1/**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28/**
29 * \brief  Primitive rasterization/rendering (points, lines, triangles)
30 *
31 * \author  Keith Whitwell <keith@tungstengraphics.com>
32 * \author  Brian Paul
33 */
34
35#include "sp_context.h"
36#include "sp_quad.h"
37#include "sp_quad_pipe.h"
38#include "sp_setup.h"
39#include "sp_state.h"
40#include "draw/draw_context.h"
41#include "draw/draw_vertex.h"
42#include "pipe/p_shader_tokens.h"
43#include "util/u_math.h"
44#include "util/u_memory.h"
45
46
47#define DEBUG_VERTS 0
48#define DEBUG_FRAGS 0
49
50
51/**
52 * Triangle edge info
53 */
54struct edge {
55   float dx;		/**< X(v1) - X(v0), used only during setup */
56   float dy;		/**< Y(v1) - Y(v0), used only during setup */
57   float dxdy;		/**< dx/dy */
58   float sx, sy;	/**< first sample point coord */
59   int lines;		/**< number of lines on this edge */
60};
61
62
63/**
64 * Max number of quads (2x2 pixel blocks) to process per batch.
65 * This can't be arbitrarily increased since we depend on some 32-bit
66 * bitmasks (two bits per quad).
67 */
68#define MAX_QUADS 16
69
70
71/**
72 * Triangle setup info.
73 * Also used for line drawing (taking some liberties).
74 */
75struct setup_context {
76   struct softpipe_context *softpipe;
77
78   /* Vertices are just an array of floats making up each attribute in
79    * turn.  Currently fixed at 4 floats, but should change in time.
80    * Codegen will help cope with this.
81    */
82   const float (*vmax)[4];
83   const float (*vmid)[4];
84   const float (*vmin)[4];
85   const float (*vprovoke)[4];
86
87   struct edge ebot;
88   struct edge etop;
89   struct edge emaj;
90
91   float oneoverarea;
92   int facing;
93
94   float pixel_offset;
95
96   struct quad_header quad[MAX_QUADS];
97   struct quad_header *quad_ptrs[MAX_QUADS];
98   unsigned count;
99
100   struct tgsi_interp_coef coef[PIPE_MAX_SHADER_INPUTS];
101   struct tgsi_interp_coef posCoef;  /* For Z, W */
102
103   struct {
104      int left[2];   /**< [0] = row0, [1] = row1 */
105      int right[2];
106      int y;
107   } span;
108
109#if DEBUG_FRAGS
110   uint numFragsEmitted;  /**< per primitive */
111   uint numFragsWritten;  /**< per primitive */
112#endif
113
114   unsigned cull_face;		/* which faces cull */
115   unsigned nr_vertex_attrs;
116};
117
118
119
120
121
122
123
124/**
125 * Clip setup->quad against the scissor/surface bounds.
126 */
127static INLINE void
128quad_clip(struct setup_context *setup, struct quad_header *quad)
129{
130   const struct pipe_scissor_state *cliprect = &setup->softpipe->cliprect;
131   const int minx = (int) cliprect->minx;
132   const int maxx = (int) cliprect->maxx;
133   const int miny = (int) cliprect->miny;
134   const int maxy = (int) cliprect->maxy;
135
136   if (quad->input.x0 >= maxx ||
137       quad->input.y0 >= maxy ||
138       quad->input.x0 + 1 < minx ||
139       quad->input.y0 + 1 < miny) {
140      /* totally clipped */
141      quad->inout.mask = 0x0;
142      return;
143   }
144   if (quad->input.x0 < minx)
145      quad->inout.mask &= (MASK_BOTTOM_RIGHT | MASK_TOP_RIGHT);
146   if (quad->input.y0 < miny)
147      quad->inout.mask &= (MASK_BOTTOM_LEFT | MASK_BOTTOM_RIGHT);
148   if (quad->input.x0 == maxx - 1)
149      quad->inout.mask &= (MASK_BOTTOM_LEFT | MASK_TOP_LEFT);
150   if (quad->input.y0 == maxy - 1)
151      quad->inout.mask &= (MASK_TOP_LEFT | MASK_TOP_RIGHT);
152}
153
154
155/**
156 * Emit a quad (pass to next stage) with clipping.
157 */
158static INLINE void
159clip_emit_quad(struct setup_context *setup, struct quad_header *quad)
160{
161   quad_clip( setup, quad );
162
163   if (quad->inout.mask) {
164      struct softpipe_context *sp = setup->softpipe;
165
166#if DEBUG_FRAGS
167      setup->numFragsEmitted += util_bitcount(quad->inout.mask);
168#endif
169
170      sp->quad.first->run( sp->quad.first, &quad, 1 );
171   }
172}
173
174
175
176/**
177 * Given an X or Y coordinate, return the block/quad coordinate that it
178 * belongs to.
179 */
180static INLINE int
181block(int x)
182{
183   return x & ~(2-1);
184}
185
186
187static INLINE int
188block_x(int x)
189{
190   return x & ~(16-1);
191}
192
193
194/**
195 * Render a horizontal span of quads
196 */
197static void
198flush_spans(struct setup_context *setup)
199{
200   const int step = MAX_QUADS;
201   const int xleft0 = setup->span.left[0];
202   const int xleft1 = setup->span.left[1];
203   const int xright0 = setup->span.right[0];
204   const int xright1 = setup->span.right[1];
205   struct quad_stage *pipe = setup->softpipe->quad.first;
206
207   const int minleft = block_x(MIN2(xleft0, xleft1));
208   const int maxright = MAX2(xright0, xright1);
209   int x;
210
211   /* process quads in horizontal chunks of 16 */
212   for (x = minleft; x < maxright; x += step) {
213      unsigned skip_left0 = CLAMP(xleft0 - x, 0, step);
214      unsigned skip_left1 = CLAMP(xleft1 - x, 0, step);
215      unsigned skip_right0 = CLAMP(x + step - xright0, 0, step);
216      unsigned skip_right1 = CLAMP(x + step - xright1, 0, step);
217      unsigned lx = x;
218      unsigned q = 0;
219
220      unsigned skipmask_left0 = (1U << skip_left0) - 1U;
221      unsigned skipmask_left1 = (1U << skip_left1) - 1U;
222
223      /* These calculations fail when step == 32 and skip_right == 0.
