1//===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms simple global variables that never have their address
11// taken.  If obviously true, it marks read/write globals as constant, deletes
12// variables only stored to, etc.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "globalopt"
17#include "llvm/Transforms/IPO.h"
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SmallPtrSet.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/ConstantFolding.h"
24#include "llvm/Analysis/MemoryBuiltins.h"
25#include "llvm/IR/CallingConv.h"
26#include "llvm/IR/Constants.h"
27#include "llvm/IR/DataLayout.h"
28#include "llvm/IR/DerivedTypes.h"
29#include "llvm/IR/Instructions.h"
30#include "llvm/IR/IntrinsicInst.h"
31#include "llvm/IR/Module.h"
32#include "llvm/IR/Operator.h"
33#include "llvm/Pass.h"
34#include "llvm/Support/CallSite.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/GetElementPtrTypeIterator.h"
38#include "llvm/Support/MathExtras.h"
39#include "llvm/Support/raw_ostream.h"
40#include "llvm/Target/TargetLibraryInfo.h"
41#include "llvm/Transforms/Utils/ModuleUtils.h"
42#include <algorithm>
43using namespace llvm;
44
45STATISTIC(NumMarked    , "Number of globals marked constant");
46STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
47STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
48STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
49STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
50STATISTIC(NumDeleted   , "Number of globals deleted");
51STATISTIC(NumFnDeleted , "Number of functions deleted");
52STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
53STATISTIC(NumLocalized , "Number of globals localized");
54STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
55STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
56STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
57STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
58STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
59STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
60STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
61
62namespace {
63  struct GlobalStatus;
64  struct GlobalOpt : public ModulePass {
65    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
66      AU.addRequired<TargetLibraryInfo>();
67    }
68    static char ID; // Pass identification, replacement for typeid
69    GlobalOpt() : ModulePass(ID) {
70      initializeGlobalOptPass(*PassRegistry::getPassRegistry());
71    }
72
73    bool runOnModule(Module &M);
74
75  private:
76    GlobalVariable *FindGlobalCtors(Module &M);
77    bool OptimizeFunctions(Module &M);
78    bool OptimizeGlobalVars(Module &M);
79    bool OptimizeGlobalAliases(Module &M);
80    bool OptimizeGlobalCtorsList(GlobalVariable *&GCL);
81    bool ProcessGlobal(GlobalVariable *GV,Module::global_iterator &GVI);
82    bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI,
83                               const SmallPtrSet<const PHINode*, 16> &PHIUsers,
84                               const GlobalStatus &GS);
85    bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn);
86
87    DataLayout *TD;
88    TargetLibraryInfo *TLI;
89  };
90}
91
92char GlobalOpt::ID = 0;
93INITIALIZE_PASS_BEGIN(GlobalOpt, "globalopt",
94                "Global Variable Optimizer", false, false)
95INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
96INITIALIZE_PASS_END(GlobalOpt, "globalopt",
97                "Global Variable Optimizer", false, false)
98
99ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
100
101namespace {
102
103/// GlobalStatus - As we analyze each global, keep track of some information
104/// about it.  If we find out that the address of the global is taken, none of
105/// this info will be accurate.
106struct GlobalStatus {
107  /// isCompared - True if the global's address is used in a comparison.
108  bool isCompared;
109
110  /// isLoaded - True if the global is ever loaded.  If the global isn't ever
111  /// loaded it can be deleted.
112  bool isLoaded;
113
114  /// StoredType - Keep track of what stores to the global look like.
115  ///
116  enum StoredType {
117    /// NotStored - There is no store to this global.  It can thus be marked
118    /// constant.
119    NotStored,
120
121    /// isInitializerStored - This global is stored to, but the only thing
122    /// stored is the constant it was initialized with.  This is only tracked
123    /// for scalar globals.
124    isInitializerStored,
125
126    /// isStoredOnce - This global is stored to, but only its initializer and
127    /// one other value is ever stored to it.  If this global isStoredOnce, we
128    /// track the value stored to it in StoredOnceValue below.  This is only
129    /// tracked for scalar globals.
130    isStoredOnce,
131
132    /// isStored - This global is stored to by multiple values or something else
133    /// that we cannot track.
134    isStored
135  } StoredType;
136
137  /// StoredOnceValue - If only one value (besides the initializer constant) is
138  /// ever stored to this global, keep track of what value it is.
139  Value *StoredOnceValue;
140
141  /// AccessingFunction/HasMultipleAccessingFunctions - These start out
142  /// null/false.  When the first accessing function is noticed, it is recorded.
143  /// When a second different accessing function is noticed,
144  /// HasMultipleAccessingFunctions is set to true.
145  const Function *AccessingFunction;
146  bool HasMultipleAccessingFunctions;
147
148  /// HasNonInstructionUser - Set to true if this global has a user that is not
149  /// an instruction (e.g. a constant expr or GV initializer).
150  bool HasNonInstructionUser;
151
152  /// AtomicOrdering - Set to the strongest atomic ordering requirement.
153  AtomicOrdering Ordering;
154
155  GlobalStatus() : isCompared(false), isLoaded(false), StoredType(NotStored),
156                   StoredOnceValue(0), AccessingFunction(0),
157                   HasMultipleAccessingFunctions(false),
158                   HasNonInstructionUser(false), Ordering(NotAtomic) {}
159};
160
161}
162
163/// StrongerOrdering - Return the stronger of the two ordering. If the two
164/// orderings are acquire and release, then return AcquireRelease.
165///
166static AtomicOrdering StrongerOrdering(AtomicOrdering X, AtomicOrdering Y) {
167  if (X == Acquire && Y == Release) return AcquireRelease;
168  if (Y == Acquire && X == Release) return AcquireRelease;
169  return (AtomicOrdering)std::max(X, Y);
170}
171
172/// SafeToDestroyConstant - It is safe to destroy a constant iff it is only used
173/// by constants itself.  Note that constants cannot be cyclic, so this test is
174/// pretty easy to implement recursively.
175///
176static bool SafeToDestroyConstant(const Constant *C) {
177  if (isa<GlobalValue>(C)) return false;
178
179  for (Value::const_use_iterator UI = C->use_begin(), E = C->use_end(); UI != E;
180       ++UI)
181    if (const Constant *CU = dyn_cast<Constant>(*UI)) {
182      if (!SafeToDestroyConstant(CU)) return false;
183    } else
184      return false;
185  return true;
186}
187
188
189/// AnalyzeGlobal - Look at all uses of the global and fill in the GlobalStatus
190/// structure.  If the global has its address taken, return true to indicate we
191/// can't do anything with it.
192///
193static bool AnalyzeGlobal(const Value *V, GlobalStatus &GS,
194                          SmallPtrSet<const PHINode*, 16> &PHIUsers) {
195  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
196       ++UI) {
197    const User *U = *UI;
198    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
199      GS.HasNonInstructionUser = true;
200
201      // If the result of the constantexpr isn't pointer type, then we won't
202      // know to expect it in various places.  Just reject early.
203      if (!isa<PointerType>(CE->getType())) return true;
204
205      if (AnalyzeGlobal(CE, GS, PHIUsers)) return true;
206    } else if (const Instruction *I = dyn_cast<Instruction>(U)) {
207      if (!GS.HasMultipleAccessingFunctions) {
208        const Function *F = I->getParent()->getParent();
209        if (GS.AccessingFunction == 0)
210          GS.AccessingFunction = F;
211        else if (GS.AccessingFunction != F)
212          GS.HasMultipleAccessingFunctions = true;
213      }
214      if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
215        GS.isLoaded = true;
216        // Don't hack on volatile loads.
217        if (LI->isVolatile()) return true;
218        GS.Ordering = StrongerOrdering(GS.Ordering, LI->getOrdering());
219      } else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) {
220        // Don't allow a store OF the address, only stores TO the address.
221        if (SI->getOperand(0) == V) return true;
222
223        // Don't hack on volatile stores.
224        if (SI->isVolatile()) return true;
225
226        GS.Ordering = StrongerOrdering(GS.Ordering, SI->getOrdering());
227
228        // If this is a direct store to the global (i.e., the global is a scalar
229        // value, not an aggregate), keep more specific information about
230        // stores.
231        if (GS.StoredType != GlobalStatus::isStored) {
232          if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(
233                                                           SI->getOperand(1))) {
234            Value *StoredVal = SI->getOperand(0);
235
236            if (Constant *C = dyn_cast<Constant>(StoredVal)) {
237              if (C->isThreadDependent()) {
238                // The stored value changes between threads; don't track it.
239                return true;
240              }
241            }
242
243            if (StoredVal == GV->getInitializer()) {
244              if (GS.StoredType < GlobalStatus::isInitializerStored)
245                GS.StoredType = GlobalStatus::isInitializerStored;
246            } else if (isa<LoadInst>(StoredVal) &&
247                       cast<LoadInst>(StoredVal)->getOperand(0) == GV) {
248              if (GS.StoredType < GlobalStatus::isInitializerStored)
249                GS.StoredType = GlobalStatus::isInitializerStored;
250            } else if (GS.StoredType < GlobalStatus::isStoredOnce) {
251              GS.StoredType = GlobalStatus::isStoredOnce;
252              GS.StoredOnceValue = StoredVal;
253            } else if (GS.StoredType == GlobalStatus::isStoredOnce &&
254                       GS.StoredOnceValue == StoredVal) {
255              // noop.
256            } else {
257              GS.StoredType = GlobalStatus::isStored;
258            }
259          } else {
260            GS.StoredType = GlobalStatus::isStored;
261          }
262        }
263      } else if (isa<BitCastInst>(I)) {
264        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
265      } else if (isa<GetElementPtrInst>(I)) {
266        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
267      } else if (isa<SelectInst>(I)) {
268        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
269      } else if (const PHINode *PN = dyn_cast<PHINode>(I)) {
270        // PHI nodes we can check just like select or GEP instructions, but we
271        // have to be careful about infinite recursion.
272        if (PHIUsers.insert(PN))  // Not already visited.
273          if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
274      } else if (isa<CmpInst>(I)) {
275        GS.isCompared = true;
276      } else if (const MemTransferInst *MTI = dyn_cast<MemTransferInst>(I)) {
277        if (MTI->isVolatile()) return true;
278        if (MTI->getArgOperand(0) == V)
279          GS.StoredType = GlobalStatus::isStored;
280        if (MTI->getArgOperand(1) == V)
281          GS.isLoaded = true;
282      } else if (const MemSetInst *MSI = dyn_cast<MemSetInst>(I)) {
283        assert(MSI->getArgOperand(0) == V && "Memset only takes one pointer!");
284        if (MSI->isVolatile()) return true;
285        GS.StoredType = GlobalStatus::isStored;
286      } else {
287        return true;  // Any other non-load instruction might take address!
288      }
289    } else if (const Constant *C = dyn_cast<Constant>(U)) {
290      GS.HasNonInstructionUser = true;
291      // We might have a dead and dangling constant hanging off of here.
292      if (!SafeToDestroyConstant(C))
293        return true;
294    } else {
295      GS.HasNonInstructionUser = true;
296      // Otherwise must be some other user.
297      return true;
298    }
299  }
300
301  return false;
302}
303
304/// isLeakCheckerRoot - Is this global variable possibly used by a leak checker
305/// as a root?  If so, we might not really want to eliminate the stores to it.
306static bool isLeakCheckerRoot(GlobalVariable *GV) {
307  // A global variable is a root if it is a pointer, or could plausibly contain
308  // a pointer.  There are two challenges; one is that we could have a struct
309  // the has an inner member which is a pointer.  We recurse through the type to
310  // detect these (up to a point).  The other is that we may actually be a union
311  // of a pointer and another type, and so our LLVM type is an integer which
312  // gets converted into a pointer, or our type is an [i8 x #] with a pointer
313  // potentially contained here.
314
315  if (GV->hasPrivateLinkage())
316    return false;
317
318  SmallVector<Type *, 4> Types;
319  Types.push_back(cast<PointerType>(GV->getType())->getElementType());
320
321  unsigned Limit = 20;
322  do {
323    Type *Ty = Types.pop_back_val();
324    switch (Ty->getTypeID()) {
325      default: break;
326      case Type::PointerTyID: return true;
327      case Type::ArrayTyID:
328      case Type::VectorTyID: {
329        SequentialType *STy = cast<SequentialType>(Ty);
330        Types.push_back(STy->getElementType());
331        break;
332      }
333      case Type::StructTyID: {
334        StructType *STy = cast<StructType>(Ty);
335        if (STy->isOpaque()) return true;
336        for (StructType::element_iterator I = STy->element_begin(),
337                 E = STy->element_end(); I != E; ++I) {
338          Type *InnerTy = *I;
339          if (isa<PointerType>(InnerTy)) return true;
340          if (isa<CompositeType>(InnerTy))
341            Types.push_back(InnerTy);
342        }
343        break;
344      }
345    }
346    if (--Limit == 0) return true;
347  } while (!Types.empty());
348  return false;
349}
350
351/// Given a value that is stored to a global but never read, determine whether
352/// it's safe to remove the store and the chain of computation that feeds the
353/// store.
354static bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) {
355  do {
356    if (isa<Constant>(V))
357      return true;
358    if (!V->hasOneUse())
359      return false;
360    if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
361        isa<GlobalValue>(V))
362      return false;
363    if (isAllocationFn(V, TLI))
364      return true;
365
366    Instruction *I = cast<Instruction>(V);
367    if (I->mayHaveSideEffects())
368      return false;
369    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
370      if (!GEP->hasAllConstantIndices())
371        return false;
372    } else if (I->getNumOperands() != 1) {
373      return false;
374    }
375
376    V = I->getOperand(0);
377  } while (1);
378}
379
380/// CleanupPointerRootUsers - This GV is a pointer root.  Loop over all users
381/// of the global and clean up any that obviously don't assign the global a
382/// value that isn't dynamically allocated.
383///
384static bool CleanupPointerRootUsers(GlobalVariable *GV,
385                                    const TargetLibraryInfo *TLI) {
386  // A brief explanation of leak checkers.  The goal is to find bugs where
387  // pointers are forgotten, causing an accumulating growth in memory
388  // usage over time.  The common strategy for leak checkers is to whitelist the
389  // memory pointed to by globals at exit.  This is popular because it also
390  // solves another problem where the main thread of a C++ program may shut down
391  // before other threads that are still expecting to use those globals.  To
392  // handle that case, we expect the program may create a singleton and never
393  // destroy it.
394
395  bool Changed = false;
396
397  // If Dead[n].first is the only use of a malloc result, we can delete its
398  // chain of computation and the store to the global in Dead[n].second.
399  SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
400
401  // Constants can't be pointers to dynamically allocated memory.
