1// Copyright 2012 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28// Platform specific code for Win32.
29
30#define V8_WIN32_HEADERS_FULL
31#include "win32-headers.h"
32
33#include "v8.h"
34
35#include "codegen.h"
36#include "platform.h"
37#include "vm-state-inl.h"
38
39#ifdef _MSC_VER
40
41// Case-insensitive bounded string comparisons. Use stricmp() on Win32. Usually
42// defined in strings.h.
43int strncasecmp(const char* s1, const char* s2, int n) {
44  return _strnicmp(s1, s2, n);
45}
46
47#endif  // _MSC_VER
48
49
50// Extra functions for MinGW. Most of these are the _s functions which are in
51// the Microsoft Visual Studio C++ CRT.
52#ifdef __MINGW32__
53
54int localtime_s(tm* out_tm, const time_t* time) {
55  tm* posix_local_time_struct = localtime(time);
56  if (posix_local_time_struct == NULL) return 1;
57  *out_tm = *posix_local_time_struct;
58  return 0;
59}
60
61
62int fopen_s(FILE** pFile, const char* filename, const char* mode) {
63  *pFile = fopen(filename, mode);
64  return *pFile != NULL ? 0 : 1;
65}
66
67
68#ifndef __MINGW64_VERSION_MAJOR
69
70// Not sure this the correct interpretation of _mkgmtime
71time_t _mkgmtime(tm* timeptr) {
72  return mktime(timeptr);
73}
74
75
76#define _TRUNCATE 0
77#define STRUNCATE 80
78
79#endif  // __MINGW64_VERSION_MAJOR
80
81
82int _vsnprintf_s(char* buffer, size_t sizeOfBuffer, size_t count,
83                 const char* format, va_list argptr) {
84  ASSERT(count == _TRUNCATE);
85  return _vsnprintf(buffer, sizeOfBuffer, format, argptr);
86}
87
88
89int strncpy_s(char* dest, size_t dest_size, const char* source, size_t count) {
90  CHECK(source != NULL);
91  CHECK(dest != NULL);
92  CHECK_GT(dest_size, 0);
93
94  if (count == _TRUNCATE) {
95    while (dest_size > 0 && *source != 0) {
96      *(dest++) = *(source++);
97      --dest_size;
98    }
99    if (dest_size == 0) {
100      *(dest - 1) = 0;
101      return STRUNCATE;
102    }
103  } else {
104    while (dest_size > 0 && count > 0 && *source != 0) {
105      *(dest++) = *(source++);
106      --dest_size;
107      --count;
108    }
109  }
110  CHECK_GT(dest_size, 0);
111  *dest = 0;
112  return 0;
113}
114
115
116#ifndef __MINGW64_VERSION_MAJOR
117
118inline void MemoryBarrier() {
119  int barrier = 0;
120  __asm__ __volatile__("xchgl %%eax,%0 ":"=r" (barrier));
121}
122
123#endif  // __MINGW64_VERSION_MAJOR
124
125
126#endif  // __MINGW32__
127
128// Generate a pseudo-random number in the range 0-2^31-1. Usually
129// defined in stdlib.h. Missing in both Microsoft Visual Studio C++ and MinGW.
130int random() {
131  return rand();
132}
133
134
135namespace v8 {
136namespace internal {
137
138intptr_t OS::MaxVirtualMemory() {
139  return 0;
140}
141
142
143double ceiling(double x) {
144  return ceil(x);
145}
146
147
148static Mutex* limit_mutex = NULL;
149
150#if defined(V8_TARGET_ARCH_IA32)
151static OS::MemCopyFunction memcopy_function = NULL;
152static LazyMutex memcopy_function_mutex = LAZY_MUTEX_INITIALIZER;
153// Defined in codegen-ia32.cc.
154OS::MemCopyFunction CreateMemCopyFunction();
155
156// Copy memory area to disjoint memory area.
157void OS::MemCopy(void* dest, const void* src, size_t size) {
158  if (memcopy_function == NULL) {
159    ScopedLock lock(memcopy_function_mutex.Pointer());
160    if (memcopy_function == NULL) {
161      OS::MemCopyFunction temp = CreateMemCopyFunction();
162      MemoryBarrier();
163      memcopy_function = temp;
164    }
165  }
166  // Note: here we rely on dependent reads being ordered. This is true
167  // on all architectures we currently support.
168  (*memcopy_function)(dest, src, size);
169#ifdef DEBUG
170  CHECK_EQ(0, memcmp(dest, src, size));
171#endif
172}
173#endif  // V8_TARGET_ARCH_IA32
174
175#ifdef _WIN64
176typedef double (*ModuloFunction)(double, double);
177static ModuloFunction modulo_function = NULL;
178// Defined in codegen-x64.cc.
179ModuloFunction CreateModuloFunction();
180
181void init_modulo_function() {
182  modulo_function = CreateModuloFunction();
183}
184
185double modulo(double x, double y) {
186  // Note: here we rely on dependent reads being ordered. This is true
187  // on all architectures we currently support.
188  return (*modulo_function)(x, y);
189}
190#else  // Win32
191
192double modulo(double x, double y) {
193  // Workaround MS fmod bugs. ECMA-262 says:
194  // dividend is finite and divisor is an infinity => result equals dividend
195  // dividend is a zero and divisor is nonzero finite => result equals dividend
196  if (!(isfinite(x) && (!isfinite(y) && !isnan(y))) &&
197      !(x == 0 && (y != 0 && isfinite(y)))) {
198    x = fmod(x, y);
199  }
200  return x;
201}
202
203#endif  // _WIN64
204
205
206#define UNARY_MATH_FUNCTION(name, generator)             \
207static UnaryMathFunction fast_##name##_function = NULL;  \
208void init_fast_##name##_function() {                     \
209  fast_##name##_function = generator;                    \
210}                                                        \
211double fast_##name(double x) {                           \
212  return (*fast_##name##_function)(x);                   \
213}
214
215UNARY_MATH_FUNCTION(sin, CreateTranscendentalFunction(TranscendentalCache::SIN))
216UNARY_MATH_FUNCTION(cos, CreateTranscendentalFunction(TranscendentalCache::COS))
217UNARY_MATH_FUNCTION(tan, CreateTranscendentalFunction(TranscendentalCache::TAN))
218UNARY_MATH_FUNCTION(log, CreateTranscendentalFunction(TranscendentalCache::LOG))
219UNARY_MATH_FUNCTION(sqrt, CreateSqrtFunction())
220
221#undef MATH_FUNCTION
222
223
224void MathSetup() {
225#ifdef _WIN64
226  init_modulo_function();
227#endif
228  init_fast_sin_function();
229  init_fast_cos_function();
230  init_fast_tan_function();
231  init_fast_log_function();
232  init_fast_sqrt_function();
233}
234
235
236// ----------------------------------------------------------------------------
237// The Time class represents time on win32. A timestamp is represented as
238// a 64-bit integer in 100 nanoseconds since January 1, 1601 (UTC). JavaScript
239// timestamps are represented as a doubles in milliseconds since 00:00:00 UTC,
240// January 1, 1970.
241
242class Time {
243 public:
244  // Constructors.
245  Time();
246  explicit Time(double jstime);
247  Time(int year, int mon, int day, int hour, int min, int sec);
248
249  // Convert timestamp to JavaScript representation.
250  double ToJSTime();
251
252  // Set timestamp to current time.
253  void SetToCurrentTime();
254
255  // Returns the local timezone offset in milliseconds east of UTC. This is
256  // the number of milliseconds you must add to UTC to get local time, i.e.
257  // LocalOffset(CET) = 3600000 and LocalOffset(PST) = -28800000. This
258  // routine also takes into account whether daylight saving is effect
259  // at the time.
260  int64_t LocalOffset();
261
262  // Returns the daylight savings time offset for the time in milliseconds.
263  int64_t DaylightSavingsOffset();
264
265  // Returns a string identifying the current timezone for the
266  // timestamp taking into account daylight saving.
267  char* LocalTimezone();
268
269 private:
270  // Constants for time conversion.
271  static const int64_t kTimeEpoc = 116444736000000000LL;
272  static const int64_t kTimeScaler = 10000;
273  static const int64_t kMsPerMinute = 60000;
274
275  // Constants for timezone information.
276  static const int kTzNameSize = 128;
277  static const bool kShortTzNames = false;
278
279  // Timezone information. We need to have static buffers for the
280  // timezone names because we return pointers to these in
281  // LocalTimezone().
282  static bool tz_initialized_;
283  static TIME_ZONE_INFORMATION tzinfo_;
284  static char std_tz_name_[kTzNameSize];
285  static char dst_tz_name_[kTzNameSize];
286
287  // Initialize the timezone information (if not already done).
288  static void TzSet();
289
290  // Guess the name of the timezone from the bias.
291  static const char* GuessTimezoneNameFromBias(int bias);
292
293  // Return whether or not daylight savings time is in effect at this time.
294  bool InDST();
295
296  // Return the difference (in milliseconds) between this timestamp and
297  // another timestamp.
298  int64_t Diff(Time* other);
299
300  // Accessor for FILETIME representation.
301  FILETIME& ft() { return time_.ft_; }
302
303  // Accessor for integer representation.
304  int64_t& t() { return time_.t_; }
305
306  // Although win32 uses 64-bit integers for representing timestamps,
307  // these are packed into a FILETIME structure. The FILETIME structure
308  // is just a struct representing a 64-bit integer. The TimeStamp union
309  // allows access to both a FILETIME and an integer representation of
310  // the timestamp.
