1//===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Bitcode writer implementation.
11//
12//===----------------------------------------------------------------------===//
13
14#include "ReaderWriter_2_9_func.h"
15#include "legacy_bitcode.h"
16#include "ValueEnumerator.h"
17#include "llvm/ADT/Triple.h"
18#include "llvm/Bitcode/BitstreamWriter.h"
19#include "llvm/Bitcode/LLVMBitCodes.h"
20#include "llvm/IR/Constants.h"
21#include "llvm/IR/DerivedTypes.h"
22#include "llvm/IR/InlineAsm.h"
23#include "llvm/IR/Instructions.h"
24#include "llvm/IR/Module.h"
25#include "llvm/IR/Operator.h"
26#include "llvm/IR/ValueSymbolTable.h"
27#include "llvm/Support/ErrorHandling.h"
28#include "llvm/Support/MathExtras.h"
29#include "llvm/Support/Program.h"
30#include "llvm/Support/raw_ostream.h"
31#include <cctype>
32#include <map>
33using namespace llvm;
34
35/// These are manifest constants used by the bitcode writer. They do not need to
36/// be kept in sync with the reader, but need to be consistent within this file.
37enum {
38  CurVersion = 0,
39
40  // VALUE_SYMTAB_BLOCK abbrev id's.
41  VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
42  VST_ENTRY_7_ABBREV,
43  VST_ENTRY_6_ABBREV,
44  VST_BBENTRY_6_ABBREV,
45
46  // CONSTANTS_BLOCK abbrev id's.
47  CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
48  CONSTANTS_INTEGER_ABBREV,
49  CONSTANTS_CE_CAST_Abbrev,
50  CONSTANTS_NULL_Abbrev,
51
52  // FUNCTION_BLOCK abbrev id's.
53  FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
54  FUNCTION_INST_BINOP_ABBREV,
55  FUNCTION_INST_BINOP_FLAGS_ABBREV,
56  FUNCTION_INST_CAST_ABBREV,
57  FUNCTION_INST_RET_VOID_ABBREV,
58  FUNCTION_INST_RET_VAL_ABBREV,
59  FUNCTION_INST_UNREACHABLE_ABBREV
60};
61
62
63static unsigned GetEncodedCastOpcode(unsigned Opcode) {
64  switch (Opcode) {
65  default: llvm_unreachable("Unknown cast instruction!");
66  case Instruction::Trunc   : return bitc::CAST_TRUNC;
67  case Instruction::ZExt    : return bitc::CAST_ZEXT;
68  case Instruction::SExt    : return bitc::CAST_SEXT;
69  case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
70  case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
71  case Instruction::UIToFP  : return bitc::CAST_UITOFP;
72  case Instruction::SIToFP  : return bitc::CAST_SITOFP;
73  case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
74  case Instruction::FPExt   : return bitc::CAST_FPEXT;
75  case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
76  case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
77  case Instruction::BitCast : return bitc::CAST_BITCAST;
78  }
79}
80
81static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
82  switch (Opcode) {
83  default: llvm_unreachable("Unknown binary instruction!");
84  case Instruction::Add:
85  case Instruction::FAdd: return bitc::BINOP_ADD;
86  case Instruction::Sub:
87  case Instruction::FSub: return bitc::BINOP_SUB;
88  case Instruction::Mul:
89  case Instruction::FMul: return bitc::BINOP_MUL;
90  case Instruction::UDiv: return bitc::BINOP_UDIV;
91  case Instruction::FDiv:
92  case Instruction::SDiv: return bitc::BINOP_SDIV;
93  case Instruction::URem: return bitc::BINOP_UREM;
94  case Instruction::FRem:
95  case Instruction::SRem: return bitc::BINOP_SREM;
96  case Instruction::Shl:  return bitc::BINOP_SHL;
97  case Instruction::LShr: return bitc::BINOP_LSHR;
98  case Instruction::AShr: return bitc::BINOP_ASHR;
99  case Instruction::And:  return bitc::BINOP_AND;
100  case Instruction::Or:   return bitc::BINOP_OR;
101  case Instruction::Xor:  return bitc::BINOP_XOR;
102  }
103}
104
105static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
106  switch (Op) {
107  default: llvm_unreachable("Unknown RMW operation!");
108  case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
109  case AtomicRMWInst::Add: return bitc::RMW_ADD;
110  case AtomicRMWInst::Sub: return bitc::RMW_SUB;
111  case AtomicRMWInst::And: return bitc::RMW_AND;
112  case AtomicRMWInst::Nand: return bitc::RMW_NAND;
113  case AtomicRMWInst::Or: return bitc::RMW_OR;
114  case AtomicRMWInst::Xor: return bitc::RMW_XOR;
115  case AtomicRMWInst::Max: return bitc::RMW_MAX;
116  case AtomicRMWInst::Min: return bitc::RMW_MIN;
117  case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
118  case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
119  }
120}
121
122static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
123  switch (Ordering) {
124  default: llvm_unreachable("Unknown atomic ordering");
125  case NotAtomic: return bitc::ORDERING_NOTATOMIC;
126  case Unordered: return bitc::ORDERING_UNORDERED;
127  case Monotonic: return bitc::ORDERING_MONOTONIC;
128  case Acquire: return bitc::ORDERING_ACQUIRE;
129  case Release: return bitc::ORDERING_RELEASE;