224       */
225      unsigned skipmask_right0 = ~0U << (unsigned)(step - skip_right0);
226      unsigned skipmask_right1 = ~0U << (unsigned)(step - skip_right1);
227
228      unsigned mask0 = ~skipmask_left0 & ~skipmask_right0;
229      unsigned mask1 = ~skipmask_left1 & ~skipmask_right1;
230
231      if (mask0 | mask1) {
232         do {
233            unsigned quadmask = (mask0 & 3) | ((mask1 & 3) << 2);
234            if (quadmask) {
235               setup->quad[q].input.x0 = lx;
236               setup->quad[q].input.y0 = setup->span.y;
237               setup->quad[q].input.facing = setup->facing;
238               setup->quad[q].inout.mask = quadmask;
239               setup->quad_ptrs[q] = &setup->quad[q];
240               q++;
241#if DEBUG_FRAGS
242               setup->numFragsEmitted += util_bitcount(quadmask);
243#endif
244            }
245            mask0 >>= 2;
246            mask1 >>= 2;
247            lx += 2;
248         } while (mask0 | mask1);
249
250         pipe->run( pipe, setup->quad_ptrs, q );
251      }
252   }
253
254
255   setup->span.y = 0;
256   setup->span.right[0] = 0;
257   setup->span.right[1] = 0;
258   setup->span.left[0] = 1000000;     /* greater than right[0] */
259   setup->span.left[1] = 1000000;     /* greater than right[1] */
260}
261
262
263#if DEBUG_VERTS
264static void
265print_vertex(const struct setup_context *setup,
266             const float (*v)[4])
267{
268   int i;
269   debug_printf("   Vertex: (%p)\n", (void *) v);
270   for (i = 0; i < setup->nr_vertex_attrs; i++) {
271      debug_printf("     %d: %f %f %f %f\n",  i,
272              v[i][0], v[i][1], v[i][2], v[i][3]);
273      if (util_is_inf_or_nan(v[i][0])) {
274         debug_printf("   NaN!\n");
275      }
276   }
277}
278#endif
279
280
281/**
282 * Sort the vertices from top to bottom order, setting up the triangle
283 * edge fields (ebot, emaj, etop).
284 * \return FALSE if coords are inf/nan (cull the tri), TRUE otherwise
285 */
286static boolean
287setup_sort_vertices(struct setup_context *setup,
288                    float det,
289                    const float (*v0)[4],
290                    const float (*v1)[4],
291                    const float (*v2)[4])
292{
293   if (setup->softpipe->rasterizer->flatshade_first)
294      setup->vprovoke = v0;
295   else
296      setup->vprovoke = v2;
297
298   /* determine bottom to top order of vertices */
299   {
300      float y0 = v0[0][1];
301      float y1 = v1[0][1];
302      float y2 = v2[0][1];
303      if (y0 <= y1) {
304	 if (y1 <= y2) {
305	    /* y0<=y1<=y2 */
306	    setup->vmin = v0;
307	    setup->vmid = v1;
308	    setup->vmax = v2;
309	 }
310	 else if (y2 <= y0) {
311	    /* y2<=y0<=y1 */
312	    setup->vmin = v2;
313	    setup->vmid = v0;
314	    setup->vmax = v1;
315	 }
316	 else {
317	    /* y0<=y2<=y1 */
318	    setup->vmin = v0;
319	    setup->vmid = v2;
320	    setup->vmax = v1;
321	 }
322      }
323      else {
324	 if (y0 <= y2) {
325	    /* y1<=y0<=y2 */
326	    setup->vmin = v1;
327	    setup->vmid = v0;
328	    setup->vmax = v2;
329	 }
330	 else if (y2 <= y1) {
331	    /* y2<=y1<=y0 */
332	    setup->vmin = v2;
333	    setup->vmid = v1;
334	    setup->vmax = v0;
335	 }
336	 else {
337	    /* y1<=y2<=y0 */
338	    setup->vmin = v1;
339	    setup->vmid = v2;
340	    setup->vmax = v0;
341	 }
342      }
343   }
344
345   setup->ebot.dx = setup->vmid[0][0] - setup->vmin[0][0];
346   setup->ebot.dy = setup->vmid[0][1] - setup->vmin[0][1];
347   setup->emaj.dx = setup->vmax[0][0] - setup->vmin[0][0];
348   setup->emaj.dy = setup->vmax[0][1] - setup->vmin[0][1];
349   setup->etop.dx = setup->vmax[0][0] - setup->vmid[0][0];
350   setup->etop.dy = setup->vmax[0][1] - setup->vmid[0][1];
351
352   /*
353    * Compute triangle's area.  Use 1/area to compute partial
354    * derivatives of attributes later.
355    *
356    * The area will be the same as prim->det, but the sign may be
357    * different depending on how the vertices get sorted above.
358    *
359    * To determine whether the primitive is front or back facing we
360    * use the prim->det value because its sign is correct.
361    */
362   {
363      const float area = (setup->emaj.dx * setup->ebot.dy -
364			    setup->ebot.dx * setup->emaj.dy);
365
366      setup->oneoverarea = 1.0f / area;
367
368      /*
369      debug_printf("%s one-over-area %f  area %f  det %f\n",
370                   __FUNCTION__, setup->oneoverarea, area, det );
371      */
372      if (util_is_inf_or_nan(setup->oneoverarea))
373         return FALSE;
374   }
375
376   /* We need to know if this is a front or back-facing triangle for:
377    *  - the GLSL gl_FrontFacing fragment attribute (bool)
378    *  - two-sided stencil test
379    * 0 = front-facing, 1 = back-facing
380    */
381   setup->facing =
382      ((det < 0.0) ^
383       (setup->softpipe->rasterizer->front_ccw));
384
385   {
386      unsigned face = setup->facing == 0 ? PIPE_FACE_FRONT : PIPE_FACE_BACK;
387
388      if (face & setup->cull_face)
389	 return FALSE;
390   }
391
392
393   /* Prepare pixel offset for rasterisation:
394    *  - pixel center (0.5, 0.5) for GL, or
395    *  - assume (0.0, 0.0) for other APIs.
396    */
397   if (setup->softpipe->rasterizer->gl_rasterization_rules) {
398      setup->pixel_offset = 0.5f;
399   } else {
400      setup->pixel_offset = 0.0f;
401   }
402
403   return TRUE;
404}
405
406
407/* Apply cylindrical wrapping to v0, v1, v2 coordinates, if enabled.
408 * Input coordinates must be in [0, 1] range, otherwise results are undefined.
409 * Some combinations of coordinates produce invalid results,
410 * but this behaviour is acceptable.
