1/*
2 * Copyright (C) 2005 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define LOG_TAG "EventHub"
18
19// #define LOG_NDEBUG 0
20
21#include "EventHub.h"
22
23#include <hardware_legacy/power.h>
24
25#include <cutils/properties.h>
26#include <utils/Log.h>
27#include <utils/Timers.h>
28#include <utils/threads.h>
29#include <utils/Errors.h>
30
31#include <stdlib.h>
32#include <stdio.h>
33#include <unistd.h>
34#include <fcntl.h>
35#include <memory.h>
36#include <errno.h>
37#include <assert.h>
38
39#include <input/KeyLayoutMap.h>
40#include <input/KeyCharacterMap.h>
41#include <input/VirtualKeyMap.h>
42
43#include <string.h>
44#include <stdint.h>
45#include <dirent.h>
46
47#include <sys/inotify.h>
48#include <sys/epoll.h>
49#include <sys/ioctl.h>
50#include <sys/limits.h>
51#include <sys/sha1.h>
52
53/* this macro is used to tell if "bit" is set in "array"
54 * it selects a byte from the array, and does a boolean AND
55 * operation with a byte that only has the relevant bit set.
56 * eg. to check for the 12th bit, we do (array[1] & 1<<4)
57 */
58#define test_bit(bit, array)    (array[bit/8] & (1<<(bit%8)))
59
60/* this macro computes the number of bytes needed to represent a bit array of the specified size */
61#define sizeof_bit_array(bits)  ((bits + 7) / 8)
62
63#define INDENT "  "
64#define INDENT2 "    "
65#define INDENT3 "      "
66
67namespace android {
68
69static const char *WAKE_LOCK_ID = "KeyEvents";
70static const char *DEVICE_PATH = "/dev/input";
71
72/* return the larger integer */
73static inline int max(int v1, int v2)
74{
75    return (v1 > v2) ? v1 : v2;
76}
77
78static inline const char* toString(bool value) {
79    return value ? "true" : "false";
80}
81
82static String8 sha1(const String8& in) {
83    SHA1_CTX ctx;
84    SHA1Init(&ctx);
85    SHA1Update(&ctx, reinterpret_cast<const u_char*>(in.string()), in.size());
86    u_char digest[SHA1_DIGEST_LENGTH];
87    SHA1Final(digest, &ctx);
88
89    String8 out;
90    for (size_t i = 0; i < SHA1_DIGEST_LENGTH; i++) {
91        out.appendFormat("%02x", digest[i]);
92    }
93    return out;
94}
95
96static void setDescriptor(InputDeviceIdentifier& identifier) {
97    // Compute a device descriptor that uniquely identifies the device.
98    // The descriptor is assumed to be a stable identifier.  Its value should not
99    // change between reboots, reconnections, firmware updates or new releases of Android.
100    // Ideally, we also want the descriptor to be short and relatively opaque.
101    String8 rawDescriptor;
102    rawDescriptor.appendFormat(":%04x:%04x:", identifier.vendor, identifier.product);
103    if (!identifier.uniqueId.isEmpty()) {
104        rawDescriptor.append("uniqueId:");
105        rawDescriptor.append(identifier.uniqueId);
106    } if (identifier.vendor == 0 && identifier.product == 0) {
107        // If we don't know the vendor and product id, then the device is probably
108        // built-in so we need to rely on other information to uniquely identify
109        // the input device.  Usually we try to avoid relying on the device name or
110        // location but for built-in input device, they are unlikely to ever change.
111        if (!identifier.name.isEmpty()) {
112            rawDescriptor.append("name:");
113            rawDescriptor.append(identifier.name);
114        } else if (!identifier.location.isEmpty()) {
115            rawDescriptor.append("location:");
116            rawDescriptor.append(identifier.location);
117        }
118    }
119    identifier.descriptor = sha1(rawDescriptor);
120    ALOGV("Created descriptor: raw=%s, cooked=%s", rawDescriptor.string(),
121            identifier.descriptor.string());
122}
123
124// --- Global Functions ---
125
126uint32_t getAbsAxisUsage(int32_t axis, uint32_t deviceClasses) {
127    // Touch devices get dibs on touch-related axes.
128    if (deviceClasses & INPUT_DEVICE_CLASS_TOUCH) {
129        switch (axis) {
130        case ABS_X:
131        case ABS_Y:
132        case ABS_PRESSURE:
133        case ABS_TOOL_WIDTH:
134        case ABS_DISTANCE:
135        case ABS_TILT_X:
136        case ABS_TILT_Y:
137        case ABS_MT_SLOT:
138        case ABS_MT_TOUCH_MAJOR:
139        case ABS_MT_TOUCH_MINOR:
140        case ABS_MT_WIDTH_MAJOR:
141        case ABS_MT_WIDTH_MINOR:
142        case ABS_MT_ORIENTATION:
143        case ABS_MT_POSITION_X:
144        case ABS_MT_POSITION_Y:
145        case ABS_MT_TOOL_TYPE:
146        case ABS_MT_BLOB_ID:
147        case ABS_MT_TRACKING_ID:
148        case ABS_MT_PRESSURE:
149        case ABS_MT_DISTANCE:
150            return INPUT_DEVICE_CLASS_TOUCH;
151        }
152    }
153
154    // Joystick devices get the rest.
155    return deviceClasses & INPUT_DEVICE_CLASS_JOYSTICK;
156}
157
158// --- EventHub::Device ---
159
160EventHub::Device::Device(int fd, int32_t id, const String8& path,
161        const InputDeviceIdentifier& identifier) :
162        next(NULL),
163        fd(fd), id(id), path(path), identifier(identifier),
164        classes(0), configuration(NULL), virtualKeyMap(NULL),
165        ffEffectPlaying(false), ffEffectId(-1), controllerNumber(0),
166        timestampOverrideSec(0), timestampOverrideUsec(0) {
167    memset(keyBitmask, 0, sizeof(keyBitmask));
168    memset(absBitmask, 0, sizeof(absBitmask));
169    memset(relBitmask, 0, sizeof(relBitmask));
170    memset(swBitmask, 0, sizeof(swBitmask));
171    memset(ledBitmask, 0, sizeof(ledBitmask));
172    memset(ffBitmask, 0, sizeof(ffBitmask));
173    memset(propBitmask, 0, sizeof(propBitmask));
174}
175
176EventHub::Device::~Device() {
177    close();
178    delete configuration;
179    delete virtualKeyMap;
180}
181
182void EventHub::Device::close() {
183    if (fd >= 0) {
184        ::close(fd);
185        fd = -1;
186    }
187}
188
189
190// --- EventHub ---
191
192const uint32_t EventHub::EPOLL_ID_INOTIFY;
193const uint32_t EventHub::EPOLL_ID_WAKE;
194const int EventHub::EPOLL_SIZE_HINT;
195const int EventHub::EPOLL_MAX_EVENTS;
196
197EventHub::EventHub(void) :
198        mBuiltInKeyboardId(NO_BUILT_IN_KEYBOARD), mNextDeviceId(1), mControllerNumbers(),
199        mOpeningDevices(0), mClosingDevices(0),
200        mNeedToSendFinishedDeviceScan(false),
201        mNeedToReopenDevices(false), mNeedToScanDevices(true),
202        mPendingEventCount(0), mPendingEventIndex(0), mPendingINotify(false) {
203    acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
204
205    mEpollFd = epoll_create(EPOLL_SIZE_HINT);
206    LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance.  errno=%d", errno);
207
208    mINotifyFd = inotify_init();
209    int result = inotify_add_watch(mINotifyFd, DEVICE_PATH, IN_DELETE | IN_CREATE);
210    LOG_ALWAYS_FATAL_IF(result < 0, "Could not register INotify for %s.  errno=%d",
211            DEVICE_PATH, errno);
212
213    struct epoll_event eventItem;
214    memset(&eventItem, 0, sizeof(eventItem));
215    eventItem.events = EPOLLIN;
216    eventItem.data.u32 = EPOLL_ID_INOTIFY;
217    result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mINotifyFd, &eventItem);
218    LOG_ALWAYS_FATAL_IF(result != 0, "Could not add INotify to epoll instance.  errno=%d", errno);
219
220    int wakeFds[2];
221    result = pipe(wakeFds);
222    LOG_ALWAYS_FATAL_IF(result != 0, "Could not create wake pipe.  errno=%d", errno);
223
224    mWakeReadPipeFd = wakeFds[0];
225    mWakeWritePipeFd = wakeFds[1];
226
227    result = fcntl(mWakeReadPipeFd, F_SETFL, O_NONBLOCK);
228    LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake read pipe non-blocking.  errno=%d",
229            errno);
230
231    result = fcntl(mWakeWritePipeFd, F_SETFL, O_NONBLOCK);
232    LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake write pipe non-blocking.  errno=%d",
233            errno);
234
235    eventItem.data.u32 = EPOLL_ID_WAKE;
236    result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeReadPipeFd, &eventItem);
237    LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake read pipe to epoll instance.  errno=%d",