402  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
403       UI != E;) {
404    User *U = *UI++;
405    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
406      Value *V = SI->getValueOperand();
407      if (isa<Constant>(V)) {
408        Changed = true;
409        SI->eraseFromParent();
410      } else if (Instruction *I = dyn_cast<Instruction>(V)) {
411        if (I->hasOneUse())
412          Dead.push_back(std::make_pair(I, SI));
413      }
414    } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
415      if (isa<Constant>(MSI->getValue())) {
416        Changed = true;
417        MSI->eraseFromParent();
418      } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
419        if (I->hasOneUse())
420          Dead.push_back(std::make_pair(I, MSI));
421      }
422    } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
423      GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
424      if (MemSrc && MemSrc->isConstant()) {
425        Changed = true;
426        MTI->eraseFromParent();
427      } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
428        if (I->hasOneUse())
429          Dead.push_back(std::make_pair(I, MTI));
430      }
431    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
432      if (CE->use_empty()) {
433        CE->destroyConstant();
434        Changed = true;
435      }
436    } else if (Constant *C = dyn_cast<Constant>(U)) {
437      if (SafeToDestroyConstant(C)) {
438        C->destroyConstant();
439        // This could have invalidated UI, start over from scratch.
440        Dead.clear();
441        CleanupPointerRootUsers(GV, TLI);
442        return true;
443      }
444    }
445  }
446
447  for (int i = 0, e = Dead.size(); i != e; ++i) {
448    if (IsSafeComputationToRemove(Dead[i].first, TLI)) {
449      Dead[i].second->eraseFromParent();
450      Instruction *I = Dead[i].first;
451      do {
452        if (isAllocationFn(I, TLI))
453          break;
454        Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
455        if (!J)
456          break;
457        I->eraseFromParent();
458        I = J;
459      } while (1);
460      I->eraseFromParent();
461    }
462  }
463
464  return Changed;
465}
466
467/// CleanupConstantGlobalUsers - We just marked GV constant.  Loop over all
468/// users of the global, cleaning up the obvious ones.  This is largely just a
469/// quick scan over the use list to clean up the easy and obvious cruft.  This
470/// returns true if it made a change.
471static bool CleanupConstantGlobalUsers(Value *V, Constant *Init,
472                                       DataLayout *TD, TargetLibraryInfo *TLI) {
473  bool Changed = false;
474  SmallVector<User*, 8> WorkList(V->use_begin(), V->use_end());
475  while (!WorkList.empty()) {
476    User *U = WorkList.pop_back_val();
477
478    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
479      if (Init) {
480        // Replace the load with the initializer.
481        LI->replaceAllUsesWith(Init);
482        LI->eraseFromParent();
483        Changed = true;
484      }
485    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
486      // Store must be unreachable or storing Init into the global.
487      SI->eraseFromParent();
488      Changed = true;
489    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
490      if (CE->getOpcode() == Instruction::GetElementPtr) {
491        Constant *SubInit = 0;
492        if (Init)
493          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
494        Changed |= CleanupConstantGlobalUsers(CE, SubInit, TD, TLI);
495      } else if (CE->getOpcode() == Instruction::BitCast &&
496                 CE->getType()->isPointerTy()) {
497        // Pointer cast, delete any stores and memsets to the global.
498        Changed |= CleanupConstantGlobalUsers(CE, 0, TD, TLI);
499      }
500
501      if (CE->use_empty()) {
502        CE->destroyConstant();
503        Changed = true;
504      }
505    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
506      // Do not transform "gepinst (gep constexpr (GV))" here, because forming
507      // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
508      // and will invalidate our notion of what Init is.
509      Constant *SubInit = 0;
510      if (!isa<ConstantExpr>(GEP->getOperand(0))) {
511        ConstantExpr *CE =
512          dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP, TD, TLI));
513        if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
514          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
515
516        // If the initializer is an all-null value and we have an inbounds GEP,
517        // we already know what the result of any load from that GEP is.
518        // TODO: Handle splats.
519        if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
520          SubInit = Constant::getNullValue(GEP->getType()->getElementType());
521      }
522      Changed |= CleanupConstantGlobalUsers(GEP, SubInit, TD, TLI);
523
524      if (GEP->use_empty()) {
525        GEP->eraseFromParent();
526        Changed = true;
527      }
528    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
529      if (MI->getRawDest() == V) {
530        MI->eraseFromParent();
531        Changed = true;
532      }
533
534    } else if (Constant *C = dyn_cast<Constant>(U)) {
535      // If we have a chain of dead constantexprs or other things dangling from
536      // us, and if they are all dead, nuke them without remorse.
537      if (SafeToDestroyConstant(C)) {
538        C->destroyConstant();
539        CleanupConstantGlobalUsers(V, Init, TD, TLI);
540        return true;
541      }
542    }
543  }
544  return Changed;
545}
546
547/// isSafeSROAElementUse - Return true if the specified instruction is a safe
548/// user of a derived expression from a global that we want to SROA.
549static bool isSafeSROAElementUse(Value *V) {
550  // We might have a dead and dangling constant hanging off of here.
551  if (Constant *C = dyn_cast<Constant>(V))
552    return SafeToDestroyConstant(C);
553
554  Instruction *I = dyn_cast<Instruction>(V);
555  if (!I) return false;
556
557  // Loads are ok.
558  if (isa<LoadInst>(I)) return true;
559
560  // Stores *to* the pointer are ok.
561  if (StoreInst *SI = dyn_cast<StoreInst>(I))
562    return SI->getOperand(0) != V;
563
564  // Otherwise, it must be a GEP.
565  GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
566  if (GEPI == 0) return false;
567
568  if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
569      !cast<Constant>(GEPI->getOperand(1))->isNullValue())
570    return false;
571
572  for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end();
573       I != E; ++I)
574    if (!isSafeSROAElementUse(*I))
575      return false;
576  return true;
577}
578
579
580/// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value.
581/// Look at it and its uses and decide whether it is safe to SROA this global.
582///
583static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
584  // The user of the global must be a GEP Inst or a ConstantExpr GEP.
585  if (!isa<GetElementPtrInst>(U) &&
586      (!isa<ConstantExpr>(U) ||
587       cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
588    return false;
589
590  // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
591  // don't like < 3 operand CE's, and we don't like non-constant integer
592  // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
593  // value of C.
594  if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
595      !cast<Constant>(U->getOperand(1))->isNullValue() ||
596      !isa<ConstantInt>(U->getOperand(2)))
597    return false;
598
599  gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
600  ++GEPI;  // Skip over the pointer index.
601
602  // If this is a use of an array allocation, do a bit more checking for sanity.
603  if (ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
604    uint64_t NumElements = AT->getNumElements();
605    ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
606
607    // Check to make sure that index falls within the array.  If not,
608    // something funny is going on, so we won't do the optimization.
609    //
610    if (Idx->getZExtValue() >= NumElements)
611      return false;
612
613    // We cannot scalar repl this level of the array unless any array
614    // sub-indices are in-range constants.  In particular, consider:
615    // A[0][i].  We cannot know that the user isn't doing invalid things like
616    // allowing i to index an out-of-range subscript that accesses A[1].
617    //
618    // Scalar replacing *just* the outer index of the array is probably not
619    // going to be a win anyway, so just give up.
620    for (++GEPI; // Skip array index.
621         GEPI != E;
622         ++GEPI) {
623      uint64_t NumElements;
624      if (ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
625        NumElements = SubArrayTy->getNumElements();
626      else if (VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI))
627        NumElements = SubVectorTy->getNumElements();
628      else {
629        assert((*GEPI)->isStructTy() &&
630               "Indexed GEP type is not array, vector, or struct!");
631        continue;
632      }
633
634      ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
635      if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
636        return false;
637    }
638  }
639
640  for (Value::use_iterator I = U->use_begin(), E = U->use_end(); I != E; ++I)
641    if (!isSafeSROAElementUse(*I))
642      return false;
643  return true;
644}
645
646/// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it
647/// is safe for us to perform this transformation.
648///
649static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
650  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
651       UI != E; ++UI) {
652    if (!IsUserOfGlobalSafeForSRA(*UI, GV))
653      return false;
654  }
655  return true;
656}
657
658
659/// SRAGlobal - Perform scalar replacement of aggregates on the specified global
660/// variable.  This opens the door for other optimizations by exposing the
661/// behavior of the program in a more fine-grained way.  We have determined that
662/// this transformation is safe already.  We return the first global variable we
663/// insert so that the caller can reprocess it.
664static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &TD) {
665  // Make sure this global only has simple uses that we can SRA.
666  if (!GlobalUsersSafeToSRA(GV))
667    return 0;
668
669  assert(GV->hasLocalLinkage() && !GV->isConstant());
670  Constant *Init = GV->getInitializer();
671  Type *Ty = Init->getType();
672
673  std::vector<GlobalVariable*> NewGlobals;
674  Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
675
676  // Get the alignment of the global, either explicit or target-specific.
677  unsigned StartAlignment = GV->getAlignment();
678  if (StartAlignment == 0)
679    StartAlignment = TD.getABITypeAlignment(GV->getType());
680
681  if (StructType *STy = dyn_cast<StructType>(Ty)) {
682    NewGlobals.reserve(STy->getNumElements());
683    const StructLayout &Layout = *TD.getStructLayout(STy);
684    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
685      Constant *In = Init->getAggregateElement(i);
686      assert(In && "Couldn't get element of initializer?");
687      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
688                                               GlobalVariable::InternalLinkage,
689                                               In, GV->getName()+"."+Twine(i),
690                                               GV->getThreadLocalMode(),
691                                              GV->getType()->getAddressSpace());
692      Globals.insert(GV, NGV);
693      NewGlobals.push_back(NGV);
694
695      // Calculate the known alignment of the field.  If the original aggregate
696      // had 256 byte alignment for example, something might depend on that:
697      // propagate info to each field.
698      uint64_t FieldOffset = Layout.getElementOffset(i);
699      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
700      if (NewAlign > TD.getABITypeAlignment(STy->getElementType(i)))
701        NGV->setAlignment(NewAlign);
702    }
703  } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
704    unsigned NumElements = 0;
705    if (ArrayType *ATy = dyn_cast<ArrayType>(STy))
706      NumElements = ATy->getNumElements();
707    else
708      NumElements = cast<VectorType>(STy)->getNumElements();
709
710    if (NumElements > 16 && GV->hasNUsesOrMore(16))
711      return 0; // It's not worth it.
712    NewGlobals.reserve(NumElements);
713
714    uint64_t EltSize = TD.getTypeAllocSize(STy->getElementType());
715    unsigned EltAlign = TD.getABITypeAlignment(STy->getElementType());
716    for (unsigned i = 0, e = NumElements; i != e; ++i) {
717      Constant *In = Init->getAggregateElement(i);
718      assert(In && "Couldn't get element of initializer?");
719
720      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
721                                               GlobalVariable::InternalLinkage,
722                                               In, GV->getName()+"."+Twine(i),
723                                               GV->getThreadLocalMode(),
724                                              GV->getType()->getAddressSpace());
725      Globals.insert(GV, NGV);
726      NewGlobals.push_back(NGV);
727
728      // Calculate the known alignment of the field.  If the original aggregate
729      // had 256 byte alignment for example, something might depend on that:
730      // propagate info to each field.
731      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
732      if (NewAlign > EltAlign)
733        NGV->setAlignment(NewAlign);
734    }
735  }
736
737  if (NewGlobals.empty())
738    return 0;
739
740  DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV);
741
742  Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
743
744  // Loop over all of the uses of the global, replacing the constantexpr geps,
745  // with smaller constantexpr geps or direct references.
746  while (!GV->use_empty()) {
747    User *GEP = GV->use_back();
748    assert(((isa<ConstantExpr>(GEP) &&
749             cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
750            isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
751
752    // Ignore the 1th operand, which has to be zero or else the program is quite
753    // broken (undefined).  Get the 2nd operand, which is the structure or array
754    // index.
755    unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
756    if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
757
758    Value *NewPtr = NewGlobals[Val];
759
760    // Form a shorter GEP if needed.
761    if (GEP->getNumOperands() > 3) {
762      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
763        SmallVector<Constant*, 8> Idxs;
764        Idxs.push_back(NullInt);
765        for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
766          Idxs.push_back(CE->getOperand(i));
767        NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr), Idxs);
768      } else {
769        GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
770        SmallVector<Value*, 8> Idxs;
771        Idxs.push_back(NullInt);
772        for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
773          Idxs.push_back(GEPI->getOperand(i));
774        NewPtr = GetElementPtrInst::Create(NewPtr, Idxs,
775                                           GEPI->getName()+"."+Twine(Val),GEPI);
776      }
777    }
778    GEP->replaceAllUsesWith(NewPtr);
779
780    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
781      GEPI->eraseFromParent();
782    else
783      cast<ConstantExpr>(GEP)->destroyConstant();
784  }
785
786  // Delete the old global, now that it is dead.
787  Globals.erase(GV);
788  ++NumSRA;
789
790  // Loop over the new globals array deleting any globals that are obviously
791  // dead.  This can arise due to scalarization of a structure or an array that
792  // has elements that are dead.
793  unsigned FirstGlobal = 0;
794  for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
795    if (NewGlobals[i]->use_empty()) {
796      Globals.erase(NewGlobals[i]);
797      if (FirstGlobal == i) ++FirstGlobal;
798    }
799
800  return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : 0;
801}
802
803/// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
804/// value will trap if the value is dynamically null.  PHIs keeps track of any
805/// phi nodes we've seen to avoid reprocessing them.
806static bool AllUsesOfValueWillTrapIfNull(const Value *V,
807                                         SmallPtrSet<const PHINode*, 8> &PHIs) {
808  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
809       ++UI) {
810    const User *U = *UI;
811
812    if (isa<LoadInst>(U)) {
813      // Will trap.
814    } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
815      if (SI->getOperand(0) == V) {
816        //cerr << "NONTRAPPING USE: " << *U;
817        return false;  // Storing the value.
818      }
819    } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
820      if (CI->getCalledValue() != V) {
821        //cerr << "NONTRAPPING USE: " << *U;
822        return false;  // Not calling the ptr
823      }
824    } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
825      if (II->getCalledValue() != V) {
826        //cerr << "NONTRAPPING USE: " << *U;
827        return false;  // Not calling the ptr
828      }
829    } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
830      if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
831    } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
832      if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
833    } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
834      // If we've already seen this phi node, ignore it, it has already been
835      // checked.
836      if (PHIs.insert(PN) && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
837        return false;
838    } else if (isa<ICmpInst>(U) &&
839               isa<ConstantPointerNull>(UI->getOperand(1))) {
840      // Ignore icmp X, null
841    } else {
842      //cerr << "NONTRAPPING USE: " << *U;
843      return false;
844    }
845  }
846  return true;
847}
848
849/// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads
850/// from GV will trap if the loaded value is null.  Note that this also permits
851/// comparisons of the loaded value against null, as a special case.
852static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
853  for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end();
854       UI != E; ++UI) {
855    const User *U = *UI;
856
857    if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
858      SmallPtrSet<const PHINode*, 8> PHIs;
859      if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
860        return false;
861    } else if (isa<StoreInst>(U)) {
862      // Ignore stores to the global.
863    } else {
864      // We don't know or understand this user, bail out.
865      //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
866      return false;
867    }
868  }
869  return true;
870}
871
872static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
873  bool Changed = false;
874  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) {
875    Instruction *I = cast<Instruction>(*UI++);
876    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
877      LI->setOperand(0, NewV);
878      Changed = true;
879    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
880      if (SI->getOperand(1) == V) {
881        SI->setOperand(1, NewV);
882        Changed = true;
883      }
884    } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
885      CallSite CS(I);
886      if (CS.getCalledValue() == V) {
887        // Calling through the pointer!  Turn into a direct call, but be careful
888        // that the pointer is not also being passed as an argument.