411 */
412static void
413tri_apply_cylindrical_wrap(float v0,
414                           float v1,
415                           float v2,
416                           uint cylindrical_wrap,
417                           float output[3])
418{
419   if (cylindrical_wrap) {
420      float delta;
421
422      delta = v1 - v0;
423      if (delta > 0.5f) {
424         v0 += 1.0f;
425      }
426      else if (delta < -0.5f) {
427         v1 += 1.0f;
428      }
429
430      delta = v2 - v1;
431      if (delta > 0.5f) {
432         v1 += 1.0f;
433      }
434      else if (delta < -0.5f) {
435         v2 += 1.0f;
436      }
437
438      delta = v0 - v2;
439      if (delta > 0.5f) {
440         v2 += 1.0f;
441      }
442      else if (delta < -0.5f) {
443         v0 += 1.0f;
444      }
445   }
446
447   output[0] = v0;
448   output[1] = v1;
449   output[2] = v2;
450}
451
452
453/**
454 * Compute a0 for a constant-valued coefficient (GL_FLAT shading).
455 * The value value comes from vertex[slot][i].
456 * The result will be put into setup->coef[slot].a0[i].
457 * \param slot  which attribute slot
458 * \param i  which component of the slot (0..3)
459 */
460static void
461const_coeff(struct setup_context *setup,
462            struct tgsi_interp_coef *coef,
463            uint vertSlot, uint i)
464{
465   assert(i <= 3);
466
467   coef->dadx[i] = 0;
468   coef->dady[i] = 0;
469
470   /* need provoking vertex info!
471    */
472   coef->a0[i] = setup->vprovoke[vertSlot][i];
473}
474
475
476/**
477 * Compute a0, dadx and dady for a linearly interpolated coefficient,
478 * for a triangle.
479 * v[0], v[1] and v[2] are vmin, vmid and vmax, respectively.
480 */
481static void
482tri_linear_coeff(struct setup_context *setup,
483                 struct tgsi_interp_coef *coef,
484                 uint i,
485                 const float v[3])
486{
487   float botda = v[1] - v[0];
488   float majda = v[2] - v[0];
489   float a = setup->ebot.dy * majda - botda * setup->emaj.dy;
490   float b = setup->emaj.dx * botda - majda * setup->ebot.dx;
491   float dadx = a * setup->oneoverarea;
492   float dady = b * setup->oneoverarea;
493
494   assert(i <= 3);
495
496   coef->dadx[i] = dadx;
497   coef->dady[i] = dady;
498
499   /* calculate a0 as the value which would be sampled for the
500    * fragment at (0,0), taking into account that we want to sample at
501    * pixel centers, in other words (pixel_offset, pixel_offset).
502    *
503    * this is neat but unfortunately not a good way to do things for
504    * triangles with very large values of dadx or dady as it will
505    * result in the subtraction and re-addition from a0 of a very
506    * large number, which means we'll end up loosing a lot of the
507    * fractional bits and precision from a0.  the way to fix this is
508    * to define a0 as the sample at a pixel center somewhere near vmin
509    * instead - i'll switch to this later.
510    */
511   coef->a0[i] = (v[0] -
512                  (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
513                   dady * (setup->vmin[0][1] - setup->pixel_offset)));
514
515   /*
516   debug_printf("attr[%d].%c: %f dx:%f dy:%f\n",
517		slot, "xyzw"[i],
518		setup->coef[slot].a0[i],
519		setup->coef[slot].dadx[i],
520		setup->coef[slot].dady[i]);
521   */
522}
523
524
525/**
526 * Compute a0, dadx and dady for a perspective-corrected interpolant,
527 * for a triangle.
528 * We basically multiply the vertex value by 1/w before computing
529 * the plane coefficients (a0, dadx, dady).
530 * Later, when we compute the value at a particular fragment position we'll
531 * divide the interpolated value by the interpolated W at that fragment.
532 * v[0], v[1] and v[2] are vmin, vmid and vmax, respectively.
533 */
534static void
535tri_persp_coeff(struct setup_context *setup,
536                struct tgsi_interp_coef *coef,
537                uint i,
538                const float v[3])
539{
540   /* premultiply by 1/w  (v[0][3] is always W):
541    */
542   float mina = v[0] * setup->vmin[0][3];
543   float mida = v[1] * setup->vmid[0][3];
544   float maxa = v[2] * setup->vmax[0][3];
545   float botda = mida - mina;
546   float majda = maxa - mina;
547   float a = setup->ebot.dy * majda - botda * setup->emaj.dy;
548   float b = setup->emaj.dx * botda - majda * setup->ebot.dx;
549   float dadx = a * setup->oneoverarea;
550   float dady = b * setup->oneoverarea;
551
552   /*
553   debug_printf("tri persp %d,%d: %f %f %f\n", vertSlot, i,
554          	setup->vmin[vertSlot][i],
555          	setup->vmid[vertSlot][i],
556       		setup->vmax[vertSlot][i]
557          );
558   */
559   assert(i <= 3);
560
561   coef->dadx[i] = dadx;
562   coef->dady[i] = dady;
563   coef->a0[i] = (mina -
564                  (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
565                   dady * (setup->vmin[0][1] - setup->pixel_offset)));
566}
567
568
569/**
570 * Special coefficient setup for gl_FragCoord.
571 * X and Y are trivial, though Y may have to be inverted for OpenGL.
572 * Z and W are copied from posCoef which should have already been computed.
573 * We could do a bit less work if we'd examine gl_FragCoord's swizzle mask.
574 */
575static void
576setup_fragcoord_coeff(struct setup_context *setup, uint slot)
577{
578   const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info;
579
580   /*X*/
581   setup->coef[slot].a0[0] = fsInfo->pixel_center_integer ? 0.0 : 0.5;
582   setup->coef[slot].dadx[0] = 1.0;
583   setup->coef[slot].dady[0] = 0.0;
584   /*Y*/
585   setup->coef[slot].a0[1] =
586		   (fsInfo->origin_lower_left ? setup->softpipe->framebuffer.height-1 : 0)
587		   + (fsInfo->pixel_center_integer ? 0.0 : 0.5);
588   setup->coef[slot].dadx[1] = 0.0;
589   setup->coef[slot].dady[1] = fsInfo->origin_lower_left ? -1.0 : 1.0;
590   /*Z*/
591   setup->coef[slot].a0[2] = setup->posCoef.a0[2];
592   setup->coef[slot].dadx[2] = setup->posCoef.dadx[2];
593   setup->coef[slot].dady[2] = setup->posCoef.dady[2];
594   /*W*/
595   setup->coef[slot].a0[3] = setup->posCoef.a0[3];
596   setup->coef[slot].dadx[3] = setup->posCoef.dadx[3];
597   setup->coef[slot].dady[3] = setup->posCoef.dady[3];
598}
599
600
601
602/**
603 * Compute the setup->coef[] array dadx, dady, a0 values.