311  union TimeStamp {
312    FILETIME ft_;
313    int64_t t_;
314  };
315
316  TimeStamp time_;
317};
318
319// Static variables.
320bool Time::tz_initialized_ = false;
321TIME_ZONE_INFORMATION Time::tzinfo_;
322char Time::std_tz_name_[kTzNameSize];
323char Time::dst_tz_name_[kTzNameSize];
324
325
326// Initialize timestamp to start of epoc.
327Time::Time() {
328  t() = 0;
329}
330
331
332// Initialize timestamp from a JavaScript timestamp.
333Time::Time(double jstime) {
334  t() = static_cast<int64_t>(jstime) * kTimeScaler + kTimeEpoc;
335}
336
337
338// Initialize timestamp from date/time components.
339Time::Time(int year, int mon, int day, int hour, int min, int sec) {
340  SYSTEMTIME st;
341  st.wYear = year;
342  st.wMonth = mon;
343  st.wDay = day;
344  st.wHour = hour;
345  st.wMinute = min;
346  st.wSecond = sec;
347  st.wMilliseconds = 0;
348  SystemTimeToFileTime(&st, &ft());
349}
350
351
352// Convert timestamp to JavaScript timestamp.
353double Time::ToJSTime() {
354  return static_cast<double>((t() - kTimeEpoc) / kTimeScaler);
355}
356
357
358// Guess the name of the timezone from the bias.
359// The guess is very biased towards the northern hemisphere.
360const char* Time::GuessTimezoneNameFromBias(int bias) {
361  static const int kHour = 60;
362  switch (-bias) {
363    case -9*kHour: return "Alaska";
364    case -8*kHour: return "Pacific";
365    case -7*kHour: return "Mountain";
366    case -6*kHour: return "Central";
367    case -5*kHour: return "Eastern";
368    case -4*kHour: return "Atlantic";
369    case  0*kHour: return "GMT";
370    case +1*kHour: return "Central Europe";
371    case +2*kHour: return "Eastern Europe";
372    case +3*kHour: return "Russia";
373    case +5*kHour + 30: return "India";
374    case +8*kHour: return "China";
375    case +9*kHour: return "Japan";
376    case +12*kHour: return "New Zealand";
377    default: return "Local";
378  }
379}
380
381
382// Initialize timezone information. The timezone information is obtained from
383// windows. If we cannot get the timezone information we fall back to CET.
384// Please notice that this code is not thread-safe.
385void Time::TzSet() {
386  // Just return if timezone information has already been initialized.
387  if (tz_initialized_) return;
388
389  // Initialize POSIX time zone data.
390  _tzset();
391  // Obtain timezone information from operating system.
392  memset(&tzinfo_, 0, sizeof(tzinfo_));
393  if (GetTimeZoneInformation(&tzinfo_) == TIME_ZONE_ID_INVALID) {
394    // If we cannot get timezone information we fall back to CET.
395    tzinfo_.Bias = -60;
396    tzinfo_.StandardDate.wMonth = 10;
397    tzinfo_.StandardDate.wDay = 5;
398    tzinfo_.StandardDate.wHour = 3;
399    tzinfo_.StandardBias = 0;
400    tzinfo_.DaylightDate.wMonth = 3;
401    tzinfo_.DaylightDate.wDay = 5;
402    tzinfo_.DaylightDate.wHour = 2;
403    tzinfo_.DaylightBias = -60;
404  }
405
406  // Make standard and DST timezone names.
407  WideCharToMultiByte(CP_UTF8, 0, tzinfo_.StandardName, -1,
408                      std_tz_name_, kTzNameSize, NULL, NULL);
409  std_tz_name_[kTzNameSize - 1] = '\0';
410  WideCharToMultiByte(CP_UTF8, 0, tzinfo_.DaylightName, -1,
411                      dst_tz_name_, kTzNameSize, NULL, NULL);
412  dst_tz_name_[kTzNameSize - 1] = '\0';
413
414  // If OS returned empty string or resource id (like "@tzres.dll,-211")
415  // simply guess the name from the UTC bias of the timezone.
416  // To properly resolve the resource identifier requires a library load,
417  // which is not possible in a sandbox.
418  if (std_tz_name_[0] == '\0' || std_tz_name_[0] == '@') {
419    OS::SNPrintF(Vector<char>(std_tz_name_, kTzNameSize - 1),
420                 "%s Standard Time",
421                 GuessTimezoneNameFromBias(tzinfo_.Bias));
422  }
423  if (dst_tz_name_[0] == '\0' || dst_tz_name_[0] == '@') {
424    OS::SNPrintF(Vector<char>(dst_tz_name_, kTzNameSize - 1),
425                 "%s Daylight Time",
426                 GuessTimezoneNameFromBias(tzinfo_.Bias));
427  }
428
429  // Timezone information initialized.
430  tz_initialized_ = true;
431}
432
433
434// Return the difference in milliseconds between this and another timestamp.
435int64_t Time::Diff(Time* other) {
436  return (t() - other->t()) / kTimeScaler;
437}
438
439
440// Set timestamp to current time.
441void Time::SetToCurrentTime() {
442  // The default GetSystemTimeAsFileTime has a ~15.5ms resolution.
443  // Because we're fast, we like fast timers which have at least a
444  // 1ms resolution.
445  //
446  // timeGetTime() provides 1ms granularity when combined with
447  // timeBeginPeriod().  If the host application for v8 wants fast
448  // timers, it can use timeBeginPeriod to increase the resolution.
449  //
450  // Using timeGetTime() has a drawback because it is a 32bit value
451  // and hence rolls-over every ~49days.
452  //
453  // To use the clock, we use GetSystemTimeAsFileTime as our base;
454  // and then use timeGetTime to extrapolate current time from the
455  // start time.  To deal with rollovers, we resync the clock
456  // any time when more than kMaxClockElapsedTime has passed or
457  // whenever timeGetTime creates a rollover.
458
459  static bool initialized = false;
460  static TimeStamp init_time;
461  static DWORD init_ticks;
462  static const int64_t kHundredNanosecondsPerSecond = 10000000;
463  static const int64_t kMaxClockElapsedTime =
464      60*kHundredNanosecondsPerSecond;  // 1 minute
465
466  // If we are uninitialized, we need to resync the clock.
467  bool needs_resync = !initialized;
468
469  // Get the current time.
470  TimeStamp time_now;
471  GetSystemTimeAsFileTime(&time_now.ft_);
472  DWORD ticks_now = timeGetTime();
473
474  // Check if we need to resync due to clock rollover.
475  needs_resync |= ticks_now < init_ticks;
476
477  // Check if we need to resync due to elapsed time.
478  needs_resync |= (time_now.t_ - init_time.t_) > kMaxClockElapsedTime;
479
480  // Resync the clock if necessary.
481  if (needs_resync) {
482    GetSystemTimeAsFileTime(&init_time.ft_);
483    init_ticks = ticks_now = timeGetTime();
484    initialized = true;
485  }
486
487  // Finally, compute the actual time.  Why is this so hard.
488  DWORD elapsed = ticks_now - init_ticks;
489  this->time_.t_ = init_time.t_ + (static_cast<int64_t>(elapsed) * 10000);
490}
491
492
493// Return the local timezone offset in milliseconds east of UTC. This
494// takes into account whether daylight saving is in effect at the time.
495// Only times in the 32-bit Unix range may be passed to this function.
496// Also, adding the time-zone offset to the input must not overflow.
497// The function EquivalentTime() in date.js guarantees this.
498int64_t Time::LocalOffset() {
499  // Initialize timezone information, if needed.
500  TzSet();
501
502  Time rounded_to_second(*this);
503  rounded_to_second.t() = rounded_to_second.t() / 1000 / kTimeScaler *
504      1000 * kTimeScaler;
505  // Convert to local time using POSIX localtime function.
506  // Windows XP Service Pack 3 made SystemTimeToTzSpecificLocalTime()
507  // very slow.  Other browsers use localtime().
508
509  // Convert from JavaScript milliseconds past 1/1/1970 0:00:00 to
510  // POSIX seconds past 1/1/1970 0:00:00.
511  double unchecked_posix_time = rounded_to_second.ToJSTime() / 1000;
512  if (unchecked_posix_time > INT_MAX || unchecked_posix_time < 0) {
513    return 0;
514  }
515  // Because _USE_32BIT_TIME_T is defined, time_t is a 32-bit int.
516  time_t posix_time = static_cast<time_t>(unchecked_posix_time);
517
518  // Convert to local time, as struct with fields for day, hour, year, etc.
519  tm posix_local_time_struct;
520  if (localtime_s(&posix_local_time_struct, &posix_time)) return 0;
521  // Convert local time in struct to POSIX time as if it were a UTC time.
522  time_t local_posix_time = _mkgmtime(&posix_local_time_struct);
523  Time localtime(1000.0 * local_posix_time);
524
525  return localtime.Diff(&rounded_to_second);
526}
527
528
529// Return whether or not daylight savings time is in effect at this time.
530bool Time::InDST() {
531  // Initialize timezone information, if needed.
532  TzSet();
533
534  // Determine if DST is in effect at the specified time.
535  bool in_dst = false;
536  if (tzinfo_.StandardDate.wMonth != 0 || tzinfo_.DaylightDate.wMonth != 0) {
537    // Get the local timezone offset for the timestamp in milliseconds.