889        CS.setCalledFunction(NewV);
890        Changed = true;
891        bool PassedAsArg = false;
892        for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
893          if (CS.getArgument(i) == V) {
894            PassedAsArg = true;
895            CS.setArgument(i, NewV);
896          }
897
898        if (PassedAsArg) {
899          // Being passed as an argument also.  Be careful to not invalidate UI!
900          UI = V->use_begin();
901        }
902      }
903    } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
904      Changed |= OptimizeAwayTrappingUsesOfValue(CI,
905                                ConstantExpr::getCast(CI->getOpcode(),
906                                                      NewV, CI->getType()));
907      if (CI->use_empty()) {
908        Changed = true;
909        CI->eraseFromParent();
910      }
911    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
912      // Should handle GEP here.
913      SmallVector<Constant*, 8> Idxs;
914      Idxs.reserve(GEPI->getNumOperands()-1);
915      for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
916           i != e; ++i)
917        if (Constant *C = dyn_cast<Constant>(*i))
918          Idxs.push_back(C);
919        else
920          break;
921      if (Idxs.size() == GEPI->getNumOperands()-1)
922        Changed |= OptimizeAwayTrappingUsesOfValue(GEPI,
923                          ConstantExpr::getGetElementPtr(NewV, Idxs));
924      if (GEPI->use_empty()) {
925        Changed = true;
926        GEPI->eraseFromParent();
927      }
928    }
929  }
930
931  return Changed;
932}
933
934
935/// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null
936/// value stored into it.  If there are uses of the loaded value that would trap
937/// if the loaded value is dynamically null, then we know that they cannot be
938/// reachable with a null optimize away the load.
939static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV,
940                                            DataLayout *TD,
941                                            TargetLibraryInfo *TLI) {
942  bool Changed = false;
943
944  // Keep track of whether we are able to remove all the uses of the global
945  // other than the store that defines it.
946  bool AllNonStoreUsesGone = true;
947
948  // Replace all uses of loads with uses of uses of the stored value.
949  for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end(); GUI != E;){
950    User *GlobalUser = *GUI++;
951    if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
952      Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
953      // If we were able to delete all uses of the loads
954      if (LI->use_empty()) {
955        LI->eraseFromParent();
956        Changed = true;
957      } else {
958        AllNonStoreUsesGone = false;
959      }
960    } else if (isa<StoreInst>(GlobalUser)) {
961      // Ignore the store that stores "LV" to the global.
962      assert(GlobalUser->getOperand(1) == GV &&
963             "Must be storing *to* the global");
964    } else {
965      AllNonStoreUsesGone = false;
966
967      // If we get here we could have other crazy uses that are transitively
968      // loaded.
969      assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
970              isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
971              isa<BitCastInst>(GlobalUser) ||
972              isa<GetElementPtrInst>(GlobalUser)) &&
973             "Only expect load and stores!");
974    }
975  }
976
977  if (Changed) {
978    DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV);
979    ++NumGlobUses;
980  }
981
982  // If we nuked all of the loads, then none of the stores are needed either,
983  // nor is the global.
984  if (AllNonStoreUsesGone) {
985    if (isLeakCheckerRoot(GV)) {
986      Changed |= CleanupPointerRootUsers(GV, TLI);
987    } else {
988      Changed = true;
989      CleanupConstantGlobalUsers(GV, 0, TD, TLI);
990    }
991    if (GV->use_empty()) {
992      DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
993      Changed = true;
994      GV->eraseFromParent();
995      ++NumDeleted;
996    }
997  }
998  return Changed;
999}
1000
1001/// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
1002/// instructions that are foldable.
1003static void ConstantPropUsersOf(Value *V,
1004                                DataLayout *TD, TargetLibraryInfo *TLI) {
1005  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; )
1006    if (Instruction *I = dyn_cast<Instruction>(*UI++))
1007      if (Constant *NewC = ConstantFoldInstruction(I, TD, TLI)) {
1008        I->replaceAllUsesWith(NewC);
1009
1010        // Advance UI to the next non-I use to avoid invalidating it!
1011        // Instructions could multiply use V.
1012        while (UI != E && *UI == I)
1013          ++UI;
1014        I->eraseFromParent();
1015      }
1016}
1017
1018/// OptimizeGlobalAddressOfMalloc - This function takes the specified global
1019/// variable, and transforms the program as if it always contained the result of
1020/// the specified malloc.  Because it is always the result of the specified
1021/// malloc, there is no reason to actually DO the malloc.  Instead, turn the
1022/// malloc into a global, and any loads of GV as uses of the new global.
1023static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
1024                                                     CallInst *CI,
1025                                                     Type *AllocTy,
1026                                                     ConstantInt *NElements,
1027                                                     DataLayout *TD,
1028                                                     TargetLibraryInfo *TLI) {
1029  DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI << '\n');
1030
1031  Type *GlobalType;
1032  if (NElements->getZExtValue() == 1)
1033    GlobalType = AllocTy;
1034  else
1035    // If we have an array allocation, the global variable is of an array.
1036    GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
1037
1038  // Create the new global variable.  The contents of the malloc'd memory is
1039  // undefined, so initialize with an undef value.
1040  GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(),
1041                                             GlobalType, false,
1042                                             GlobalValue::InternalLinkage,
1043                                             UndefValue::get(GlobalType),
1044                                             GV->getName()+".body",
1045                                             GV,
1046                                             GV->getThreadLocalMode());
1047
1048  // If there are bitcast users of the malloc (which is typical, usually we have
1049  // a malloc + bitcast) then replace them with uses of the new global.  Update
1050  // other users to use the global as well.
1051  BitCastInst *TheBC = 0;
1052  while (!CI->use_empty()) {
1053    Instruction *User = cast<Instruction>(CI->use_back());
1054    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
1055      if (BCI->getType() == NewGV->getType()) {
1056        BCI->replaceAllUsesWith(NewGV);
1057        BCI->eraseFromParent();
1058      } else {
1059        BCI->setOperand(0, NewGV);
1060      }
1061    } else {
1062      if (TheBC == 0)
1063        TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
1064      User->replaceUsesOfWith(CI, TheBC);
1065    }
1066  }
1067
1068  Constant *RepValue = NewGV;
1069  if (NewGV->getType() != GV->getType()->getElementType())
1070    RepValue = ConstantExpr::getBitCast(RepValue,
1071                                        GV->getType()->getElementType());
1072
1073  // If there is a comparison against null, we will insert a global bool to
1074  // keep track of whether the global was initialized yet or not.
1075  GlobalVariable *InitBool =
1076    new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
1077                       GlobalValue::InternalLinkage,
1078                       ConstantInt::getFalse(GV->getContext()),
1079                       GV->getName()+".init", GV->getThreadLocalMode());
1080  bool InitBoolUsed = false;
1081
1082  // Loop over all uses of GV, processing them in turn.
1083  while (!GV->use_empty()) {
1084    if (StoreInst *SI = dyn_cast<StoreInst>(GV->use_back())) {
1085      // The global is initialized when the store to it occurs.
1086      new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0,
1087                    SI->getOrdering(), SI->getSynchScope(), SI);
1088      SI->eraseFromParent();
1089      continue;
1090    }
1091
1092    LoadInst *LI = cast<LoadInst>(GV->use_back());
1093    while (!LI->use_empty()) {
1094      Use &LoadUse = LI->use_begin().getUse();
1095      if (!isa<ICmpInst>(LoadUse.getUser())) {
1096        LoadUse = RepValue;
1097        continue;
1098      }
1099
1100      ICmpInst *ICI = cast<ICmpInst>(LoadUse.getUser());
1101      // Replace the cmp X, 0 with a use of the bool value.
1102      // Sink the load to where the compare was, if atomic rules allow us to.
1103      Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0,
1104                               LI->getOrdering(), LI->getSynchScope(),
1105                               LI->isUnordered() ? (Instruction*)ICI : LI);
1106      InitBoolUsed = true;
1107      switch (ICI->getPredicate()) {
1108      default: llvm_unreachable("Unknown ICmp Predicate!");
1109      case ICmpInst::ICMP_ULT:
1110      case ICmpInst::ICMP_SLT:   // X < null -> always false
1111        LV = ConstantInt::getFalse(GV->getContext());
1112        break;
1113      case ICmpInst::ICMP_ULE:
1114      case ICmpInst::ICMP_SLE:
1115      case ICmpInst::ICMP_EQ:
1116        LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
1117        break;
1118      case ICmpInst::ICMP_NE:
1119      case ICmpInst::ICMP_UGE:
1120      case ICmpInst::ICMP_SGE:
1121      case ICmpInst::ICMP_UGT:
1122      case ICmpInst::ICMP_SGT:
1123        break;  // no change.
1124      }
1125      ICI->replaceAllUsesWith(LV);
1126      ICI->eraseFromParent();
1127    }
1128    LI->eraseFromParent();
1129  }
1130
1131  // If the initialization boolean was used, insert it, otherwise delete it.
1132  if (!InitBoolUsed) {
1133    while (!InitBool->use_empty())  // Delete initializations
1134      cast<StoreInst>(InitBool->use_back())->eraseFromParent();
1135    delete InitBool;
1136  } else
1137    GV->getParent()->getGlobalList().insert(GV, InitBool);
1138
1139  // Now the GV is dead, nuke it and the malloc..
1140  GV->eraseFromParent();
1141  CI->eraseFromParent();
1142
1143  // To further other optimizations, loop over all users of NewGV and try to
1144  // constant prop them.  This will promote GEP instructions with constant
1145  // indices into GEP constant-exprs, which will allow global-opt to hack on it.
1146  ConstantPropUsersOf(NewGV, TD, TLI);
1147  if (RepValue != NewGV)
1148    ConstantPropUsersOf(RepValue, TD, TLI);
1149
1150  return NewGV;
1151}
1152
1153/// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking
1154/// to make sure that there are no complex uses of V.  We permit simple things
1155/// like dereferencing the pointer, but not storing through the address, unless
1156/// it is to the specified global.
1157static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
1158                                                      const GlobalVariable *GV,
1159                                         SmallPtrSet<const PHINode*, 8> &PHIs) {
1160  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
1161       UI != E; ++UI) {
1162    const Instruction *Inst = cast<Instruction>(*UI);
1163
1164    if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
1165      continue; // Fine, ignore.
1166    }
1167
1168    if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
1169      if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
1170        return false;  // Storing the pointer itself... bad.
1171      continue; // Otherwise, storing through it, or storing into GV... fine.
1172    }
1173
1174    // Must index into the array and into the struct.
1175    if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
1176      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
1177        return false;
1178      continue;
1179    }
1180
1181    if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
1182      // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
1183      // cycles.
1184      if (PHIs.insert(PN))
1185        if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
1186          return false;
1187      continue;
1188    }
1189
1190    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
1191      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
1192        return false;
1193      continue;
1194    }
1195
1196    return false;
1197  }
1198  return true;
1199}
1200
1201/// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
1202/// somewhere.  Transform all uses of the allocation into loads from the
1203/// global and uses of the resultant pointer.  Further, delete the store into
1204/// GV.  This assumes that these value pass the
1205/// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
1206static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
1207                                          GlobalVariable *GV) {
1208  while (!Alloc->use_empty()) {
1209    Instruction *U = cast<Instruction>(*Alloc->use_begin());
1210    Instruction *InsertPt = U;
1211    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1212      // If this is the store of the allocation into the global, remove it.
1213      if (SI->getOperand(1) == GV) {
1214        SI->eraseFromParent();
1215        continue;
1216      }
1217    } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
1218      // Insert the load in the corresponding predecessor, not right before the
1219      // PHI.
1220      InsertPt = PN->getIncomingBlock(Alloc->use_begin())->getTerminator();
1221    } else if (isa<BitCastInst>(U)) {
1222      // Must be bitcast between the malloc and store to initialize the global.
1223      ReplaceUsesOfMallocWithGlobal(U, GV);
1224      U->eraseFromParent();
1225      continue;
1226    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1227      // If this is a "GEP bitcast" and the user is a store to the global, then
1228      // just process it as a bitcast.
1229      if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1230        if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->use_back()))
1231          if (SI->getOperand(1) == GV) {
1232            // Must be bitcast GEP between the malloc and store to initialize
1233            // the global.
1234            ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1235            GEPI->eraseFromParent();
1236            continue;
1237          }
1238    }
1239
1240    // Insert a load from the global, and use it instead of the malloc.
1241    Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
1242    U->replaceUsesOfWith(Alloc, NL);
1243  }
1244}
1245
1246/// LoadUsesSimpleEnoughForHeapSRA - Verify that all uses of V (a load, or a phi
1247/// of a load) are simple enough to perform heap SRA on.  This permits GEP's
1248/// that index through the array and struct field, icmps of null, and PHIs.
1249static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
1250                        SmallPtrSet<const PHINode*, 32> &LoadUsingPHIs,
1251                        SmallPtrSet<const PHINode*, 32> &LoadUsingPHIsPerLoad) {
1252  // We permit two users of the load: setcc comparing against the null
1253  // pointer, and a getelementptr of a specific form.
1254  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
1255       ++UI) {
1256    const Instruction *User = cast<Instruction>(*UI);
1257
1258    // Comparison against null is ok.
1259    if (const ICmpInst *ICI = dyn_cast<ICmpInst>(User)) {
1260      if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1261        return false;
1262      continue;
1263    }
1264
1265    // getelementptr is also ok, but only a simple form.
1266    if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1267      // Must index into the array and into the struct.
1268      if (GEPI->getNumOperands() < 3)
1269        return false;
1270
1271      // Otherwise the GEP is ok.
1272      continue;
1273    }
1274
1275    if (const PHINode *PN = dyn_cast<PHINode>(User)) {
1276      if (!LoadUsingPHIsPerLoad.insert(PN))
1277        // This means some phi nodes are dependent on each other.
1278        // Avoid infinite looping!
1279        return false;
1280      if (!LoadUsingPHIs.insert(PN))
1281        // If we have already analyzed this PHI, then it is safe.
1282        continue;
1283
1284      // Make sure all uses of the PHI are simple enough to transform.
1285      if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1286                                          LoadUsingPHIs, LoadUsingPHIsPerLoad))
1287        return false;
1288
1289      continue;
1290    }
1291
1292    // Otherwise we don't know what this is, not ok.
1293    return false;
1294  }
1295
1296  return true;
1297}
1298
1299
1300/// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from
1301/// GV are simple enough to perform HeapSRA, return true.
1302static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
1303                                                    Instruction *StoredVal) {
1304  SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
1305  SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
1306  for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end();
1307       UI != E; ++UI)
1308    if (const LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
1309      if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1310                                          LoadUsingPHIsPerLoad))
1311        return false;
1312      LoadUsingPHIsPerLoad.clear();
1313    }
1314
1315  // If we reach here, we know that all uses of the loads and transitive uses
1316  // (through PHI nodes) are simple enough to transform.  However, we don't know
1317  // that all inputs the to the PHI nodes are in the same equivalence sets.
1318  // Check to verify that all operands of the PHIs are either PHIS that can be
1319  // transformed, loads from GV, or MI itself.
