1// Copyright 2012 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#ifndef V8_SCOPES_H_
29#define V8_SCOPES_H_
30
31#include "ast.h"
32#include "zone.h"
33
34namespace v8 {
35namespace internal {
36
37class CompilationInfo;
38
39
40// A hash map to support fast variable declaration and lookup.
41class VariableMap: public ZoneHashMap {
42 public:
43  VariableMap();
44
45  virtual ~VariableMap();
46
47  Variable* Declare(Scope* scope,
48                    Handle<String> name,
49                    VariableMode mode,
50                    bool is_valid_lhs,
51                    Variable::Kind kind,
52                    InitializationFlag initialization_flag,
53                    Interface* interface = Interface::NewValue());
54
55  Variable* Lookup(Handle<String> name);
56};
57
58
59// The dynamic scope part holds hash maps for the variables that will
60// be looked up dynamically from within eval and with scopes. The objects
61// are allocated on-demand from Scope::NonLocal to avoid wasting memory
62// and setup time for scopes that don't need them.
63class DynamicScopePart : public ZoneObject {
64 public:
65  VariableMap* GetMap(VariableMode mode) {
66    int index = mode - DYNAMIC;
67    ASSERT(index >= 0 && index < 3);
68    return &maps_[index];
69  }
70
71 private:
72  VariableMap maps_[3];
73};
74
75
76// Global invariants after AST construction: Each reference (i.e. identifier)
77// to a JavaScript variable (including global properties) is represented by a
78// VariableProxy node. Immediately after AST construction and before variable
79// allocation, most VariableProxy nodes are "unresolved", i.e. not bound to a
80// corresponding variable (though some are bound during parse time). Variable
81// allocation binds each unresolved VariableProxy to one Variable and assigns
82// a location. Note that many VariableProxy nodes may refer to the same Java-
83// Script variable.
84
85class Scope: public ZoneObject {
86 public:
87  // ---------------------------------------------------------------------------
88  // Construction
89
90  Scope(Scope* outer_scope, ScopeType type);
91
92  // Compute top scope and allocate variables. For lazy compilation the top
93  // scope only contains the single lazily compiled function, so this
94  // doesn't re-allocate variables repeatedly.
95  static bool Analyze(CompilationInfo* info);
96
97  static Scope* DeserializeScopeChain(Context* context, Scope* global_scope);
98
99  // The scope name is only used for printing/debugging.
100  void SetScopeName(Handle<String> scope_name) { scope_name_ = scope_name; }
101
102  void Initialize();
103
104  // Checks if the block scope is redundant, i.e. it does not contain any
105  // block scoped declarations. In that case it is removed from the scope
106  // tree and its children are reparented.
107  Scope* FinalizeBlockScope();
108
109  // ---------------------------------------------------------------------------
110  // Declarations
111
112  // Lookup a variable in this scope. Returns the variable or NULL if not found.
113  Variable* LocalLookup(Handle<String> name);
114
115  // This lookup corresponds to a lookup in the "intermediate" scope sitting
116  // between this scope and the outer scope. (ECMA-262, 3rd., requires that
117  // the name of named function literal is kept in an intermediate scope
118  // in between this scope and the next outer scope.)
119  Variable* LookupFunctionVar(Handle<String> name,
120                              AstNodeFactory<AstNullVisitor>* factory);
121
122  // Lookup a variable in this scope or outer scopes.
123  // Returns the variable or NULL if not found.
124  Variable* Lookup(Handle<String> name);
125
126  // Declare the function variable for a function literal. This variable
127  // is in an intermediate scope between this function scope and the the
128  // outer scope. Only possible for function scopes; at most one variable.
129  template<class Visitor>
130  Variable* DeclareFunctionVar(Handle<String> name,
131                               VariableMode mode,
132                               AstNodeFactory<Visitor>* factory) {
133    ASSERT(is_function_scope() && function_ == NULL);
134    Variable* function_var = new Variable(
135        this, name, mode, true, Variable::NORMAL, kCreatedInitialized);
136    function_ = factory->NewVariableProxy(function_var);
137    return function_var;
138  }
139
140  // Declare a parameter in this scope.  When there are duplicated
141  // parameters the rightmost one 'wins'.  However, the implementation
142  // expects all parameters to be declared and from left to right.
143  void DeclareParameter(Handle<String> name, VariableMode mode);
144
145  // Declare a local variable in this scope. If the variable has been
146  // declared before, the previously declared variable is returned.
