register, false for the second.
1378static unsigned
1379GetScratchRegister(bool Is64Bit, const MachineFunction &MF, bool Primary) {
1380  CallingConv::ID CallingConvention = MF.getFunction()->getCallingConv();
1381
1382  // Erlang stuff.
1383  if (CallingConvention == CallingConv::HiPE) {
1384    if (Is64Bit)
1385      return Primary ? X86::R14 : X86::R13;
1386    else
1387      return Primary ? X86::EBX : X86::EDI;
1388  }
1389
1390  if (Is64Bit)
1391    return Primary ? X86::R11 : X86::R12;
1392
1393  bool IsNested = HasNestArgument(&MF);
1394
1395  if (CallingConvention == CallingConv::X86_FastCall ||
1396      CallingConvention == CallingConv::Fast) {
1397    if (IsNested)
1398      report_fatal_error("Segmented stacks does not support fastcall with "
1399                         "nested function.");
1400    return Primary ? X86::EAX : X86::ECX;
1401  }
1402  if (IsNested)
1403    return Primary ? X86::EDX : X86::EAX;
1404  return Primary ? X86::ECX : X86::EAX;
1405}
1406
1407// The stack limit in the TCB is set to this many bytes above the actual stack
1408// limit.
1409static const uint64_t kSplitStackAvailable = 256;
1410
1411void
1412X86FrameLowering::adjustForSegmentedStacks(MachineFunction &MF) const {
1413  MachineBasicBlock &prologueMBB = MF.front();
1414  MachineFrameInfo *MFI = MF.getFrameInfo();
1415  const X86InstrInfo &TII = *TM.getInstrInfo();
1416  uint64_t StackSize;
1417  bool Is64Bit = STI.is64Bit();
1418  unsigned TlsReg, TlsOffset;
1419  DebugLoc DL;
1420
1421  unsigned ScratchReg = GetScratchRegister(Is64Bit, MF, true);
1422  assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
1423         "Scratch register is live-in");
1424
1425  if (MF.getFunction()->isVarArg())
1426    report_fatal_error("Segmented stacks do not support vararg functions.");
1427  if (!STI.isTargetLinux() && !STI.isTargetDarwin() &&
1428      !STI.isTargetWin32() && !STI.isTargetFreeBSD())
1429    report_fatal_error("Segmented stacks not supported on this platform.");
1430
1431  MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock();
1432  MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock();
1433  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1434  bool IsNested = false;
1435
1436  // We need to know if the function has a nest argument only in 64 bit mode.
1437  if (Is64Bit)
1438    IsNested = HasNestArgument(&MF);
1439
1440  // The MOV R10, RAX needs to be in a different block, since the RET we emit in
1441  // allocMBB needs to be last (terminating) instruction.
1442
1443  for (MachineBasicBlock::livein_iterator i = prologueMBB.livein_begin(),
1444         e = prologueMBB.livein_end(); i != e; i++) {
1445    allocMBB->addLiveIn(*i);
1446    checkMBB->addLiveIn(*i);
1447  }
1448
1449  if (IsNested)
1450    allocMBB->addLiveIn(X86::R10);
1451
1452  MF.push_front(allocMBB);
1453  MF.push_front(checkMBB);
1454
1455  // Eventually StackSize will be calculated by a link-time pass; which will
1456  // also decide whether checking code needs to be injected into this particular
1457  // prologue.
1458  StackSize = MFI->getStackSize();
1459
1460  // When the frame size is less than 256 we just compare the stack
1461  // boundary directly to the value of the stack pointer, per gcc.
1462  bool CompareStackPointer = StackSize < kSplitStackAvailable;
1463
1464  // Read the limit off the current stacklet off the stack_guard location.