130  case AcquireRelease: return bitc::ORDERING_ACQREL;
131  case SequentiallyConsistent: return bitc::ORDERING_SEQCST;
132  }
133}
134
135static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
136  switch (SynchScope) {
137  default: llvm_unreachable("Unknown synchronization scope");
138  case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
139  case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
140  }
141}
142
143static void WriteStringRecord(unsigned Code, StringRef Str,
144                              unsigned AbbrevToUse, BitstreamWriter &Stream) {
145  SmallVector<unsigned, 64> Vals;
146
147  // Code: [strchar x N]
148  for (unsigned i = 0, e = Str.size(); i != e; ++i) {
149    if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
150      AbbrevToUse = 0;
151    Vals.push_back(Str[i]);
152  }
153
154  // Emit the finished record.
155  Stream.EmitRecord(Code, Vals, AbbrevToUse);
156}
157
158// Emit information about parameter attributes.
159static void WriteAttributeTable(const llvm_2_9_func::ValueEnumerator &VE,
160                                BitstreamWriter &Stream) {
161  const std::vector<AttributeSet> &Attrs = VE.getAttributes();
162  if (Attrs.empty()) return;
163
164  Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
165
166  SmallVector<uint64_t, 64> Record;
167  for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
168    const AttributeSet &A = Attrs[i];
169    for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
170      Record.push_back(A.getSlotIndex(i));
171      Record.push_back(encodeLLVMAttributesForBitcode(A, A.getSlotIndex(i)));
172    }
173
174    // This needs to use the 3.2 entry type
175    Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY_OLD, Record);
176    Record.clear();
177  }
178
179  Stream.ExitBlock();
180}
181
182/// WriteTypeTable - Write out the type table for a module.
183static void WriteTypeTable(const llvm_2_9_func::ValueEnumerator &VE,
184                           BitstreamWriter &Stream) {
185  const llvm_2_9_func::ValueEnumerator::TypeList &TypeList = VE.getTypes();
186
187  Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
188  SmallVector<uint64_t, 64> TypeVals;
189
190  // Abbrev for TYPE_CODE_POINTER.
191  BitCodeAbbrev *Abbv = new BitCodeAbbrev();
192  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
193  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
194                            Log2_32_Ceil(VE.getTypes().size()+1)));
195  Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
196  unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
197
198  // Abbrev for TYPE_CODE_FUNCTION.
199  Abbv = new BitCodeAbbrev();
200  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION_OLD));
201  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
202  Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0
203  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
204  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
205                            Log2_32_Ceil(VE.getTypes().size()+1)));
206  unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
207
208  // Abbrev for TYPE_CODE_STRUCT_ANON.
209  Abbv = new BitCodeAbbrev();
210  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
211  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
212  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
213  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
214                            Log2_32_Ceil(VE.getTypes().size()+1)));
215  unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
216
217  // Abbrev for TYPE_CODE_STRUCT_NAME.
218  Abbv = new BitCodeAbbrev();
219  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
220  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
221  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
222  unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
223
224  // Abbrev for TYPE_CODE_STRUCT_NAMED.
225  Abbv = new BitCodeAbbrev();
226  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
227  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
228  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
229  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
230                            Log2_32_Ceil(VE.getTypes().size()+1)));
231  unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
232
233  // Abbrev for TYPE_CODE_ARRAY.
234  Abbv = new BitCodeAbbrev();
235  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
236  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
237  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
238                            Log2_32_Ceil(VE.getTypes().size()+1)));
239  unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
240
241  // Emit an entry count so the reader can reserve space.