604 * Must be called after setup->vmin,vmid,vmax,vprovoke are initialized.
605 */
606static void
607setup_tri_coefficients(struct setup_context *setup)
608{
609   struct softpipe_context *softpipe = setup->softpipe;
610   const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info;
611   const struct vertex_info *vinfo = softpipe_get_vertex_info(softpipe);
612   uint fragSlot;
613   float v[3];
614
615   /* z and w are done by linear interpolation:
616    */
617   v[0] = setup->vmin[0][2];
618   v[1] = setup->vmid[0][2];
619   v[2] = setup->vmax[0][2];
620   tri_linear_coeff(setup, &setup->posCoef, 2, v);
621
622   v[0] = setup->vmin[0][3];
623   v[1] = setup->vmid[0][3];
624   v[2] = setup->vmax[0][3];
625   tri_linear_coeff(setup, &setup->posCoef, 3, v);
626
627   /* setup interpolation for all the remaining attributes:
628    */
629   for (fragSlot = 0; fragSlot < fsInfo->num_inputs; fragSlot++) {
630      const uint vertSlot = vinfo->attrib[fragSlot].src_index;
631      uint j;
632
633      switch (vinfo->attrib[fragSlot].interp_mode) {
634      case INTERP_CONSTANT:
635         for (j = 0; j < TGSI_NUM_CHANNELS; j++)
636            const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
637         break;
638      case INTERP_LINEAR:
639         for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
640            tri_apply_cylindrical_wrap(setup->vmin[vertSlot][j],
641                                       setup->vmid[vertSlot][j],
642                                       setup->vmax[vertSlot][j],
643                                       fsInfo->input_cylindrical_wrap[fragSlot] & (1 << j),
644                                       v);
645            tri_linear_coeff(setup, &setup->coef[fragSlot], j, v);
646         }
647         break;
648      case INTERP_PERSPECTIVE:
649         for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
650            tri_apply_cylindrical_wrap(setup->vmin[vertSlot][j],
651                                       setup->vmid[vertSlot][j],
652                                       setup->vmax[vertSlot][j],
653                                       fsInfo->input_cylindrical_wrap[fragSlot] & (1 << j),
654                                       v);
655            tri_persp_coeff(setup, &setup->coef[fragSlot], j, v);
656         }
657         break;
658      case INTERP_POS:
659         setup_fragcoord_coeff(setup, fragSlot);
660         break;
661      default:
662         assert(0);
663      }
664
665      if (fsInfo->input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) {
666         /* convert 0 to 1.0 and 1 to -1.0 */
667         setup->coef[fragSlot].a0[0] = setup->facing * -2.0f + 1.0f;
668         setup->coef[fragSlot].dadx[0] = 0.0;
669         setup->coef[fragSlot].dady[0] = 0.0;
670      }
671   }
672}
673
674
675static void
676setup_tri_edges(struct setup_context *setup)
677{
678   float vmin_x = setup->vmin[0][0] + setup->pixel_offset;
679   float vmid_x = setup->vmid[0][0] + setup->pixel_offset;
680
681   float vmin_y = setup->vmin[0][1] - setup->pixel_offset;
682   float vmid_y = setup->vmid[0][1] - setup->pixel_offset;
683   float vmax_y = setup->vmax[0][1] - setup->pixel_offset;
684
685   setup->emaj.sy = ceilf(vmin_y);
686   setup->emaj.lines = (int) ceilf(vmax_y - setup->emaj.sy);
687   setup->emaj.dxdy = setup->emaj.dy ? setup->emaj.dx / setup->emaj.dy : .0f;
688   setup->emaj.sx = vmin_x + (setup->emaj.sy - vmin_y) * setup->emaj.dxdy;
689
690   setup->etop.sy = ceilf(vmid_y);
691   setup->etop.lines = (int) ceilf(vmax_y - setup->etop.sy);
692   setup->etop.dxdy = setup->etop.dy ? setup->etop.dx / setup->etop.dy : .0f;
693   setup->etop.sx = vmid_x + (setup->etop.sy - vmid_y) * setup->etop.dxdy;
694
695   setup->ebot.sy = ceilf(vmin_y);
696   setup->ebot.lines = (int) ceilf(vmid_y - setup->ebot.sy);
697   setup->ebot.dxdy = setup->ebot.dy ? setup->ebot.dx / setup->ebot.dy : .0f;
698   setup->ebot.sx = vmin_x + (setup->ebot.sy - vmin_y) * setup->ebot.dxdy;
699}
700
701
702/**
703 * Render the upper or lower half of a triangle.
704 * Scissoring/cliprect is applied here too.
705 */
706static void
707subtriangle(struct setup_context *setup,
708            struct edge *eleft,
709            struct edge *eright,
710            int lines)
711{
712   const struct pipe_scissor_state *cliprect = &setup->softpipe->cliprect;
713   const int minx = (int) cliprect->minx;
714   const int maxx = (int) cliprect->maxx;
715   const int miny = (int) cliprect->miny;
716   const int maxy = (int) cliprect->maxy;
717   int y, start_y, finish_y;
718   int sy = (int)eleft->sy;
719
720   assert((int)eleft->sy == (int) eright->sy);
721   assert(lines >= 0);
722
723   /* clip top/bottom */
724   start_y = sy;
725   if (start_y < miny)
726      start_y = miny;
727
728   finish_y = sy + lines;
729   if (finish_y > maxy)
730      finish_y = maxy;
731
732   start_y -= sy;
733   finish_y -= sy;
734
735   /*
736   debug_printf("%s %d %d\n", __FUNCTION__, start_y, finish_y);
737   */
738
739   for (y = start_y; y < finish_y; y++) {
740
741      /* avoid accumulating adds as floats don't have the precision to
742       * accurately iterate large triangle edges that way.  luckily we
743       * can just multiply these days.
744       *
745       * this is all drowned out by the attribute interpolation anyway.