538    int64_t offset = LocalOffset();
539
540    // Compute the offset for DST. The bias parameters in the timezone info
541    // are specified in minutes. These must be converted to milliseconds.
542    int64_t dstofs = -(tzinfo_.Bias + tzinfo_.DaylightBias) * kMsPerMinute;
543
544    // If the local time offset equals the timezone bias plus the daylight
545    // bias then DST is in effect.
546    in_dst = offset == dstofs;
547  }
548
549  return in_dst;
550}
551
552
553// Return the daylight savings time offset for this time.
554int64_t Time::DaylightSavingsOffset() {
555  return InDST() ? 60 * kMsPerMinute : 0;
556}
557
558
559// Returns a string identifying the current timezone for the
560// timestamp taking into account daylight saving.
561char* Time::LocalTimezone() {
562  // Return the standard or DST time zone name based on whether daylight
563  // saving is in effect at the given time.
564  return InDST() ? dst_tz_name_ : std_tz_name_;
565}
566
567
568void OS::SetUp() {
569  // Seed the random number generator.
570  // Convert the current time to a 64-bit integer first, before converting it
571  // to an unsigned. Going directly can cause an overflow and the seed to be
572  // set to all ones. The seed will be identical for different instances that
573  // call this setup code within the same millisecond.
574  uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis());
575  srand(static_cast<unsigned int>(seed));
576  limit_mutex = CreateMutex();
577}
578
579
580void OS::PostSetUp() {
581  // Math functions depend on CPU features therefore they are initialized after
582  // CPU.
583  MathSetup();
584}
585
586
587// Returns the accumulated user time for thread.
588int OS::GetUserTime(uint32_t* secs,  uint32_t* usecs) {
589  FILETIME dummy;
590  uint64_t usertime;
591
592  // Get the amount of time that the thread has executed in user mode.
593  if (!GetThreadTimes(GetCurrentThread(), &dummy, &dummy, &dummy,
594                      reinterpret_cast<FILETIME*>(&usertime))) return -1;
595
596  // Adjust the resolution to micro-seconds.
597  usertime /= 10;
598
599  // Convert to seconds and microseconds
600  *secs = static_cast<uint32_t>(usertime / 1000000);
601  *usecs = static_cast<uint32_t>(usertime % 1000000);
602  return 0;
603}
604
605
606// Returns current time as the number of milliseconds since
607// 00:00:00 UTC, January 1, 1970.
608double OS::TimeCurrentMillis() {
609  Time t;
610  t.SetToCurrentTime();
611  return t.ToJSTime();
612}
613
614// Returns the tickcounter based on timeGetTime.
615int64_t OS::Ticks() {
616  return timeGetTime() * 1000;  // Convert to microseconds.
617}
618
619
620// Returns a string identifying the current timezone taking into
621// account daylight saving.
622const char* OS::LocalTimezone(double time) {
623  return Time(time).LocalTimezone();
624}
625
626
627// Returns the local time offset in milliseconds east of UTC without
628// taking daylight savings time into account.
629double OS::LocalTimeOffset() {
630  // Use current time, rounded to the millisecond.
631  Time t(TimeCurrentMillis());
632  // Time::LocalOffset inlcudes any daylight savings offset, so subtract it.
633  return static_cast<double>(t.LocalOffset() - t.DaylightSavingsOffset());
634}
635
636
637// Returns the daylight savings offset in milliseconds for the given
638// time.
639double OS::DaylightSavingsOffset(double time) {
640  int64_t offset = Time(time).DaylightSavingsOffset();
641  return static_cast<double>(offset);
642}
643
644
645int OS::GetLastError() {
646  return ::GetLastError();
647}
648
649
650// ----------------------------------------------------------------------------
651// Win32 console output.
652//
653// If a Win32 application is linked as a console application it has a normal
654// standard output and standard error. In this case normal printf works fine
655// for output. However, if the application is linked as a GUI application,
656// the process doesn't have a console, and therefore (debugging) output is lost.
657// This is the case if we are embedded in a windows program (like a browser).
658// In order to be able to get debug output in this case the the debugging
659// facility using OutputDebugString. This output goes to the active debugger
660// for the process (if any). Else the output can be monitored using DBMON.EXE.
661
662enum OutputMode {
663  UNKNOWN,  // Output method has not yet been determined.
664  CONSOLE,  // Output is written to stdout.
665  ODS       // Output is written to debug facility.
666};
667
668static OutputMode output_mode = UNKNOWN;  // Current output mode.
669
670
671// Determine if the process has a console for output.
672static bool HasConsole() {
673  // Only check the first time. Eventual race conditions are not a problem,
674  // because all threads will eventually determine the same mode.
675  if (output_mode == UNKNOWN) {
676    // We cannot just check that the standard output is attached to a console
677    // because this would fail if output is redirected to a file. Therefore we
678    // say that a process does not have an output console if either the
679    // standard output handle is invalid or its file type is unknown.
680    if (GetStdHandle(STD_OUTPUT_HANDLE) != INVALID_HANDLE_VALUE &&
681        GetFileType(GetStdHandle(STD_OUTPUT_HANDLE)) != FILE_TYPE_UNKNOWN)
682      output_mode = CONSOLE;
683    else
684      output_mode = ODS;
685  }
686  return output_mode == CONSOLE;
687}
688
689
690static void VPrintHelper(FILE* stream, const char* format, va_list args) {
691  if (HasConsole()) {
692    vfprintf(stream, format, args);
693  } else {
694    // It is important to use safe print here in order to avoid
695    // overflowing the buffer. We might truncate the output, but this
696    // does not crash.
697    EmbeddedVector<char, 4096> buffer;
698    OS::VSNPrintF(buffer, format, args);
699    OutputDebugStringA(buffer.start());
700  }
701}
702
703
704FILE* OS::FOpen(const char* path, const char* mode) {
705  FILE* result;
706  if (fopen_s(&result, path, mode) == 0) {
707    return result;
708  } else {
709    return NULL;
710  }
711}
712
713
714bool OS::Remove(const char* path) {
715  return (DeleteFileA(path) != 0);
716}
717
718
719FILE* OS::OpenTemporaryFile() {
720  // tmpfile_s tries to use the root dir, don't use it.
721  char tempPathBuffer[MAX_PATH];
722  DWORD path_result = 0;
723  path_result = GetTempPathA(MAX_PATH, tempPathBuffer);
724  if (path_result > MAX_PATH || path_result == 0) return NULL;
725  UINT name_result = 0;
726  char tempNameBuffer[MAX_PATH];
727  name_result = GetTempFileNameA(tempPathBuffer, "", 0, tempNameBuffer);
728  if (name_result == 0) return NULL;
729  FILE* result = FOpen(tempNameBuffer, "w+");  // Same mode as tmpfile uses.
730  if (result != NULL) {
731    Remove(tempNameBuffer);  // Delete on close.
732  }
733  return result;
734}
735
736
737// Open log file in binary mode to avoid /n -> /r/n conversion.
738const char* const OS::LogFileOpenMode = "wb";
739
740
741// Print (debug) message to console.
742void OS::Print(const char* format, ...) {
743  va_list args;
744  va_start(args, format);
745  VPrint(format, args);
746  va_end(args);
747}
748
749
750void OS::VPrint(const char* format, va_list args) {
751  VPrintHelper(stdout, format, args);
752}
753
754
755void OS::FPrint(FILE* out, const char* format, ...) {
756  va_list args;
757  va_start(args, format);
758  VFPrint(out, format, args);
759  va_end(args);
760}
761
762
763void OS::VFPrint(FILE* out, const char* format, va_list args) {
764  VPrintHelper(out, format, args);
765}
766
767
768// Print error message to console.
769void OS::PrintError(const char* format, ...) {
770  va_list args;
771  va_start(args, format);
772  VPrintError(format, args);
773  va_end(args);
774}
775
776
777void OS::VPrintError(const char* format, va_list args) {
778  VPrintHelper(stderr, format, args);
779}
780
781
782int OS::SNPrintF(Vector<char> str, const char* format, ...) {
783  va_list args;
784  va_start(args, format);
785  int result = VSNPrintF(str, format, args);
786  va_end(args);
787  return result;
788}
789
790
791int OS::VSNPrintF(Vector<char> str, const char* format, va_list args) {
792  int n = _vsnprintf_s(str.start(), str.length(), _TRUNCATE, format, args);
793  // Make sure to zero-terminate the string if the output was
794  // truncated or if there was an error.
795  if (n < 0 || n >= str.length()) {
796    if (str.length() > 0)
797      str[str.length() - 1] = '\0';
798    return -1;
799  } else {
800    return n;
801  }
802}
803
804
805char* OS::StrChr(char* str, int c) {
806  return const_cast<char*>(strchr(str, c));
807}
808
809
810void OS::StrNCpy(Vector<char> dest, const char* src, size_t n) {
811  // Use _TRUNCATE or strncpy_s crashes (by design) if buffer is too small.
812  size_t buffer_size = static_cast<size_t>(dest.length());
813  if (n + 1 > buffer_size)  // count for trailing '\0'
814    n = _TRUNCATE;
815  int result = strncpy_s(dest.start(), dest.length(), src, n);
816  USE(result);
817  ASSERT(result == 0 || (n == _TRUNCATE && result == STRUNCATE));
818}
819
820
821// We keep the lowest and highest addresses mapped as a quick way of
822// determining that pointers are outside the heap (used mostly in assertions
823// and verification).  The estimate is conservative, i.e., not all addresses in
824// 'allocated' space are actually allocated to our heap.  The range is
825// [lowest, highest), inclusive on the low and and exclusive on the high end.