242  TypeVals.push_back(TypeList.size());
243  Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
244  TypeVals.clear();
245
246  // Loop over all of the types, emitting each in turn.
247  for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
248    Type *T = TypeList[i];
249    int AbbrevToUse = 0;
250    unsigned Code = 0;
251
252    switch (T->getTypeID()) {
253    default: llvm_unreachable("Unknown type!");
254    case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;   break;
255    case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;  break;
256    case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE; break;
257    case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80; break;
258    case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128; break;
259    case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
260    case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;  break;
261    case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA; break;
262    case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX; break;
263    case Type::IntegerTyID:
264      // INTEGER: [width]
265      Code = bitc::TYPE_CODE_INTEGER;
266      TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
267      break;
268    case Type::PointerTyID: {
269      PointerType *PTy = cast<PointerType>(T);
270      // POINTER: [pointee type, address space]
271      Code = bitc::TYPE_CODE_POINTER;
272      TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
273      unsigned AddressSpace = PTy->getAddressSpace();
274      TypeVals.push_back(AddressSpace);
275      if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
276      break;
277    }
278    case Type::FunctionTyID: {
279      FunctionType *FT = cast<FunctionType>(T);
280      // FUNCTION: [isvararg, attrid, retty, paramty x N]
281      Code = bitc::TYPE_CODE_FUNCTION_OLD;
282      TypeVals.push_back(FT->isVarArg());
283      TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0
284      TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
285      for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
286        TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
287      AbbrevToUse = FunctionAbbrev;
288      break;
289    }
290    case Type::StructTyID: {
291      StructType *ST = cast<StructType>(T);
292      // STRUCT: [ispacked, eltty x N]
293      TypeVals.push_back(ST->isPacked());
294      // Output all of the element types.
295      for (StructType::element_iterator I = ST->element_begin(),
296           E = ST->element_end(); I != E; ++I)
297        TypeVals.push_back(VE.getTypeID(*I));
298
299      if (ST->isLiteral()) {
300        Code = bitc::TYPE_CODE_STRUCT_ANON;
301        AbbrevToUse = StructAnonAbbrev;
302      } else {
303        if (ST->isOpaque()) {
304          Code = bitc::TYPE_CODE_OPAQUE;
305        } else {
306          Code = bitc::TYPE_CODE_STRUCT_NAMED;
307          AbbrevToUse = StructNamedAbbrev;
308        }
309
310        // Emit the name if it is present.
311        if (!ST->getName().empty())
312          WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
313                            StructNameAbbrev, Stream);
314      }
315      break;
316    }
317    case Type::ArrayTyID: {
318      ArrayType *AT = cast<ArrayType>(T);
319      // ARRAY: [numelts, eltty]
320      Code = bitc::TYPE_CODE_ARRAY;
321      TypeVals.push_back(AT->getNumElements());
322      TypeVals.push_back(VE.getTypeID(AT->getElementType()));
323      AbbrevToUse = ArrayAbbrev;
324      break;
325    }
326    case Type::VectorTyID: {
327      VectorType *VT = cast<VectorType>(T);
328      // VECTOR [numelts, eltty]
329      Code = bitc::TYPE_CODE_VECTOR;
330      TypeVals.push_back(VT->getNumElements());
331      TypeVals.push_back(VE.getTypeID(VT->getElementType()));
332      break;
333    }
334    }
335
336    // Emit the finished record.
337    Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
338    TypeVals.clear();
339  }
340
341  Stream.ExitBlock();
342}
343
344static unsigned getEncodedLinkage(const GlobalValue *GV) {
345  switch (GV->getLinkage()) {
346  case GlobalValue::ExternalLinkage:                 return 0;
347  case GlobalValue::WeakAnyLinkage:                  return 1;
348  case GlobalValue::AppendingLinkage:                return 2;
349  case GlobalValue::InternalLinkage:                 return 3;
350  case GlobalValue::LinkOnceAnyLinkage:              return 4;
351  case GlobalValue::DLLImportLinkage:                return 5;
352  case GlobalValue::DLLExportLinkage:                return 6;
353  case GlobalValue::ExternalWeakLinkage:             return 7;
354  case GlobalValue::CommonLinkage:                   return 8;
355  case GlobalValue::PrivateLinkage:                  return 9;
356  case GlobalValue::WeakODRLinkage:                  return 10;
357  case GlobalValue::LinkOnceODRLinkage:              return 11;
358  case GlobalValue::AvailableExternallyLinkage:      return 12;
359  case GlobalValue::LinkerPrivateLinkage:            return 13;
360  case GlobalValue::LinkerPrivateWeakLinkage:        return 14;
361  case GlobalValue::LinkOnceODRAutoHideLinkage:      return 15;
362  }
363  llvm_unreachable("Invalid linkage");
364}
365
366static unsigned getEncodedVisibility(const GlobalValue *GV) {
367  switch (GV->getVisibility()) {
368  default: llvm_unreachable("Invalid visibility!");
369  case GlobalValue::DefaultVisibility:   return 0;
370  case GlobalValue::HiddenVisibility:    return 1;
371  case GlobalValue::ProtectedVisibility: return 2;
372  }
373}
374
375// Emit top-level description of module, including target triple, inline asm,
376// descriptors for global variables, and function prototype info.