1465  if (Is64Bit) {
1466    if (STI.isTargetLinux()) {
1467      TlsReg = X86::FS;
1468      TlsOffset = 0x70;
1469    } else if (STI.isTargetDarwin()) {
1470      TlsReg = X86::GS;
1471      TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90.
1472    } else if (STI.isTargetFreeBSD()) {
1473      TlsReg = X86::FS;
1474      TlsOffset = 0x18;
1475    } else {
1476      report_fatal_error("Segmented stacks not supported on this platform.");
1477    }
1478
1479    if (CompareStackPointer)
1480      ScratchReg = X86::RSP;
1481    else
1482      BuildMI(checkMBB, DL, TII.get(X86::LEA64r), ScratchReg).addReg(X86::RSP)
1483        .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
1484
1485    BuildMI(checkMBB, DL, TII.get(X86::CMP64rm)).addReg(ScratchReg)
1486      .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg);
1487  } else {
1488    if (STI.isTargetLinux()) {
1489      TlsReg = X86::GS;
1490      TlsOffset = 0x30;
1491    } else if (STI.isTargetDarwin()) {
1492      TlsReg = X86::GS;
1493      TlsOffset = 0x48 + 90*4;
1494    } else if (STI.isTargetWin32()) {
1495      TlsReg = X86::FS;
1496      TlsOffset = 0x14; // pvArbitrary, reserved for application use
1497    } else if (STI.isTargetFreeBSD()) {
1498      report_fatal_error("Segmented stacks not supported on FreeBSD i386.");
1499    } else {
1500      report_fatal_error("Segmented stacks not supported on this platform.");
1501    }
1502
1503    if (CompareStackPointer)
1504      ScratchReg = X86::ESP;
1505    else
1506      BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP)
1507        .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
1508
1509    if (STI.isTargetLinux() || STI.isTargetWin32()) {
1510      BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg)
1511        .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
1512    } else if (STI.isTargetDarwin()) {
1513
1514      // TlsOffset doesn't fit into a mod r/m byte so we need an extra register
1515      unsigned ScratchReg2;
1516      bool SaveScratch2;
1517      if (CompareStackPointer) {
1518        // The primary scratch register is available for holding the TLS offset
1519        ScratchReg2 = GetScratchRegister(Is64Bit, MF, true);
1520        SaveScratch2 = false;
1521      } else {
1522        // Need to use a second register to hold the TLS offset
1523        ScratchReg2 = GetScratchRegister(Is64Bit, MF, false);
1524
1525        // Unfortunately, with fastcc the second scratch register may hold an arg
1526        SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2);
1527      }
1528
1529      // If Scratch2 is live-in then it needs to be saved
1530      assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) &&
1531             "Scratch register is live-in and not saved");
1532
1533      if (SaveScratch2)
1534        BuildMI(checkMBB, DL, TII.get(X86::PUSH32r))
1535          .addReg(ScratchReg2, RegState::Kill);
1536
1537      BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2)
1538        .addImm(TlsOffset);
1539      BuildMI(checkMBB, DL, TII.get(X86::CMP32rm))
1540        .addReg(ScratchReg)
1541        .addReg(ScratchReg2).addImm(1).addReg(0)
1542        .addImm(0)
1543        .addReg(TlsReg);
1544
1545      if (SaveScratch2)
1546        BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2);
1547    }
1548  }
1549
1550  // This jump is taken if SP >= (Stacklet Limit + Stack Space required).
1551  // It jumps to normal execution of the function body.
1552  BuildMI(checkMBB, DL, TII.get(X86::JA_4)).addMBB(&prologueMBB);
1553
1554  // On 32 bit we first push the arguments size and then the frame size. On 64
1555  // bit, we pass the stack frame size in r10 and the argument size in r11.
1556  if (Is64Bit) {
1557    // Functions with nested arguments use R10, so it needs to be saved across
1558    // the call to _morestack
1559
1560    if (IsNested)
1561      BuildMI(allocMBB, DL, TII.get(X86::MOV64rr), X86::RAX).addReg(X86::R10);
1562
1563    BuildMI(allocMBB, DL, TII.get(X86::MOV64ri), X86::R10)
1564      .addImm(StackSize);
1565    BuildMI(allocMBB, DL, TII.get(X86::MOV64ri), X86::R11)
1566      .addImm(X86FI->getArgumentStackSize());
1567    MF.getRegInfo().setPhysRegUsed(X86::R10);
1568    MF.getRegInfo().setPhysRegUsed(X86::R11);
1569  } else {
1570    BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
1571      .addImm(X86FI->getArgumentStackSize());
1572    BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
1573      .addImm(StackSize);
1574  }
1575
1576  // __morestack is in libgcc
1577  if (Is64Bit)
1578    BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
1579      .addExternalSymbol("__morestack");
1580  else
1581    BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
1582      .addExternalSymbol("__morestack");
1583
1584  if (IsNested)
1585    BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10));
1586  else
1587    BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET));
1588
1589  allocMBB->addSuccessor(&prologueMBB);
1590
1591  checkMBB->addSuccessor(allocMBB);
1592  checkMBB->addSuccessor(&prologueMBB);
1593
1594#ifdef XDEBUG
1595  MF.verify();
1596#endif
1597}
1598
1599/// Erlang programs may need a special prologue to handle the stack size they
1600/// might need at runtime. That is because Erlang/OTP does not implement a C
1601/// stack but uses a custom implementation of hybrid stack/heap architecture.
1602/// (for more information see Eric Stenman's Ph.D. thesis:
1603/// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf)
1604///
1605/// CheckStack:
1606///	  temp0 = sp - MaxStack
1607///	  if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
1608/// OldStart:
1609///	  ...