826static void* lowest_ever_allocated = reinterpret_cast<void*>(-1);
827static void* highest_ever_allocated = reinterpret_cast<void*>(0);
828
829
830static void UpdateAllocatedSpaceLimits(void* address, int size) {
831  ASSERT(limit_mutex != NULL);
832  ScopedLock lock(limit_mutex);
833
834  lowest_ever_allocated = Min(lowest_ever_allocated, address);
835  highest_ever_allocated =
836      Max(highest_ever_allocated,
837          reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size));
838}
839
840
841bool OS::IsOutsideAllocatedSpace(void* pointer) {
842  if (pointer < lowest_ever_allocated || pointer >= highest_ever_allocated)
843    return true;
844  // Ask the Windows API
845  if (IsBadWritePtr(pointer, 1))
846    return true;
847  return false;
848}
849
850
851// Get the system's page size used by VirtualAlloc() or the next power
852// of two. The reason for always returning a power of two is that the
853// rounding up in OS::Allocate expects that.
854static size_t GetPageSize() {
855  static size_t page_size = 0;
856  if (page_size == 0) {
857    SYSTEM_INFO info;
858    GetSystemInfo(&info);
859    page_size = RoundUpToPowerOf2(info.dwPageSize);
860  }
861  return page_size;
862}
863
864
865// The allocation alignment is the guaranteed alignment for
866// VirtualAlloc'ed blocks of memory.
867size_t OS::AllocateAlignment() {
868  static size_t allocate_alignment = 0;
869  if (allocate_alignment == 0) {
870    SYSTEM_INFO info;
871    GetSystemInfo(&info);
872    allocate_alignment = info.dwAllocationGranularity;
873  }
874  return allocate_alignment;
875}
876
877
878static void* GetRandomAddr() {
879  Isolate* isolate = Isolate::UncheckedCurrent();
880  // Note that the current isolate isn't set up in a call path via
881  // CpuFeatures::Probe. We don't care about randomization in this case because
882  // the code page is immediately freed.
883  if (isolate != NULL) {
884    // The address range used to randomize RWX allocations in OS::Allocate
885    // Try not to map pages into the default range that windows loads DLLs
886    // Use a multiple of 64k to prevent committing unused memory.
887    // Note: This does not guarantee RWX regions will be within the
888    // range kAllocationRandomAddressMin to kAllocationRandomAddressMax
889#ifdef V8_HOST_ARCH_64_BIT
890    static const intptr_t kAllocationRandomAddressMin = 0x0000000080000000;
891    static const intptr_t kAllocationRandomAddressMax = 0x000003FFFFFF0000;
892#else
893    static const intptr_t kAllocationRandomAddressMin = 0x04000000;
894    static const intptr_t kAllocationRandomAddressMax = 0x3FFF0000;
895#endif
896    uintptr_t address = (V8::RandomPrivate(isolate) << kPageSizeBits)
897        | kAllocationRandomAddressMin;
898    address &= kAllocationRandomAddressMax;
899    return reinterpret_cast<void *>(address);
900  }
901  return NULL;
902}
903
904
905static void* RandomizedVirtualAlloc(size_t size, int action, int protection) {
906  LPVOID base = NULL;
907
908  if (protection == PAGE_EXECUTE_READWRITE || protection == PAGE_NOACCESS) {
909    // For exectutable pages try and randomize the allocation address
910    for (size_t attempts = 0; base == NULL && attempts < 3; ++attempts) {
911      base = VirtualAlloc(GetRandomAddr(), size, action, protection);
912    }
913  }
914
915  // After three attempts give up and let the OS find an address to use.
916  if (base == NULL) base = VirtualAlloc(NULL, size, action, protection);
917
918  return base;
919}
920
921
922void* OS::Allocate(const size_t requested,
923                   size_t* allocated,
924                   bool is_executable) {
925  // VirtualAlloc rounds allocated size to page size automatically.
926  size_t msize = RoundUp(requested, static_cast<int>(GetPageSize()));
927
928  // Windows XP SP2 allows Data Excution Prevention (DEP).
929  int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
930
931  LPVOID mbase = RandomizedVirtualAlloc(msize,
932                                        MEM_COMMIT | MEM_RESERVE,
933                                        prot);
934
935  if (mbase == NULL) {
936    LOG(ISOLATE, StringEvent("OS::Allocate", "VirtualAlloc failed"));
937    return NULL;
938  }
939
940  ASSERT(IsAligned(reinterpret_cast<size_t>(mbase), OS::AllocateAlignment()));
941
942  *allocated = msize;
943  UpdateAllocatedSpaceLimits(mbase, static_cast<int>(msize));
944  return mbase;
945}
946
947
948void OS::Free(void* address, const size_t size) {
949  // TODO(1240712): VirtualFree has a return value which is ignored here.
950  VirtualFree(address, 0, MEM_RELEASE);
951  USE(size);
952}
953
954
955intptr_t OS::CommitPageSize() {
956  return 4096;
957}
958
959
960void OS::ProtectCode(void* address, const size_t size) {
961  DWORD old_protect;
962  VirtualProtect(address, size, PAGE_EXECUTE_READ, &old_protect);
963}
964
965
966void OS::Guard(void* address, const size_t size) {
967  DWORD oldprotect;
968  VirtualProtect(address, size, PAGE_READONLY | PAGE_GUARD, &oldprotect);
969}
970
971
972void OS::Sleep(int milliseconds) {
973  ::Sleep(milliseconds);
974}
975
976
977void OS::Abort() {
978  if (IsDebuggerPresent() || FLAG_break_on_abort) {
979    DebugBreak();
980  } else {
981    // Make the MSVCRT do a silent abort.
982    raise(SIGABRT);
983  }
984}
985
986
987void OS::DebugBreak() {
988#ifdef _MSC_VER
989  __debugbreak();
990#else
991  ::DebugBreak();
992#endif
993}
994
995
996class Win32MemoryMappedFile : public OS::MemoryMappedFile {
997 public:
998  Win32MemoryMappedFile(HANDLE file,
999                        HANDLE file_mapping,
1000                        void* memory,
1001                        int size)
1002      : file_(file),
1003        file_mapping_(file_mapping),
1004        memory_(memory),
1005        size_(size) { }
1006  virtual ~Win32MemoryMappedFile();
1007  virtual void* memory() { return memory_; }
1008  virtual int size() { return size_; }
1009 private:
1010  HANDLE file_;
1011  HANDLE file_mapping_;
1012  void* memory_;
1013  int size_;
1014};
1015
1016
1017OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) {
1018  // Open a physical file
1019  HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
1020      FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, NULL);
1021  if (file == INVALID_HANDLE_VALUE) return NULL;
1022
1023  int size = static_cast<int>(GetFileSize(file, NULL));
1024
1025  // Create a file mapping for the physical file
1026  HANDLE file_mapping = CreateFileMapping(file, NULL,
1027      PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL);
1028  if (file_mapping == NULL) return NULL;
1029
1030  // Map a view of the file into memory
1031  void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
1032  return new Win32MemoryMappedFile(file, file_mapping, memory, size);
1033}
1034
1035
1036OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
1037    void* initial) {
1038  // Open a physical file
1039  HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
1040      FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_ALWAYS, 0, NULL);
1041  if (file == NULL) return NULL;
1042  // Create a file mapping for the physical file
1043  HANDLE file_mapping = CreateFileMapping(file, NULL,
1044      PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL);
1045  if (file_mapping == NULL) return NULL;
1046  // Map a view of the file into memory
1047  void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
1048  if (memory) memmove(memory, initial, size);
1049  return new Win32MemoryMappedFile(file, file_mapping, memory, size);
1050}
1051
1052
1053Win32MemoryMappedFile::~Win32MemoryMappedFile() {
1054  if (memory_ != NULL)
1055    UnmapViewOfFile(memory_);
1056  CloseHandle(file_mapping_);
1057  CloseHandle(file_);
1058}
1059
1060
1061// The following code loads functions defined in DbhHelp.h and TlHelp32.h
1062// dynamically. This is to avoid being depending on dbghelp.dll and
1063// tlhelp32.dll when running (the functions in tlhelp32.dll have been moved to
1064// kernel32.dll at some point so loading functions defines in TlHelp32.h
1065// dynamically might not be necessary any more - for some versions of Windows?).
1066
1067// Function pointers to functions dynamically loaded from dbghelp.dll.
1068#define DBGHELP_FUNCTION_LIST(V)  \
1069  V(SymInitialize)                \
1070  V(SymGetOptions)                \
1071  V(SymSetOptions)                \
1072  V(SymGetSearchPath)             \
1073  V(SymLoadModule64)              \
1074  V(StackWalk64)                  \
1075  V(SymGetSymFromAddr64)          \
1076  V(SymGetLineFromAddr64)         \
1077  V(SymFunctionTableAccess64)     \
1078  V(SymGetModuleBase64)
1079
1080// Function pointers to functions dynamically loaded from dbghelp.dll.