377static void WriteModuleInfo(const Module *M,
378                            const llvm_2_9_func::ValueEnumerator &VE,
379                            BitstreamWriter &Stream) {
380  // Emit various pieces of data attached to a module.
381  if (!M->getTargetTriple().empty())
382    WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
383                      0/*TODO*/, Stream);
384  if (!M->getDataLayout().empty())
385    WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
386                      0/*TODO*/, Stream);
387  if (!M->getModuleInlineAsm().empty())
388    WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
389                      0/*TODO*/, Stream);
390
391  // Emit information about sections and GC, computing how many there are. Also
392  // compute the maximum alignment value.
393  std::map<std::string, unsigned> SectionMap;
394  std::map<std::string, unsigned> GCMap;
395  unsigned MaxAlignment = 0;
396  unsigned MaxGlobalType = 0;
397  for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
398       GV != E; ++GV) {
399    MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
400    MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
401
402    if (!GV->hasSection()) continue;
403    // Give section names unique ID's.
404    unsigned &Entry = SectionMap[GV->getSection()];
405    if (Entry != 0) continue;
406    WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
407                      0/*TODO*/, Stream);
408    Entry = SectionMap.size();
409  }
410  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
411    MaxAlignment = std::max(MaxAlignment, F->getAlignment());
412    if (F->hasSection()) {
413      // Give section names unique ID's.
414      unsigned &Entry = SectionMap[F->getSection()];
415      if (!Entry) {
416        WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
417                          0/*TODO*/, Stream);
418        Entry = SectionMap.size();
419      }
420    }
421    if (F->hasGC()) {
422      // Same for GC names.
423      unsigned &Entry = GCMap[F->getGC()];
424      if (!Entry) {
425        WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
426                          0/*TODO*/, Stream);
427        Entry = GCMap.size();
428      }
429    }
430  }
431
432  // Emit abbrev for globals, now that we know # sections and max alignment.
433  unsigned SimpleGVarAbbrev = 0;
434  if (!M->global_empty()) {
435    // Add an abbrev for common globals with no visibility or thread localness.
436    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
437    Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
438    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
439                              Log2_32_Ceil(MaxGlobalType+1)));
440    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
441    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
442    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
443    if (MaxAlignment == 0)                                      // Alignment.
444      Abbv->Add(BitCodeAbbrevOp(0));
445    else {
446      unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
447      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
448                               Log2_32_Ceil(MaxEncAlignment+1)));
449    }
450    if (SectionMap.empty())                                    // Section.
451      Abbv->Add(BitCodeAbbrevOp(0));
452    else
453      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
454                               Log2_32_Ceil(SectionMap.size()+1)));
455    // Don't bother emitting vis + thread local.
456    SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
457  }
458
459  // Emit the global variable information.
460  SmallVector<unsigned, 64> Vals;
461  for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
462       GV != E; ++GV) {
463    unsigned AbbrevToUse = 0;
464
465    // GLOBALVAR: [type, isconst, initid,
466    //             linkage, alignment, section, visibility, threadlocal,
467    //             unnamed_addr]
468    Vals.push_back(VE.getTypeID(GV->getType()));
469    Vals.push_back(GV->isConstant());
470    Vals.push_back(GV->isDeclaration() ? 0 :
471                   (VE.getValueID(GV->getInitializer()) + 1));
472    Vals.push_back(getEncodedLinkage(GV));
473    Vals.push_back(Log2_32(GV->getAlignment())+1);
474    Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
475    if (GV->isThreadLocal() ||
476        GV->getVisibility() != GlobalValue::DefaultVisibility ||
477        GV->hasUnnamedAddr()) {
478      Vals.push_back(getEncodedVisibility(GV));
479      Vals.push_back(GV->isThreadLocal());
480      Vals.push_back(GV->hasUnnamedAddr());
481    } else {
482      AbbrevToUse = SimpleGVarAbbrev;
483    }
484
485    Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
486    Vals.clear();
487  }
488
489  // Emit the function proto information.