746       */
747      int left = (int)(eleft->sx + y * eleft->dxdy);
748      int right = (int)(eright->sx + y * eright->dxdy);
749
750      /* clip left/right */
751      if (left < minx)
752         left = minx;
753      if (right > maxx)
754         right = maxx;
755
756      if (left < right) {
757         int _y = sy + y;
758         if (block(_y) != setup->span.y) {
759            flush_spans(setup);
760            setup->span.y = block(_y);
761         }
762
763         setup->span.left[_y&1] = left;
764         setup->span.right[_y&1] = right;
765      }
766   }
767
768
769   /* save the values so that emaj can be restarted:
770    */
771   eleft->sx += lines * eleft->dxdy;
772   eright->sx += lines * eright->dxdy;
773   eleft->sy += lines;
774   eright->sy += lines;
775}
776
777
778/**
779 * Recalculate prim's determinant.  This is needed as we don't have
780 * get this information through the vbuf_render interface & we must
781 * calculate it here.
782 */
783static float
784calc_det(const float (*v0)[4],
785         const float (*v1)[4],
786         const float (*v2)[4])
787{
788   /* edge vectors e = v0 - v2, f = v1 - v2 */
789   const float ex = v0[0][0] - v2[0][0];
790   const float ey = v0[0][1] - v2[0][1];
791   const float fx = v1[0][0] - v2[0][0];
792   const float fy = v1[0][1] - v2[0][1];
793
794   /* det = cross(e,f).z */
795   return ex * fy - ey * fx;
796}
797
798
799/**
800 * Do setup for triangle rasterization, then render the triangle.
801 */
802void
803sp_setup_tri(struct setup_context *setup,
804             const float (*v0)[4],
805             const float (*v1)[4],
806             const float (*v2)[4])
807{
808   float det;
809
810#if DEBUG_VERTS
811   debug_printf("Setup triangle:\n");
812   print_vertex(setup, v0);
813   print_vertex(setup, v1);
814   print_vertex(setup, v2);
815#endif
816
817   if (setup->softpipe->no_rast || setup->softpipe->rasterizer->rasterizer_discard)
818      return;
819
820   det = calc_det(v0, v1, v2);
821   /*
822   debug_printf("%s\n", __FUNCTION__ );
823   */
824
825#if DEBUG_FRAGS
826   setup->numFragsEmitted = 0;
827   setup->numFragsWritten = 0;
828#endif
829
830   if (!setup_sort_vertices( setup, det, v0, v1, v2 ))
831      return;
832
833   setup_tri_coefficients( setup );
834   setup_tri_edges( setup );
835
836   assert(setup->softpipe->reduced_prim == PIPE_PRIM_TRIANGLES);
837
838   setup->span.y = 0;
839   setup->span.right[0] = 0;
840   setup->span.right[1] = 0;
841   /*   setup->span.z_mode = tri_z_mode( setup->ctx ); */
842
843   /*   init_constant_attribs( setup ); */
844
845   if (setup->oneoverarea < 0.0) {
846      /* emaj on left:
847       */
848      subtriangle( setup, &setup->emaj, &setup->ebot, setup->ebot.lines );
849      subtriangle( setup, &setup->emaj, &setup->etop, setup->etop.lines );
850   }
851   else {
852      /* emaj on right:
853       */
854      subtriangle( setup, &setup->ebot, &setup->emaj, setup->ebot.lines );
855      subtriangle( setup, &setup->etop, &setup->emaj, setup->etop.lines );
856   }
857
858   flush_spans( setup );
859
860#if DEBUG_FRAGS
861   printf("Tri: %u frags emitted, %u written\n",
862          setup->numFragsEmitted,
863          setup->numFragsWritten);
864#endif
865}
866
867
868/* Apply cylindrical wrapping to v0, v1 coordinates, if enabled.
869 * Input coordinates must be in [0, 1] range, otherwise results are undefined.
870 */
871static void
872line_apply_cylindrical_wrap(float v0,
873                            float v1,
874                            uint cylindrical_wrap,
875                            float output[2])
876{
877   if (cylindrical_wrap) {
878      float delta;
879
880      delta = v1 - v0;
881      if (delta > 0.5f) {
882         v0 += 1.0f;
883      }
884      else if (delta < -0.5f) {
885         v1 += 1.0f;
886      }
887   }
888
889   output[0] = v0;
890   output[1] = v1;
891}
892
893
894/**
895 * Compute a0, dadx and dady for a linearly interpolated coefficient,
896 * for a line.
897 * v[0] and v[1] are vmin and vmax, respectively.
898 */
899static void
900line_linear_coeff(const struct setup_context *setup,
901                  struct tgsi_interp_coef *coef,
902                  uint i,
903                  const float v[2])
904{
905   const float da = v[1] - v[0];
906   const float dadx = da * setup->emaj.dx * setup->oneoverarea;
907   const float dady = da * setup->emaj.dy * setup->oneoverarea;
908   coef->dadx[i] = dadx;
909   coef->dady[i] = dady;
910   coef->a0[i] = (v[0] -
911                  (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
912                   dady * (setup->vmin[0][1] - setup->pixel_offset)));
913}
914
915
916/**
917 * Compute a0, dadx and dady for a perspective-corrected interpolant,
918 * for a line.
919 * v[0] and v[1] are vmin and vmax, respectively.
920 */
921static void
922line_persp_coeff(const struct setup_context *setup,
923                 struct tgsi_interp_coef *coef,
924                 uint i,
925                 const float v[2])
926{
927   const float a0 = v[0] * setup->vmin[0][3];
928   const float a1 = v[1] * setup->vmax[0][3];
929   const float da = a1 - a0;
930   const float dadx = da * setup->emaj.dx * setup->oneoverarea;
931   const float dady = da * setup->emaj.dy * setup->oneoverarea;
932   coef->dadx[i] = dadx;
933   coef->dady[i] = dady;
934   coef->a0[i] = (a0 -
935                  (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
936                   dady * (setup->vmin[0][1] - setup->pixel_offset)));
937}
938
939
940/**
941 * Compute the setup->coef[] array dadx, dady, a0 values.
942 * Must be called after setup->vmin,vmax are initialized.