1081#define TLHELP32_FUNCTION_LIST(V)  \
1082  V(CreateToolhelp32Snapshot)      \
1083  V(Module32FirstW)                \
1084  V(Module32NextW)
1085
1086// Define the decoration to use for the type and variable name used for
1087// dynamically loaded DLL function..
1088#define DLL_FUNC_TYPE(name) _##name##_
1089#define DLL_FUNC_VAR(name) _##name
1090
1091// Define the type for each dynamically loaded DLL function. The function
1092// definitions are copied from DbgHelp.h and TlHelp32.h. The IN and VOID macros
1093// from the Windows include files are redefined here to have the function
1094// definitions to be as close to the ones in the original .h files as possible.
1095#ifndef IN
1096#define IN
1097#endif
1098#ifndef VOID
1099#define VOID void
1100#endif
1101
1102// DbgHelp isn't supported on MinGW yet
1103#ifndef __MINGW32__
1104// DbgHelp.h functions.
1105typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymInitialize))(IN HANDLE hProcess,
1106                                                       IN PSTR UserSearchPath,
1107                                                       IN BOOL fInvadeProcess);
1108typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymGetOptions))(VOID);
1109typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymSetOptions))(IN DWORD SymOptions);
1110typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSearchPath))(
1111    IN HANDLE hProcess,
1112    OUT PSTR SearchPath,
1113    IN DWORD SearchPathLength);
1114typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymLoadModule64))(
1115    IN HANDLE hProcess,
1116    IN HANDLE hFile,
1117    IN PSTR ImageName,
1118    IN PSTR ModuleName,
1119    IN DWORD64 BaseOfDll,
1120    IN DWORD SizeOfDll);
1121typedef BOOL (__stdcall *DLL_FUNC_TYPE(StackWalk64))(
1122    DWORD MachineType,
1123    HANDLE hProcess,
1124    HANDLE hThread,
1125    LPSTACKFRAME64 StackFrame,
1126    PVOID ContextRecord,
1127    PREAD_PROCESS_MEMORY_ROUTINE64 ReadMemoryRoutine,
1128    PFUNCTION_TABLE_ACCESS_ROUTINE64 FunctionTableAccessRoutine,
1129    PGET_MODULE_BASE_ROUTINE64 GetModuleBaseRoutine,
1130    PTRANSLATE_ADDRESS_ROUTINE64 TranslateAddress);
1131typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSymFromAddr64))(
1132    IN HANDLE hProcess,
1133    IN DWORD64 qwAddr,
1134    OUT PDWORD64 pdwDisplacement,
1135    OUT PIMAGEHLP_SYMBOL64 Symbol);
1136typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetLineFromAddr64))(
1137    IN HANDLE hProcess,
1138    IN DWORD64 qwAddr,
1139    OUT PDWORD pdwDisplacement,
1140    OUT PIMAGEHLP_LINE64 Line64);
1141// DbgHelp.h typedefs. Implementation found in dbghelp.dll.
1142typedef PVOID (__stdcall *DLL_FUNC_TYPE(SymFunctionTableAccess64))(
1143    HANDLE hProcess,
1144    DWORD64 AddrBase);  // DbgHelp.h typedef PFUNCTION_TABLE_ACCESS_ROUTINE64
1145typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymGetModuleBase64))(
1146    HANDLE hProcess,
1147    DWORD64 AddrBase);  // DbgHelp.h typedef PGET_MODULE_BASE_ROUTINE64
1148
1149// TlHelp32.h functions.
1150typedef HANDLE (__stdcall *DLL_FUNC_TYPE(CreateToolhelp32Snapshot))(
1151    DWORD dwFlags,
1152    DWORD th32ProcessID);
1153typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32FirstW))(HANDLE hSnapshot,
1154                                                        LPMODULEENTRY32W lpme);
1155typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32NextW))(HANDLE hSnapshot,
1156                                                       LPMODULEENTRY32W lpme);
1157
1158#undef IN
1159#undef VOID
1160
1161// Declare a variable for each dynamically loaded DLL function.
1162#define DEF_DLL_FUNCTION(name) DLL_FUNC_TYPE(name) DLL_FUNC_VAR(name) = NULL;
1163DBGHELP_FUNCTION_LIST(DEF_DLL_FUNCTION)
1164TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION)
1165#undef DEF_DLL_FUNCTION
1166
1167// Load the functions. This function has a lot of "ugly" macros in order to
1168// keep down code duplication.
1169
1170static bool LoadDbgHelpAndTlHelp32() {
1171  static bool dbghelp_loaded = false;
1172
1173  if (dbghelp_loaded) return true;
1174
1175  HMODULE module;
1176
1177  // Load functions from the dbghelp.dll module.
1178  module = LoadLibrary(TEXT("dbghelp.dll"));
1179  if (module == NULL) {
1180    return false;
1181  }
1182
1183#define LOAD_DLL_FUNC(name)                                                 \
1184  DLL_FUNC_VAR(name) =                                                      \
1185      reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
1186
1187DBGHELP_FUNCTION_LIST(LOAD_DLL_FUNC)
1188
1189#undef LOAD_DLL_FUNC
1190
1191  // Load functions from the kernel32.dll module (the TlHelp32.h function used
1192  // to be in tlhelp32.dll but are now moved to kernel32.dll).
1193  module = LoadLibrary(TEXT("kernel32.dll"));
1194  if (module == NULL) {
1195    return false;
1196  }
1197
1198#define LOAD_DLL_FUNC(name)                                                 \
1199  DLL_FUNC_VAR(name) =                                                      \
1200      reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
1201
1202TLHELP32_FUNCTION_LIST(LOAD_DLL_FUNC)
1203
1204#undef LOAD_DLL_FUNC
1205
1206  // Check that all functions where loaded.
1207  bool result =
1208#define DLL_FUNC_LOADED(name) (DLL_FUNC_VAR(name) != NULL) &&
1209
1210DBGHELP_FUNCTION_LIST(DLL_FUNC_LOADED)
1211TLHELP32_FUNCTION_LIST(DLL_FUNC_LOADED)
1212
1213#undef DLL_FUNC_LOADED
1214  true;
1215
1216  dbghelp_loaded = result;
1217  return result;
1218  // NOTE: The modules are never unloaded and will stay around until the
1219  // application is closed.
1220}
1221
1222
1223// Load the symbols for generating stack traces.
1224static bool LoadSymbols(HANDLE process_handle) {
1225  static bool symbols_loaded = false;
1226
1227  if (symbols_loaded) return true;
1228
1229  BOOL ok;
1230
1231  // Initialize the symbol engine.
1232  ok = _SymInitialize(process_handle,  // hProcess
1233                      NULL,            // UserSearchPath
1234                      false);          // fInvadeProcess
1235  if (!ok) return false;
1236
1237  DWORD options = _SymGetOptions();
1238  options |= SYMOPT_LOAD_LINES;
1239  options |= SYMOPT_FAIL_CRITICAL_ERRORS;
1240  options = _SymSetOptions(options);
1241
1242  char buf[OS::kStackWalkMaxNameLen] = {0};
1243  ok = _SymGetSearchPath(process_handle, buf, OS::kStackWalkMaxNameLen);
1244  if (!ok) {
1245    int err = GetLastError();
1246    PrintF("%d\n", err);
1247    return false;
1248  }
1249
1250  HANDLE snapshot = _CreateToolhelp32Snapshot(
1251      TH32CS_SNAPMODULE,       // dwFlags
1252      GetCurrentProcessId());  // th32ProcessId
1253  if (snapshot == INVALID_HANDLE_VALUE) return false;
1254  MODULEENTRY32W module_entry;
1255  module_entry.dwSize = sizeof(module_entry);  // Set the size of the structure.
1256  BOOL cont = _Module32FirstW(snapshot, &module_entry);
1257  while (cont) {
1258    DWORD64 base;
1259    // NOTE the SymLoadModule64 function has the peculiarity of accepting a
1260    // both unicode and ASCII strings even though the parameter is PSTR.
1261    base = _SymLoadModule64(
1262        process_handle,                                       // hProcess
1263        0,                                                    // hFile
1264        reinterpret_cast<PSTR>(module_entry.szExePath),       // ImageName
1265        reinterpret_cast<PSTR>(module_entry.szModule),        // ModuleName
1266        reinterpret_cast<DWORD64>(module_entry.modBaseAddr),  // BaseOfDll
1267        module_entry.modBaseSize);                            // SizeOfDll
1268    if (base == 0) {
1269      int err = GetLastError();
1270      if (err != ERROR_MOD_NOT_FOUND &&
1271          err != ERROR_INVALID_HANDLE) return false;
1272    }
1273    LOG(i::Isolate::Current(),
1274        SharedLibraryEvent(
1275            module_entry.szExePath,
1276            reinterpret_cast<unsigned int>(module_entry.modBaseAddr),
1277            reinterpret_cast<unsigned int>(module_entry.modBaseAddr +
1278                                           module_entry.modBaseSize)));
1279    cont = _Module32NextW(snapshot, &module_entry);
1280  }
1281  CloseHandle(snapshot);
1282
1283  symbols_loaded = true;
1284  return true;
1285}
1286
1287
1288void OS::LogSharedLibraryAddresses() {
1289  // SharedLibraryEvents are logged when loading symbol information.
1290  // Only the shared libraries loaded at the time of the call to
1291  // LogSharedLibraryAddresses are logged.  DLLs loaded after
1292  // initialization are not accounted for.