490  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
491    // FUNCTION:  [type, callingconv, isproto, paramattr,
492    //             linkage, alignment, section, visibility, gc, unnamed_addr]
493    Vals.push_back(VE.getTypeID(F->getType()));
494    Vals.push_back(F->getCallingConv());
495    Vals.push_back(F->isDeclaration());
496    Vals.push_back(getEncodedLinkage(F));
497    Vals.push_back(VE.getAttributeID(F->getAttributes()));
498    Vals.push_back(Log2_32(F->getAlignment())+1);
499    Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
500    Vals.push_back(getEncodedVisibility(F));
501    Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
502    Vals.push_back(F->hasUnnamedAddr());
503
504    unsigned AbbrevToUse = 0;
505    Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
506    Vals.clear();
507  }
508
509  // Emit the alias information.
510  for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
511       AI != E; ++AI) {
512    Vals.push_back(VE.getTypeID(AI->getType()));
513    Vals.push_back(VE.getValueID(AI->getAliasee()));
514    Vals.push_back(getEncodedLinkage(AI));
515    Vals.push_back(getEncodedVisibility(AI));
516    unsigned AbbrevToUse = 0;
517    Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
518    Vals.clear();
519  }
520}
521
522static uint64_t GetOptimizationFlags(const Value *V) {
523  uint64_t Flags = 0;
524
525  if (const OverflowingBinaryOperator *OBO =
526        dyn_cast<OverflowingBinaryOperator>(V)) {
527    if (OBO->hasNoSignedWrap())
528      Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
529    if (OBO->hasNoUnsignedWrap())
530      Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
531  } else if (const PossiblyExactOperator *PEO =
532               dyn_cast<PossiblyExactOperator>(V)) {
533    if (PEO->isExact())
534      Flags |= 1 << bitc::PEO_EXACT;
535  }
536
537  return Flags;
538}
539
540static void WriteMDNode(const MDNode *N,
541                        const llvm_2_9_func::ValueEnumerator &VE,
542                        BitstreamWriter &Stream,
543                        SmallVector<uint64_t, 64> &Record) {
544  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
545    if (N->getOperand(i)) {
546      Record.push_back(VE.getTypeID(N->getOperand(i)->getType()));
547      Record.push_back(VE.getValueID(N->getOperand(i)));
548    } else {
549      Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
550      Record.push_back(0);
551    }
552  }
553  unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE :
554                                           bitc::METADATA_NODE;
555  Stream.EmitRecord(MDCode, Record, 0);
556  Record.clear();
557}
558
559static void WriteModuleMetadata(const Module *M,
560                                const llvm_2_9_func::ValueEnumerator &VE,
561                                BitstreamWriter &Stream) {
562  const llvm_2_9_func::ValueEnumerator::ValueList &Vals = VE.getMDValues();
563  bool StartedMetadataBlock = false;
564  unsigned MDSAbbrev = 0;
565  SmallVector<uint64_t, 64> Record;
566  for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
567
568    if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
569      if (!N->isFunctionLocal() || !N->getFunction()) {
570        if (!StartedMetadataBlock) {
571          Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
572          StartedMetadataBlock = true;
573        }
574        WriteMDNode(N, VE, Stream, Record);
575      }
576    } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
577      if (!StartedMetadataBlock)  {
578        Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
579
580        // Abbrev for METADATA_STRING.
581        BitCodeAbbrev *Abbv = new BitCodeAbbrev();
582        Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
583        Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
584        Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
585        MDSAbbrev = Stream.EmitAbbrev(Abbv);
586        StartedMetadataBlock = true;
587      }
588
589      // Code: [strchar x N]
590      Record.append(MDS->begin(), MDS->end());
591
592      // Emit the finished record.
593      Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
594      Record.clear();
595    }
596  }
597
598  // Write named metadata.
599  for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
600       E = M->named_metadata_end(); I != E; ++I) {
601    const NamedMDNode *NMD = I;
602    if (!StartedMetadataBlock)  {
603      Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
604      StartedMetadataBlock = true;
605    }
606
607    // Write name.
608    StringRef Str = NMD->getName();
609    for (unsigned i = 0, e = Str.size(); i != e; ++i)
610      Record.push_back(Str[i]);
611    Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
612    Record.clear();
613
614    // Write named metadata operands.