147  Variable* DeclareLocal(Handle<String> name,
148                         VariableMode mode,
149                         InitializationFlag init_flag,
150                         Interface* interface = Interface::NewValue());
151
152  // Declare an implicit global variable in this scope which must be a
153  // global scope.  The variable was introduced (possibly from an inner
154  // scope) by a reference to an unresolved variable with no intervening
155  // with statements or eval calls.
156  Variable* DeclareGlobal(Handle<String> name);
157
158  // Create a new unresolved variable.
159  template<class Visitor>
160  VariableProxy* NewUnresolved(AstNodeFactory<Visitor>* factory,
161                               Handle<String> name,
162                               int position = RelocInfo::kNoPosition,
163                               Interface* interface = Interface::NewValue()) {
164    // Note that we must not share the unresolved variables with
165    // the same name because they may be removed selectively via
166    // RemoveUnresolved().
167    ASSERT(!already_resolved());
168    VariableProxy* proxy =
169        factory->NewVariableProxy(name, false, position, interface);
170    unresolved_.Add(proxy);
171    return proxy;
172  }
173
174  // Remove a unresolved variable. During parsing, an unresolved variable
175  // may have been added optimistically, but then only the variable name
176  // was used (typically for labels). If the variable was not declared, the
177  // addition introduced a new unresolved variable which may end up being
178  // allocated globally as a "ghost" variable. RemoveUnresolved removes
179  // such a variable again if it was added; otherwise this is a no-op.
180  void RemoveUnresolved(VariableProxy* var);
181
182  // Creates a new temporary variable in this scope.  The name is only used
183  // for printing and cannot be used to find the variable.  In particular,
184  // the only way to get hold of the temporary is by keeping the Variable*
185  // around.
186  Variable* NewTemporary(Handle<String> name);
187
188  // Adds the specific declaration node to the list of declarations in
189  // this scope. The declarations are processed as part of entering
190  // the scope; see codegen.cc:ProcessDeclarations.
191  void AddDeclaration(Declaration* declaration);
192
193  // ---------------------------------------------------------------------------
194  // Illegal redeclaration support.
195
196  // Set an expression node that will be executed when the scope is
197  // entered. We only keep track of one illegal redeclaration node per
198  // scope - the first one - so if you try to set it multiple times
199  // the additional requests will be silently ignored.
200  void SetIllegalRedeclaration(Expression* expression);
201
202  // Visit the illegal redeclaration expression. Do not call if the
203  // scope doesn't have an illegal redeclaration node.
204  void VisitIllegalRedeclaration(AstVisitor* visitor);
205
206  // Check if the scope has (at least) one illegal redeclaration.
207  bool HasIllegalRedeclaration() const { return illegal_redecl_ != NULL; }
208
209  // For harmony block scoping mode: Check if the scope has conflicting var
210  // declarations, i.e. a var declaration that has been hoisted from a nested
211  // scope over a let binding of the same name.
212  Declaration* CheckConflictingVarDeclarations();
213
214  // For harmony block scoping mode: Check if the scope has variable proxies
215  // that are used as lvalues and point to const variables. Assumes that scopes
216  // have been analyzed and variables been resolved.
217  VariableProxy* CheckAssignmentToConst();
218
219  // ---------------------------------------------------------------------------
220  // Scope-specific info.
221
222  // Inform the scope that the corresponding code contains a with statement.
223  void RecordWithStatement() { scope_contains_with_ = true; }
224
225  // Inform the scope that the corresponding code contains an eval call.
226  void RecordEvalCall() { if (!is_global_scope()) scope_calls_eval_ = true; }
227
228  // Set the strict mode flag (unless disabled by a global flag).
229  void SetLanguageMode(LanguageMode language_mode) {
230    language_mode_ = language_mode;
231  }
232
233  // Position in the source where this scope begins and ends.
234  //
235  // * For the scope of a with statement
236  //     with (obj) stmt
237  //   start position: start position of first token of 'stmt'
238  //   end position: end position of last token of 'stmt'
239  // * For the scope of a block
240  //     { stmts }
241  //   start position: start position of '{'
242  //   end position: end position of '}'
243  // * For the scope of a function literal or decalaration
244  //     function fun(a,b) { stmts }
245  //   start position: start position of '('
246  //   end position: end position of '}'
247  // * For the scope of a catch block
248  //     try { stms } catch(e) { stmts }
249  //   start position: start position of '('
250  //   end position: end position of ')'
251  // * For the scope of a for-statement
252  //     for (let x ...) stmt
253  //   start position: start position of '('
254  //   end position: end position of last token of 'stmt'
255  int start_position() const { return start_position_; }
256  void set_start_position(int statement_pos) {
257    start_position_ = statement_pos;
258  }
259  int end_position() const { return end_position_; }
260  void set_end_position(int statement_pos) {
261    end_position_ = statement_pos;
262  }
263
264  // ---------------------------------------------------------------------------
265  // Predicates.