238            errno);
239}
240
241EventHub::~EventHub(void) {
242    closeAllDevicesLocked();
243
244    while (mClosingDevices) {
245        Device* device = mClosingDevices;
246        mClosingDevices = device->next;
247        delete device;
248    }
249
250    ::close(mEpollFd);
251    ::close(mINotifyFd);
252    ::close(mWakeReadPipeFd);
253    ::close(mWakeWritePipeFd);
254
255    release_wake_lock(WAKE_LOCK_ID);
256}
257
258InputDeviceIdentifier EventHub::getDeviceIdentifier(int32_t deviceId) const {
259    AutoMutex _l(mLock);
260    Device* device = getDeviceLocked(deviceId);
261    if (device == NULL) return InputDeviceIdentifier();
262    return device->identifier;
263}
264
265uint32_t EventHub::getDeviceClasses(int32_t deviceId) const {
266    AutoMutex _l(mLock);
267    Device* device = getDeviceLocked(deviceId);
268    if (device == NULL) return 0;
269    return device->classes;
270}
271
272int32_t EventHub::getDeviceControllerNumber(int32_t deviceId) const {
273    AutoMutex _l(mLock);
274    Device* device = getDeviceLocked(deviceId);
275    if (device == NULL) return 0;
276    return device->controllerNumber;
277}
278
279void EventHub::getConfiguration(int32_t deviceId, PropertyMap* outConfiguration) const {
280    AutoMutex _l(mLock);
281    Device* device = getDeviceLocked(deviceId);
282    if (device && device->configuration) {
283        *outConfiguration = *device->configuration;
284    } else {
285        outConfiguration->clear();
286    }
287}
288
289status_t EventHub::getAbsoluteAxisInfo(int32_t deviceId, int axis,
290        RawAbsoluteAxisInfo* outAxisInfo) const {
291    outAxisInfo->clear();
292
293    if (axis >= 0 && axis <= ABS_MAX) {
294        AutoMutex _l(mLock);
295
296        Device* device = getDeviceLocked(deviceId);
297        if (device && !device->isVirtual() && test_bit(axis, device->absBitmask)) {
298            struct input_absinfo info;
299            if(ioctl(device->fd, EVIOCGABS(axis), &info)) {
300                ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d",
301                     axis, device->identifier.name.string(), device->fd, errno);
302                return -errno;
303            }
304
305            if (info.minimum != info.maximum) {
306                outAxisInfo->valid = true;
307                outAxisInfo->minValue = info.minimum;
308                outAxisInfo->maxValue = info.maximum;
309                outAxisInfo->flat = info.flat;
310                outAxisInfo->fuzz = info.fuzz;
311                outAxisInfo->resolution = info.resolution;
312            }
313            return OK;
314        }
315    }
316    return -1;
317}
318
319bool EventHub::hasRelativeAxis(int32_t deviceId, int axis) const {
320    if (axis >= 0 && axis <= REL_MAX) {
321        AutoMutex _l(mLock);
322
323        Device* device = getDeviceLocked(deviceId);
324        if (device) {
325            return test_bit(axis, device->relBitmask);
326        }
327    }
328    return false;
329}
330
331bool EventHub::hasInputProperty(int32_t deviceId, int property) const {
332    if (property >= 0 && property <= INPUT_PROP_MAX) {
333        AutoMutex _l(mLock);
334
335        Device* device = getDeviceLocked(deviceId);
336        if (device) {
337            return test_bit(property, device->propBitmask);
338        }
339    }
340    return false;
341}
342
343int32_t EventHub::getScanCodeState(int32_t deviceId, int32_t scanCode) const {
344    if (scanCode >= 0 && scanCode <= KEY_MAX) {
345        AutoMutex _l(mLock);
346
347        Device* device = getDeviceLocked(deviceId);
348        if (device && !device->isVirtual() && test_bit(scanCode, device->keyBitmask)) {
349            uint8_t keyState[sizeof_bit_array(KEY_MAX + 1)];
350            memset(keyState, 0, sizeof(keyState));
351            if (ioctl(device->fd, EVIOCGKEY(sizeof(keyState)), keyState) >= 0) {
352                return test_bit(scanCode, keyState) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
353            }
354        }
355    }
356    return AKEY_STATE_UNKNOWN;
357}
358
359int32_t EventHub::getKeyCodeState(int32_t deviceId, int32_t keyCode) const {
360    AutoMutex _l(mLock);
361
362    Device* device = getDeviceLocked(deviceId);
363    if (device && !device->isVirtual() && device->keyMap.haveKeyLayout()) {
364        Vector<int32_t> scanCodes;
365        device->keyMap.keyLayoutMap->findScanCodesForKey(keyCode, &scanCodes);
366        if (scanCodes.size() != 0) {
367            uint8_t keyState[sizeof_bit_array(KEY_MAX + 1)];
368            memset(keyState, 0, sizeof(keyState));
369            if (ioctl(device->fd, EVIOCGKEY(sizeof(keyState)), keyState) >= 0) {
370                for (size_t i = 0; i < scanCodes.size(); i++) {
371                    int32_t sc = scanCodes.itemAt(i);
372                    if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, keyState)) {
373                        return AKEY_STATE_DOWN;
374                    }
375                }
376                return AKEY_STATE_UP;
377            }
378        }
379    }
380    return AKEY_STATE_UNKNOWN;
381}
382
383int32_t EventHub::getSwitchState(int32_t deviceId, int32_t sw) const {
384    if (sw >= 0 && sw <= SW_MAX) {
385        AutoMutex _l(mLock);
386
387        Device* device = getDeviceLocked(deviceId);
388        if (device && !device->isVirtual() && test_bit(sw, device->swBitmask)) {
389            uint8_t swState[sizeof_bit_array(SW_MAX + 1)];
390            memset(swState, 0, sizeof(swState));
391            if (ioctl(device->fd, EVIOCGSW(sizeof(swState)), swState) >= 0) {
392                return test_bit(sw, swState) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
393            }
394        }
395    }
396    return AKEY_STATE_UNKNOWN;
397}
398
399status_t EventHub::getAbsoluteAxisValue(int32_t deviceId, int32_t axis, int32_t* outValue) const {
400    *outValue = 0;
401
402    if (axis >= 0 && axis <= ABS_MAX) {
403        AutoMutex _l(mLock);
404
405        Device* device = getDeviceLocked(deviceId);
406        if (device && !device->isVirtual() && test_bit(axis, device->absBitmask)) {
407            struct input_absinfo info;
408            if(ioctl(device->fd, EVIOCGABS(axis), &info)) {
409                ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d",
410                     axis, device->identifier.name.string(), device->fd, errno);
411                return -errno;
412            }
413
414            *outValue = info.value;
415            return OK;
416        }
417    }
418    return -1;
419}
420
421bool EventHub::markSupportedKeyCodes(int32_t deviceId, size_t numCodes,
422        const int32_t* keyCodes, uint8_t* outFlags) const {
423    AutoMutex _l(mLock);
424
425    Device* device = getDeviceLocked(deviceId);
426    if (device && device->keyMap.haveKeyLayout()) {
427        Vector<int32_t> scanCodes;
428        for (size_t codeIndex = 0; codeIndex < numCodes; codeIndex++) {
429            scanCodes.clear();
430
431            status_t err = device->keyMap.keyLayoutMap->findScanCodesForKey(
432                    keyCodes[codeIndex], &scanCodes);
433            if (! err) {
434                // check the possible scan codes identified by the layout map against the
435                // map of codes actually emitted by the driver
436                for (size_t sc = 0; sc < scanCodes.size(); sc++) {
437                    if (test_bit(scanCodes[sc], device->keyBitmask)) {
438                        outFlags[codeIndex] = 1;
439                        break;
440                    }
441                }
442            }
443        }
444        return true;
445    }
446    return false;
447}
448
449status_t EventHub::mapKey(int32_t deviceId, int32_t scanCode, int32_t usageCode,
450        int32_t* outKeycode, uint32_t* outFlags) const {
451    AutoMutex _l(mLock);
452    Device* device = getDeviceLocked(deviceId);
453
454    if (device) {
455        // Check the key character map first.