943 */
944static boolean
945setup_line_coefficients(struct setup_context *setup,
946                        const float (*v0)[4],
947                        const float (*v1)[4])
948{
949   struct softpipe_context *softpipe = setup->softpipe;
950   const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info;
951   const struct vertex_info *vinfo = softpipe_get_vertex_info(softpipe);
952   uint fragSlot;
953   float area;
954   float v[2];
955
956   /* use setup->vmin, vmax to point to vertices */
957   if (softpipe->rasterizer->flatshade_first)
958      setup->vprovoke = v0;
959   else
960      setup->vprovoke = v1;
961   setup->vmin = v0;
962   setup->vmax = v1;
963
964   setup->emaj.dx = setup->vmax[0][0] - setup->vmin[0][0];
965   setup->emaj.dy = setup->vmax[0][1] - setup->vmin[0][1];
966
967   /* NOTE: this is not really area but something proportional to it */
968   area = setup->emaj.dx * setup->emaj.dx + setup->emaj.dy * setup->emaj.dy;
969   if (area == 0.0f || util_is_inf_or_nan(area))
970      return FALSE;
971   setup->oneoverarea = 1.0f / area;
972
973   /* z and w are done by linear interpolation:
974    */
975   v[0] = setup->vmin[0][2];
976   v[1] = setup->vmax[0][2];
977   line_linear_coeff(setup, &setup->posCoef, 2, v);
978
979   v[0] = setup->vmin[0][3];
980   v[1] = setup->vmax[0][3];
981   line_linear_coeff(setup, &setup->posCoef, 3, v);
982
983   /* setup interpolation for all the remaining attributes:
984    */
985   for (fragSlot = 0; fragSlot < fsInfo->num_inputs; fragSlot++) {
986      const uint vertSlot = vinfo->attrib[fragSlot].src_index;
987      uint j;
988
989      switch (vinfo->attrib[fragSlot].interp_mode) {
990      case INTERP_CONSTANT:
991         for (j = 0; j < TGSI_NUM_CHANNELS; j++)
992            const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
993         break;
994      case INTERP_LINEAR:
995         for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
996            line_apply_cylindrical_wrap(setup->vmin[vertSlot][j],
997                                        setup->vmax[vertSlot][j],
998                                        fsInfo->input_cylindrical_wrap[fragSlot] & (1 << j),
999                                        v);
1000            line_linear_coeff(setup, &setup->coef[fragSlot], j, v);
1001         }
1002         break;
1003      case INTERP_PERSPECTIVE:
1004         for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
1005            line_apply_cylindrical_wrap(setup->vmin[vertSlot][j],
1006                                        setup->vmax[vertSlot][j],
1007                                        fsInfo->input_cylindrical_wrap[fragSlot] & (1 << j),
1008                                        v);
1009            line_persp_coeff(setup, &setup->coef[fragSlot], j, v);
1010         }
1011         break;
1012      case INTERP_POS:
1013         setup_fragcoord_coeff(setup, fragSlot);
1014         break;
1015      default:
1016         assert(0);
1017      }
1018
1019      if (fsInfo->input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) {
1020         /* convert 0 to 1.0 and 1 to -1.0 */
1021         setup->coef[fragSlot].a0[0] = setup->facing * -2.0f + 1.0f;
1022         setup->coef[fragSlot].dadx[0] = 0.0;
1023         setup->coef[fragSlot].dady[0] = 0.0;
1024      }
1025   }
1026   return TRUE;
1027}
1028
1029
1030/**
1031 * Plot a pixel in a line segment.
1032 */
1033static INLINE void
1034plot(struct setup_context *setup, int x, int y)
1035{
1036   const int iy = y & 1;
1037   const int ix = x & 1;
1038   const int quadX = x - ix;
1039   const int quadY = y - iy;
1040   const int mask = (1 << ix) << (2 * iy);
1041
1042   if (quadX != setup->quad[0].input.x0 ||
1043       quadY != setup->quad[0].input.y0)
1044   {
1045      /* flush prev quad, start new quad */
1046
1047      if (setup->quad[0].input.x0 != -1)
1048         clip_emit_quad( setup, &setup->quad[0] );
1049
1050      setup->quad[0].input.x0 = quadX;
1051      setup->quad[0].input.y0 = quadY;
1052      setup->quad[0].inout.mask = 0x0;
1053   }
1054
1055   setup->quad[0].inout.mask |= mask;
1056}
1057
1058
1059/**
1060 * Do setup for line rasterization, then render the line.
1061 * Single-pixel width, no stipple, etc.  We rely on the 'draw' module
1062 * to handle stippling and wide lines.
1063 */
1064void
1065sp_setup_line(struct setup_context *setup,
1066              const float (*v0)[4],
1067              const float (*v1)[4])
1068{
1069   int x0 = (int) v0[0][0];
1070   int x1 = (int) v1[0][0];
1071   int y0 = (int) v0[0][1];
1072   int y1 = (int) v1[0][1];
1073   int dx = x1 - x0;
1074   int dy = y1 - y0;
1075   int xstep, ystep;
1076
1077#if DEBUG_VERTS
1078   debug_printf("Setup line:\n");
1079   print_vertex(setup, v0);
1080   print_vertex(setup, v1);
1081#endif
1082
1083   if (setup->softpipe->no_rast || setup->softpipe->rasterizer->rasterizer_discard)
1084      return;
1085
1086   if (dx == 0 && dy == 0)
1087      return;
1088
1089   if (!setup_line_coefficients(setup, v0, v1))
1090      return;
1091
1092   assert(v0[0][0] < 1.0e9);
1093   assert(v0[0][1] < 1.0e9);
1094   assert(v1[0][0] < 1.0e9);
1095   assert(v1[0][1] < 1.0e9);
1096
1097   if (dx < 0) {
1098      dx = -dx;   /* make positive */
1099      xstep = -1;
1100   }
1101   else {
1102      xstep = 1;
1103   }
1104
1105   if (dy < 0) {
1106      dy = -dy;   /* make positive */
1107      ystep = -1;
1108   }
1109   else {
1110      ystep = 1;
1111   }
1112
1113   assert(dx >= 0);
1114   assert(dy >= 0);
1115   assert(setup->softpipe->reduced_prim == PIPE_PRIM_LINES);
1116
1117   setup->quad[0].input.x0 = setup->quad[0].input.y0 = -1;
1118   setup->quad[0].inout.mask = 0x0;
1119
1120   /* XXX temporary: set coverage to 1.0 so the line appears
1121    * if AA mode happens to be enabled.