1320  for (SmallPtrSet<const PHINode*, 32>::const_iterator I = LoadUsingPHIs.begin()
1321       , E = LoadUsingPHIs.end(); I != E; ++I) {
1322    const PHINode *PN = *I;
1323    for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1324      Value *InVal = PN->getIncomingValue(op);
1325
1326      // PHI of the stored value itself is ok.
1327      if (InVal == StoredVal) continue;
1328
1329      if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1330        // One of the PHIs in our set is (optimistically) ok.
1331        if (LoadUsingPHIs.count(InPN))
1332          continue;
1333        return false;
1334      }
1335
1336      // Load from GV is ok.
1337      if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
1338        if (LI->getOperand(0) == GV)
1339          continue;
1340
1341      // UNDEF? NULL?
1342
1343      // Anything else is rejected.
1344      return false;
1345    }
1346  }
1347
1348  return true;
1349}
1350
1351static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1352               DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1353                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1354  std::vector<Value*> &FieldVals = InsertedScalarizedValues[V];
1355
1356  if (FieldNo >= FieldVals.size())
1357    FieldVals.resize(FieldNo+1);
1358
1359  // If we already have this value, just reuse the previously scalarized
1360  // version.
1361  if (Value *FieldVal = FieldVals[FieldNo])
1362    return FieldVal;
1363
1364  // Depending on what instruction this is, we have several cases.
1365  Value *Result;
1366  if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1367    // This is a scalarized version of the load from the global.  Just create
1368    // a new Load of the scalarized global.
1369    Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
1370                                           InsertedScalarizedValues,
1371                                           PHIsToRewrite),
1372                          LI->getName()+".f"+Twine(FieldNo), LI);
1373  } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
1374    // PN's type is pointer to struct.  Make a new PHI of pointer to struct
1375    // field.
1376    StructType *ST =
1377      cast<StructType>(cast<PointerType>(PN->getType())->getElementType());
1378
1379    PHINode *NewPN =
1380     PHINode::Create(PointerType::getUnqual(ST->getElementType(FieldNo)),
1381                     PN->getNumIncomingValues(),
1382                     PN->getName()+".f"+Twine(FieldNo), PN);
1383    Result = NewPN;
1384    PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1385  } else {
1386    llvm_unreachable("Unknown usable value");
1387  }
1388
1389  return FieldVals[FieldNo] = Result;
1390}
1391
1392/// RewriteHeapSROALoadUser - Given a load instruction and a value derived from
1393/// the load, rewrite the derived value to use the HeapSRoA'd load.
1394static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1395             DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1396                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1397  // If this is a comparison against null, handle it.
1398  if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1399    assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1400    // If we have a setcc of the loaded pointer, we can use a setcc of any
1401    // field.
1402    Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1403                                   InsertedScalarizedValues, PHIsToRewrite);
1404
1405    Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1406                              Constant::getNullValue(NPtr->getType()),
1407                              SCI->getName());
1408    SCI->replaceAllUsesWith(New);
1409    SCI->eraseFromParent();
1410    return;
1411  }
1412
1413  // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1414  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1415    assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1416           && "Unexpected GEPI!");
1417
1418    // Load the pointer for this field.
1419    unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1420    Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1421                                     InsertedScalarizedValues, PHIsToRewrite);
1422
1423    // Create the new GEP idx vector.
1424    SmallVector<Value*, 8> GEPIdx;
1425    GEPIdx.push_back(GEPI->getOperand(1));
1426    GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1427
1428    Value *NGEPI = GetElementPtrInst::Create(NewPtr, GEPIdx,
1429                                             GEPI->getName(), GEPI);
1430    GEPI->replaceAllUsesWith(NGEPI);
1431    GEPI->eraseFromParent();
1432    return;
1433  }
1434
1435  // Recursively transform the users of PHI nodes.  This will lazily create the
1436  // PHIs that are needed for individual elements.  Keep track of what PHIs we
1437  // see in InsertedScalarizedValues so that we don't get infinite loops (very
1438  // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
1439  // already been seen first by another load, so its uses have already been
1440  // processed.
1441  PHINode *PN = cast<PHINode>(LoadUser);
1442  if (!InsertedScalarizedValues.insert(std::make_pair(PN,
1443                                              std::vector<Value*>())).second)
1444    return;
1445
1446  // If this is the first time we've seen this PHI, recursively process all
1447  // users.
1448  for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E; ) {
1449    Instruction *User = cast<Instruction>(*UI++);
1450    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1451  }
1452}
1453
1454/// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global.  Ptr
1455/// is a value loaded from the global.  Eliminate all uses of Ptr, making them
1456/// use FieldGlobals instead.  All uses of loaded values satisfy
1457/// AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1458static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1459               DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1460                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1461  for (Value::use_iterator UI = Load->use_begin(), E = Load->use_end();
1462       UI != E; ) {
1463    Instruction *User = cast<Instruction>(*UI++);
1464    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1465  }
1466
1467  if (Load->use_empty()) {
1468    Load->eraseFromParent();
1469    InsertedScalarizedValues.erase(Load);
1470  }
1471}
1472
1473/// PerformHeapAllocSRoA - CI is an allocation of an array of structures.  Break
1474/// it up into multiple allocations of arrays of the fields.
1475static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
1476                                            Value *NElems, DataLayout *TD,
1477                                            const TargetLibraryInfo *TLI) {
1478  DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *CI << '\n');
1479  Type *MAT = getMallocAllocatedType(CI, TLI);
1480  StructType *STy = cast<StructType>(MAT);
1481
1482  // There is guaranteed to be at least one use of the malloc (storing
1483  // it into GV).  If there are other uses, change them to be uses of
1484  // the global to simplify later code.  This also deletes the store
1485  // into GV.
1486  ReplaceUsesOfMallocWithGlobal(CI, GV);
1487
1488  // Okay, at this point, there are no users of the malloc.  Insert N
1489  // new mallocs at the same place as CI, and N globals.
1490  std::vector<Value*> FieldGlobals;
1491  std::vector<Value*> FieldMallocs;
1492
1493  for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1494    Type *FieldTy = STy->getElementType(FieldNo);
1495    PointerType *PFieldTy = PointerType::getUnqual(FieldTy);
1496
1497    GlobalVariable *NGV =
1498      new GlobalVariable(*GV->getParent(),
1499                         PFieldTy, false, GlobalValue::InternalLinkage,
1500                         Constant::getNullValue(PFieldTy),
1501                         GV->getName() + ".f" + Twine(FieldNo), GV,
1502                         GV->getThreadLocalMode());
1503    FieldGlobals.push_back(NGV);
1504
1505    unsigned TypeSize = TD->getTypeAllocSize(FieldTy);
1506    if (StructType *ST = dyn_cast<StructType>(FieldTy))
1507      TypeSize = TD->getStructLayout(ST)->getSizeInBytes();
1508    Type *IntPtrTy = TD->getIntPtrType(CI->getContext());
1509    Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
1510                                        ConstantInt::get(IntPtrTy, TypeSize),
1511                                        NElems, 0,
1512                                        CI->getName() + ".f" + Twine(FieldNo));
1513    FieldMallocs.push_back(NMI);
1514    new StoreInst(NMI, NGV, CI);
1515  }
1516
1517  // The tricky aspect of this transformation is handling the case when malloc
1518  // fails.  In the original code, malloc failing would set the result pointer
1519  // of malloc to null.  In this case, some mallocs could succeed and others
1520  // could fail.  As such, we emit code that looks like this:
1521  //    F0 = malloc(field0)
1522  //    F1 = malloc(field1)
1523  //    F2 = malloc(field2)
1524  //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1525  //      if (F0) { free(F0); F0 = 0; }
1526  //      if (F1) { free(F1); F1 = 0; }
1527  //      if (F2) { free(F2); F2 = 0; }
1528  //    }
1529  // The malloc can also fail if its argument is too large.
1530  Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
1531  Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
1532                                  ConstantZero, "isneg");
1533  for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1534    Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1535                             Constant::getNullValue(FieldMallocs[i]->getType()),
1536                               "isnull");
1537    RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
1538  }
1539
1540  // Split the basic block at the old malloc.
1541  BasicBlock *OrigBB = CI->getParent();
1542  BasicBlock *ContBB = OrigBB->splitBasicBlock(CI, "malloc_cont");
1543
1544  // Create the block to check the first condition.  Put all these blocks at the
1545  // end of the function as they are unlikely to be executed.
1546  BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
1547                                                "malloc_ret_null",
1548                                                OrigBB->getParent());
1549
1550  // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1551  // branch on RunningOr.
1552  OrigBB->getTerminator()->eraseFromParent();
1553  BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1554
1555  // Within the NullPtrBlock, we need to emit a comparison and branch for each
1556  // pointer, because some may be null while others are not.
1557  for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1558    Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1559    Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1560                              Constant::getNullValue(GVVal->getType()));
1561    BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
1562                                               OrigBB->getParent());
1563    BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
1564                                               OrigBB->getParent());
1565    Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
1566                                         Cmp, NullPtrBlock);
1567
1568    // Fill in FreeBlock.
1569    CallInst::CreateFree(GVVal, BI);
1570    new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1571                  FreeBlock);
1572    BranchInst::Create(NextBlock, FreeBlock);
1573
1574    NullPtrBlock = NextBlock;
1575  }
1576
1577  BranchInst::Create(ContBB, NullPtrBlock);
1578
1579  // CI is no longer needed, remove it.
1580  CI->eraseFromParent();
1581
1582  /// InsertedScalarizedLoads - As we process loads, if we can't immediately
1583  /// update all uses of the load, keep track of what scalarized loads are
1584  /// inserted for a given load.
1585  DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues;
1586  InsertedScalarizedValues[GV] = FieldGlobals;
1587
1588  std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite;
1589
1590  // Okay, the malloc site is completely handled.  All of the uses of GV are now
1591  // loads, and all uses of those loads are simple.  Rewrite them to use loads
1592  // of the per-field globals instead.
1593  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;) {
1594    Instruction *User = cast<Instruction>(*UI++);
1595
1596    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1597      RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
1598      continue;
1599    }
1600
1601    // Must be a store of null.
1602    StoreInst *SI = cast<StoreInst>(User);
1603    assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1604           "Unexpected heap-sra user!");
1605
1606    // Insert a store of null into each global.
1607    for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1608      PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType());
1609      Constant *Null = Constant::getNullValue(PT->getElementType());
1610      new StoreInst(Null, FieldGlobals[i], SI);
1611    }
1612    // Erase the original store.
1613    SI->eraseFromParent();
1614  }
1615
1616  // While we have PHIs that are interesting to rewrite, do it.
1617  while (!PHIsToRewrite.empty()) {
1618    PHINode *PN = PHIsToRewrite.back().first;
1619    unsigned FieldNo = PHIsToRewrite.back().second;
1620    PHIsToRewrite.pop_back();
1621    PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1622    assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1623
1624    // Add all the incoming values.  This can materialize more phis.
1625    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1626      Value *InVal = PN->getIncomingValue(i);
1627      InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1628                               PHIsToRewrite);
1629      FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1630    }
1631  }
1632
1633  // Drop all inter-phi links and any loads that made it this far.
1634  for (DenseMap<Value*, std::vector<Value*> >::iterator
1635       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1636       I != E; ++I) {
1637    if (PHINode *PN = dyn_cast<PHINode>(I->first))
1638      PN->dropAllReferences();
1639    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1640      LI->dropAllReferences();
1641  }
1642
1643  // Delete all the phis and loads now that inter-references are dead.
1644  for (DenseMap<Value*, std::vector<Value*> >::iterator
1645       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1646       I != E; ++I) {
1647    if (PHINode *PN = dyn_cast<PHINode>(I->first))
1648      PN->eraseFromParent();
1649    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1650      LI->eraseFromParent();
1651  }
1652
1653  // The old global is now dead, remove it.
1654  GV->eraseFromParent();
1655
1656  ++NumHeapSRA;
1657  return cast<GlobalVariable>(FieldGlobals[0]);
1658}
1659
1660/// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a
1661/// pointer global variable with a single value stored it that is a malloc or
1662/// cast of malloc.
1663static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
1664                                               CallInst *CI,
1665                                               Type *AllocTy,
1666                                               AtomicOrdering Ordering,
1667                                               Module::global_iterator &GVI,
1668                                               DataLayout *TD,
1669                                               TargetLibraryInfo *TLI) {
1670  if (!TD)
1671    return false;
1672
1673  // If this is a malloc of an abstract type, don't touch it.
1674  if (!AllocTy->isSized())
1675    return false;
1676
1677  // We can't optimize this global unless all uses of it are *known* to be
1678  // of the malloc value, not of the null initializer value (consider a use
1679  // that compares the global's value against zero to see if the malloc has
1680  // been reached).  To do this, we check to see if all uses of the global
1681  // would trap if the global were null: this proves that they must all
1682  // happen after the malloc.
1683  if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1684    return false;
1685
1686  // We can't optimize this if the malloc itself is used in a complex way,
1687  // for example, being stored into multiple globals.  This allows the
1688  // malloc to be stored into the specified global, loaded icmp'd, and
1689  // GEP'd.  These are all things we could transform to using the global
1690  // for.
1691  SmallPtrSet<const PHINode*, 8> PHIs;
1692  if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
1693    return false;
1694
1695  // If we have a global that is only initialized with a fixed size malloc,
1696  // transform the program to use global memory instead of malloc'd memory.
1697  // This eliminates dynamic allocation, avoids an indirection accessing the
1698  // data, and exposes the resultant global to further GlobalOpt.
1699  // We cannot optimize the malloc if we cannot determine malloc array size.
1700  Value *NElems = getMallocArraySize(CI, TD, TLI, true);
1701  if (!NElems)
1702    return false;
1703
1704  if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1705    // Restrict this transformation to only working on small allocations
1706    // (2048 bytes currently), as we don't want to introduce a 16M global or
1707    // something.
1708    if (NElements->getZExtValue() * TD->getTypeAllocSize(AllocTy) < 2048) {
1709      GVI = OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, TD, TLI);
1710      return true;
1711    }
1712
1713  // If the allocation is an array of structures, consider transforming this
1714  // into multiple malloc'd arrays, one for each field.  This is basically
1715  // SRoA for malloc'd memory.
1716
1717  if (Ordering != NotAtomic)
1718    return false;
1719
1720  // If this is an allocation of a fixed size array of structs, analyze as a
1721  // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
1722  if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
1723    if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1724      AllocTy = AT->getElementType();
1725
1726  StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
1727  if (!AllocSTy)
1728    return false;
1729
1730  // This the structure has an unreasonable number of fields, leave it
1731  // alone.
1732  if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1733      AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
1734
1735    // If this is a fixed size array, transform the Malloc to be an alloc of
1736    // structs.  malloc [100 x struct],1 -> malloc struct, 100
1737    if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) {
1738      Type *IntPtrTy = TD->getIntPtrType(CI->getContext());
1739      unsigned TypeSize = TD->getStructLayout(AllocSTy)->getSizeInBytes();
1740      Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
1741      Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
1742      Instruction *Malloc = CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy,
1743                                                   AllocSize, NumElements,
1744                                                   0, CI->getName());
1745      Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
1746      CI->replaceAllUsesWith(Cast);
1747      CI->eraseFromParent();
1748      if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc))
1749        CI = cast<CallInst>(BCI->getOperand(0));
1750      else
1751        CI = cast<CallInst>(Malloc);
1752    }
1753
1754    GVI = PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, TD, TLI, true),
1755                               TD, TLI);
1756    return true;
1757  }
1758
1759  return false;
1760}
1761
1762// OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
1763// that only one value (besides its initializer) is ever stored to the global.