456        sp<KeyCharacterMap> kcm = device->getKeyCharacterMap();
457        if (kcm != NULL) {
458            if (!kcm->mapKey(scanCode, usageCode, outKeycode)) {
459                *outFlags = 0;
460                return NO_ERROR;
461            }
462        }
463
464        // Check the key layout next.
465        if (device->keyMap.haveKeyLayout()) {
466            if (!device->keyMap.keyLayoutMap->mapKey(
467                    scanCode, usageCode, outKeycode, outFlags)) {
468                return NO_ERROR;
469            }
470        }
471    }
472
473    *outKeycode = 0;
474    *outFlags = 0;
475    return NAME_NOT_FOUND;
476}
477
478status_t EventHub::mapAxis(int32_t deviceId, int32_t scanCode, AxisInfo* outAxisInfo) const {
479    AutoMutex _l(mLock);
480    Device* device = getDeviceLocked(deviceId);
481
482    if (device && device->keyMap.haveKeyLayout()) {
483        status_t err = device->keyMap.keyLayoutMap->mapAxis(scanCode, outAxisInfo);
484        if (err == NO_ERROR) {
485            return NO_ERROR;
486        }
487    }
488
489    return NAME_NOT_FOUND;
490}
491
492void EventHub::setExcludedDevices(const Vector<String8>& devices) {
493    AutoMutex _l(mLock);
494
495    mExcludedDevices = devices;
496}
497
498bool EventHub::hasScanCode(int32_t deviceId, int32_t scanCode) const {
499    AutoMutex _l(mLock);
500    Device* device = getDeviceLocked(deviceId);
501    if (device && scanCode >= 0 && scanCode <= KEY_MAX) {
502        if (test_bit(scanCode, device->keyBitmask)) {
503            return true;
504        }
505    }
506    return false;
507}
508
509bool EventHub::hasLed(int32_t deviceId, int32_t led) const {
510    AutoMutex _l(mLock);
511    Device* device = getDeviceLocked(deviceId);
512    if (device && led >= 0 && led <= LED_MAX) {
513        if (test_bit(led, device->ledBitmask)) {
514            return true;
515        }
516    }
517    return false;
518}
519
520void EventHub::setLedState(int32_t deviceId, int32_t led, bool on) {
521    AutoMutex _l(mLock);
522    Device* device = getDeviceLocked(deviceId);
523    if (device && !device->isVirtual() && led >= 0 && led <= LED_MAX) {
524        struct input_event ev;
525        ev.time.tv_sec = 0;
526        ev.time.tv_usec = 0;
527        ev.type = EV_LED;
528        ev.code = led;
529        ev.value = on ? 1 : 0;
530
531        ssize_t nWrite;
532        do {
533            nWrite = write(device->fd, &ev, sizeof(struct input_event));
534        } while (nWrite == -1 && errno == EINTR);
535    }
536}
537
538void EventHub::getVirtualKeyDefinitions(int32_t deviceId,
539        Vector<VirtualKeyDefinition>& outVirtualKeys) const {
540    outVirtualKeys.clear();
541
542    AutoMutex _l(mLock);
543    Device* device = getDeviceLocked(deviceId);
544    if (device && device->virtualKeyMap) {
545        outVirtualKeys.appendVector(device->virtualKeyMap->getVirtualKeys());
546    }
547}
548
549sp<KeyCharacterMap> EventHub::getKeyCharacterMap(int32_t deviceId) const {
550    AutoMutex _l(mLock);
551    Device* device = getDeviceLocked(deviceId);
552    if (device) {
553        return device->getKeyCharacterMap();
554    }
555    return NULL;
556}
557
558bool EventHub::setKeyboardLayoutOverlay(int32_t deviceId,
559        const sp<KeyCharacterMap>& map) {
560    AutoMutex _l(mLock);
561    Device* device = getDeviceLocked(deviceId);
562    if (device) {
563        if (map != device->overlayKeyMap) {
564            device->overlayKeyMap = map;
565            device->combinedKeyMap = KeyCharacterMap::combine(
566                    device->keyMap.keyCharacterMap, map);
567            return true;
568        }
569    }
570    return false;
571}
572
573void EventHub::vibrate(int32_t deviceId, nsecs_t duration) {
574    AutoMutex _l(mLock);
575    Device* device = getDeviceLocked(deviceId);
576    if (device && !device->isVirtual()) {
577        ff_effect effect;
578        memset(&effect, 0, sizeof(effect));
579        effect.type = FF_RUMBLE;
580        effect.id = device->ffEffectId;
581        effect.u.rumble.strong_magnitude = 0xc000;
582        effect.u.rumble.weak_magnitude = 0xc000;
583        effect.replay.length = (duration + 999999LL) / 1000000LL;
584        effect.replay.delay = 0;
585        if (ioctl(device->fd, EVIOCSFF, &effect)) {
586            ALOGW("Could not upload force feedback effect to device %s due to error %d.",
587                    device->identifier.name.string(), errno);
588            return;
589        }
590        device->ffEffectId = effect.id;
591
592        struct input_event ev;
593        ev.time.tv_sec = 0;
594        ev.time.tv_usec = 0;
595        ev.type = EV_FF;
596        ev.code = device->ffEffectId;
597        ev.value = 1;
598        if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
599            ALOGW("Could not start force feedback effect on device %s due to error %d.",
600                    device->identifier.name.string(), errno);
601            return;
602        }
603        device->ffEffectPlaying = true;
604    }
605}
606
607void EventHub::cancelVibrate(int32_t deviceId) {
608    AutoMutex _l(mLock);
609    Device* device = getDeviceLocked(deviceId);
610    if (device && !device->isVirtual()) {
611        if (device->ffEffectPlaying) {
612            device->ffEffectPlaying = false;
613
614            struct input_event ev;
615            ev.time.tv_sec = 0;
616            ev.time.tv_usec = 0;
617            ev.type = EV_FF;
618            ev.code = device->ffEffectId;
619            ev.value = 0;
620            if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
621                ALOGW("Could not stop force feedback effect on device %s due to error %d.",
622                        device->identifier.name.string(), errno);
623                return;
624            }
625        }
626    }
627}
628
629EventHub::Device* EventHub::getDeviceLocked(int32_t deviceId) const {
630    if (deviceId == BUILT_IN_KEYBOARD_ID) {
631        deviceId = mBuiltInKeyboardId;
632    }
633    ssize_t index = mDevices.indexOfKey(deviceId);
634    return index >= 0 ? mDevices.valueAt(index) : NULL;
635}
636
637EventHub::Device* EventHub::getDeviceByPathLocked(const char* devicePath) const {
638    for (size_t i = 0; i < mDevices.size(); i++) {
639        Device* device = mDevices.valueAt(i);
640        if (device->path == devicePath) {
641            return device;
642        }
643    }
644    return NULL;
645}
646
647size_t EventHub::getEvents(int timeoutMillis, RawEvent* buffer, size_t bufferSize) {
648    ALOG_ASSERT(bufferSize >= 1);
649
650    AutoMutex _l(mLock);
651
652    struct input_event readBuffer[bufferSize];
653
654    RawEvent* event = buffer;
655    size_t capacity = bufferSize;
656    bool awoken = false;
657    for (;;) {
658        nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
659
660        // Reopen input devices if needed.