1293  if (!LoadDbgHelpAndTlHelp32()) return;
1294  HANDLE process_handle = GetCurrentProcess();
1295  LoadSymbols(process_handle);
1296}
1297
1298
1299void OS::SignalCodeMovingGC() {
1300}
1301
1302
1303// Walk the stack using the facilities in dbghelp.dll and tlhelp32.dll
1304
1305// Switch off warning 4748 (/GS can not protect parameters and local variables
1306// from local buffer overrun because optimizations are disabled in function) as
1307// it is triggered by the use of inline assembler.
1308#pragma warning(push)
1309#pragma warning(disable : 4748)
1310int OS::StackWalk(Vector<OS::StackFrame> frames) {
1311  BOOL ok;
1312
1313  // Load the required functions from DLL's.
1314  if (!LoadDbgHelpAndTlHelp32()) return kStackWalkError;
1315
1316  // Get the process and thread handles.
1317  HANDLE process_handle = GetCurrentProcess();
1318  HANDLE thread_handle = GetCurrentThread();
1319
1320  // Read the symbols.
1321  if (!LoadSymbols(process_handle)) return kStackWalkError;
1322
1323  // Capture current context.
1324  CONTEXT context;
1325  RtlCaptureContext(&context);
1326
1327  // Initialize the stack walking
1328  STACKFRAME64 stack_frame;
1329  memset(&stack_frame, 0, sizeof(stack_frame));
1330#ifdef  _WIN64
1331  stack_frame.AddrPC.Offset = context.Rip;
1332  stack_frame.AddrFrame.Offset = context.Rbp;
1333  stack_frame.AddrStack.Offset = context.Rsp;
1334#else
1335  stack_frame.AddrPC.Offset = context.Eip;
1336  stack_frame.AddrFrame.Offset = context.Ebp;
1337  stack_frame.AddrStack.Offset = context.Esp;
1338#endif
1339  stack_frame.AddrPC.Mode = AddrModeFlat;
1340  stack_frame.AddrFrame.Mode = AddrModeFlat;
1341  stack_frame.AddrStack.Mode = AddrModeFlat;
1342  int frames_count = 0;
1343
1344  // Collect stack frames.
1345  int frames_size = frames.length();
1346  while (frames_count < frames_size) {
1347    ok = _StackWalk64(
1348        IMAGE_FILE_MACHINE_I386,    // MachineType
1349        process_handle,             // hProcess
1350        thread_handle,              // hThread
1351        &stack_frame,               // StackFrame
1352        &context,                   // ContextRecord
1353        NULL,                       // ReadMemoryRoutine
1354        _SymFunctionTableAccess64,  // FunctionTableAccessRoutine
1355        _SymGetModuleBase64,        // GetModuleBaseRoutine
1356        NULL);                      // TranslateAddress
1357    if (!ok) break;
1358
1359    // Store the address.
1360    ASSERT((stack_frame.AddrPC.Offset >> 32) == 0);  // 32-bit address.
1361    frames[frames_count].address =
1362        reinterpret_cast<void*>(stack_frame.AddrPC.Offset);
1363
1364    // Try to locate a symbol for this frame.
1365    DWORD64 symbol_displacement;
1366    SmartArrayPointer<IMAGEHLP_SYMBOL64> symbol(
1367        NewArray<IMAGEHLP_SYMBOL64>(kStackWalkMaxNameLen));
1368    if (symbol.is_empty()) return kStackWalkError;  // Out of memory.
1369    memset(*symbol, 0, sizeof(IMAGEHLP_SYMBOL64) + kStackWalkMaxNameLen);
1370    (*symbol)->SizeOfStruct = sizeof(IMAGEHLP_SYMBOL64);
1371    (*symbol)->MaxNameLength = kStackWalkMaxNameLen;
1372    ok = _SymGetSymFromAddr64(process_handle,             // hProcess
1373                              stack_frame.AddrPC.Offset,  // Address
1374                              &symbol_displacement,       // Displacement
1375                              *symbol);                   // Symbol
1376    if (ok) {
1377      // Try to locate more source information for the symbol.
1378      IMAGEHLP_LINE64 Line;
1379      memset(&Line, 0, sizeof(Line));
1380      Line.SizeOfStruct = sizeof(Line);
1381      DWORD line_displacement;
1382      ok = _SymGetLineFromAddr64(
1383          process_handle,             // hProcess
1384          stack_frame.AddrPC.Offset,  // dwAddr
1385          &line_displacement,         // pdwDisplacement
1386          &Line);                     // Line
1387      // Format a text representation of the frame based on the information
1388      // available.
1389      if (ok) {
1390        SNPrintF(MutableCStrVector(frames[frames_count].text,
1391                                   kStackWalkMaxTextLen),
1392                 "%s %s:%d:%d",
1393                 (*symbol)->Name, Line.FileName, Line.LineNumber,
1394                 line_displacement);
1395      } else {
1396        SNPrintF(MutableCStrVector(frames[frames_count].text,
1397                                   kStackWalkMaxTextLen),
1398                 "%s",
1399                 (*symbol)->Name);
1400      }
1401      // Make sure line termination is in place.
1402      frames[frames_count].text[kStackWalkMaxTextLen - 1] = '\0';
1403    } else {
1404      // No text representation of this frame
1405      frames[frames_count].text[0] = '\0';
1406
1407      // Continue if we are just missing a module (for non C/C++ frames a
1408      // module will never be found).
1409      int err = GetLastError();
1410      if (err != ERROR_MOD_NOT_FOUND) {
1411        break;
1412      }
1413    }
1414
1415    frames_count++;
1416  }
1417
1418  // Return the number of frames filled in.
1419  return frames_count;
1420}
1421
1422// Restore warnings to previous settings.
1423#pragma warning(pop)
1424
1425#else  // __MINGW32__
1426void OS::LogSharedLibraryAddresses() { }
1427void OS::SignalCodeMovingGC() { }
1428int OS::StackWalk(Vector<OS::StackFrame> frames) { return 0; }
1429#endif  // __MINGW32__
1430
1431
1432uint64_t OS::CpuFeaturesImpliedByPlatform() {
1433  return 0;  // Windows runs on anything.
1434}
1435
1436
1437double OS::nan_value() {
1438#ifdef _MSC_VER
1439  // Positive Quiet NaN with no payload (aka. Indeterminate) has all bits
1440  // in mask set, so value equals mask.
1441  static const __int64 nanval = kQuietNaNMask;
1442  return *reinterpret_cast<const double*>(&nanval);
1443#else  // _MSC_VER
1444  return NAN;
1445#endif  // _MSC_VER
1446}
1447
1448
1449int OS::ActivationFrameAlignment() {
1450#ifdef _WIN64
1451  return 16;  // Windows 64-bit ABI requires the stack to be 16-byte aligned.
1452#else
1453  return 8;  // Floating-point math runs faster with 8-byte alignment.
1454#endif
1455}
1456
1457
1458void OS::ReleaseStore(volatile AtomicWord* ptr, AtomicWord value) {
1459  MemoryBarrier();
1460  *ptr = value;
1461}
1462
1463
1464VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { }
1465
1466
1467VirtualMemory::VirtualMemory(size_t size)
1468    : address_(ReserveRegion(size)), size_(size) { }
1469
1470
1471VirtualMemory::VirtualMemory(size_t size, size_t alignment)
1472    : address_(NULL), size_(0) {
1473  ASSERT(IsAligned(alignment, static_cast<intptr_t>(OS::AllocateAlignment())));
1474  size_t request_size = RoundUp(size + alignment,
1475                                static_cast<intptr_t>(OS::AllocateAlignment()));
1476  void* address = ReserveRegion(request_size);
1477  if (address == NULL) return;
1478  Address base = RoundUp(static_cast<Address>(address), alignment);
1479  // Try reducing the size by freeing and then reallocating a specific area.
1480  bool result = ReleaseRegion(address, request_size);
1481  USE(result);
1482  ASSERT(result);
1483  address = VirtualAlloc(base, size, MEM_RESERVE, PAGE_NOACCESS);
1484  if (address != NULL) {
1485    request_size = size;
1486    ASSERT(base == static_cast<Address>(address));
1487  } else {
1488    // Resizing failed, just go with a bigger area.
1489    address = ReserveRegion(request_size);
1490    if (address == NULL) return;
1491  }
1492  address_ = address;
1493  size_ = request_size;
1494}
1495
1496
1497VirtualMemory::~VirtualMemory() {
1498  if (IsReserved()) {
1499    bool result = ReleaseRegion(address_, size_);
1500    ASSERT(result);
1501    USE(result);
1502  }
1503}
1504
1505
1506bool VirtualMemory::IsReserved() {
1507  return address_ != NULL;
1508}
1509
1510
1511void VirtualMemory::Reset() {
1512  address_ = NULL;
1513  size_ = 0;
1514}
1515
1516
1517bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
1518  if (CommitRegion(address, size, is_executable)) {
1519    UpdateAllocatedSpaceLimits(address, static_cast<int>(size));
1520    return true;
1521  }
1522  return false;
1523}
1524
1525
1526bool VirtualMemory::Uncommit(void* address, size_t size) {
1527  ASSERT(IsReserved());
1528  return UncommitRegion(address, size);
1529}
1530
1531
1532void* VirtualMemory::ReserveRegion(size_t size) {
1533  return RandomizedVirtualAlloc(size, MEM_RESERVE, PAGE_NOACCESS);
1534}
1535
1536
1537bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) {
1538  int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
1539  if (NULL == VirtualAlloc(base, size, MEM_COMMIT, prot)) {
1540    return false;
1541  }
1542
1543  UpdateAllocatedSpaceLimits(base, static_cast<int>(size));
1544  return true;
1545}
1546
1547
1548bool VirtualMemory::Guard(void* address) {
1549  if (NULL == VirtualAlloc(address,
1550                           OS::CommitPageSize(),
1551                           MEM_COMMIT,
1552                           PAGE_READONLY | PAGE_GUARD)) {
1553    return false;
1554  }
1555  return true;
1556}
1557
1558
1559bool VirtualMemory::UncommitRegion(void* base, size_t size) {
1560  return VirtualFree(base, size, MEM_DECOMMIT) != 0;
1561}
1562
1563
1564bool VirtualMemory::ReleaseRegion(void* base, size_t size) {
1565  return VirtualFree(base, 0, MEM_RELEASE) != 0;
1566}
1567
1568
1569// ----------------------------------------------------------------------------
1570// Win32 thread support.