1764static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1765                                     AtomicOrdering Ordering,
1766                                     Module::global_iterator &GVI,
1767                                     DataLayout *TD, TargetLibraryInfo *TLI) {
1768  // Ignore no-op GEPs and bitcasts.
1769  StoredOnceVal = StoredOnceVal->stripPointerCasts();
1770
1771  // If we are dealing with a pointer global that is initialized to null and
1772  // only has one (non-null) value stored into it, then we can optimize any
1773  // users of the loaded value (often calls and loads) that would trap if the
1774  // value was null.
1775  if (GV->getInitializer()->getType()->isPointerTy() &&
1776      GV->getInitializer()->isNullValue()) {
1777    if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1778      if (GV->getInitializer()->getType() != SOVC->getType())
1779        SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1780
1781      // Optimize away any trapping uses of the loaded value.
1782      if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, TD, TLI))
1783        return true;
1784    } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) {
1785      Type *MallocType = getMallocAllocatedType(CI, TLI);
1786      if (MallocType &&
1787          TryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, Ordering, GVI,
1788                                             TD, TLI))
1789        return true;
1790    }
1791  }
1792
1793  return false;
1794}
1795
1796/// TryToShrinkGlobalToBoolean - At this point, we have learned that the only
1797/// two values ever stored into GV are its initializer and OtherVal.  See if we
1798/// can shrink the global into a boolean and select between the two values
1799/// whenever it is used.  This exposes the values to other scalar optimizations.
1800static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1801  Type *GVElType = GV->getType()->getElementType();
1802
1803  // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1804  // an FP value, pointer or vector, don't do this optimization because a select
1805  // between them is very expensive and unlikely to lead to later
1806  // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1807  // where v1 and v2 both require constant pool loads, a big loss.
1808  if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1809      GVElType->isFloatingPointTy() ||
1810      GVElType->isPointerTy() || GVElType->isVectorTy())
1811    return false;
1812
1813  // Walk the use list of the global seeing if all the uses are load or store.
1814  // If there is anything else, bail out.
1815  for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I){
1816    User *U = *I;
1817    if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1818      return false;
1819  }
1820
1821  DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV);
1822
1823  // Create the new global, initializing it to false.
1824  GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1825                                             false,
1826                                             GlobalValue::InternalLinkage,
1827                                        ConstantInt::getFalse(GV->getContext()),
1828                                             GV->getName()+".b",
1829                                             GV->getThreadLocalMode(),
1830                                             GV->getType()->getAddressSpace());
1831  GV->getParent()->getGlobalList().insert(GV, NewGV);
1832
1833  Constant *InitVal = GV->getInitializer();
1834  assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1835         "No reason to shrink to bool!");
1836
1837  // If initialized to zero and storing one into the global, we can use a cast
1838  // instead of a select to synthesize the desired value.
1839  bool IsOneZero = false;
1840  if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
1841    IsOneZero = InitVal->isNullValue() && CI->isOne();
1842
1843  while (!GV->use_empty()) {
1844    Instruction *UI = cast<Instruction>(GV->use_back());
1845    if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1846      // Change the store into a boolean store.
1847      bool StoringOther = SI->getOperand(0) == OtherVal;
1848      // Only do this if we weren't storing a loaded value.
1849      Value *StoreVal;
1850      if (StoringOther || SI->getOperand(0) == InitVal) {
1851        StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1852                                    StoringOther);
1853      } else {
1854        // Otherwise, we are storing a previously loaded copy.  To do this,
1855        // change the copy from copying the original value to just copying the
1856        // bool.
1857        Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1858
1859        // If we've already replaced the input, StoredVal will be a cast or
1860        // select instruction.  If not, it will be a load of the original
1861        // global.
1862        if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1863          assert(LI->getOperand(0) == GV && "Not a copy!");
1864          // Insert a new load, to preserve the saved value.
1865          StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0,
1866                                  LI->getOrdering(), LI->getSynchScope(), LI);
1867        } else {
1868          assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1869                 "This is not a form that we understand!");
1870          StoreVal = StoredVal->getOperand(0);
1871          assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1872        }
1873      }
1874      new StoreInst(StoreVal, NewGV, false, 0,
1875                    SI->getOrdering(), SI->getSynchScope(), SI);
1876    } else {
1877      // Change the load into a load of bool then a select.
1878      LoadInst *LI = cast<LoadInst>(UI);
1879      LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0,
1880                                   LI->getOrdering(), LI->getSynchScope(), LI);
1881      Value *NSI;
1882      if (IsOneZero)
1883        NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1884      else
1885        NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1886      NSI->takeName(LI);
1887      LI->replaceAllUsesWith(NSI);
1888    }
1889    UI->eraseFromParent();
1890  }
1891
1892  // Retain the name of the old global variable. People who are debugging their
1893  // programs may expect these variables to be named the same.
1894  NewGV->takeName(GV);
1895  GV->eraseFromParent();
1896  return true;
1897}
1898
1899
1900/// ProcessGlobal - Analyze the specified global variable and optimize it if
1901/// possible.  If we make a change, return true.
1902bool GlobalOpt::ProcessGlobal(GlobalVariable *GV,
1903                              Module::global_iterator &GVI) {
1904  if (!GV->isDiscardableIfUnused())
1905    return false;
1906
1907  // Do more involved optimizations if the global is internal.
1908  GV->removeDeadConstantUsers();
1909
1910  if (GV->use_empty()) {
1911    DEBUG(dbgs() << "GLOBAL DEAD: " << *GV);
1912    GV->eraseFromParent();
1913    ++NumDeleted;
1914    return true;
1915  }
1916
1917  if (!GV->hasLocalLinkage())
1918    return false;
1919
1920  SmallPtrSet<const PHINode*, 16> PHIUsers;
1921  GlobalStatus GS;
1922
1923  if (AnalyzeGlobal(GV, GS, PHIUsers))
1924    return false;
1925
1926  if (!GS.isCompared && !GV->hasUnnamedAddr()) {
1927    GV->setUnnamedAddr(true);
1928    NumUnnamed++;
1929  }
1930
1931  if (GV->isConstant() || !GV->hasInitializer())
1932    return false;
1933
1934  return ProcessInternalGlobal(GV, GVI, PHIUsers, GS);
1935}
1936
1937/// ProcessInternalGlobal - Analyze the specified global variable and optimize
1938/// it if possible.  If we make a change, return true.
1939bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
1940                                      Module::global_iterator &GVI,
1941                                const SmallPtrSet<const PHINode*, 16> &PHIUsers,
1942                                      const GlobalStatus &GS) {
1943  // If this is a first class global and has only one accessing function
1944  // and this function is main (which we know is not recursive), we replace
1945  // the global with a local alloca in this function.
1946  //
1947  // NOTE: It doesn't make sense to promote non single-value types since we
1948  // are just replacing static memory to stack memory.
1949  //
1950  // If the global is in different address space, don't bring it to stack.
1951  if (!GS.HasMultipleAccessingFunctions &&
1952      GS.AccessingFunction && !GS.HasNonInstructionUser &&
1953      GV->getType()->getElementType()->isSingleValueType() &&
1954      GS.AccessingFunction->getName() == "main" &&
1955      GS.AccessingFunction->hasExternalLinkage() &&
1956      GV->getType()->getAddressSpace() == 0) {
1957    DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV);
1958    Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1959                                                   ->getEntryBlock().begin());
1960    Type *ElemTy = GV->getType()->getElementType();
1961    // FIXME: Pass Global's alignment when globals have alignment
1962    AllocaInst *Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), &FirstI);
1963    if (!isa<UndefValue>(GV->getInitializer()))
1964      new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1965
1966    GV->replaceAllUsesWith(Alloca);
1967    GV->eraseFromParent();
1968    ++NumLocalized;
1969    return true;
1970  }
1971
1972  // If the global is never loaded (but may be stored to), it is dead.
1973  // Delete it now.
1974  if (!GS.isLoaded) {
1975    DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV);
1976
1977    bool Changed;
1978    if (isLeakCheckerRoot(GV)) {
1979      // Delete any constant stores to the global.
1980      Changed = CleanupPointerRootUsers(GV, TLI);
1981    } else {
1982      // Delete any stores we can find to the global.  We may not be able to
1983      // make it completely dead though.
1984      Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), TD, TLI);
1985    }
1986
1987    // If the global is dead now, delete it.
1988    if (GV->use_empty()) {
1989      GV->eraseFromParent();
1990      ++NumDeleted;
1991      Changed = true;
1992    }
1993    return Changed;
1994
1995  } else if (GS.StoredType <= GlobalStatus::isInitializerStored) {
1996    DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
1997    GV->setConstant(true);
1998
1999    // Clean up any obviously simplifiable users now.
2000    CleanupConstantGlobalUsers(GV, GV->getInitializer(), TD, TLI);
2001
2002    // If the global is dead now, just nuke it.
2003    if (GV->use_empty()) {
2004      DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
2005            << "all users and delete global!\n");
2006      GV->eraseFromParent();
2007      ++NumDeleted;
2008    }
2009
2010    ++NumMarked;
2011    return true;
2012  } else if (!GV->getInitializer()->getType()->isSingleValueType()) {
2013    if (DataLayout *TD = getAnalysisIfAvailable<DataLayout>())
2014      if (GlobalVariable *FirstNewGV = SRAGlobal(GV, *TD)) {
2015        GVI = FirstNewGV;  // Don't skip the newly produced globals!
2016        return true;
2017      }
2018  } else if (GS.StoredType == GlobalStatus::isStoredOnce) {
2019    // If the initial value for the global was an undef value, and if only
2020    // one other value was stored into it, we can just change the
2021    // initializer to be the stored value, then delete all stores to the
2022    // global.  This allows us to mark it constant.
2023    if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
2024      if (isa<UndefValue>(GV->getInitializer())) {
2025        // Change the initial value here.
2026        GV->setInitializer(SOVConstant);
2027
2028        // Clean up any obviously simplifiable users now.
2029        CleanupConstantGlobalUsers(GV, GV->getInitializer(), TD, TLI);
2030
2031        if (GV->use_empty()) {
2032          DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
2033                       << "simplify all users and delete global!\n");
2034          GV->eraseFromParent();
2035          ++NumDeleted;
2036        } else {
2037          GVI = GV;
2038        }
2039        ++NumSubstitute;
2040        return true;
2041      }
2042
2043    // Try to optimize globals based on the knowledge that only one value
2044    // (besides its initializer) is ever stored to the global.
2045    if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, GVI,
2046                                 TD, TLI))
2047      return true;
2048
2049    // Otherwise, if the global was not a boolean, we can shrink it to be a
2050    // boolean.
2051    if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
2052      if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
2053        ++NumShrunkToBool;
2054        return true;
2055      }
2056  }
2057
2058  return false;
2059}
2060
2061/// ChangeCalleesToFastCall - Walk all of the direct calls of the specified
2062/// function, changing them to FastCC.
2063static void ChangeCalleesToFastCall(Function *F) {
2064  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
2065    if (isa<BlockAddress>(*UI))
2066      continue;
2067    CallSite User(cast<Instruction>(*UI));
2068    User.setCallingConv(CallingConv::Fast);
2069  }
2070}
2071
2072static AttributeSet StripNest(LLVMContext &C, const AttributeSet &Attrs) {
2073  for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
2074    unsigned Index = Attrs.getSlotIndex(i);
2075    if (!Attrs.getSlotAttributes(i).hasAttribute(Index, Attribute::Nest))
2076      continue;
2077
2078    // There can be only one.
2079    return Attrs.removeAttribute(C, Index, Attribute::Nest);
2080  }
2081
2082  return Attrs;
2083}
2084
2085static void RemoveNestAttribute(Function *F) {
2086  F->setAttributes(StripNest(F->getContext(), F->getAttributes()));
2087  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
2088    if (isa<BlockAddress>(*UI))
2089      continue;
2090    CallSite User(cast<Instruction>(*UI));
2091    User.setAttributes(StripNest(F->getContext(), User.getAttributes()));
2092  }
2093}
2094
2095bool GlobalOpt::OptimizeFunctions(Module &M) {
2096  bool Changed = false;
2097  // Optimize functions.
2098  for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
2099    Function *F = FI++;
2100    // Functions without names cannot be referenced outside this module.
2101    if (!F->hasName() && !F->isDeclaration())
2102      F->setLinkage(GlobalValue::InternalLinkage);
2103    F->removeDeadConstantUsers();
2104    if (F->isDefTriviallyDead()) {
2105      F->eraseFromParent();
2106      Changed = true;
2107      ++NumFnDeleted;
2108    } else if (F->hasLocalLinkage()) {
2109      if (F->getCallingConv() == CallingConv::C && !F->isVarArg() &&
2110          !F->hasAddressTaken()) {
2111        // If this function has C calling conventions, is not a varargs
2112        // function, and is only called directly, promote it to use the Fast
2113        // calling convention.
2114        F->setCallingConv(CallingConv::Fast);
2115        ChangeCalleesToFastCall(F);
2116        ++NumFastCallFns;
2117        Changed = true;
2118      }
2119
2120      if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
2121          !F->hasAddressTaken()) {
2122        // The function is not used by a trampoline intrinsic, so it is safe
2123        // to remove the 'nest' attribute.
2124        RemoveNestAttribute(F);
2125        ++NumNestRemoved;
2126        Changed = true;
2127      }
2128    }
2129  }
2130  return Changed;
2131}
2132
2133bool GlobalOpt::OptimizeGlobalVars(Module &M) {
2134  bool Changed = false;
2135  for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
2136       GVI != E; ) {
2137    GlobalVariable *GV = GVI++;
2138    // Global variables without names cannot be referenced outside this module.
2139    if (!GV->hasName() && !GV->isDeclaration())
2140      GV->setLinkage(GlobalValue::InternalLinkage);
2141    // Simplify the initializer.
2142    if (GV->hasInitializer())
2143      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GV->getInitializer())) {
2144        Constant *New = ConstantFoldConstantExpression(CE, TD, TLI);
2145        if (New && New != CE)
2146          GV->setInitializer(New);
2147      }
2148
2149    Changed |= ProcessGlobal(GV, GVI);
2150  }
2151  return Changed;
2152}
2153
2154/// FindGlobalCtors - Find the llvm.global_ctors list, verifying that all
2155/// initializers have an init priority of 65535.
2156GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) {
2157  GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
2158  if (GV == 0) return 0;
2159
2160  // Verify that the initializer is simple enough for us to handle. We are
2161  // only allowed to optimize the initializer if it is unique.