661        if (mNeedToReopenDevices) {
662            mNeedToReopenDevices = false;
663
664            ALOGI("Reopening all input devices due to a configuration change.");
665
666            closeAllDevicesLocked();
667            mNeedToScanDevices = true;
668            break; // return to the caller before we actually rescan
669        }
670
671        // Report any devices that had last been added/removed.
672        while (mClosingDevices) {
673            Device* device = mClosingDevices;
674            ALOGV("Reporting device closed: id=%d, name=%s\n",
675                 device->id, device->path.string());
676            mClosingDevices = device->next;
677            event->when = now;
678            event->deviceId = device->id == mBuiltInKeyboardId ? BUILT_IN_KEYBOARD_ID : device->id;
679            event->type = DEVICE_REMOVED;
680            event += 1;
681            delete device;
682            mNeedToSendFinishedDeviceScan = true;
683            if (--capacity == 0) {
684                break;
685            }
686        }
687
688        if (mNeedToScanDevices) {
689            mNeedToScanDevices = false;
690            scanDevicesLocked();
691            mNeedToSendFinishedDeviceScan = true;
692        }
693
694        while (mOpeningDevices != NULL) {
695            Device* device = mOpeningDevices;
696            ALOGV("Reporting device opened: id=%d, name=%s\n",
697                 device->id, device->path.string());
698            mOpeningDevices = device->next;
699            event->when = now;
700            event->deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
701            event->type = DEVICE_ADDED;
702            event += 1;
703            mNeedToSendFinishedDeviceScan = true;
704            if (--capacity == 0) {
705                break;
706            }
707        }
708
709        if (mNeedToSendFinishedDeviceScan) {
710            mNeedToSendFinishedDeviceScan = false;
711            event->when = now;
712            event->type = FINISHED_DEVICE_SCAN;
713            event += 1;
714            if (--capacity == 0) {
715                break;
716            }
717        }
718
719        // Grab the next input event.
720        bool deviceChanged = false;
721        while (mPendingEventIndex < mPendingEventCount) {
722            const struct epoll_event& eventItem = mPendingEventItems[mPendingEventIndex++];
723            if (eventItem.data.u32 == EPOLL_ID_INOTIFY) {
724                if (eventItem.events & EPOLLIN) {
725                    mPendingINotify = true;
726                } else {
727                    ALOGW("Received unexpected epoll event 0x%08x for INotify.", eventItem.events);
728                }
729                continue;
730            }
731
732            if (eventItem.data.u32 == EPOLL_ID_WAKE) {
733                if (eventItem.events & EPOLLIN) {
734                    ALOGV("awoken after wake()");
735                    awoken = true;
736                    char buffer[16];
737                    ssize_t nRead;
738                    do {
739                        nRead = read(mWakeReadPipeFd, buffer, sizeof(buffer));
740                    } while ((nRead == -1 && errno == EINTR) || nRead == sizeof(buffer));
741                } else {
742                    ALOGW("Received unexpected epoll event 0x%08x for wake read pipe.",
743                            eventItem.events);
744                }
745                continue;
746            }
747
748            ssize_t deviceIndex = mDevices.indexOfKey(eventItem.data.u32);
749            if (deviceIndex < 0) {
750                ALOGW("Received unexpected epoll event 0x%08x for unknown device id %d.",
751                        eventItem.events, eventItem.data.u32);
752                continue;
753            }
754
755            Device* device = mDevices.valueAt(deviceIndex);
756            if (eventItem.events & EPOLLIN) {
757                int32_t readSize = read(device->fd, readBuffer,
758                        sizeof(struct input_event) * capacity);
759                if (readSize == 0 || (readSize < 0 && errno == ENODEV)) {
760                    // Device was removed before INotify noticed.
761                    ALOGW("could not get event, removed? (fd: %d size: %d bufferSize: %d "
762                            "capacity: %d errno: %d)\n",
763                            device->fd, readSize, bufferSize, capacity, errno);
764                    deviceChanged = true;
765                    closeDeviceLocked(device);
766                } else if (readSize < 0) {
767                    if (errno != EAGAIN && errno != EINTR) {
768                        ALOGW("could not get event (errno=%d)", errno);
769                    }
770                } else if ((readSize % sizeof(struct input_event)) != 0) {
771                    ALOGE("could not get event (wrong size: %d)", readSize);
772                } else {
773                    int32_t deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
774
775                    size_t count = size_t(readSize) / sizeof(struct input_event);
776                    for (size_t i = 0; i < count; i++) {
777                        struct input_event& iev = readBuffer[i];
778                        ALOGV("%s got: time=%d.%06d, type=%d, code=%d, value=%d",
779                                device->path.string(),
780                                (int) iev.time.tv_sec, (int) iev.time.tv_usec,
781                                iev.type, iev.code, iev.value);
782
783                        // Some input devices may have a better concept of the time
784                        // when an input event was actually generated than the kernel
785                        // which simply timestamps all events on entry to evdev.
786                        // This is a custom Android extension of the input protocol
787                        // mainly intended for use with uinput based device drivers.
788                        if (iev.type == EV_MSC) {
789                            if (iev.code == MSC_ANDROID_TIME_SEC) {
790                                device->timestampOverrideSec = iev.value;
791                                continue;
792                            } else if (iev.code == MSC_ANDROID_TIME_USEC) {
793                                device->timestampOverrideUsec = iev.value;
794                                continue;
795                            }
796                        }
797                        if (device->timestampOverrideSec || device->timestampOverrideUsec) {
798                            iev.time.tv_sec = device->timestampOverrideSec;
799                            iev.time.tv_usec = device->timestampOverrideUsec;
800                            if (iev.type == EV_SYN && iev.code == SYN_REPORT) {
801                                device->timestampOverrideSec = 0;
802                                device->timestampOverrideUsec = 0;
803                            }
804                            ALOGV("applied override time %d.%06d",
805                                    int(iev.time.tv_sec), int(iev.time.tv_usec));
806                        }
807
808#ifdef HAVE_POSIX_CLOCKS
809                        // Use the time specified in the event instead of the current time
810                        // so that downstream code can get more accurate estimates of
811                        // event dispatch latency from the time the event is enqueued onto
812                        // the evdev client buffer.
813                        //
814                        // The event's timestamp fortuitously uses the same monotonic clock
815                        // time base as the rest of Android.  The kernel event device driver
816                        // (drivers/input/evdev.c) obtains timestamps using ktime_get_ts().
817                        // The systemTime(SYSTEM_TIME_MONOTONIC) function we use everywhere
818                        // calls clock_gettime(CLOCK_MONOTONIC) which is implemented as a
819                        // system call that also queries ktime_get_ts().
820                        event->when = nsecs_t(iev.time.tv_sec) * 1000000000LL
821                                + nsecs_t(iev.time.tv_usec) * 1000LL;
822                        ALOGV("event time %lld, now %lld", event->when, now);
823
824                        // Bug 7291243: Add a guard in case the kernel generates timestamps
825                        // that appear to be far into the future because they were generated
826                        // using the wrong clock source.
827                        //
828                        // This can happen because when the input device is initially opened
829                        // it has a default clock source of CLOCK_REALTIME.  Any input events
830                        // enqueued right after the device is opened will have timestamps
831                        // generated using CLOCK_REALTIME.  We later set the clock source
832                        // to CLOCK_MONOTONIC but it is already too late.
833                        //
834                        // Invalid input event timestamps can result in ANRs, crashes and
835                        // and other issues that are hard to track down.  We must not let them
836                        // propagate through the system.
837                        //
838                        // Log a warning so that we notice the problem and recover gracefully.
839                        if (event->when >= now + 10 * 1000000000LL) {
840                            // Double-check.  Time may have moved on.
841                            nsecs_t time = systemTime(SYSTEM_TIME_MONOTONIC);
842                            if (event->when > time) {
843                                ALOGW("An input event from %s has a timestamp that appears to "
844                                        "have been generated using the wrong clock source "
845                                        "(expected CLOCK_MONOTONIC): "
846                                        "event time %lld, current time %lld, call time %lld.  "
847                                        "Using current time instead.",
848                                        device->path.string(), event->when, time, now);
849                                event->when = time;
850                            } else {
851                                ALOGV("Event time is ok but failed the fast path and required "
852                                        "an extra call to systemTime: "
853                                        "event time %lld, current time %lld, call time %lld.",
854                                        event->when, time, now);
855                            }
856                        }
857#else
858                        event->when = now;
859#endif
860                        event->deviceId = deviceId;
861                        event->type = iev.type;
862                        event->code = iev.code;
863                        event->value = iev.value;
864                        event += 1;
865                        capacity -= 1;
866                    }
867                    if (capacity == 0) {
868                        // The result buffer is full.  Reset the pending event index
869                        // so we will try to read the device again on the next iteration.