615    for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
616      Record.push_back(VE.getValueID(NMD->getOperand(i)));
617    Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
618    Record.clear();
619  }
620
621  if (StartedMetadataBlock)
622    Stream.ExitBlock();
623}
624
625static void WriteFunctionLocalMetadata(const Function &F,
626                                       const llvm_2_9_func::ValueEnumerator &VE,
627                                       BitstreamWriter &Stream) {
628  bool StartedMetadataBlock = false;
629  SmallVector<uint64_t, 64> Record;
630  const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues();
631  for (unsigned i = 0, e = Vals.size(); i != e; ++i)
632    if (const MDNode *N = Vals[i])
633      if (N->isFunctionLocal() && N->getFunction() == &F) {
634        if (!StartedMetadataBlock) {
635          Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
636          StartedMetadataBlock = true;
637        }
638        WriteMDNode(N, VE, Stream, Record);
639      }
640
641  if (StartedMetadataBlock)
642    Stream.ExitBlock();
643}
644
645static void WriteMetadataAttachment(const Function &F,
646                                    const llvm_2_9_func::ValueEnumerator &VE,
647                                    BitstreamWriter &Stream) {
648  Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
649
650  SmallVector<uint64_t, 64> Record;
651
652  // Write metadata attachments
653  // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
654  SmallVector<std::pair<unsigned, MDNode*>, 4> MDs;
655
656  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
657    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
658         I != E; ++I) {
659      MDs.clear();
660      I->getAllMetadataOtherThanDebugLoc(MDs);
661
662      // If no metadata, ignore instruction.
663      if (MDs.empty()) continue;
664
665      Record.push_back(VE.getInstructionID(I));
666
667      for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
668        Record.push_back(MDs[i].first);
669        Record.push_back(VE.getValueID(MDs[i].second));
670      }
671      Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
672      Record.clear();
673    }
674
675  Stream.ExitBlock();
676}
677
678static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
679  SmallVector<uint64_t, 64> Record;
680
681  // Write metadata kinds
682  // METADATA_KIND - [n x [id, name]]
683  SmallVector<StringRef, 4> Names;
684  M->getMDKindNames(Names);
685
686  if (Names.empty()) return;
687
688  Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
689
690  for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
691    Record.push_back(MDKindID);
692    StringRef KName = Names[MDKindID];
693    Record.append(KName.begin(), KName.end());
694
695    Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
696    Record.clear();
697  }
698
699  Stream.ExitBlock();
700}
701
702static void WriteConstants(unsigned FirstVal, unsigned LastVal,
703                           const llvm_2_9_func::ValueEnumerator &VE,
704                           BitstreamWriter &Stream, bool isGlobal) {
705  if (FirstVal == LastVal) return;
706
707  Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
708
709  unsigned AggregateAbbrev = 0;
710  unsigned String8Abbrev = 0;
711  unsigned CString7Abbrev = 0;
712  unsigned CString6Abbrev = 0;
713  // If this is a constant pool for the module, emit module-specific abbrevs.
714  if (isGlobal) {
715    // Abbrev for CST_CODE_AGGREGATE.
716    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
717    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
718    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
719    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
720    AggregateAbbrev = Stream.EmitAbbrev(Abbv);
721
722    // Abbrev for CST_CODE_STRING.
723    Abbv = new BitCodeAbbrev();
724    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
725    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
726    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
727    String8Abbrev = Stream.EmitAbbrev(Abbv);
728    // Abbrev for CST_CODE_CSTRING.
729    Abbv = new BitCodeAbbrev();
730    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
731    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
732    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
733    CString7Abbrev = Stream.EmitAbbrev(Abbv);
734    // Abbrev for CST_CODE_CSTRING.
735    Abbv = new BitCodeAbbrev();
736    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
737    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
738    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
739    CString6Abbrev = Stream.EmitAbbrev(Abbv);
740  }
741
742  SmallVector<uint64_t, 64> Record;
743
744  const llvm_2_9_func::ValueEnumerator::ValueList &Vals = VE.getValues();
745  Type *LastTy = 0;
746  for (unsigned i = FirstVal; i != LastVal; ++i) {
747    const Value *V = Vals[i].first;
748    // If we need to switch types, do so now.