1571
1572// Definition of invalid thread handle and id.
1573static const HANDLE kNoThread = INVALID_HANDLE_VALUE;
1574
1575// Entry point for threads. The supplied argument is a pointer to the thread
1576// object. The entry function dispatches to the run method in the thread
1577// object. It is important that this function has __stdcall calling
1578// convention.
1579static unsigned int __stdcall ThreadEntry(void* arg) {
1580  Thread* thread = reinterpret_cast<Thread*>(arg);
1581  thread->Run();
1582  return 0;
1583}
1584
1585
1586class Thread::PlatformData : public Malloced {
1587 public:
1588  explicit PlatformData(HANDLE thread) : thread_(thread) {}
1589  HANDLE thread_;
1590  unsigned thread_id_;
1591};
1592
1593
1594// Initialize a Win32 thread object. The thread has an invalid thread
1595// handle until it is started.
1596
1597Thread::Thread(const Options& options)
1598    : stack_size_(options.stack_size()) {
1599  data_ = new PlatformData(kNoThread);
1600  set_name(options.name());
1601}
1602
1603
1604void Thread::set_name(const char* name) {
1605  OS::StrNCpy(Vector<char>(name_, sizeof(name_)), name, strlen(name));
1606  name_[sizeof(name_) - 1] = '\0';
1607}
1608
1609
1610// Close our own handle for the thread.
1611Thread::~Thread() {
1612  if (data_->thread_ != kNoThread) CloseHandle(data_->thread_);
1613  delete data_;
1614}
1615
1616
1617// Create a new thread. It is important to use _beginthreadex() instead of
1618// the Win32 function CreateThread(), because the CreateThread() does not
1619// initialize thread specific structures in the C runtime library.
1620void Thread::Start() {
1621  data_->thread_ = reinterpret_cast<HANDLE>(
1622      _beginthreadex(NULL,
1623                     static_cast<unsigned>(stack_size_),
1624                     ThreadEntry,
1625                     this,
1626                     0,
1627                     &data_->thread_id_));
1628}
1629
1630
1631// Wait for thread to terminate.
1632void Thread::Join() {
1633  if (data_->thread_id_ != GetCurrentThreadId()) {
1634    WaitForSingleObject(data_->thread_, INFINITE);
1635  }
1636}
1637
1638
1639Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
1640  DWORD result = TlsAlloc();
1641  ASSERT(result != TLS_OUT_OF_INDEXES);
1642  return static_cast<LocalStorageKey>(result);
1643}
1644
1645
1646void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
1647  BOOL result = TlsFree(static_cast<DWORD>(key));
1648  USE(result);
1649  ASSERT(result);
1650}
1651
1652
1653void* Thread::GetThreadLocal(LocalStorageKey key) {
1654  return TlsGetValue(static_cast<DWORD>(key));
1655}
1656
1657
1658void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
1659  BOOL result = TlsSetValue(static_cast<DWORD>(key), value);
1660  USE(result);
1661  ASSERT(result);
1662}
1663
1664
1665
1666void Thread::YieldCPU() {
1667  Sleep(0);
1668}
1669
1670
1671// ----------------------------------------------------------------------------
1672// Win32 mutex support.
1673//
1674// On Win32 mutexes are implemented using CRITICAL_SECTION objects. These are
1675// faster than Win32 Mutex objects because they are implemented using user mode
1676// atomic instructions. Therefore we only do ring transitions if there is lock
1677// contention.
1678
1679class Win32Mutex : public Mutex {
1680 public:
1681  Win32Mutex() { InitializeCriticalSection(&cs_); }
1682
1683  virtual ~Win32Mutex() { DeleteCriticalSection(&cs_); }
1684
1685  virtual int Lock() {
1686    EnterCriticalSection(&cs_);
1687    return 0;
1688  }
1689
1690  virtual int Unlock() {
1691    LeaveCriticalSection(&cs_);
1692    return 0;
1693  }
1694
1695
1696  virtual bool TryLock() {
1697    // Returns non-zero if critical section is entered successfully entered.
1698    return TryEnterCriticalSection(&cs_);
1699  }
1700
1701 private:
1702  CRITICAL_SECTION cs_;  // Critical section used for mutex
1703};
1704
1705
1706Mutex* OS::CreateMutex() {
1707  return new Win32Mutex();
1708}
1709
1710
1711// ----------------------------------------------------------------------------
1712// Win32 semaphore support.
1713//
1714// On Win32 semaphores are implemented using Win32 Semaphore objects. The
1715// semaphores are anonymous. Also, the semaphores are initialized to have
1716// no upper limit on count.
1717
1718
1719class Win32Semaphore : public Semaphore {
1720 public:
1721  explicit Win32Semaphore(int count) {
1722    sem = ::CreateSemaphoreA(NULL, count, 0x7fffffff, NULL);
1723  }
1724
1725  ~Win32Semaphore() {
1726    CloseHandle(sem);
1727  }
1728
1729  void Wait() {
1730    WaitForSingleObject(sem, INFINITE);
1731  }
1732
1733  bool Wait(int timeout) {
1734    // Timeout in Windows API is in milliseconds.
1735    DWORD millis_timeout = timeout / 1000;
1736    return WaitForSingleObject(sem, millis_timeout) != WAIT_TIMEOUT;
1737  }
1738
1739  void Signal() {
1740    LONG dummy;
1741    ReleaseSemaphore(sem, 1, &dummy);
1742  }
1743
1744 private:
1745  HANDLE sem;
1746};
1747
1748
1749Semaphore* OS::CreateSemaphore(int count) {
1750  return new Win32Semaphore(count);
1751}
1752
1753
1754// ----------------------------------------------------------------------------
1755// Win32 socket support.
1756//
1757
1758class Win32Socket : public Socket {
1759 public:
1760  explicit Win32Socket() {
1761    // Create the socket.
1762    socket_ = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
1763  }
1764  explicit Win32Socket(SOCKET socket): socket_(socket) { }
1765  virtual ~Win32Socket() { Shutdown(); }
1766
1767  // Server initialization.
1768  bool Bind(const int port);
1769  bool Listen(int backlog) const;
1770  Socket* Accept() const;
1771
1772  // Client initialization.
1773  bool Connect(const char* host, const char* port);
1774
1775  // Shutdown socket for both read and write.
1776  bool Shutdown();
1777
1778  // Data Transimission
1779  int Send(const char* data, int len) const;
1780  int Receive(char* data, int len) const;
1781
1782  bool SetReuseAddress(bool reuse_address);
1783
1784  bool IsValid() const { return socket_ != INVALID_SOCKET; }
1785
1786 private:
1787  SOCKET socket_;
1788};
1789
1790
1791bool Win32Socket::Bind(const int port) {
1792  if (!IsValid())  {
1793    return false;
1794  }
1795
1796  sockaddr_in addr;
1797  memset(&addr, 0, sizeof(addr));
1798  addr.sin_family = AF_INET;
1799  addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
1800  addr.sin_port = htons(port);
1801  int status = bind(socket_,
1802                    reinterpret_cast<struct sockaddr *>(&addr),
1803                    sizeof(addr));
1804  return status == 0;
1805}
1806
1807
1808bool Win32Socket::Listen(int backlog) const {
1809  if (!IsValid()) {
1810    return false;
1811  }
1812
1813  int status = listen(socket_, backlog);
1814  return status == 0;
1815}
1816
1817
1818Socket* Win32Socket::Accept() const {
1819  if (!IsValid()) {
1820    return NULL;
1821  }
1822
1823  SOCKET socket = accept(socket_, NULL, NULL);
1824  if (socket == INVALID_SOCKET) {
1825    return NULL;
1826  } else {
1827    return new Win32Socket(socket);
1828  }
1829}
1830
1831
1832bool Win32Socket::Connect(const char* host, const char* port) {
1833  if (!IsValid()) {
1834    return false;
1835  }
1836
1837  // Lookup host and port.
1838  struct addrinfo *result = NULL;
1839  struct addrinfo hints;
1840  memset(&hints, 0, sizeof(addrinfo));
1841  hints.ai_family = AF_INET;
1842  hints.ai_socktype = SOCK_STREAM;
1843  hints.ai_protocol = IPPROTO_TCP;
1844  int status = getaddrinfo(host, port, &hints, &result);
1845  if (status != 0) {
1846    return false;
1847  }
1848
1849  // Connect.