266
267  // Specific scope types.
268  bool is_eval_scope() const { return type_ == EVAL_SCOPE; }
269  bool is_function_scope() const { return type_ == FUNCTION_SCOPE; }
270  bool is_module_scope() const { return type_ == MODULE_SCOPE; }
271  bool is_global_scope() const { return type_ == GLOBAL_SCOPE; }
272  bool is_catch_scope() const { return type_ == CATCH_SCOPE; }
273  bool is_block_scope() const { return type_ == BLOCK_SCOPE; }
274  bool is_with_scope() const { return type_ == WITH_SCOPE; }
275  bool is_declaration_scope() const {
276    return is_eval_scope() || is_function_scope() || is_global_scope();
277  }
278  bool is_classic_mode() const {
279    return language_mode() == CLASSIC_MODE;
280  }
281  bool is_extended_mode() const {
282    return language_mode() == EXTENDED_MODE;
283  }
284  bool is_strict_or_extended_eval_scope() const {
285    return is_eval_scope() && !is_classic_mode();
286  }
287
288  // Information about which scopes calls eval.
289  bool calls_eval() const { return scope_calls_eval_; }
290  bool calls_non_strict_eval() {
291    return scope_calls_eval_ && is_classic_mode();
292  }
293  bool outer_scope_calls_non_strict_eval() const {
294    return outer_scope_calls_non_strict_eval_;
295  }
296
297  // Is this scope inside a with statement.
298  bool inside_with() const { return scope_inside_with_; }
299  // Does this scope contain a with statement.
300  bool contains_with() const { return scope_contains_with_; }
301
302  // ---------------------------------------------------------------------------
303  // Accessors.
304
305  // The type of this scope.
306  ScopeType type() const { return type_; }
307
308  // The language mode of this scope.
309  LanguageMode language_mode() const { return language_mode_; }
310
311  // The variable corresponding the 'this' value.
312  Variable* receiver() { return receiver_; }
313
314  // The variable holding the function literal for named function
315  // literals, or NULL.
316  // Only valid for function scopes.
317  VariableProxy* function() const {
318    ASSERT(is_function_scope());
319    return function_;
320  }
321
322  // Parameters. The left-most parameter has index 0.
323  // Only valid for function scopes.
324  Variable* parameter(int index) const {
325    ASSERT(is_function_scope());
326    return params_[index];
327  }
328
329  int num_parameters() const { return params_.length(); }
330
331  // The local variable 'arguments' if we need to allocate it; NULL otherwise.
332  Variable* arguments() const { return arguments_; }
333
334  // Declarations list.
335  ZoneList<Declaration*>* declarations() { return &decls_; }
336
337  // Inner scope list.
338  ZoneList<Scope*>* inner_scopes() { return &inner_scopes_; }
339
340  // The scope immediately surrounding this scope, or NULL.
341  Scope* outer_scope() const { return outer_scope_; }
342
343  // The interface as inferred so far; only for module scopes.
344  Interface* interface() const { return interface_; }
345
346  // ---------------------------------------------------------------------------
347  // Variable allocation.
348
349  // Collect stack and context allocated local variables in this scope. Note
350  // that the function variable - if present - is not collected and should be
351  // handled separately.
352  void CollectStackAndContextLocals(ZoneList<Variable*>* stack_locals,
353                                    ZoneList<Variable*>* context_locals);
354
355  // Current number of var or const locals.
356  int num_var_or_const() { return num_var_or_const_; }
357
358  // Result of variable allocation.
359  int num_stack_slots() const { return num_stack_slots_; }
360  int num_heap_slots() const { return num_heap_slots_; }
361
362  int StackLocalCount() const;
363  int ContextLocalCount() const;
364
365  // Make sure this scope and all outer scopes are eagerly compiled.
366  void ForceEagerCompilation()  { force_eager_compilation_ = true; }
367
368  // Determine if we can use lazy compilation for this scope.
369  bool AllowsLazyCompilation() const;
370
371  // True if we can lazily recompile functions with this scope.
372  bool AllowsLazyRecompilation() const;
373
374  // True if the outer context of this scope is always the global context.
375  bool HasTrivialOuterContext() const;
376
377  // True if this scope is inside a with scope and all declaration scopes
378  // between them have empty contexts. Such declaration scopes become
379  // invisible during scope info deserialization.
380  bool TrivialDeclarationScopesBeforeWithScope() const;
381
382  // The number of contexts between this and scope; zero if this == scope.