2162  if (!GV->hasUniqueInitializer()) return 0;
2163
2164  if (isa<ConstantAggregateZero>(GV->getInitializer()))
2165    return GV;
2166  ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
2167
2168  for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) {
2169    if (isa<ConstantAggregateZero>(*i))
2170      continue;
2171    ConstantStruct *CS = cast<ConstantStruct>(*i);
2172    if (isa<ConstantPointerNull>(CS->getOperand(1)))
2173      continue;
2174
2175    // Must have a function or null ptr.
2176    if (!isa<Function>(CS->getOperand(1)))
2177      return 0;
2178
2179    // Init priority must be standard.
2180    ConstantInt *CI = cast<ConstantInt>(CS->getOperand(0));
2181    if (CI->getZExtValue() != 65535)
2182      return 0;
2183  }
2184
2185  return GV;
2186}
2187
2188/// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand,
2189/// return a list of the functions and null terminator as a vector.
2190static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) {
2191  if (GV->getInitializer()->isNullValue())
2192    return std::vector<Function*>();
2193  ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
2194  std::vector<Function*> Result;
2195  Result.reserve(CA->getNumOperands());
2196  for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) {
2197    ConstantStruct *CS = cast<ConstantStruct>(*i);
2198    Result.push_back(dyn_cast<Function>(CS->getOperand(1)));
2199  }
2200  return Result;
2201}
2202
2203/// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the
2204/// specified array, returning the new global to use.
2205static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
2206                                          const std::vector<Function*> &Ctors) {
2207  // If we made a change, reassemble the initializer list.
2208  Constant *CSVals[2];
2209  CSVals[0] = ConstantInt::get(Type::getInt32Ty(GCL->getContext()), 65535);
2210  CSVals[1] = 0;
2211
2212  StructType *StructTy =
2213    cast <StructType>(
2214    cast<ArrayType>(GCL->getType()->getElementType())->getElementType());
2215
2216  // Create the new init list.
2217  std::vector<Constant*> CAList;
2218  for (unsigned i = 0, e = Ctors.size(); i != e; ++i) {
2219    if (Ctors[i]) {
2220      CSVals[1] = Ctors[i];
2221    } else {
2222      Type *FTy = FunctionType::get(Type::getVoidTy(GCL->getContext()),
2223                                          false);
2224      PointerType *PFTy = PointerType::getUnqual(FTy);
2225      CSVals[1] = Constant::getNullValue(PFTy);
2226      CSVals[0] = ConstantInt::get(Type::getInt32Ty(GCL->getContext()),
2227                                   0x7fffffff);
2228    }
2229    CAList.push_back(ConstantStruct::get(StructTy, CSVals));
2230  }
2231
2232  // Create the array initializer.
2233  Constant *CA = ConstantArray::get(ArrayType::get(StructTy,
2234                                                   CAList.size()), CAList);
2235
2236  // If we didn't change the number of elements, don't create a new GV.
2237  if (CA->getType() == GCL->getInitializer()->getType()) {
2238    GCL->setInitializer(CA);
2239    return GCL;
2240  }
2241
2242  // Create the new global and insert it next to the existing list.
2243  GlobalVariable *NGV = new GlobalVariable(CA->getType(), GCL->isConstant(),
2244                                           GCL->getLinkage(), CA, "",
2245                                           GCL->getThreadLocalMode());
2246  GCL->getParent()->getGlobalList().insert(GCL, NGV);
2247  NGV->takeName(GCL);
2248
2249  // Nuke the old list, replacing any uses with the new one.
2250  if (!GCL->use_empty()) {
2251    Constant *V = NGV;
2252    if (V->getType() != GCL->getType())
2253      V = ConstantExpr::getBitCast(V, GCL->getType());
2254    GCL->replaceAllUsesWith(V);
2255  }
2256  GCL->eraseFromParent();
2257
2258  if (Ctors.size())
2259    return NGV;
2260  else
2261    return 0;
2262}
2263
2264
2265static inline bool
2266isSimpleEnoughValueToCommit(Constant *C,
2267                            SmallPtrSet<Constant*, 8> &SimpleConstants,
2268                            const DataLayout *TD);
2269
2270
2271/// isSimpleEnoughValueToCommit - Return true if the specified constant can be
2272/// handled by the code generator.  We don't want to generate something like:
2273///   void *X = &X/42;
2274/// because the code generator doesn't have a relocation that can handle that.
2275///
2276/// This function should be called if C was not found (but just got inserted)
2277/// in SimpleConstants to avoid having to rescan the same constants all the
2278/// time.
2279static bool isSimpleEnoughValueToCommitHelper(Constant *C,
2280                                   SmallPtrSet<Constant*, 8> &SimpleConstants,
2281                                   const DataLayout *TD) {
2282  // Simple integer, undef, constant aggregate zero, global addresses, etc are
2283  // all supported.
2284  if (C->getNumOperands() == 0 || isa<BlockAddress>(C) ||
2285      isa<GlobalValue>(C))
2286    return true;
2287
2288  // Aggregate values are safe if all their elements are.
2289  if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
2290      isa<ConstantVector>(C)) {
2291    for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
2292      Constant *Op = cast<Constant>(C->getOperand(i));
2293      if (!isSimpleEnoughValueToCommit(Op, SimpleConstants, TD))
2294        return false;
2295    }
2296    return true;
2297  }
2298
2299  // We don't know exactly what relocations are allowed in constant expressions,
2300  // so we allow &global+constantoffset, which is safe and uniformly supported
2301  // across targets.
2302  ConstantExpr *CE = cast<ConstantExpr>(C);
2303  switch (CE->getOpcode()) {
2304  case Instruction::BitCast:
2305    // Bitcast is fine if the casted value is fine.
2306    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD);
2307
2308  case Instruction::IntToPtr:
2309  case Instruction::PtrToInt:
2310    // int <=> ptr is fine if the int type is the same size as the
2311    // pointer type.
2312    if (!TD || TD->getTypeSizeInBits(CE->getType()) !=
2313               TD->getTypeSizeInBits(CE->getOperand(0)->getType()))
2314      return false;
2315    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD);
2316
2317  // GEP is fine if it is simple + constant offset.
2318  case Instruction::GetElementPtr:
2319    for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
2320      if (!isa<ConstantInt>(CE->getOperand(i)))
2321        return false;
2322    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD);
2323
2324  case Instruction::Add:
2325    // We allow simple+cst.
2326    if (!isa<ConstantInt>(CE->getOperand(1)))
2327      return false;
2328    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD);
2329  }
2330  return false;
2331}
2332
2333static inline bool
2334isSimpleEnoughValueToCommit(Constant *C,
2335                            SmallPtrSet<Constant*, 8> &SimpleConstants,
2336                            const DataLayout *TD) {
2337  // If we already checked this constant, we win.
2338  if (!SimpleConstants.insert(C)) return true;
2339  // Check the constant.
2340  return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, TD);
2341}
2342
2343
2344/// isSimpleEnoughPointerToCommit - Return true if this constant is simple
2345/// enough for us to understand.  In particular, if it is a cast to anything
2346/// other than from one pointer type to another pointer type, we punt.
2347/// We basically just support direct accesses to globals and GEP's of
2348/// globals.  This should be kept up to date with CommitValueTo.
2349static bool isSimpleEnoughPointerToCommit(Constant *C) {
2350  // Conservatively, avoid aggregate types. This is because we don't
2351  // want to worry about them partially overlapping other stores.
2352  if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
2353    return false;
2354
2355  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
2356    // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
2357    // external globals.
2358    return GV->hasUniqueInitializer();
2359
2360  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2361    // Handle a constantexpr gep.
2362    if (CE->getOpcode() == Instruction::GetElementPtr &&
2363        isa<GlobalVariable>(CE->getOperand(0)) &&
2364        cast<GEPOperator>(CE)->isInBounds()) {
2365      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2366      // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
2367      // external globals.
2368      if (!GV->hasUniqueInitializer())
2369        return false;
2370
2371      // The first index must be zero.
2372      ConstantInt *CI = dyn_cast<ConstantInt>(*llvm::next(CE->op_begin()));
2373      if (!CI || !CI->isZero()) return false;
2374
2375      // The remaining indices must be compile-time known integers within the
2376      // notional bounds of the corresponding static array types.
2377      if (!CE->isGEPWithNoNotionalOverIndexing())
2378        return false;
2379
2380      return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2381
2382    // A constantexpr bitcast from a pointer to another pointer is a no-op,
2383    // and we know how to evaluate it by moving the bitcast from the pointer
2384    // operand to the value operand.
2385    } else if (CE->getOpcode() == Instruction::BitCast &&
2386               isa<GlobalVariable>(CE->getOperand(0))) {
2387      // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
2388      // external globals.
2389      return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer();
2390    }
2391  }
2392
2393  return false;
2394}
2395
2396/// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global
2397/// initializer.  This returns 'Init' modified to reflect 'Val' stored into it.
2398/// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
2399static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2400                                   ConstantExpr *Addr, unsigned OpNo) {
2401  // Base case of the recursion.
2402  if (OpNo == Addr->getNumOperands()) {
2403    assert(Val->getType() == Init->getType() && "Type mismatch!");
2404    return Val;
2405  }
2406
2407  SmallVector<Constant*, 32> Elts;
2408  if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
2409    // Break up the constant into its elements.
2410    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2411      Elts.push_back(Init->getAggregateElement(i));
2412
2413    // Replace the element that we are supposed to.
2414    ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2415    unsigned Idx = CU->getZExtValue();
2416    assert(Idx < STy->getNumElements() && "Struct index out of range!");
2417    Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2418
2419    // Return the modified struct.
2420    return ConstantStruct::get(STy, Elts);
2421  }
2422
2423  ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2424  SequentialType *InitTy = cast<SequentialType>(Init->getType());
2425
2426  uint64_t NumElts;
2427  if (ArrayType *ATy = dyn_cast<ArrayType>(InitTy))
2428    NumElts = ATy->getNumElements();
2429  else
2430    NumElts = InitTy->getVectorNumElements();
2431
2432  // Break up the array into elements.
2433  for (uint64_t i = 0, e = NumElts; i != e; ++i)
2434    Elts.push_back(Init->getAggregateElement(i));
2435
2436  assert(CI->getZExtValue() < NumElts);
2437  Elts[CI->getZExtValue()] =
2438    EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2439
2440  if (Init->getType()->isArrayTy())
2441    return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
2442  return ConstantVector::get(Elts);
2443}
2444
2445/// CommitValueTo - We have decided that Addr (which satisfies the predicate
2446/// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
2447static void CommitValueTo(Constant *Val, Constant *Addr) {
2448  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2449    assert(GV->hasInitializer());
2450    GV->setInitializer(Val);
2451    return;
2452  }
2453
2454  ConstantExpr *CE = cast<ConstantExpr>(Addr);
2455  GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2456  GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2457}
2458
2459namespace {
2460
2461/// Evaluator - This class evaluates LLVM IR, producing the Constant
2462/// representing each SSA instruction.  Changes to global variables are stored
2463/// in a mapping that can be iterated over after the evaluation is complete.
2464/// Once an evaluation call fails, the evaluation object should not be reused.
2465class Evaluator {
2466public:
2467  Evaluator(const DataLayout *TD, const TargetLibraryInfo *TLI)
2468    : TD(TD), TLI(TLI) {
2469    ValueStack.push_back(new DenseMap<Value*, Constant*>);
2470  }
2471
2472  ~Evaluator() {
2473    DeleteContainerPointers(ValueStack);
2474    while (!AllocaTmps.empty()) {
2475      GlobalVariable *Tmp = AllocaTmps.back();
2476      AllocaTmps.pop_back();
2477
2478      // If there are still users of the alloca, the program is doing something
2479      // silly, e.g. storing the address of the alloca somewhere and using it
2480      // later.  Since this is undefined, we'll just make it be null.
2481      if (!Tmp->use_empty())
2482        Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
2483      delete Tmp;
2484    }
2485  }
2486
2487  /// EvaluateFunction - Evaluate a call to function F, returning true if
2488  /// successful, false if we can't evaluate it.  ActualArgs contains the formal
2489  /// arguments for the function.
2490  bool EvaluateFunction(Function *F, Constant *&RetVal,
2491                        const SmallVectorImpl<Constant*> &ActualArgs);
2492
2493  /// EvaluateBlock - Evaluate all instructions in block BB, returning true if
2494  /// successful, false if we can't evaluate it.  NewBB returns the next BB that
2495  /// control flows into, or null upon return.
2496  bool EvaluateBlock(BasicBlock::iterator CurInst, BasicBlock *&NextBB);
2497
2498  Constant *getVal(Value *V) {
2499    if (Constant *CV = dyn_cast<Constant>(V)) return CV;
2500    Constant *R = ValueStack.back()->lookup(V);
2501    assert(R && "Reference to an uncomputed value!");
2502    return R;
2503  }
2504
2505  void setVal(Value *V, Constant *C) {
2506    ValueStack.back()->operator[](V) = C;
2507  }
2508
2509  const DenseMap<Constant*, Constant*> &getMutatedMemory() const {
2510    return MutatedMemory;
2511  }
2512
2513  const SmallPtrSet<GlobalVariable*, 8> &getInvariants() const {
2514    return Invariants;
2515  }
2516
2517private:
2518  Constant *ComputeLoadResult(Constant *P);
2519
2520  /// ValueStack - As we compute SSA register values, we store their contents
2521  /// here. The back of the vector contains the current function and the stack
2522  /// contains the values in the calling frames.
2523  SmallVector<DenseMap<Value*, Constant*>*, 4> ValueStack;
2524
2525  /// CallStack - This is used to detect recursion.  In pathological situations
2526  /// we could hit exponential behavior, but at least there is nothing
2527  /// unbounded.
2528  SmallVector<Function*, 4> CallStack;
2529
2530  /// MutatedMemory - For each store we execute, we update this map.  Loads
2531  /// check this to get the most up-to-date value.  If evaluation is successful,
2532  /// this state is committed to the process.
2533  DenseMap<Constant*, Constant*> MutatedMemory;
2534
2535  /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable
2536  /// to represent its body.  This vector is needed so we can delete the
2537  /// temporary globals when we are done.
2538  SmallVector<GlobalVariable*, 32> AllocaTmps;
2539
2540  /// Invariants - These global variables have been marked invariant by the
2541  /// static constructor.
2542  SmallPtrSet<GlobalVariable*, 8> Invariants;
2543
2544  /// SimpleConstants - These are constants we have checked and know to be
2545  /// simple enough to live in a static initializer of a global.
2546  SmallPtrSet<Constant*, 8> SimpleConstants;
2547
2548  const DataLayout *TD;
2549  const TargetLibraryInfo *TLI;
2550};
2551
2552}  // anonymous namespace
2553
2554/// ComputeLoadResult - Return the value that would be computed by a load from
2555/// P after the stores reflected by 'memory' have been performed.  If we can't
2556/// decide, return null.
2557Constant *Evaluator::ComputeLoadResult(Constant *P) {
2558  // If this memory location has been recently stored, use the stored value: it
2559  // is the most up-to-date.
2560  DenseMap<Constant*, Constant*>::const_iterator I = MutatedMemory.find(P);
2561  if (I != MutatedMemory.end()) return I->second;
2562
2563  // Access it.
2564  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
2565    if (GV->hasDefinitiveInitializer())
2566      return GV->getInitializer();
2567    return 0;
2568  }
2569
2570  // Handle a constantexpr getelementptr.