870                        mPendingEventIndex -= 1;
871                        break;
872                    }
873                }
874            } else if (eventItem.events & EPOLLHUP) {
875                ALOGI("Removing device %s due to epoll hang-up event.",
876                        device->identifier.name.string());
877                deviceChanged = true;
878                closeDeviceLocked(device);
879            } else {
880                ALOGW("Received unexpected epoll event 0x%08x for device %s.",
881                        eventItem.events, device->identifier.name.string());
882            }
883        }
884
885        // readNotify() will modify the list of devices so this must be done after
886        // processing all other events to ensure that we read all remaining events
887        // before closing the devices.
888        if (mPendingINotify && mPendingEventIndex >= mPendingEventCount) {
889            mPendingINotify = false;
890            readNotifyLocked();
891            deviceChanged = true;
892        }
893
894        // Report added or removed devices immediately.
895        if (deviceChanged) {
896            continue;
897        }
898
899        // Return now if we have collected any events or if we were explicitly awoken.
900        if (event != buffer || awoken) {
901            break;
902        }
903
904        // Poll for events.  Mind the wake lock dance!
905        // We hold a wake lock at all times except during epoll_wait().  This works due to some
906        // subtle choreography.  When a device driver has pending (unread) events, it acquires
907        // a kernel wake lock.  However, once the last pending event has been read, the device
908        // driver will release the kernel wake lock.  To prevent the system from going to sleep
909        // when this happens, the EventHub holds onto its own user wake lock while the client
910        // is processing events.  Thus the system can only sleep if there are no events
911        // pending or currently being processed.
912        //
913        // The timeout is advisory only.  If the device is asleep, it will not wake just to
914        // service the timeout.
915        mPendingEventIndex = 0;
916
917        mLock.unlock(); // release lock before poll, must be before release_wake_lock
918        release_wake_lock(WAKE_LOCK_ID);
919
920        int pollResult = epoll_wait(mEpollFd, mPendingEventItems, EPOLL_MAX_EVENTS, timeoutMillis);
921
922        acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
923        mLock.lock(); // reacquire lock after poll, must be after acquire_wake_lock
924
925        if (pollResult == 0) {
926            // Timed out.
927            mPendingEventCount = 0;
928            break;
929        }
930
931        if (pollResult < 0) {
932            // An error occurred.
933            mPendingEventCount = 0;
934
935            // Sleep after errors to avoid locking up the system.
936            // Hopefully the error is transient.
937            if (errno != EINTR) {
938                ALOGW("poll failed (errno=%d)\n", errno);
939                usleep(100000);
940            }
941        } else {
942            // Some events occurred.
943            mPendingEventCount = size_t(pollResult);
944        }
945    }
946
947    // All done, return the number of events we read.
948    return event - buffer;
949}
950
951void EventHub::wake() {
952    ALOGV("wake() called");
953
954    ssize_t nWrite;
955    do {
956        nWrite = write(mWakeWritePipeFd, "W", 1);
957    } while (nWrite == -1 && errno == EINTR);
958
959    if (nWrite != 1 && errno != EAGAIN) {
960        ALOGW("Could not write wake signal, errno=%d", errno);
961    }
962}
963
964void EventHub::scanDevicesLocked() {
965    status_t res = scanDirLocked(DEVICE_PATH);
966    if(res < 0) {
967        ALOGE("scan dir failed for %s\n", DEVICE_PATH);
968    }
969    if (mDevices.indexOfKey(VIRTUAL_KEYBOARD_ID) < 0) {
970        createVirtualKeyboardLocked();
971    }
972}
973
974// ----------------------------------------------------------------------------
975
976static bool containsNonZeroByte(const uint8_t* array, uint32_t startIndex, uint32_t endIndex) {
977    const uint8_t* end = array + endIndex;
978    array += startIndex;
979    while (array != end) {
980        if (*(array++) != 0) {
981            return true;
982        }
983    }
984    return false;
985}
986
987static const int32_t GAMEPAD_KEYCODES[] = {
988        AKEYCODE_BUTTON_A, AKEYCODE_BUTTON_B, AKEYCODE_BUTTON_C,
989        AKEYCODE_BUTTON_X, AKEYCODE_BUTTON_Y, AKEYCODE_BUTTON_Z,
990        AKEYCODE_BUTTON_L1, AKEYCODE_BUTTON_R1,
991        AKEYCODE_BUTTON_L2, AKEYCODE_BUTTON_R2,
992        AKEYCODE_BUTTON_THUMBL, AKEYCODE_BUTTON_THUMBR,
993        AKEYCODE_BUTTON_START, AKEYCODE_BUTTON_SELECT, AKEYCODE_BUTTON_MODE,
994        AKEYCODE_BUTTON_1, AKEYCODE_BUTTON_2, AKEYCODE_BUTTON_3, AKEYCODE_BUTTON_4,
995        AKEYCODE_BUTTON_5, AKEYCODE_BUTTON_6, AKEYCODE_BUTTON_7, AKEYCODE_BUTTON_8,
996        AKEYCODE_BUTTON_9, AKEYCODE_BUTTON_10, AKEYCODE_BUTTON_11, AKEYCODE_BUTTON_12,
997        AKEYCODE_BUTTON_13, AKEYCODE_BUTTON_14, AKEYCODE_BUTTON_15, AKEYCODE_BUTTON_16,
998};
999
1000status_t EventHub::openDeviceLocked(const char *devicePath) {
1001    char buffer[80];
1002
1003    ALOGV("Opening device: %s", devicePath);
1004
1005    int fd = open(devicePath, O_RDWR | O_CLOEXEC);
1006    if(fd < 0) {
1007        ALOGE("could not open %s, %s\n", devicePath, strerror(errno));
1008        return -1;
1009    }
1010
1011    InputDeviceIdentifier identifier;
1012
1013    // Get device name.
1014    if(ioctl(fd, EVIOCGNAME(sizeof(buffer) - 1), &buffer) < 1) {
1015        //fprintf(stderr, "could not get device name for %s, %s\n", devicePath, strerror(errno));
1016    } else {
1017        buffer[sizeof(buffer) - 1] = '\0';
1018        identifier.name.setTo(buffer);
1019    }
1020
1021    // Check to see if the device is on our excluded list
1022    for (size_t i = 0; i < mExcludedDevices.size(); i++) {
1023        const String8& item = mExcludedDevices.itemAt(i);
1024        if (identifier.name == item) {
1025            ALOGI("ignoring event id %s driver %s\n", devicePath, item.string());
1026            close(fd);
1027            return -1;
1028        }
1029    }
1030
1031    // Get device driver version.
1032    int driverVersion;
1033    if(ioctl(fd, EVIOCGVERSION, &driverVersion)) {
1034        ALOGE("could not get driver version for %s, %s\n", devicePath, strerror(errno));
1035        close(fd);
1036        return -1;
1037    }
1038
1039    // Get device identifier.
1040    struct input_id inputId;
1041    if(ioctl(fd, EVIOCGID, &inputId)) {
1042        ALOGE("could not get device input id for %s, %s\n", devicePath, strerror(errno));
1043        close(fd);
1044        return -1;
1045    }
1046    identifier.bus = inputId.bustype;
1047    identifier.product = inputId.product;
1048    identifier.vendor = inputId.vendor;
1049    identifier.version = inputId.version;
1050
1051    // Get device physical location.
1052    if(ioctl(fd, EVIOCGPHYS(sizeof(buffer) - 1), &buffer) < 1) {
1053        //fprintf(stderr, "could not get location for %s, %s\n", devicePath, strerror(errno));
1054    } else {
1055        buffer[sizeof(buffer) - 1] = '\0';
1056        identifier.location.setTo(buffer);
1057    }
1058
1059    // Get device unique id.