749    if (V->getType() != LastTy) {
750      LastTy = V->getType();
751      Record.push_back(VE.getTypeID(LastTy));
752      Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
753                        CONSTANTS_SETTYPE_ABBREV);
754      Record.clear();
755    }
756
757    if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
758      Record.push_back(unsigned(IA->hasSideEffects()) |
759                       unsigned(IA->isAlignStack()) << 1);
760
761      // Add the asm string.
762      const std::string &AsmStr = IA->getAsmString();
763      Record.push_back(AsmStr.size());
764      for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
765        Record.push_back(AsmStr[i]);
766
767      // Add the constraint string.
768      const std::string &ConstraintStr = IA->getConstraintString();
769      Record.push_back(ConstraintStr.size());
770      for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
771        Record.push_back(ConstraintStr[i]);
772      Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
773      Record.clear();
774      continue;
775    }
776    const Constant *C = cast<Constant>(V);
777    unsigned Code = -1U;
778    unsigned AbbrevToUse = 0;
779    if (C->isNullValue()) {
780      Code = bitc::CST_CODE_NULL;
781    } else if (isa<UndefValue>(C)) {
782      Code = bitc::CST_CODE_UNDEF;
783    } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
784      if (IV->getBitWidth() <= 64) {
785        uint64_t V = IV->getSExtValue();
786        if ((int64_t)V >= 0)
787          Record.push_back(V << 1);
788        else
789          Record.push_back((-V << 1) | 1);
790        Code = bitc::CST_CODE_INTEGER;
791        AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
792      } else {                             // Wide integers, > 64 bits in size.
793        // We have an arbitrary precision integer value to write whose
794        // bit width is > 64. However, in canonical unsigned integer
795        // format it is likely that the high bits are going to be zero.
796        // So, we only write the number of active words.
797        unsigned NWords = IV->getValue().getActiveWords();
798        const uint64_t *RawWords = IV->getValue().getRawData();
799        for (unsigned i = 0; i != NWords; ++i) {
800          int64_t V = RawWords[i];
801          if (V >= 0)
802            Record.push_back(V << 1);
803          else
804            Record.push_back((-V << 1) | 1);
805        }
806        Code = bitc::CST_CODE_WIDE_INTEGER;
807      }
808    } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
809      Code = bitc::CST_CODE_FLOAT;
810      Type *Ty = CFP->getType();
811      if (Ty->isFloatTy() || Ty->isDoubleTy()) {
812        Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
813      } else if (Ty->isX86_FP80Ty()) {
814        // api needed to prevent premature destruction
815        // bits are not in the same order as a normal i80 APInt, compensate.
816        APInt api = CFP->getValueAPF().bitcastToAPInt();
817        const uint64_t *p = api.getRawData();
818        Record.push_back((p[1] << 48) | (p[0] >> 16));
819        Record.push_back(p[0] & 0xffffLL);
820      } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
821        APInt api = CFP->getValueAPF().bitcastToAPInt();
822        const uint64_t *p = api.getRawData();
823        Record.push_back(p[0]);
824        Record.push_back(p[1]);
825      } else {
826        assert (0 && "Unknown FP type!");
827      }
828    } else if (isa<ConstantDataSequential>(C) &&
829               cast<ConstantDataSequential>(C)->isString()) {
830      const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
831      // Emit constant strings specially.
832      unsigned NumElts = Str->getNumElements();
833      // If this is a null-terminated string, use the denser CSTRING encoding.
834      if (Str->isCString()) {
835        Code = bitc::CST_CODE_CSTRING;
836        --NumElts;  // Don't encode the null, which isn't allowed by char6.
837      } else {
838        Code = bitc::CST_CODE_STRING;
839        AbbrevToUse = String8Abbrev;
840      }
841      bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
842      bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
843      for (unsigned i = 0; i != NumElts; ++i) {
844        unsigned char V = Str->getElementAsInteger(i);
845        Record.push_back(V);
846        isCStr7 &= (V & 128) == 0;
847        if (isCStrChar6)
848          isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
849      }
850
851      if (isCStrChar6)
852        AbbrevToUse = CString6Abbrev;
853      else if (isCStr7)
854        AbbrevToUse = CString7Abbrev;
855    } else if (const ConstantDataSequential *CDS =
856                  dyn_cast<ConstantDataSequential>(C)) {
857      // We must replace ConstantDataSequential's representation with the
858      // legacy ConstantArray/ConstantVector/ConstantStruct version.
859      // ValueEnumerator is similarly modified to mark the appropriate
860      // Constants as used (so they are emitted).