383  int ContextChainLength(Scope* scope);
384
385  // Find the first function, global, or eval scope.  This is the scope
386  // where var declarations will be hoisted to in the implementation.
387  Scope* DeclarationScope();
388
389  Handle<ScopeInfo> GetScopeInfo();
390
391  // Get the chain of nested scopes within this scope for the source statement
392  // position. The scopes will be added to the list from the outermost scope to
393  // the innermost scope. Only nested block, catch or with scopes are tracked
394  // and will be returned, but no inner function scopes.
395  void GetNestedScopeChain(List<Handle<ScopeInfo> >* chain,
396                           int statement_position);
397
398  // ---------------------------------------------------------------------------
399  // Strict mode support.
400  bool IsDeclared(Handle<String> name) {
401    // During formal parameter list parsing the scope only contains
402    // two variables inserted at initialization: "this" and "arguments".
403    // "this" is an invalid parameter name and "arguments" is invalid parameter
404    // name in strict mode. Therefore looking up with the map which includes
405    // "this" and "arguments" in addition to all formal parameters is safe.
406    return variables_.Lookup(name) != NULL;
407  }
408
409  // ---------------------------------------------------------------------------
410  // Debugging.
411
412#ifdef DEBUG
413  void Print(int n = 0);  // n = indentation; n < 0 => don't print recursively
414#endif
415
416  // ---------------------------------------------------------------------------
417  // Implementation.
418 protected:
419  friend class ParserFactory;
420
421  Isolate* const isolate_;
422
423  // Scope tree.
424  Scope* outer_scope_;  // the immediately enclosing outer scope, or NULL
425  ZoneList<Scope*> inner_scopes_;  // the immediately enclosed inner scopes
426
427  // The scope type.
428  ScopeType type_;
429
430  // Debugging support.
431  Handle<String> scope_name_;
432
433  // The variables declared in this scope:
434  //
435  // All user-declared variables (incl. parameters).  For global scopes
436  // variables may be implicitly 'declared' by being used (possibly in
437  // an inner scope) with no intervening with statements or eval calls.
438  VariableMap variables_;
439  // Compiler-allocated (user-invisible) temporaries.
440  ZoneList<Variable*> temps_;
441  // Parameter list in source order.
442  ZoneList<Variable*> params_;
443  // Variables that must be looked up dynamically.
444  DynamicScopePart* dynamics_;
445  // Unresolved variables referred to from this scope.
446  ZoneList<VariableProxy*> unresolved_;
447  // Declarations.
448  ZoneList<Declaration*> decls_;
449  // Convenience variable.
450  Variable* receiver_;
451  // Function variable, if any; function scopes only.
452  VariableProxy* function_;
453  // Convenience variable; function scopes only.
454  Variable* arguments_;
455  // Interface; module scopes only.
456  Interface* interface_;
457
458  // Illegal redeclaration.
459  Expression* illegal_redecl_;
460
461  // Scope-specific information computed during parsing.
462  //
463  // This scope is inside a 'with' of some outer scope.
464  bool scope_inside_with_;
465  // This scope contains a 'with' statement.
466  bool scope_contains_with_;
467  // This scope or a nested catch scope or with scope contain an 'eval' call. At
468  // the 'eval' call site this scope is the declaration scope.
469  bool scope_calls_eval_;
470  // The language mode of this scope.
471  LanguageMode language_mode_;
472  // Source positions.
473  int start_position_;
474  int end_position_;
475
476  // Computed via PropagateScopeInfo.
477  bool outer_scope_calls_non_strict_eval_;
478  bool inner_scope_calls_eval_;
479  bool force_eager_compilation_;
480
481  // True if it doesn't need scope resolution (e.g., if the scope was
482  // constructed based on a serialized scope info or a catch context).
483  bool already_resolved_;
484
485  // Computed as variables are declared.
486  int num_var_or_const_;
487
488  // Computed via AllocateVariables; function, block and catch scopes only.
489  int num_stack_slots_;
490  int num_heap_slots_;
491
492  // Serialized scope info support.
493  Handle<ScopeInfo> scope_info_;
494  bool already_resolved() { return already_resolved_; }
495
496  // Create a non-local variable with a given name.
497  // These variables are looked up dynamically at runtime.
498  Variable* NonLocal(Handle<String> name, VariableMode mode);
499
500  // Variable resolution.
501  // Possible results of a recursive variable lookup telling if and how a
502  // variable is bound. These are returned in the output parameter *binding_kind
503  // of the LookupRecursive function.