1850  status = connect(socket_,
1851                   result->ai_addr,
1852                   static_cast<int>(result->ai_addrlen));
1853  freeaddrinfo(result);
1854  return status == 0;
1855}
1856
1857
1858bool Win32Socket::Shutdown() {
1859  if (IsValid()) {
1860    // Shutdown socket for both read and write.
1861    int status = shutdown(socket_, SD_BOTH);
1862    closesocket(socket_);
1863    socket_ = INVALID_SOCKET;
1864    return status == SOCKET_ERROR;
1865  }
1866  return true;
1867}
1868
1869
1870int Win32Socket::Send(const char* data, int len) const {
1871  int status = send(socket_, data, len, 0);
1872  return status;
1873}
1874
1875
1876int Win32Socket::Receive(char* data, int len) const {
1877  int status = recv(socket_, data, len, 0);
1878  return status;
1879}
1880
1881
1882bool Win32Socket::SetReuseAddress(bool reuse_address) {
1883  BOOL on = reuse_address ? true : false;
1884  int status = setsockopt(socket_, SOL_SOCKET, SO_REUSEADDR,
1885                          reinterpret_cast<char*>(&on), sizeof(on));
1886  return status == SOCKET_ERROR;
1887}
1888
1889
1890bool Socket::SetUp() {
1891  // Initialize Winsock32
1892  int err;
1893  WSADATA winsock_data;
1894  WORD version_requested = MAKEWORD(1, 0);
1895  err = WSAStartup(version_requested, &winsock_data);
1896  if (err != 0) {
1897    PrintF("Unable to initialize Winsock, err = %d\n", Socket::LastError());
1898  }
1899
1900  return err == 0;
1901}
1902
1903
1904int Socket::LastError() {
1905  return WSAGetLastError();
1906}
1907
1908
1909uint16_t Socket::HToN(uint16_t value) {
1910  return htons(value);
1911}
1912
1913
1914uint16_t Socket::NToH(uint16_t value) {
1915  return ntohs(value);
1916}
1917
1918
1919uint32_t Socket::HToN(uint32_t value) {
1920  return htonl(value);
1921}
1922
1923
1924uint32_t Socket::NToH(uint32_t value) {
1925  return ntohl(value);
1926}
1927
1928
1929Socket* OS::CreateSocket() {
1930  return new Win32Socket();
1931}
1932
1933
1934// ----------------------------------------------------------------------------
1935// Win32 profiler support.
1936
1937class Sampler::PlatformData : public Malloced {
1938 public:
1939  // Get a handle to the calling thread. This is the thread that we are
1940  // going to profile. We need to make a copy of the handle because we are
1941  // going to use it in the sampler thread. Using GetThreadHandle() will
1942  // not work in this case. We're using OpenThread because DuplicateHandle
1943  // for some reason doesn't work in Chrome's sandbox.
1944  PlatformData() : profiled_thread_(OpenThread(THREAD_GET_CONTEXT |
1945                                               THREAD_SUSPEND_RESUME |
1946                                               THREAD_QUERY_INFORMATION,
1947                                               false,
1948                                               GetCurrentThreadId())) {}
1949
1950  ~PlatformData() {
1951    if (profiled_thread_ != NULL) {
1952      CloseHandle(profiled_thread_);
1953      profiled_thread_ = NULL;
1954    }
1955  }
1956
1957  HANDLE profiled_thread() { return profiled_thread_; }
1958
1959 private:
1960  HANDLE profiled_thread_;
1961};
1962
1963
1964class SamplerThread : public Thread {
1965 public:
1966  static const int kSamplerThreadStackSize = 64 * KB;
1967
1968  explicit SamplerThread(int interval)
1969      : Thread(Thread::Options("SamplerThread", kSamplerThreadStackSize)),
1970        interval_(interval) {}
1971
1972  static void AddActiveSampler(Sampler* sampler) {
1973    ScopedLock lock(mutex_.Pointer());
1974    SamplerRegistry::AddActiveSampler(sampler);
1975    if (instance_ == NULL) {
1976      instance_ = new SamplerThread(sampler->interval());
1977      instance_->Start();
1978    } else {
1979      ASSERT(instance_->interval_ == sampler->interval());
1980    }
1981  }
1982
1983  static void RemoveActiveSampler(Sampler* sampler) {
1984    ScopedLock lock(mutex_.Pointer());
1985    SamplerRegistry::RemoveActiveSampler(sampler);
1986    if (SamplerRegistry::GetState() == SamplerRegistry::HAS_NO_SAMPLERS) {
1987      RuntimeProfiler::StopRuntimeProfilerThreadBeforeShutdown(instance_);
1988      delete instance_;
1989      instance_ = NULL;
1990    }
1991  }
1992
1993  // Implement Thread::Run().
1994  virtual void Run() {
1995    SamplerRegistry::State state;
1996    while ((state = SamplerRegistry::GetState()) !=
1997           SamplerRegistry::HAS_NO_SAMPLERS) {
1998      bool cpu_profiling_enabled =
1999          (state == SamplerRegistry::HAS_CPU_PROFILING_SAMPLERS);
2000      bool runtime_profiler_enabled = RuntimeProfiler::IsEnabled();
2001      // When CPU profiling is enabled both JavaScript and C++ code is
2002      // profiled. We must not suspend.
2003      if (!cpu_profiling_enabled) {
2004        if (rate_limiter_.SuspendIfNecessary()) continue;
2005      }
2006      if (cpu_profiling_enabled) {
2007        if (!SamplerRegistry::IterateActiveSamplers(&DoCpuProfile, this)) {
2008          return;
2009        }
2010      }
2011      if (runtime_profiler_enabled) {
2012        if (!SamplerRegistry::IterateActiveSamplers(&DoRuntimeProfile, NULL)) {
2013          return;
2014        }
2015      }
2016      OS::Sleep(interval_);
2017    }
2018  }
2019
2020  static void DoCpuProfile(Sampler* sampler, void* raw_sampler_thread) {
2021    if (!sampler->isolate()->IsInitialized()) return;
2022    if (!sampler->IsProfiling()) return;
2023    SamplerThread* sampler_thread =
2024        reinterpret_cast<SamplerThread*>(raw_sampler_thread);
2025    sampler_thread->SampleContext(sampler);
2026  }
2027
2028  static void DoRuntimeProfile(Sampler* sampler, void* ignored) {
2029    if (!sampler->isolate()->IsInitialized()) return;
2030    sampler->isolate()->runtime_profiler()->NotifyTick();
2031  }
2032
2033  void SampleContext(Sampler* sampler) {
2034    HANDLE profiled_thread = sampler->platform_data()->profiled_thread();
2035    if (profiled_thread == NULL) return;
2036
2037    // Context used for sampling the register state of the profiled thread.
2038    CONTEXT context;
2039    memset(&context, 0, sizeof(context));
2040
2041    TickSample sample_obj;
2042    TickSample* sample = CpuProfiler::TickSampleEvent(sampler->isolate());
2043    if (sample == NULL) sample = &sample_obj;
2044
2045    static const DWORD kSuspendFailed = static_cast<DWORD>(-1);
2046    if (SuspendThread(profiled_thread) == kSuspendFailed) return;
2047    sample->state = sampler->isolate()->current_vm_state();
2048
2049    context.ContextFlags = CONTEXT_FULL;
2050    if (GetThreadContext(profiled_thread, &context) != 0) {
2051#if V8_HOST_ARCH_X64
2052      sample->pc = reinterpret_cast<Address>(context.Rip);
2053      sample->sp = reinterpret_cast<Address>(context.Rsp);
2054      sample->fp = reinterpret_cast<Address>(context.Rbp);
2055#else
2056      sample->pc = reinterpret_cast<Address>(context.Eip);
2057      sample->sp = reinterpret_cast<Address>(context.Esp);
2058      sample->fp = reinterpret_cast<Address>(context.Ebp);
2059#endif
2060      sampler->SampleStack(sample);
2061      sampler->Tick(sample);
2062    }
2063    ResumeThread(profiled_thread);
2064  }
2065
2066  const int interval_;
2067  RuntimeProfilerRateLimiter rate_limiter_;
2068
2069  // Protects the process wide state below.
2070  static LazyMutex mutex_;
2071  static SamplerThread* instance_;
2072
2073 private:
2074  DISALLOW_COPY_AND_ASSIGN(SamplerThread);
2075};
2076
2077
2078LazyMutex SamplerThread::mutex_ = LAZY_MUTEX_INITIALIZER;
2079SamplerThread* SamplerThread::instance_ = NULL;
2080
2081
2082Sampler::Sampler(Isolate* isolate, int interval)
2083    : isolate_(isolate),
2084      interval_(interval),
2085      profiling_(false),
2086      active_(false),
2087      samples_taken_(0) {
2088  data_ = new PlatformData;
2089}
2090
2091
2092Sampler::~Sampler() {
2093  ASSERT(!IsActive());
2094  delete data_;
2095}
2096
2097
2098void Sampler::Start() {
2099  ASSERT(!IsActive());
2100  SetActive(true);
2101  SamplerThread::AddActiveSampler(this);
2102}
2103
2104
2105void Sampler::Stop() {
2106  ASSERT(IsActive());
2107  SamplerThread::RemoveActiveSampler(this);
2108  SetActive(false);
2109}
2110
2111
2112} }  // namespace v8::internal
2113