2571  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
2572    if (CE->getOpcode() == Instruction::GetElementPtr &&
2573        isa<GlobalVariable>(CE->getOperand(0))) {
2574      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2575      if (GV->hasDefinitiveInitializer())
2576        return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2577    }
2578
2579  return 0;  // don't know how to evaluate.
2580}
2581
2582/// EvaluateBlock - Evaluate all instructions in block BB, returning true if
2583/// successful, false if we can't evaluate it.  NewBB returns the next BB that
2584/// control flows into, or null upon return.
2585bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
2586                              BasicBlock *&NextBB) {
2587  // This is the main evaluation loop.
2588  while (1) {
2589    Constant *InstResult = 0;
2590
2591    DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n");
2592
2593    if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
2594      if (!SI->isSimple()) {
2595        DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n");
2596        return false;  // no volatile/atomic accesses.
2597      }
2598      Constant *Ptr = getVal(SI->getOperand(1));
2599      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
2600        DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr);
2601        Ptr = ConstantFoldConstantExpression(CE, TD, TLI);
2602        DEBUG(dbgs() << "; To: " << *Ptr << "\n");
2603      }
2604      if (!isSimpleEnoughPointerToCommit(Ptr)) {
2605        // If this is too complex for us to commit, reject it.
2606        DEBUG(dbgs() << "Pointer is too complex for us to evaluate store.");
2607        return false;
2608      }
2609
2610      Constant *Val = getVal(SI->getOperand(0));
2611
2612      // If this might be too difficult for the backend to handle (e.g. the addr
2613      // of one global variable divided by another) then we can't commit it.
2614      if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, TD)) {
2615        DEBUG(dbgs() << "Store value is too complex to evaluate store. " << *Val
2616              << "\n");
2617        return false;
2618      }
2619
2620      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
2621        if (CE->getOpcode() == Instruction::BitCast) {
2622          DEBUG(dbgs() << "Attempting to resolve bitcast on constant ptr.\n");
2623          // If we're evaluating a store through a bitcast, then we need
2624          // to pull the bitcast off the pointer type and push it onto the
2625          // stored value.
2626          Ptr = CE->getOperand(0);
2627
2628          Type *NewTy = cast<PointerType>(Ptr->getType())->getElementType();
2629
2630          // In order to push the bitcast onto the stored value, a bitcast
2631          // from NewTy to Val's type must be legal.  If it's not, we can try
2632          // introspecting NewTy to find a legal conversion.
2633          while (!Val->getType()->canLosslesslyBitCastTo(NewTy)) {
2634            // If NewTy is a struct, we can convert the pointer to the struct
2635            // into a pointer to its first member.
2636            // FIXME: This could be extended to support arrays as well.
2637            if (StructType *STy = dyn_cast<StructType>(NewTy)) {
2638              NewTy = STy->getTypeAtIndex(0U);
2639
2640              IntegerType *IdxTy = IntegerType::get(NewTy->getContext(), 32);
2641              Constant *IdxZero = ConstantInt::get(IdxTy, 0, false);
2642              Constant * const IdxList[] = {IdxZero, IdxZero};
2643
2644              Ptr = ConstantExpr::getGetElementPtr(Ptr, IdxList);
2645              if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
2646                Ptr = ConstantFoldConstantExpression(CE, TD, TLI);
2647
2648            // If we can't improve the situation by introspecting NewTy,
2649            // we have to give up.
2650            } else {
2651              DEBUG(dbgs() << "Failed to bitcast constant ptr, can not "
2652                    "evaluate.\n");
2653              return false;
2654            }
2655          }
2656
2657          // If we found compatible types, go ahead and push the bitcast
2658          // onto the stored value.
2659          Val = ConstantExpr::getBitCast(Val, NewTy);
2660
2661          DEBUG(dbgs() << "Evaluated bitcast: " << *Val << "\n");
2662        }
2663      }
2664
2665      MutatedMemory[Ptr] = Val;
2666    } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
2667      InstResult = ConstantExpr::get(BO->getOpcode(),
2668                                     getVal(BO->getOperand(0)),
2669                                     getVal(BO->getOperand(1)));
2670      DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: " << *InstResult
2671            << "\n");
2672    } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
2673      InstResult = ConstantExpr::getCompare(CI->getPredicate(),
2674                                            getVal(CI->getOperand(0)),
2675                                            getVal(CI->getOperand(1)));
2676      DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult
2677            << "\n");
2678    } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
2679      InstResult = ConstantExpr::getCast(CI->getOpcode(),
2680                                         getVal(CI->getOperand(0)),
2681                                         CI->getType());
2682      DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult
2683            << "\n");
2684    } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
2685      InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)),
2686                                           getVal(SI->getOperand(1)),
2687                                           getVal(SI->getOperand(2)));
2688      DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult
2689            << "\n");
2690    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
2691      Constant *P = getVal(GEP->getOperand(0));
2692      SmallVector<Constant*, 8> GEPOps;
2693      for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
2694           i != e; ++i)
2695        GEPOps.push_back(getVal(*i));
2696      InstResult =
2697        ConstantExpr::getGetElementPtr(P, GEPOps,
2698                                       cast<GEPOperator>(GEP)->isInBounds());
2699      DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult
2700            << "\n");
2701    } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
2702
2703      if (!LI->isSimple()) {
2704        DEBUG(dbgs() << "Found a Load! Not a simple load, can not evaluate.\n");
2705        return false;  // no volatile/atomic accesses.
2706      }
2707
2708      Constant *Ptr = getVal(LI->getOperand(0));
2709      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
2710        Ptr = ConstantFoldConstantExpression(CE, TD, TLI);
2711        DEBUG(dbgs() << "Found a constant pointer expression, constant "
2712              "folding: " << *Ptr << "\n");
2713      }
2714      InstResult = ComputeLoadResult(Ptr);
2715      if (InstResult == 0) {
2716        DEBUG(dbgs() << "Failed to compute load result. Can not evaluate load."
2717              "\n");
2718        return false; // Could not evaluate load.
2719      }
2720
2721      DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n");
2722    } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
2723      if (AI->isArrayAllocation()) {
2724        DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n");
2725        return false;  // Cannot handle array allocs.
2726      }
2727      Type *Ty = AI->getType()->getElementType();
2728      AllocaTmps.push_back(new GlobalVariable(Ty, false,
2729                                              GlobalValue::InternalLinkage,
2730                                              UndefValue::get(Ty),
2731                                              AI->getName()));
2732      InstResult = AllocaTmps.back();
2733      DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n");
2734    } else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) {
2735      CallSite CS(CurInst);
2736
2737      // Debug info can safely be ignored here.
2738      if (isa<DbgInfoIntrinsic>(CS.getInstruction())) {
2739        DEBUG(dbgs() << "Ignoring debug info.\n");
2740        ++CurInst;
2741        continue;
2742      }
2743
2744      // Cannot handle inline asm.
2745      if (isa<InlineAsm>(CS.getCalledValue())) {
2746        DEBUG(dbgs() << "Found inline asm, can not evaluate.\n");
2747        return false;
2748      }
2749
2750      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
2751        if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) {
2752          if (MSI->isVolatile()) {
2753            DEBUG(dbgs() << "Can not optimize a volatile memset " <<
2754                  "intrinsic.\n");
2755            return false;
2756          }
2757          Constant *Ptr = getVal(MSI->getDest());
2758          Constant *Val = getVal(MSI->getValue());
2759          Constant *DestVal = ComputeLoadResult(getVal(Ptr));
2760          if (Val->isNullValue() && DestVal && DestVal->isNullValue()) {
2761            // This memset is a no-op.
2762            DEBUG(dbgs() << "Ignoring no-op memset.\n");
2763            ++CurInst;
2764            continue;
2765          }
2766        }
2767
2768        if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
2769            II->getIntrinsicID() == Intrinsic::lifetime_end) {
2770          DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n");
2771          ++CurInst;
2772          continue;
2773        }
2774
2775        if (II->getIntrinsicID() == Intrinsic::invariant_start) {
2776          // We don't insert an entry into Values, as it doesn't have a
2777          // meaningful return value.
2778          if (!II->use_empty()) {
2779            DEBUG(dbgs() << "Found unused invariant_start. Cant evaluate.\n");
2780            return false;
2781          }
2782          ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0));
2783          Value *PtrArg = getVal(II->getArgOperand(1));
2784          Value *Ptr = PtrArg->stripPointerCasts();
2785          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
2786            Type *ElemTy = cast<PointerType>(GV->getType())->getElementType();
2787            if (TD && !Size->isAllOnesValue() &&
2788                Size->getValue().getLimitedValue() >=
2789                TD->getTypeStoreSize(ElemTy)) {
2790              Invariants.insert(GV);
2791              DEBUG(dbgs() << "Found a global var that is an invariant: " << *GV
2792                    << "\n");
2793            } else {
2794              DEBUG(dbgs() << "Found a global var, but can not treat it as an "
2795                    "invariant.\n");
2796            }
2797          }
2798          // Continue even if we do nothing.
2799          ++CurInst;
2800          continue;
2801        }
2802
2803        DEBUG(dbgs() << "Unknown intrinsic. Can not evaluate.\n");
2804        return false;
2805      }
2806
2807      // Resolve function pointers.
2808      Function *Callee = dyn_cast<Function>(getVal(CS.getCalledValue()));
2809      if (!Callee || Callee->mayBeOverridden()) {
2810        DEBUG(dbgs() << "Can not resolve function pointer.\n");
2811        return false;  // Cannot resolve.
2812      }
2813
2814      SmallVector<Constant*, 8> Formals;
2815      for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end(); i != e; ++i)
2816        Formals.push_back(getVal(*i));
2817
2818      if (Callee->isDeclaration()) {
2819        // If this is a function we can constant fold, do it.
2820        if (Constant *C = ConstantFoldCall(Callee, Formals, TLI)) {
2821          InstResult = C;
2822          DEBUG(dbgs() << "Constant folded function call. Result: " <<
2823                *InstResult << "\n");
2824        } else {
2825          DEBUG(dbgs() << "Can not constant fold function call.\n");
2826          return false;
2827        }
2828      } else {
2829        if (Callee->getFunctionType()->isVarArg()) {
2830          DEBUG(dbgs() << "Can not constant fold vararg function call.\n");
2831          return false;
2832        }
2833
2834        Constant *RetVal = 0;
2835        // Execute the call, if successful, use the return value.
2836        ValueStack.push_back(new DenseMap<Value*, Constant*>);
2837        if (!EvaluateFunction(Callee, RetVal, Formals)) {
2838          DEBUG(dbgs() << "Failed to evaluate function.\n");
2839          return false;
2840        }
2841        delete ValueStack.pop_back_val();
2842        InstResult = RetVal;
2843
2844        if (InstResult != NULL) {
2845          DEBUG(dbgs() << "Successfully evaluated function. Result: " <<
2846                InstResult << "\n\n");
2847        } else {
2848          DEBUG(dbgs() << "Successfully evaluated function. Result: 0\n\n");
2849        }
2850      }
2851    } else if (isa<TerminatorInst>(CurInst)) {
2852      DEBUG(dbgs() << "Found a terminator instruction.\n");
2853
2854      if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
2855        if (BI->isUnconditional()) {
2856          NextBB = BI->getSuccessor(0);
2857        } else {
2858          ConstantInt *Cond =
2859            dyn_cast<ConstantInt>(getVal(BI->getCondition()));
2860          if (!Cond) return false;  // Cannot determine.
2861
2862          NextBB = BI->getSuccessor(!Cond->getZExtValue());
2863        }
2864      } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
2865        ConstantInt *Val =
2866          dyn_cast<ConstantInt>(getVal(SI->getCondition()));
2867        if (!Val) return false;  // Cannot determine.
2868        NextBB = SI->findCaseValue(Val).getCaseSuccessor();
2869      } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
2870        Value *Val = getVal(IBI->getAddress())->stripPointerCasts();
2871        if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
2872          NextBB = BA->getBasicBlock();
2873        else
2874          return false;  // Cannot determine.
2875      } else if (isa<ReturnInst>(CurInst)) {
2876        NextBB = 0;
2877      } else {
2878        // invoke, unwind, resume, unreachable.
2879        DEBUG(dbgs() << "Can not handle terminator.");
2880        return false;  // Cannot handle this terminator.
2881      }
2882
2883      // We succeeded at evaluating this block!
2884      DEBUG(dbgs() << "Successfully evaluated block.\n");
2885      return true;
2886    } else {
2887      // Did not know how to evaluate this!
2888      DEBUG(dbgs() << "Failed to evaluate block due to unhandled instruction."
2889            "\n");
2890      return false;
2891    }
2892
2893    if (!CurInst->use_empty()) {
2894      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InstResult))
2895        InstResult = ConstantFoldConstantExpression(CE, TD, TLI);
2896
2897      setVal(CurInst, InstResult);
2898    }
2899
2900    // If we just processed an invoke, we finished evaluating the block.
2901    if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) {
2902      NextBB = II->getNormalDest();
2903      DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n");
2904      return true;
2905    }
2906
2907    // Advance program counter.
2908    ++CurInst;
2909  }
2910}
2911
2912/// EvaluateFunction - Evaluate a call to function F, returning true if
2913/// successful, false if we can't evaluate it.  ActualArgs contains the formal
2914/// arguments for the function.
2915bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal,
2916                                 const SmallVectorImpl<Constant*> &ActualArgs) {
2917  // Check to see if this function is already executing (recursion).  If so,
2918  // bail out.  TODO: we might want to accept limited recursion.
2919  if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
2920    return false;
2921
2922  CallStack.push_back(F);
2923
2924  // Initialize arguments to the incoming values specified.
2925  unsigned ArgNo = 0;
2926  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
2927       ++AI, ++ArgNo)
2928    setVal(AI, ActualArgs[ArgNo]);
2929
2930  // ExecutedBlocks - We only handle non-looping, non-recursive code.  As such,
2931  // we can only evaluate any one basic block at most once.  This set keeps
2932  // track of what we have executed so we can detect recursive cases etc.
2933  SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
2934
2935  // CurBB - The current basic block we're evaluating.
2936  BasicBlock *CurBB = F->begin();
2937
2938  BasicBlock::iterator CurInst = CurBB->begin();
2939
2940  while (1) {
2941    BasicBlock *NextBB = 0; // Initialized to avoid compiler warnings.
2942    DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n");
2943
2944    if (!EvaluateBlock(CurInst, NextBB))
2945      return false;
2946
2947    if (NextBB == 0) {
2948      // Successfully running until there's no next block means that we found
2949      // the return.  Fill it the return value and pop the call stack.
2950      ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator());
2951      if (RI->getNumOperands())
2952        RetVal = getVal(RI->getOperand(0));
2953      CallStack.pop_back();
2954      return true;
2955    }
2956
2957    // Okay, we succeeded in evaluating this control flow.  See if we have
2958    // executed the new block before.  If so, we have a looping function,
2959    // which we cannot evaluate in reasonable time.
2960    if (!ExecutedBlocks.insert(NextBB))
2961      return false;  // looped!
2962
2963    // Okay, we have never been in this block before.  Check to see if there
2964    // are any PHI nodes.  If so, evaluate them with information about where
2965    // we came from.