1122    */
1123   setup->quad[0].input.coverage[0] =
1124   setup->quad[0].input.coverage[1] =
1125   setup->quad[0].input.coverage[2] =
1126   setup->quad[0].input.coverage[3] = 1.0;
1127
1128   if (dx > dy) {
1129      /*** X-major line ***/
1130      int i;
1131      const int errorInc = dy + dy;
1132      int error = errorInc - dx;
1133      const int errorDec = error - dx;
1134
1135      for (i = 0; i < dx; i++) {
1136         plot(setup, x0, y0);
1137
1138         x0 += xstep;
1139         if (error < 0) {
1140            error += errorInc;
1141         }
1142         else {
1143            error += errorDec;
1144            y0 += ystep;
1145         }
1146      }
1147   }
1148   else {
1149      /*** Y-major line ***/
1150      int i;
1151      const int errorInc = dx + dx;
1152      int error = errorInc - dy;
1153      const int errorDec = error - dy;
1154
1155      for (i = 0; i < dy; i++) {
1156         plot(setup, x0, y0);
1157
1158         y0 += ystep;
1159         if (error < 0) {
1160            error += errorInc;
1161         }
1162         else {
1163            error += errorDec;
1164            x0 += xstep;
1165         }
1166      }
1167   }
1168
1169   /* draw final quad */
1170   if (setup->quad[0].inout.mask) {
1171      clip_emit_quad( setup, &setup->quad[0] );
1172   }
1173}
1174
1175
1176static void
1177point_persp_coeff(const struct setup_context *setup,
1178                  const float (*vert)[4],
1179                  struct tgsi_interp_coef *coef,
1180                  uint vertSlot, uint i)
1181{
1182   assert(i <= 3);
1183   coef->dadx[i] = 0.0F;
1184   coef->dady[i] = 0.0F;
1185   coef->a0[i] = vert[vertSlot][i] * vert[0][3];
1186}
1187
1188
1189/**
1190 * Do setup for point rasterization, then render the point.
1191 * Round or square points...
1192 * XXX could optimize a lot for 1-pixel points.
1193 */
1194void
1195sp_setup_point(struct setup_context *setup,
1196               const float (*v0)[4])
1197{
1198   struct softpipe_context *softpipe = setup->softpipe;
1199   const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info;
1200   const int sizeAttr = setup->softpipe->psize_slot;
1201   const float size
1202      = sizeAttr > 0 ? v0[sizeAttr][0]
1203      : setup->softpipe->rasterizer->point_size;
1204   const float halfSize = 0.5F * size;
1205   const boolean round = (boolean) setup->softpipe->rasterizer->point_smooth;
1206   const float x = v0[0][0];  /* Note: data[0] is always position */
1207   const float y = v0[0][1];
1208   const struct vertex_info *vinfo = softpipe_get_vertex_info(softpipe);
1209   uint fragSlot;
1210
1211#if DEBUG_VERTS
1212   debug_printf("Setup point:\n");
1213   print_vertex(setup, v0);
1214#endif
1215
1216   if (setup->softpipe->no_rast || setup->softpipe->rasterizer->rasterizer_discard)
1217      return;
1218
1219   assert(setup->softpipe->reduced_prim == PIPE_PRIM_POINTS);
1220
1221   /* For points, all interpolants are constant-valued.
1222    * However, for point sprites, we'll need to setup texcoords appropriately.
1223    * XXX: which coefficients are the texcoords???
1224    * We may do point sprites as textured quads...
1225    *
1226    * KW: We don't know which coefficients are texcoords - ultimately
1227    * the choice of what interpolation mode to use for each attribute
1228    * should be determined by the fragment program, using
1229    * per-attribute declaration statements that include interpolation
1230    * mode as a parameter.  So either the fragment program will have
1231    * to be adjusted for pointsprite vs normal point behaviour, or
1232    * otherwise a special interpolation mode will have to be defined
1233    * which matches the required behaviour for point sprites.  But -
1234    * the latter is not a feature of normal hardware, and as such
1235    * probably should be ruled out on that basis.
1236    */
1237   setup->vprovoke = v0;
1238
1239   /* setup Z, W */
1240   const_coeff(setup, &setup->posCoef, 0, 2);
1241   const_coeff(setup, &setup->posCoef, 0, 3);
1242
1243   for (fragSlot = 0; fragSlot < fsInfo->num_inputs; fragSlot++) {
1244      const uint vertSlot = vinfo->attrib[fragSlot].src_index;
1245      uint j;
1246
1247      switch (vinfo->attrib[fragSlot].interp_mode) {
1248      case INTERP_CONSTANT:
1249         /* fall-through */
1250      case INTERP_LINEAR:
1251         for (j = 0; j < TGSI_NUM_CHANNELS; j++)
1252            const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
1253         break;
1254      case INTERP_PERSPECTIVE:
1255         for (j = 0; j < TGSI_NUM_CHANNELS; j++)
1256            point_persp_coeff(setup, setup->vprovoke,
1257                              &setup->coef[fragSlot], vertSlot, j);
1258         break;
1259      case INTERP_POS:
1260         setup_fragcoord_coeff(setup, fragSlot);
1261         break;
1262      default:
1263         assert(0);
1264      }
1265
1266      if (fsInfo->input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) {
1267         /* convert 0 to 1.0 and 1 to -1.0 */
1268         setup->coef[fragSlot].a0[0] = setup->facing * -2.0f + 1.0f;
1269         setup->coef[fragSlot].dadx[0] = 0.0;
1270         setup->coef[fragSlot].dady[0] = 0.0;
1271      }
1272   }
1273
1274
1275   if (halfSize <= 0.5 && !round) {
1276      /* special case for 1-pixel points */
1277      const int ix = ((int) x) & 1;
1278      const int iy = ((int) y) & 1;
1279      setup->quad[0].input.x0 = (int) x - ix;
1280      setup->quad[0].input.y0 = (int) y - iy;
1281      setup->quad[0].inout.mask = (1 << ix) << (2 * iy);
1282      clip_emit_quad( setup, &setup->quad[0] );
1283   }
1284   else {
1285      if (round) {
1286         /* rounded points */
1287         const int ixmin = block((int) (x - halfSize));
1288         const int ixmax = block((int) (x + halfSize));
1289         const int iymin = block((int) (y - halfSize));
1290         const int iymax = block((int) (y + halfSize));
1291         const float rmin = halfSize - 0.7071F;  /* 0.7071 = sqrt(2)/2 */