1060    if(ioctl(fd, EVIOCGUNIQ(sizeof(buffer) - 1), &buffer) < 1) {
1061        //fprintf(stderr, "could not get idstring for %s, %s\n", devicePath, strerror(errno));
1062    } else {
1063        buffer[sizeof(buffer) - 1] = '\0';
1064        identifier.uniqueId.setTo(buffer);
1065    }
1066
1067    // Fill in the descriptor.
1068    setDescriptor(identifier);
1069
1070    // Make file descriptor non-blocking for use with poll().
1071    if (fcntl(fd, F_SETFL, O_NONBLOCK)) {
1072        ALOGE("Error %d making device file descriptor non-blocking.", errno);
1073        close(fd);
1074        return -1;
1075    }
1076
1077    // Allocate device.  (The device object takes ownership of the fd at this point.)
1078    int32_t deviceId = mNextDeviceId++;
1079    Device* device = new Device(fd, deviceId, String8(devicePath), identifier);
1080
1081    ALOGV("add device %d: %s\n", deviceId, devicePath);
1082    ALOGV("  bus:        %04x\n"
1083         "  vendor      %04x\n"
1084         "  product     %04x\n"
1085         "  version     %04x\n",
1086        identifier.bus, identifier.vendor, identifier.product, identifier.version);
1087    ALOGV("  name:       \"%s\"\n", identifier.name.string());
1088    ALOGV("  location:   \"%s\"\n", identifier.location.string());
1089    ALOGV("  unique id:  \"%s\"\n", identifier.uniqueId.string());
1090    ALOGV("  descriptor: \"%s\"\n", identifier.descriptor.string());
1091    ALOGV("  driver:     v%d.%d.%d\n",
1092        driverVersion >> 16, (driverVersion >> 8) & 0xff, driverVersion & 0xff);
1093
1094    // Load the configuration file for the device.
1095    loadConfigurationLocked(device);
1096
1097    // Figure out the kinds of events the device reports.
1098    ioctl(fd, EVIOCGBIT(EV_KEY, sizeof(device->keyBitmask)), device->keyBitmask);
1099    ioctl(fd, EVIOCGBIT(EV_ABS, sizeof(device->absBitmask)), device->absBitmask);
1100    ioctl(fd, EVIOCGBIT(EV_REL, sizeof(device->relBitmask)), device->relBitmask);
1101    ioctl(fd, EVIOCGBIT(EV_SW, sizeof(device->swBitmask)), device->swBitmask);
1102    ioctl(fd, EVIOCGBIT(EV_LED, sizeof(device->ledBitmask)), device->ledBitmask);
1103    ioctl(fd, EVIOCGBIT(EV_FF, sizeof(device->ffBitmask)), device->ffBitmask);
1104    ioctl(fd, EVIOCGPROP(sizeof(device->propBitmask)), device->propBitmask);
1105
1106    // See if this is a keyboard.  Ignore everything in the button range except for
1107    // joystick and gamepad buttons which are handled like keyboards for the most part.
1108    bool haveKeyboardKeys = containsNonZeroByte(device->keyBitmask, 0, sizeof_bit_array(BTN_MISC))
1109            || containsNonZeroByte(device->keyBitmask, sizeof_bit_array(KEY_OK),
1110                    sizeof_bit_array(KEY_MAX + 1));
1111    bool haveGamepadButtons = containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_MISC),
1112                    sizeof_bit_array(BTN_MOUSE))
1113            || containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_JOYSTICK),
1114                    sizeof_bit_array(BTN_DIGI));
1115    if (haveKeyboardKeys || haveGamepadButtons) {
1116        device->classes |= INPUT_DEVICE_CLASS_KEYBOARD;
1117    }
1118
1119    // See if this is a cursor device such as a trackball or mouse.
1120    if (test_bit(BTN_MOUSE, device->keyBitmask)
1121            && test_bit(REL_X, device->relBitmask)
1122            && test_bit(REL_Y, device->relBitmask)) {
1123        device->classes |= INPUT_DEVICE_CLASS_CURSOR;
1124    }
1125
1126    // See if this is a touch pad.
1127    // Is this a new modern multi-touch driver?
1128    if (test_bit(ABS_MT_POSITION_X, device->absBitmask)
1129            && test_bit(ABS_MT_POSITION_Y, device->absBitmask)) {
1130        // Some joysticks such as the PS3 controller report axes that conflict
1131        // with the ABS_MT range.  Try to confirm that the device really is
1132        // a touch screen.
1133        if (test_bit(BTN_TOUCH, device->keyBitmask) || !haveGamepadButtons) {
1134            device->classes |= INPUT_DEVICE_CLASS_TOUCH | INPUT_DEVICE_CLASS_TOUCH_MT;
1135        }
1136    // Is this an old style single-touch driver?
1137    } else if (test_bit(BTN_TOUCH, device->keyBitmask)
1138            && test_bit(ABS_X, device->absBitmask)
1139            && test_bit(ABS_Y, device->absBitmask)) {
1140        device->classes |= INPUT_DEVICE_CLASS_TOUCH;
1141    }
1142
1143    // See if this device is a joystick.
1144    // Assumes that joysticks always have gamepad buttons in order to distinguish them
1145    // from other devices such as accelerometers that also have absolute axes.
1146    if (haveGamepadButtons) {
1147        uint32_t assumedClasses = device->classes | INPUT_DEVICE_CLASS_JOYSTICK;
1148        for (int i = 0; i <= ABS_MAX; i++) {
1149            if (test_bit(i, device->absBitmask)
1150                    && (getAbsAxisUsage(i, assumedClasses) & INPUT_DEVICE_CLASS_JOYSTICK)) {
1151                device->classes = assumedClasses;
1152                break;
1153            }
1154        }
1155    }
1156
1157    // Check whether this device has switches.
1158    for (int i = 0; i <= SW_MAX; i++) {
1159        if (test_bit(i, device->swBitmask)) {
1160            device->classes |= INPUT_DEVICE_CLASS_SWITCH;
1161            break;
1162        }
1163    }
1164
1165    // Check whether this device supports the vibrator.
1166    if (test_bit(FF_RUMBLE, device->ffBitmask)) {
1167        device->classes |= INPUT_DEVICE_CLASS_VIBRATOR;
1168    }
1169
1170    // Configure virtual keys.
1171    if ((device->classes & INPUT_DEVICE_CLASS_TOUCH)) {
1172        // Load the virtual keys for the touch screen, if any.
1173        // We do this now so that we can make sure to load the keymap if necessary.
1174        status_t status = loadVirtualKeyMapLocked(device);
1175        if (!status) {
1176            device->classes |= INPUT_DEVICE_CLASS_KEYBOARD;
1177        }
1178    }
1179
1180    // Load the key map.
1181    // We need to do this for joysticks too because the key layout may specify axes.
1182    status_t keyMapStatus = NAME_NOT_FOUND;
1183    if (device->classes & (INPUT_DEVICE_CLASS_KEYBOARD | INPUT_DEVICE_CLASS_JOYSTICK)) {
1184        // Load the keymap for the device.
1185        keyMapStatus = loadKeyMapLocked(device);
1186    }
1187
1188    // Configure the keyboard, gamepad or virtual keyboard.
1189    if (device->classes & INPUT_DEVICE_CLASS_KEYBOARD) {
1190        // Register the keyboard as a built-in keyboard if it is eligible.
1191        if (!keyMapStatus
1192                && mBuiltInKeyboardId == NO_BUILT_IN_KEYBOARD
1193                && isEligibleBuiltInKeyboard(device->identifier,
1194                        device->configuration, &device->keyMap)) {
1195            mBuiltInKeyboardId = device->id;
1196        }
1197
1198        // 'Q' key support = cheap test of whether this is an alpha-capable kbd
1199        if (hasKeycodeLocked(device, AKEYCODE_Q)) {
1200            device->classes |= INPUT_DEVICE_CLASS_ALPHAKEY;
1201        }
1202
1203        // See if this device has a DPAD.