2966    PHINode *PN = 0;
2967    for (CurInst = NextBB->begin();
2968         (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
2969      setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB)));
2970
2971    // Advance to the next block.
2972    CurBB = NextBB;
2973  }
2974}
2975
2976/// EvaluateStaticConstructor - Evaluate static constructors in the function, if
2977/// we can.  Return true if we can, false otherwise.
2978static bool EvaluateStaticConstructor(Function *F, const DataLayout *TD,
2979                                      const TargetLibraryInfo *TLI) {
2980  // Call the function.
2981  Evaluator Eval(TD, TLI);
2982  Constant *RetValDummy;
2983  bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
2984                                           SmallVector<Constant*, 0>());
2985
2986  if (EvalSuccess) {
2987    // We succeeded at evaluation: commit the result.
2988    DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2989          << F->getName() << "' to " << Eval.getMutatedMemory().size()
2990          << " stores.\n");
2991    for (DenseMap<Constant*, Constant*>::const_iterator I =
2992           Eval.getMutatedMemory().begin(), E = Eval.getMutatedMemory().end();
2993         I != E; ++I)
2994      CommitValueTo(I->second, I->first);
2995    for (SmallPtrSet<GlobalVariable*, 8>::const_iterator I =
2996           Eval.getInvariants().begin(), E = Eval.getInvariants().end();
2997         I != E; ++I)
2998      (*I)->setConstant(true);
2999  }
3000
3001  return EvalSuccess;
3002}
3003
3004/// OptimizeGlobalCtorsList - Simplify and evaluation global ctors if possible.
3005/// Return true if anything changed.
3006bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) {
3007  std::vector<Function*> Ctors = ParseGlobalCtors(GCL);
3008  bool MadeChange = false;
3009  if (Ctors.empty()) return false;
3010
3011  // Loop over global ctors, optimizing them when we can.
3012  for (unsigned i = 0; i != Ctors.size(); ++i) {
3013    Function *F = Ctors[i];
3014    // Found a null terminator in the middle of the list, prune off the rest of
3015    // the list.
3016    if (F == 0) {
3017      if (i != Ctors.size()-1) {
3018        Ctors.resize(i+1);
3019        MadeChange = true;
3020      }
3021      break;
3022    }
3023    DEBUG(dbgs() << "Optimizing Global Constructor: " << *F << "\n");
3024
3025    // We cannot simplify external ctor functions.
3026    if (F->empty()) continue;
3027
3028    // If we can evaluate the ctor at compile time, do.
3029    if (EvaluateStaticConstructor(F, TD, TLI)) {
3030      Ctors.erase(Ctors.begin()+i);
3031      MadeChange = true;
3032      --i;
3033      ++NumCtorsEvaluated;
3034      continue;
3035    }
3036  }
3037
3038  if (!MadeChange) return false;
3039
3040  GCL = InstallGlobalCtors(GCL, Ctors);
3041  return true;
3042}
3043
3044static int compareNames(const void *A, const void *B) {
3045  const GlobalValue *VA = *reinterpret_cast<GlobalValue* const*>(A);
3046  const GlobalValue *VB = *reinterpret_cast<GlobalValue* const*>(B);
3047  if (VA->getName() < VB->getName())
3048    return -1;
3049  if (VB->getName() < VA->getName())
3050    return 1;
3051  return 0;
3052}
3053
3054static void setUsedInitializer(GlobalVariable &V,
3055                               SmallPtrSet<GlobalValue *, 8> Init) {
3056  if (Init.empty()) {
3057    V.eraseFromParent();
3058    return;
3059  }
3060
3061  SmallVector<llvm::Constant *, 8> UsedArray;
3062  PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext());
3063
3064  for (SmallPtrSet<GlobalValue *, 8>::iterator I = Init.begin(), E = Init.end();
3065       I != E; ++I) {
3066    Constant *Cast = llvm::ConstantExpr::getBitCast(*I, Int8PtrTy);
3067    UsedArray.push_back(Cast);
3068  }
3069  // Sort to get deterministic order.
3070  array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
3071  ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
3072
3073  Module *M = V.getParent();
3074  V.removeFromParent();
3075  GlobalVariable *NV =
3076      new GlobalVariable(*M, ATy, false, llvm::GlobalValue::AppendingLinkage,
3077                         llvm::ConstantArray::get(ATy, UsedArray), "");
3078  NV->takeName(&V);
3079  NV->setSection("llvm.metadata");
3080  delete &V;
3081}
3082
3083namespace {
3084/// \brief An easy to access representation of llvm.used and llvm.compiler.used.
3085class LLVMUsed {
3086  SmallPtrSet<GlobalValue *, 8> Used;
3087  SmallPtrSet<GlobalValue *, 8> CompilerUsed;
3088  GlobalVariable *UsedV;
3089  GlobalVariable *CompilerUsedV;
3090
3091public:
3092  LLVMUsed(Module &M) {
3093    UsedV = collectUsedGlobalVariables(M, Used, false);
3094    CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true);
3095  }
3096  typedef SmallPtrSet<GlobalValue *, 8>::iterator iterator;
3097  iterator usedBegin() { return Used.begin(); }
3098  iterator usedEnd() { return Used.end(); }
3099  iterator compilerUsedBegin() { return CompilerUsed.begin(); }
3100  iterator compilerUsedEnd() { return CompilerUsed.end(); }
3101  bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
3102  bool compilerUsedCount(GlobalValue *GV) const {
3103    return CompilerUsed.count(GV);
3104  }
3105  bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
3106  bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
3107  bool usedInsert(GlobalValue *GV) { return Used.insert(GV); }
3108  bool compilerUsedInsert(GlobalValue *GV) { return CompilerUsed.insert(GV); }
3109
3110  void syncVariablesAndSets() {
3111    if (UsedV)
3112      setUsedInitializer(*UsedV, Used);
3113    if (CompilerUsedV)
3114      setUsedInitializer(*CompilerUsedV, CompilerUsed);
3115  }
3116};
3117}
3118
3119static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
3120  if (GA.use_empty()) // No use at all.
3121    return false;
3122
3123  assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
3124         "We should have removed the duplicated "
3125         "element from llvm.compiler.used");
3126  if (!GA.hasOneUse())
3127    // Strictly more than one use. So at least one is not in llvm.used and
3128    // llvm.compiler.used.
3129    return true;
3130
3131  // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
3132  return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
3133}
3134
3135static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
3136                                               const LLVMUsed &U) {
3137  unsigned N = 2;
3138  assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
3139         "We should have removed the duplicated "
3140         "element from llvm.compiler.used");
3141  if (U.usedCount(&V) || U.compilerUsedCount(&V))
3142    ++N;
3143  return V.hasNUsesOrMore(N);
3144}
3145
3146static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
3147  if (!GA.hasLocalLinkage())
3148    return true;
3149
3150  return U.usedCount(&GA) || U.compilerUsedCount(&GA);
3151}
3152
3153static bool hasUsesToReplace(GlobalAlias &GA, LLVMUsed &U, bool &RenameTarget) {
3154  RenameTarget = false;
3155  bool Ret = false;
3156  if (hasUseOtherThanLLVMUsed(GA, U))
3157    Ret = true;
3158
3159  // If the alias is externally visible, we may still be able to simplify it.
3160  if (!mayHaveOtherReferences(GA, U))
3161    return Ret;
3162
3163  // If the aliasee has internal linkage, give it the name and linkage
3164  // of the alias, and delete the alias.  This turns:
3165  //   define internal ... @f(...)
3166  //   @a = alias ... @f
3167  // into:
3168  //   define ... @a(...)
3169  Constant *Aliasee = GA.getAliasee();
3170  GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
3171  if (!Target->hasLocalLinkage())
3172    return Ret;
3173
3174  // Do not perform the transform if multiple aliases potentially target the
3175  // aliasee. This check also ensures that it is safe to replace the section
3176  // and other attributes of the aliasee with those of the alias.
3177  if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
3178    return Ret;
3179
3180  RenameTarget = true;
3181  return true;
3182}
3183
3184bool GlobalOpt::OptimizeGlobalAliases(Module &M) {
3185  bool Changed = false;
3186  LLVMUsed Used(M);
3187
3188  for (SmallPtrSet<GlobalValue *, 8>::iterator I = Used.usedBegin(),
3189                                               E = Used.usedEnd();
3190       I != E; ++I)
3191    Used.compilerUsedErase(*I);
3192
3193  for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
3194       I != E;) {
3195    Module::alias_iterator J = I++;
3196    // Aliases without names cannot be referenced outside this module.
3197    if (!J->hasName() && !J->isDeclaration())
3198      J->setLinkage(GlobalValue::InternalLinkage);
3199    // If the aliasee may change at link time, nothing can be done - bail out.
3200    if (J->mayBeOverridden())
3201      continue;
3202
3203    Constant *Aliasee = J->getAliasee();
3204    GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
3205    Target->removeDeadConstantUsers();
3206
3207    // Make all users of the alias use the aliasee instead.
3208    bool RenameTarget;
3209    if (!hasUsesToReplace(*J, Used, RenameTarget))
3210      continue;
3211
3212    J->replaceAllUsesWith(Aliasee);
3213    ++NumAliasesResolved;
3214    Changed = true;
3215
3216    if (RenameTarget) {
3217      // Give the aliasee the name, linkage and other attributes of the alias.
3218      Target->takeName(J);
3219      Target->setLinkage(J->getLinkage());
3220      Target->GlobalValue::copyAttributesFrom(J);
3221
3222      if (Used.usedErase(J))
3223        Used.usedInsert(Target);
3224
3225      if (Used.compilerUsedErase(J))
3226        Used.compilerUsedInsert(Target);
3227    } else if (mayHaveOtherReferences(*J, Used))
3228      continue;
3229
3230    // Delete the alias.
3231    M.getAliasList().erase(J);
3232    ++NumAliasesRemoved;
3233    Changed = true;
3234  }
3235
3236  Used.syncVariablesAndSets();
3237
3238  return Changed;
3239}
3240
3241static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) {
3242  if (!TLI->has(LibFunc::cxa_atexit))
3243    return 0;
3244
3245  Function *Fn = M.getFunction(TLI->getName(LibFunc::cxa_atexit));
3246
3247  if (!Fn)
3248    return 0;
3249
3250  FunctionType *FTy = Fn->getFunctionType();
3251
3252  // Checking that the function has the right return type, the right number of
3253  // parameters and that they all have pointer types should be enough.
3254  if (!FTy->getReturnType()->isIntegerTy() ||
3255      FTy->getNumParams() != 3 ||
3256      !FTy->getParamType(0)->isPointerTy() ||
3257      !FTy->getParamType(1)->isPointerTy() ||
3258      !FTy->getParamType(2)->isPointerTy())
3259    return 0;
3260
3261  return Fn;
3262}
3263
3264/// cxxDtorIsEmpty - Returns whether the given function is an empty C++
3265/// destructor and can therefore be eliminated.
3266/// Note that we assume that other optimization passes have already simplified
3267/// the code so we only look for a function with a single basic block, where
3268/// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and
3269/// other side-effect free instructions.
3270static bool cxxDtorIsEmpty(const Function &Fn,
3271                           SmallPtrSet<const Function *, 8> &CalledFunctions) {
3272  // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
3273  // nounwind, but that doesn't seem worth doing.
3274  if (Fn.isDeclaration())
3275    return false;
3276
3277  if (++Fn.begin() != Fn.end())
3278    return false;
3279
3280  const BasicBlock &EntryBlock = Fn.getEntryBlock();
3281  for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end();
3282       I != E; ++I) {
3283    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
3284      // Ignore debug intrinsics.
3285      if (isa<DbgInfoIntrinsic>(CI))
3286        continue;
3287
3288      const Function *CalledFn = CI->getCalledFunction();
3289
3290      if (!CalledFn)
3291        return false;
3292
3293      SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions);
3294
3295      // Don't treat recursive functions as empty.
3296      if (!NewCalledFunctions.insert(CalledFn))
3297        return false;
3298
3299      if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions))
3300        return false;
3301    } else if (isa<ReturnInst>(*I))
3302      return true; // We're done.
3303    else if (I->mayHaveSideEffects())
3304      return false; // Destructor with side effects, bail.
3305  }
3306
3307  return false;
3308}
3309
3310bool GlobalOpt::OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
3311  /// Itanium C++ ABI p3.3.5:
3312  ///
3313  ///   After constructing a global (or local static) object, that will require
3314  ///   destruction on exit, a termination function is registered as follows:
3315  ///
3316  ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
3317  ///
3318  ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
3319  ///   call f(p) when DSO d is unloaded, before all such termination calls
3320  ///   registered before this one. It returns zero if registration is
3321  ///   successful, nonzero on failure.
3322
3323  // This pass will look for calls to __cxa_atexit where the function is trivial
3324  // and remove them.
3325  bool Changed = false;
3326
3327  for (Function::use_iterator I = CXAAtExitFn->use_begin(),
3328       E = CXAAtExitFn->use_end(); I != E;) {
3329    // We're only interested in calls. Theoretically, we could handle invoke
3330    // instructions as well, but neither llvm-gcc nor clang generate invokes
3331    // to __cxa_atexit.
3332    CallInst *CI = dyn_cast<CallInst>(*I++);
3333    if (!CI)
3334      continue;
3335
3336    Function *DtorFn =
3337      dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
3338    if (!DtorFn)
3339      continue;
3340
3341    SmallPtrSet<const Function *, 8> CalledFunctions;
3342    if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions))
3343      continue;
3344
3345    // Just remove the call.
3346    CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
3347    CI->eraseFromParent();
3348
3349    ++NumCXXDtorsRemoved;
3350
3351    Changed |= true;
3352  }
3353
3354  return Changed;
3355}
3356
3357bool GlobalOpt::runOnModule(Module &M) {
3358  bool Changed = false;
3359
3360  TD = getAnalysisIfAvailable<DataLayout>();
3361  TLI = &getAnalysis<TargetLibraryInfo>();
3362
3363  // Try to find the llvm.globalctors list.
3364  GlobalVariable *GlobalCtors = FindGlobalCtors(M);
3365
3366  bool LocalChange = true;
3367  while (LocalChange) {
3368    LocalChange = false;
3369
3370    // Delete functions that are trivially dead, ccc -> fastcc
3371    LocalChange |= OptimizeFunctions(M);
3372
3373    // Optimize global_ctors list.
3374    if (GlobalCtors)
3375      LocalChange |= OptimizeGlobalCtorsList(GlobalCtors);
3376
3377    // Optimize non-address-taken globals.
3378    LocalChange |= OptimizeGlobalVars(M);
3379
3380    // Resolve aliases, when possible.
3381    LocalChange |= OptimizeGlobalAliases(M);
3382
3383    // Try to remove trivial global destructors if they are not removed
3384    // already.
3385    Function *CXAAtExitFn = FindCXAAtExit(M, TLI);
3386    if (CXAAtExitFn)
3387      LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
3388
3389    Changed |= LocalChange;
3390  }
3391
3392  // TODO: Move all global ctors functions to the end of the module for code
3393  // layout.
3394
3395  return Changed;
3396}
3397