1292         const float rmax = halfSize + 0.7071F;
1293         const float rmin2 = MAX2(0.0F, rmin * rmin);
1294         const float rmax2 = rmax * rmax;
1295         const float cscale = 1.0F / (rmax2 - rmin2);
1296         int ix, iy;
1297
1298         for (iy = iymin; iy <= iymax; iy += 2) {
1299            for (ix = ixmin; ix <= ixmax; ix += 2) {
1300               float dx, dy, dist2, cover;
1301
1302               setup->quad[0].inout.mask = 0x0;
1303
1304               dx = (ix + 0.5f) - x;
1305               dy = (iy + 0.5f) - y;
1306               dist2 = dx * dx + dy * dy;
1307               if (dist2 <= rmax2) {
1308                  cover = 1.0F - (dist2 - rmin2) * cscale;
1309                  setup->quad[0].input.coverage[QUAD_TOP_LEFT] = MIN2(cover, 1.0f);
1310                  setup->quad[0].inout.mask |= MASK_TOP_LEFT;
1311               }
1312
1313               dx = (ix + 1.5f) - x;
1314               dy = (iy + 0.5f) - y;
1315               dist2 = dx * dx + dy * dy;
1316               if (dist2 <= rmax2) {
1317                  cover = 1.0F - (dist2 - rmin2) * cscale;
1318                  setup->quad[0].input.coverage[QUAD_TOP_RIGHT] = MIN2(cover, 1.0f);
1319                  setup->quad[0].inout.mask |= MASK_TOP_RIGHT;
1320               }
1321
1322               dx = (ix + 0.5f) - x;
1323               dy = (iy + 1.5f) - y;
1324               dist2 = dx * dx + dy * dy;
1325               if (dist2 <= rmax2) {
1326                  cover = 1.0F - (dist2 - rmin2) * cscale;
1327                  setup->quad[0].input.coverage[QUAD_BOTTOM_LEFT] = MIN2(cover, 1.0f);
1328                  setup->quad[0].inout.mask |= MASK_BOTTOM_LEFT;
1329               }
1330
1331               dx = (ix + 1.5f) - x;
1332               dy = (iy + 1.5f) - y;
1333               dist2 = dx * dx + dy * dy;
1334               if (dist2 <= rmax2) {
1335                  cover = 1.0F - (dist2 - rmin2) * cscale;
1336                  setup->quad[0].input.coverage[QUAD_BOTTOM_RIGHT] = MIN2(cover, 1.0f);
1337                  setup->quad[0].inout.mask |= MASK_BOTTOM_RIGHT;
1338               }
1339
1340               if (setup->quad[0].inout.mask) {
1341                  setup->quad[0].input.x0 = ix;
1342                  setup->quad[0].input.y0 = iy;
1343                  clip_emit_quad( setup, &setup->quad[0] );
1344               }
1345            }
1346         }
1347      }
1348      else {
1349         /* square points */
1350         const int xmin = (int) (x + 0.75 - halfSize);
1351         const int ymin = (int) (y + 0.25 - halfSize);
1352         const int xmax = xmin + (int) size;
1353         const int ymax = ymin + (int) size;
1354         /* XXX could apply scissor to xmin,ymin,xmax,ymax now */
1355         const int ixmin = block(xmin);
1356         const int ixmax = block(xmax - 1);
1357         const int iymin = block(ymin);
1358         const int iymax = block(ymax - 1);
1359         int ix, iy;
1360
1361         /*
1362         debug_printf("(%f, %f) -> X:%d..%d Y:%d..%d\n", x, y, xmin, xmax,ymin,ymax);
1363         */
1364         for (iy = iymin; iy <= iymax; iy += 2) {
1365            uint rowMask = 0xf;
1366            if (iy < ymin) {
1367               /* above the top edge */
1368               rowMask &= (MASK_BOTTOM_LEFT | MASK_BOTTOM_RIGHT);
1369            }
1370            if (iy + 1 >= ymax) {
1371               /* below the bottom edge */
1372               rowMask &= (MASK_TOP_LEFT | MASK_TOP_RIGHT);
1373            }
1374
1375            for (ix = ixmin; ix <= ixmax; ix += 2) {
1376               uint mask = rowMask;
1377
1378               if (ix < xmin) {
1379                  /* fragment is past left edge of point, turn off left bits */
1380                  mask &= (MASK_BOTTOM_RIGHT | MASK_TOP_RIGHT);
1381               }
1382               if (ix + 1 >= xmax) {
1383                  /* past the right edge */
1384                  mask &= (MASK_BOTTOM_LEFT | MASK_TOP_LEFT);
1385               }
1386
1387               setup->quad[0].inout.mask = mask;
1388               setup->quad[0].input.x0 = ix;
1389               setup->quad[0].input.y0 = iy;
1390               clip_emit_quad( setup, &setup->quad[0] );
1391            }
1392         }
1393      }
1394   }
1395}
1396
1397
1398/**
1399 * Called by vbuf code just before we start buffering primitives.
1400 */
1401void
1402sp_setup_prepare(struct setup_context *setup)
1403{
1404   struct softpipe_context *sp = setup->softpipe;
1405
1406   if (sp->dirty) {
1407      softpipe_update_derived(sp, sp->reduced_api_prim);
1408   }
1409
1410   /* Note: nr_attrs is only used for debugging (vertex printing) */
1411   setup->nr_vertex_attrs = draw_num_shader_outputs(sp->draw);
1412
1413   sp->quad.first->begin( sp->quad.first );
1414
1415   if (sp->reduced_api_prim == PIPE_PRIM_TRIANGLES &&
1416       sp->rasterizer->fill_front == PIPE_POLYGON_MODE_FILL &&
1417       sp->rasterizer->fill_back == PIPE_POLYGON_MODE_FILL) {
1418      /* we'll do culling */
1419      setup->cull_face = sp->rasterizer->cull_face;
1420   }
1421   else {
1422      /* 'draw' will do culling */
1423      setup->cull_face = PIPE_FACE_NONE;
1424   }
1425}
1426
1427
1428void
1429sp_setup_destroy_context(struct setup_context *setup)
1430{
1431   FREE( setup );
1432}
1433
1434
1435/**
1436 * Create a new primitive setup/render stage.
1437 */
1438struct setup_context *
1439sp_setup_create_context(struct softpipe_context *softpipe)
1440{
1441   struct setup_context *setup = CALLOC_STRUCT(setup_context);
1442   unsigned i;
1443
1444   setup->softpipe = softpipe;
1445
1446   for (i = 0; i < MAX_QUADS; i++) {
1447      setup->quad[i].coef = setup->coef;
1448      setup->quad[i].posCoef = &setup->posCoef;
1449   }
1450
1451   setup->span.left[0] = 1000000;     /* greater than right[0] */
1452   setup->span.left[1] = 1000000;     /* greater than right[1] */
1453
1454   return setup;
1455}
1456