1610/// IncStack:
1611///	  call inc_stack   # doubles the stack space
1612///	  temp0 = sp - MaxStack
1613///	  if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
1614void X86FrameLowering::adjustForHiPEPrologue(MachineFunction &MF) const {
1615  const X86InstrInfo &TII = *TM.getInstrInfo();
1616  MachineFrameInfo *MFI = MF.getFrameInfo();
1617  const unsigned SlotSize = TM.getRegisterInfo()->getSlotSize();
1618  const bool Is64Bit = STI.is64Bit();
1619  DebugLoc DL;
1620  // HiPE-specific values
1621  const unsigned HipeLeafWords = 24;
1622  const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5;
1623  const unsigned Guaranteed = HipeLeafWords * SlotSize;
1624  unsigned CallerStkArity = MF.getFunction()->arg_size() > CCRegisteredArgs ?
1625                            MF.getFunction()->arg_size() - CCRegisteredArgs : 0;
1626  unsigned MaxStack = MFI->getStackSize() + CallerStkArity*SlotSize + SlotSize;
1627
1628  assert(STI.isTargetLinux() &&
1629         "HiPE prologue is only supported on Linux operating systems.");
1630
1631  // Compute the largest caller's frame that is needed to fit the callees'
1632  // frames. This 'MaxStack' is computed from:
1633  //
1634  // a) the fixed frame size, which is the space needed for all spilled temps,
1635  // b) outgoing on-stack parameter areas, and
1636  // c) the minimum stack space this function needs to make available for the
1637  //    functions it calls (a tunable ABI property).
1638  if (MFI->hasCalls()) {
1639    unsigned MoreStackForCalls = 0;
1640
1641    for (MachineFunction::iterator MBBI = MF.begin(), MBBE = MF.end();
1642         MBBI != MBBE; ++MBBI)
1643      for (MachineBasicBlock::iterator MI = MBBI->begin(), ME = MBBI->end();
1644           MI != ME; ++MI) {
1645        if (!MI->isCall())
1646          continue;
1647
1648        // Get callee operand.
1649        const MachineOperand &MO = MI->getOperand(0);
1650
1651        // Only take account of global function calls (no closures etc.).
1652        if (!MO.isGlobal())
1653          continue;
1654
1655        const Function *F = dyn_cast<Function>(MO.getGlobal());
1656        if (!F)
1657          continue;
1658
1659        // Do not update 'MaxStack' for primitive and built-in functions
1660        // (encoded with names either starting with "erlang."/"bif_" or not
1661        // having a ".", such as a simple <Module>.<Function>.<Arity>, or an
1662        // "_", such as the BIF "suspend_0") as they are executed on another
1663        // stack.
1664        if (F->getName().find("erlang.") != StringRef::npos ||
1665            F->getName().find("bif_") != StringRef::npos ||
1666            F->getName().find_first_of("._") == StringRef::npos)
1667          continue;
1668
1669        unsigned CalleeStkArity =
1670          F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0;
1671        if (HipeLeafWords - 1 > CalleeStkArity)
1672          MoreStackForCalls = std::max(MoreStackForCalls,
1673                               (HipeLeafWords - 1 - CalleeStkArity) * SlotSize);
1674      }
1675    MaxStack += MoreStackForCalls;
1676  }
1677
1678  // If the stack frame needed is larger than the guaranteed then runtime checks
1679  // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue.
1680  if (MaxStack > Guaranteed) {
1681    MachineBasicBlock &prologueMBB = MF.front();
1682    MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock();
1683    MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock();
1684
1685    for (MachineBasicBlock::livein_iterator I = prologueMBB.livein_begin(),
1686           E = prologueMBB.livein_end(); I != E; I++) {
1687      stackCheckMBB->addLiveIn(*I);
1688      incStackMBB->addLiveIn(*I);
1689    }
1690
1691    MF.push_front(incStackMBB);
1692    MF.push_front(stackCheckMBB);
1693
1694    unsigned ScratchReg, SPReg, PReg, SPLimitOffset;
1695    unsigned LEAop, CMPop, CALLop;
1696    if (Is64Bit) {
1697      SPReg = X86::RSP;
1698      PReg  = X86::RBP;
1699      LEAop = X86::LEA64r;
1700      CMPop = X86::CMP64rm;
1701      CALLop = X86::CALL64pcrel32;
1702      SPLimitOffset = 0x90;
1703    } else {
1704      SPReg = X86::ESP;
1705      PReg  = X86::EBP;
1706      LEAop = X86::LEA32r;
1707      CMPop = X86::CMP32rm;
1708      CALLop = X86::CALLpcrel32;
1709      SPLimitOffset = 0x4c;
1710    }
1711
1712    ScratchReg = GetScratchRegister(Is64Bit, MF, true);
1713    assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
1714           "HiPE prologue scratch register is live-in");
1715
1716    // Create new MBB for StackCheck:
1717    addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg),
1718                 SPReg, false, -MaxStack);
1719    // SPLimitOffset is in a fixed heap location (pointed by BP).