1204        if (hasKeycodeLocked(device, AKEYCODE_DPAD_UP) &&
1205                hasKeycodeLocked(device, AKEYCODE_DPAD_DOWN) &&
1206                hasKeycodeLocked(device, AKEYCODE_DPAD_LEFT) &&
1207                hasKeycodeLocked(device, AKEYCODE_DPAD_RIGHT) &&
1208                hasKeycodeLocked(device, AKEYCODE_DPAD_CENTER)) {
1209            device->classes |= INPUT_DEVICE_CLASS_DPAD;
1210        }
1211
1212        // See if this device has a gamepad.
1213        for (size_t i = 0; i < sizeof(GAMEPAD_KEYCODES)/sizeof(GAMEPAD_KEYCODES[0]); i++) {
1214            if (hasKeycodeLocked(device, GAMEPAD_KEYCODES[i])) {
1215                device->classes |= INPUT_DEVICE_CLASS_GAMEPAD;
1216                break;
1217            }
1218        }
1219
1220        // Disable kernel key repeat since we handle it ourselves
1221        unsigned int repeatRate[] = {0,0};
1222        if (ioctl(fd, EVIOCSREP, repeatRate)) {
1223            ALOGW("Unable to disable kernel key repeat for %s: %s", devicePath, strerror(errno));
1224        }
1225    }
1226
1227    // If the device isn't recognized as something we handle, don't monitor it.
1228    if (device->classes == 0) {
1229        ALOGV("Dropping device: id=%d, path='%s', name='%s'",
1230                deviceId, devicePath, device->identifier.name.string());
1231        delete device;
1232        return -1;
1233    }
1234
1235    // Determine whether the device is external or internal.
1236    if (isExternalDeviceLocked(device)) {
1237        device->classes |= INPUT_DEVICE_CLASS_EXTERNAL;
1238    }
1239
1240    if (device->classes & (INPUT_DEVICE_CLASS_JOYSTICK | INPUT_DEVICE_CLASS_GAMEPAD)) {
1241        device->controllerNumber = getNextControllerNumberLocked(device);
1242    }
1243
1244    // Register with epoll.
1245    struct epoll_event eventItem;
1246    memset(&eventItem, 0, sizeof(eventItem));
1247    eventItem.events = EPOLLIN;
1248    eventItem.data.u32 = deviceId;
1249    if (epoll_ctl(mEpollFd, EPOLL_CTL_ADD, fd, &eventItem)) {
1250        ALOGE("Could not add device fd to epoll instance.  errno=%d", errno);
1251        delete device;
1252        return -1;
1253    }
1254
1255    // Enable wake-lock behavior on kernels that support it.
1256    // TODO: Only need this for devices that can really wake the system.
1257    bool usingSuspendBlockIoctl = !ioctl(fd, EVIOCSSUSPENDBLOCK, 1);
1258
1259    // Tell the kernel that we want to use the monotonic clock for reporting timestamps
1260    // associated with input events.  This is important because the input system
1261    // uses the timestamps extensively and assumes they were recorded using the monotonic
1262    // clock.
1263    //
1264    // In older kernel, before Linux 3.4, there was no way to tell the kernel which
1265    // clock to use to input event timestamps.  The standard kernel behavior was to
1266    // record a real time timestamp, which isn't what we want.  Android kernels therefore
1267    // contained a patch to the evdev_event() function in drivers/input/evdev.c to
1268    // replace the call to do_gettimeofday() with ktime_get_ts() to cause the monotonic
1269    // clock to be used instead of the real time clock.
1270    //
1271    // As of Linux 3.4, there is a new EVIOCSCLOCKID ioctl to set the desired clock.
1272    // Therefore, we no longer require the Android-specific kernel patch described above
1273    // as long as we make sure to set select the monotonic clock.  We do that here.
1274    int clockId = CLOCK_MONOTONIC;
1275    bool usingClockIoctl = !ioctl(fd, EVIOCSCLOCKID, &clockId);
1276
1277    ALOGI("New device: id=%d, fd=%d, path='%s', name='%s', classes=0x%x, "
1278            "configuration='%s', keyLayout='%s', keyCharacterMap='%s', builtinKeyboard=%s, "
1279            "usingSuspendBlockIoctl=%s, usingClockIoctl=%s",
1280         deviceId, fd, devicePath, device->identifier.name.string(),
1281         device->classes,
1282         device->configurationFile.string(),
1283         device->keyMap.keyLayoutFile.string(),
1284         device->keyMap.keyCharacterMapFile.string(),
1285         toString(mBuiltInKeyboardId == deviceId),
1286         toString(usingSuspendBlockIoctl), toString(usingClockIoctl));
1287
1288    addDeviceLocked(device);
1289    return 0;
1290}
1291
1292void EventHub::createVirtualKeyboardLocked() {
1293    InputDeviceIdentifier identifier;
1294    identifier.name = "Virtual";
1295    identifier.uniqueId = "<virtual>";
1296    setDescriptor(identifier);
1297
1298    Device* device = new Device(-1, VIRTUAL_KEYBOARD_ID, String8("<virtual>"), identifier);
1299    device->classes = INPUT_DEVICE_CLASS_KEYBOARD
1300            | INPUT_DEVICE_CLASS_ALPHAKEY
1301            | INPUT_DEVICE_CLASS_DPAD
1302            | INPUT_DEVICE_CLASS_VIRTUAL;
1303    loadKeyMapLocked(device);
1304    addDeviceLocked(device);
1305}
1306
1307void EventHub::addDeviceLocked(Device* device) {
1308    mDevices.add(device->id, device);
1309    device->next = mOpeningDevices;
1310    mOpeningDevices = device;
1311}
1312
1313void EventHub::loadConfigurationLocked(Device* device) {
1314    device->configurationFile = getInputDeviceConfigurationFilePathByDeviceIdentifier(
1315            device->identifier, INPUT_DEVICE_CONFIGURATION_FILE_TYPE_CONFIGURATION);
1316    if (device->configurationFile.isEmpty()) {
1317        ALOGD("No input device configuration file found for device '%s'.",
1318                device->identifier.name.string());
1319    } else {
1320        status_t status = PropertyMap::load(device->configurationFile,
1321                &device->configuration);
1322        if (status) {
1323            ALOGE("Error loading input device configuration file for device '%s'.  "
1324                    "Using default configuration.",
1325                    device->identifier.name.string());
1326        }
1327    }
1328}
1329
1330status_t EventHub::loadVirtualKeyMapLocked(Device* device) {
1331    // The virtual key map is supplied by the kernel as a system board property file.