504  enum BindingKind {
505    // The variable reference could be statically resolved to a variable binding
506    // which is returned. There is no 'with' statement between the reference and
507    // the binding and no scope between the reference scope (inclusive) and
508    // binding scope (exclusive) makes a non-strict 'eval' call.
509    BOUND,
510
511    // The variable reference could be statically resolved to a variable binding
512    // which is returned. There is no 'with' statement between the reference and
513    // the binding, but some scope between the reference scope (inclusive) and
514    // binding scope (exclusive) makes a non-strict 'eval' call, that might
515    // possibly introduce variable bindings shadowing the found one. Thus the
516    // found variable binding is just a guess.
517    BOUND_EVAL_SHADOWED,
518
519    // The variable reference could not be statically resolved to any binding
520    // and thus should be considered referencing a global variable. NULL is
521    // returned. The variable reference is not inside any 'with' statement and
522    // no scope between the reference scope (inclusive) and global scope
523    // (exclusive) makes a non-strict 'eval' call.
524    UNBOUND,
525
526    // The variable reference could not be statically resolved to any binding
527    // NULL is returned. The variable reference is not inside any 'with'
528    // statement, but some scope between the reference scope (inclusive) and
529    // global scope (exclusive) makes a non-strict 'eval' call, that might
530    // possibly introduce a variable binding. Thus the reference should be
531    // considered referencing a global variable unless it is shadowed by an
532    // 'eval' introduced binding.
533    UNBOUND_EVAL_SHADOWED,
534
535    // The variable could not be statically resolved and needs to be looked up
536    // dynamically. NULL is returned. There are two possible reasons:
537    // * A 'with' statement has been encountered and there is no variable
538    //   binding for the name between the variable reference and the 'with'.
539    //   The variable potentially references a property of the 'with' object.
540    // * The code is being executed as part of a call to 'eval' and the calling
541    //   context chain contains either a variable binding for the name or it
542    //   contains a 'with' context.
543    DYNAMIC_LOOKUP
544  };
545
546  // Lookup a variable reference given by name recursively starting with this
547  // scope. If the code is executed because of a call to 'eval', the context
548  // parameter should be set to the calling context of 'eval'.
549  Variable* LookupRecursive(Handle<String> name,
550                            BindingKind* binding_kind,
551                            AstNodeFactory<AstNullVisitor>* factory);
552  MUST_USE_RESULT
553  bool ResolveVariable(CompilationInfo* info,
554                       VariableProxy* proxy,
555                       AstNodeFactory<AstNullVisitor>* factory);
556  MUST_USE_RESULT
557  bool ResolveVariablesRecursively(CompilationInfo* info,
558                                   AstNodeFactory<AstNullVisitor>* factory);
559
560  // Scope analysis.
561  bool PropagateScopeInfo(bool outer_scope_calls_non_strict_eval);
562  bool HasTrivialContext() const;
563
564  // Predicates.
565  bool MustAllocate(Variable* var);
566  bool MustAllocateInContext(Variable* var);
567  bool HasArgumentsParameter();
568
569  // Variable allocation.
570  void AllocateStackSlot(Variable* var);
571  void AllocateHeapSlot(Variable* var);
572  void AllocateParameterLocals();
573  void AllocateNonParameterLocal(Variable* var);
574  void AllocateNonParameterLocals();
575  void AllocateVariablesRecursively();
576
577  // Resolve and fill in the allocation information for all variables
578  // in this scopes. Must be called *after* all scopes have been
579  // processed (parsed) to ensure that unresolved variables can be
580  // resolved properly.
581  //
582  // In the case of code compiled and run using 'eval', the context
583  // parameter is the context in which eval was called.  In all other
584  // cases the context parameter is an empty handle.
585  MUST_USE_RESULT
586  bool AllocateVariables(CompilationInfo* info,
587                         AstNodeFactory<AstNullVisitor>* factory);
588
589 private:
590  // Construct a scope based on the scope info.
591  Scope(Scope* inner_scope, ScopeType type, Handle<ScopeInfo> scope_info);
592
593  // Construct a catch scope with a binding for the name.
594  Scope(Scope* inner_scope, Handle<String> catch_variable_name);
595
596  void AddInnerScope(Scope* inner_scope) {
597    if (inner_scope != NULL) {
598      inner_scopes_.Add(inner_scope);
599      inner_scope->outer_scope_ = this;
600    }
601  }
602
603  void SetDefaults(ScopeType type,
604                   Scope* outer_scope,
605                   Handle<ScopeInfo> scope_info);
606};
607
608} }  // namespace v8::internal
609
610#endif  // V8_SCOPES_H_
611