1720    addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop))
1721                 .addReg(ScratchReg), PReg, false, SPLimitOffset);
1722    BuildMI(stackCheckMBB, DL, TII.get(X86::JAE_4)).addMBB(&prologueMBB);
1723
1724    // Create new MBB for IncStack:
1725    BuildMI(incStackMBB, DL, TII.get(CALLop)).
1726      addExternalSymbol("inc_stack_0");
1727    addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg),
1728                 SPReg, false, -MaxStack);
1729    addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop))
1730                 .addReg(ScratchReg), PReg, false, SPLimitOffset);
1731    BuildMI(incStackMBB, DL, TII.get(X86::JLE_4)).addMBB(incStackMBB);
1732
1733    stackCheckMBB->addSuccessor(&prologueMBB, 99);
1734    stackCheckMBB->addSuccessor(incStackMBB, 1);
1735    incStackMBB->addSuccessor(&prologueMBB, 99);
1736    incStackMBB->addSuccessor(incStackMBB, 1);
1737  }
1738#ifdef XDEBUG
1739  MF.verify();
1740#endif
1741}
1742
1743void X86FrameLowering::
1744eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
1745                              MachineBasicBlock::iterator I) const {
1746  const X86InstrInfo &TII = *TM.getInstrInfo();
1747  const X86RegisterInfo &RegInfo = *TM.getRegisterInfo();
1748  unsigned StackPtr = RegInfo.getStackRegister();
1749  bool reseveCallFrame = hasReservedCallFrame(MF);
1750  int Opcode = I->getOpcode();
1751  bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode();
1752  bool IsLP64 = STI.isTarget64BitLP64();
1753  DebugLoc DL = I->getDebugLoc();
1754  uint64_t Amount = !reseveCallFrame ? I->getOperand(0).getImm() : 0;
1755  uint64_t CalleeAmt = isDestroy ? I->getOperand(1).getImm() : 0;
1756  I = MBB.erase(I);
1757
1758  if (!reseveCallFrame) {
1759    // If the stack pointer can be changed after prologue, turn the
1760    // adjcallstackup instruction into a 'sub ESP, <amt>' and the
1761    // adjcallstackdown instruction into 'add ESP, <amt>'
1762    // TODO: consider using push / pop instead of sub + store / add
1763    if (Amount == 0)
1764      return;
1765
1766    // We need to keep the stack aligned properly.  To do this, we round the
1767    // amount of space needed for the outgoing arguments up to the next
1768    // alignment boundary.
1769    unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
1770    Amount = (Amount + StackAlign - 1) / StackAlign * StackAlign;
1771
1772    MachineInstr *New = 0;
1773    if (Opcode == TII.getCallFrameSetupOpcode()) {
1774      New = BuildMI(MF, DL, TII.get(getSUBriOpcode(IsLP64, Amount)),
1775                    StackPtr)
1776        .addReg(StackPtr)
1777        .addImm(Amount);
1778    } else {
1779      assert(Opcode == TII.getCallFrameDestroyOpcode());
1780
1781      // Factor out the amount the callee already popped.
1782      Amount -= CalleeAmt;
1783
1784      if (Amount) {
1785        unsigned Opc = getADDriOpcode(IsLP64, Amount);
1786        New = BuildMI(MF, DL, TII.get(Opc), StackPtr)
1787          .addReg(StackPtr).addImm(Amount);
1788      }
1789    }
1790
1791    if (New) {
1792      // The EFLAGS implicit def is dead.
1793      New->getOperand(3).setIsDead();
1794
1795      // Replace the pseudo instruction with a new instruction.
1796      MBB.insert(I, New);
1797    }
1798
1799    return;
1800  }
1801
1802  if (Opcode == TII.getCallFrameDestroyOpcode() && CalleeAmt) {
1803    // If we are performing frame pointer elimination and if the callee pops
1804    // something off the stack pointer, add it back.  We do this until we have
1805    // more advanced stack pointer tracking ability.
1806    unsigned Opc = getSUBriOpcode(IsLP64, CalleeAmt);
1807    MachineInstr *New = BuildMI(MF, DL, TII.get(Opc), StackPtr)
1808      .addReg(StackPtr).addImm(CalleeAmt);
1809
1810    // The EFLAGS implicit def is dead.
1811    New->getOperand(3).setIsDead();
1812
1813    // We are not tracking the stack pointer adjustment by the callee, so make
1814    // sure we restore the stack pointer immediately after the call, there may
1815    // be spill code inserted between the CALL and ADJCALLSTACKUP instructions.
1816    MachineBasicBlock::iterator B = MBB.begin();
1817    while (I != B && !llvm::prior(I)->isCall())
1818      --I;
1819    MBB.insert(I, New);
1820  }
1821}
1822
1823