1332    String8 path;
1333    path.append("/sys/board_properties/virtualkeys.");
1334    path.append(device->identifier.name);
1335    if (access(path.string(), R_OK)) {
1336        return NAME_NOT_FOUND;
1337    }
1338    return VirtualKeyMap::load(path, &device->virtualKeyMap);
1339}
1340
1341status_t EventHub::loadKeyMapLocked(Device* device) {
1342    return device->keyMap.load(device->identifier, device->configuration);
1343}
1344
1345bool EventHub::isExternalDeviceLocked(Device* device) {
1346    if (device->configuration) {
1347        bool value;
1348        if (device->configuration->tryGetProperty(String8("device.internal"), value)) {
1349            return !value;
1350        }
1351    }
1352    return device->identifier.bus == BUS_USB || device->identifier.bus == BUS_BLUETOOTH;
1353}
1354
1355int32_t EventHub::getNextControllerNumberLocked(Device* device) {
1356    if (mControllerNumbers.isFull()) {
1357        ALOGI("Maximum number of controllers reached, assigning controller number 0 to device %s",
1358                device->identifier.name.string());
1359        return 0;
1360    }
1361    // Since the controller number 0 is reserved for non-controllers, translate all numbers up by
1362    // one
1363    return static_cast<int32_t>(mControllerNumbers.markFirstUnmarkedBit() + 1);
1364}
1365
1366void EventHub::releaseControllerNumberLocked(Device* device) {
1367    int32_t num = device->controllerNumber;
1368    device->controllerNumber= 0;
1369    if (num == 0) {
1370        return;
1371    }
1372    mControllerNumbers.clearBit(static_cast<uint32_t>(num - 1));
1373}
1374
1375
1376bool EventHub::hasKeycodeLocked(Device* device, int keycode) const {
1377    if (!device->keyMap.haveKeyLayout() || !device->keyBitmask) {
1378        return false;
1379    }
1380
1381    Vector<int32_t> scanCodes;
1382    device->keyMap.keyLayoutMap->findScanCodesForKey(keycode, &scanCodes);
1383    const size_t N = scanCodes.size();
1384    for (size_t i=0; i<N && i<=KEY_MAX; i++) {
1385        int32_t sc = scanCodes.itemAt(i);
1386        if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, device->keyBitmask)) {
1387            return true;
1388        }
1389    }
1390
1391    return false;
1392}
1393
1394status_t EventHub::closeDeviceByPathLocked(const char *devicePath) {
1395    Device* device = getDeviceByPathLocked(devicePath);
1396    if (device) {
1397        closeDeviceLocked(device);
1398        return 0;
1399    }
1400    ALOGV("Remove device: %s not found, device may already have been removed.", devicePath);
1401    return -1;
1402}
1403
1404void EventHub::closeAllDevicesLocked() {
1405    while (mDevices.size() > 0) {
1406        closeDeviceLocked(mDevices.valueAt(mDevices.size() - 1));
1407    }
1408}
1409
1410void EventHub::closeDeviceLocked(Device* device) {
1411    ALOGI("Removed device: path=%s name=%s id=%d fd=%d classes=0x%x\n",
1412         device->path.string(), device->identifier.name.string(), device->id,
1413         device->fd, device->classes);
1414
1415    if (device->id == mBuiltInKeyboardId) {
1416        ALOGW("built-in keyboard device %s (id=%d) is closing! the apps will not like this",
1417                device->path.string(), mBuiltInKeyboardId);
1418        mBuiltInKeyboardId = NO_BUILT_IN_KEYBOARD;
1419    }
1420
1421    if (!device->isVirtual()) {
1422        if (epoll_ctl(mEpollFd, EPOLL_CTL_DEL, device->fd, NULL)) {
1423            ALOGW("Could not remove device fd from epoll instance.  errno=%d", errno);
1424        }
1425    }
1426
1427    releaseControllerNumberLocked(device);
1428
1429    mDevices.removeItem(device->id);
1430    device->close();
1431
1432    // Unlink for opening devices list if it is present.
1433    Device* pred = NULL;
1434    bool found = false;
1435    for (Device* entry = mOpeningDevices; entry != NULL; ) {
1436        if (entry == device) {
1437            found = true;
1438            break;
1439        }
1440        pred = entry;
1441        entry = entry->next;
1442    }
1443    if (found) {
1444        // Unlink the device from the opening devices list then delete it.
1445        // We don't need to tell the client that the device was closed because
1446        // it does not even know it was opened in the first place.
1447        ALOGI("Device %s was immediately closed after opening.", device->path.string());
1448        if (pred) {
1449            pred->next = device->next;
1450        } else {
1451            mOpeningDevices = device->next;
1452        }
1453        delete device;
1454    } else {
1455        // Link into closing devices list.
1456        // The device will be deleted later after we have informed the client.
1457        device->next = mClosingDevices;
1458        mClosingDevices = device;
1459    }
1460}
1461
1462status_t EventHub::readNotifyLocked() {
1463    int res;
1464    char devname[PATH_MAX];
1465    char *filename;
1466    char event_buf[512];
1467    int event_size;
1468    int event_pos = 0;
1469    struct inotify_event *event;
1470
1471    ALOGV("EventHub::readNotify nfd: %d\n", mINotifyFd);
1472    res = read(mINotifyFd, event_buf, sizeof(event_buf));
1473    if(res < (int)sizeof(*event)) {
1474        if(errno == EINTR)
1475            return 0;
1476        ALOGW("could not get event, %s\n", strerror(errno));
1477        return -1;
1478    }
1479    //printf("got %d bytes of event information\n", res);
1480
1481    strcpy(devname, DEVICE_PATH);
1482    filename = devname + strlen(devname);
1483    *filename++ = '/';
1484
1485    while(res >= (int)sizeof(*event)) {
1486        event = (struct inotify_event *)(event_buf + event_pos);
1487        //printf("%d: %08x \"%s\"\n", event->wd, event->mask, event->len ? event->name : "");
1488        if(event->len) {
1489            strcpy(filename, event->name);
1490            if(event->mask & IN_CREATE) {
1491                openDeviceLocked(devname);
1492            } else {
1493                ALOGI("Removing device '%s' due to inotify event\n", devname);
1494                closeDeviceByPathLocked(devname);
1495            }
1496        }
1497        event_size = sizeof(*event) + event->len;
1498        res -= event_size;
1499        event_pos += event_size;
1500    }
1501    return 0;
1502}
1503
1504status_t EventHub::scanDirLocked(const char *dirname)
1505{
1506    char devname[PATH_MAX];
1507    char *filename;
1508    DIR *dir;
1509    struct dirent *de;
1510    dir = opendir(dirname);
1511    if(dir == NULL)
1512        return -1;
1513    strcpy(devname, dirname);
1514    filename = devname + strlen(devname);
1515    *filename++ = '/';
1516    while((de = readdir(dir))) {
1517        if(de->d_name[0] == '.' &&
1518           (de->d_name[1] == '\0' ||
1519            (de->d_name[1] == '.' && de->d_name[2] == '\0')))
1520            continue;
1521        strcpy(filename, de->d_name);
1522        openDeviceLocked(devname);
1523    }
1524    closedir(dir);
1525    return 0;
1526}
1527
1528void EventHub::requestReopenDevices() {
1529    ALOGV("requestReopenDevices() called");
1530
1531    AutoMutex _l(mLock);
1532    mNeedToReopenDevices = true;
1533}
1534
1535void EventHub::dump(String8& dump) {
1536    dump.append("Event Hub State:\n");
1537
1538    { // acquire lock
1539        AutoMutex _l(mLock);
1540
1541        dump.appendFormat(INDENT "BuiltInKeyboardId: %d\n", mBuiltInKeyboardId);
1542
1543        dump.append(INDENT "Devices:\n");
1544
1545        for (size_t i = 0; i < mDevices.size(); i++) {
1546            const Device* device = mDevices.valueAt(i);
1547            if (mBuiltInKeyboardId == device->id) {
1548                dump.appendFormat(INDENT2 "%d: %s (aka device 0 - built-in keyboard)\n",
1549                        device->id, device->identifier.name.string());
1550            } else {
1551                dump.appendFormat(INDENT2 "%d: %s\n", device->id,
1552                        device->identifier.name.string());
1553            }
1554            dump.appendFormat(INDENT3 "Classes: 0x%08x\n", device->classes);
1555            dump.appendFormat(INDENT3 "Path: %s\n", device->path.string());
1556            dump.appendFormat(INDENT3 "Descriptor: %s\n", device->identifier.descriptor.string());
1557            dump.appendFormat(INDENT3 "Location: %s\n", device->identifier.location.string());
1558            dump.appendFormat(INDENT3 "ControllerNumber: %d\n", device->controllerNumber);
1559            dump.appendFormat(INDENT3 "UniqueId: %s\n", device->identifier.uniqueId.string());
1560            dump.appendFormat(INDENT3 "Identifier: bus=0x%04x, vendor=0x%04x, "
1561                    "product=0x%04x, version=0x%04x\n",
1562                    device->identifier.bus, device->identifier.vendor,
1563                    device->identifier.product, device->identifier.version);
1564            dump.appendFormat(INDENT3 "KeyLayoutFile: %s\n",
1565                    device->keyMap.keyLayoutFile.string());
1566            dump.appendFormat(INDENT3 "KeyCharacterMapFile: %s\n",
1567                    device->keyMap.keyCharacterMapFile.string());
1568            dump.appendFormat(INDENT3 "ConfigurationFile: %s\n",
1569                    device->configurationFile.string());
1570            dump.appendFormat(INDENT3 "HaveKeyboardLayoutOverlay: %s\n",
1571                    toString(device->overlayKeyMap != NULL));
1572        }
1573    } // release lock
1574}
1575
1576void EventHub::monitor() {
1577    // Acquire and release the lock to ensure that the event hub has not deadlocked.
1578    mLock.lock();
1579    mLock.unlock();
1580}
1581
1582
1583}; // namespace android
1584