861      Code = bitc::CST_CODE_AGGREGATE;
862      for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
863        Record.push_back(VE.getValueID(CDS->getElementAsConstant(i)));
864      AbbrevToUse = AggregateAbbrev;
865    } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
866               isa<ConstantVector>(C)) {
867      Code = bitc::CST_CODE_AGGREGATE;
868      for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
869        Record.push_back(VE.getValueID(C->getOperand(i)));
870      AbbrevToUse = AggregateAbbrev;
871    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
872      switch (CE->getOpcode()) {
873      default:
874        if (Instruction::isCast(CE->getOpcode())) {
875          Code = bitc::CST_CODE_CE_CAST;
876          Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
877          Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
878          Record.push_back(VE.getValueID(C->getOperand(0)));
879          AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
880        } else {
881          assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
882          Code = bitc::CST_CODE_CE_BINOP;
883          Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
884          Record.push_back(VE.getValueID(C->getOperand(0)));
885          Record.push_back(VE.getValueID(C->getOperand(1)));
886          uint64_t Flags = GetOptimizationFlags(CE);
887          if (Flags != 0)
888            Record.push_back(Flags);
889        }
890        break;
891      case Instruction::GetElementPtr:
892        Code = bitc::CST_CODE_CE_GEP;
893        if (cast<GEPOperator>(C)->isInBounds())
894          Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
895        for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
896          Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
897          Record.push_back(VE.getValueID(C->getOperand(i)));
898        }
899        break;
900      case Instruction::Select:
901        Code = bitc::CST_CODE_CE_SELECT;
902        Record.push_back(VE.getValueID(C->getOperand(0)));
903        Record.push_back(VE.getValueID(C->getOperand(1)));
904        Record.push_back(VE.getValueID(C->getOperand(2)));
905        break;
906      case Instruction::ExtractElement:
907        Code = bitc::CST_CODE_CE_EXTRACTELT;
908        Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
909        Record.push_back(VE.getValueID(C->getOperand(0)));
910        Record.push_back(VE.getValueID(C->getOperand(1)));
911        break;
912      case Instruction::InsertElement:
913        Code = bitc::CST_CODE_CE_INSERTELT;
914        Record.push_back(VE.getValueID(C->getOperand(0)));
915        Record.push_back(VE.getValueID(C->getOperand(1)));
916        Record.push_back(VE.getValueID(C->getOperand(2)));
917        break;
918      case Instruction::ShuffleVector:
919        // If the return type and argument types are the same, this is a
920        // standard shufflevector instruction.  If the types are different,
921        // then the shuffle is widening or truncating the input vectors, and
922        // the argument type must also be encoded.
923        if (C->getType() == C->getOperand(0)->getType()) {
924          Code = bitc::CST_CODE_CE_SHUFFLEVEC;
925        } else {
926          Code = bitc::CST_CODE_CE_SHUFVEC_EX;
927          Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
928        }
929        Record.push_back(VE.getValueID(C->getOperand(0)));
930        Record.push_back(VE.getValueID(C->getOperand(1)));
931        Record.push_back(VE.getValueID(C->getOperand(2)));
932        break;
933      case Instruction::ICmp:
934      case Instruction::FCmp:
935        Code = bitc::CST_CODE_CE_CMP;
936        Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
937        Record.push_back(VE.getValueID(C->getOperand(0)));
938        Record.push_back(VE.getValueID(C->getOperand(1)));
939        Record.push_back(CE->getPredicate());
940        break;
941      }
942    } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
943      Code = bitc::CST_CODE_BLOCKADDRESS;
944      Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
945      Record.push_back(VE.getValueID(BA->getFunction()));
946      Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
947    } else {
948#ifndef NDEBUG
949      C->dump();
950#endif
951      llvm_unreachable("Unknown constant!");
952    }
953    Stream.EmitRecord(Code, Record, AbbrevToUse);
954    Record.clear();
955  }
956
957  Stream.ExitBlock();
958}
959
960static void WriteModuleConstants(const llvm_2_9_func::ValueEnumerator &VE,
961                                 BitstreamWriter &Stream) {
962  const llvm_2_9_func::ValueEnumerator::ValueList &Vals = VE.getValues();
963
964  // Find the first constant to emit, which is the first non-globalvalue value.
965  // We know globalvalues have been emitted by WriteModuleInfo.
966  for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
967    if (!isa<GlobalValue>(Vals[i].first)) {
968      WriteConstants(i, Vals.size(), VE, Stream, true);
969      return;
970    }
971  }
972}
973
974/// PushValueAndType - The file has to encode both the value and type id for
975/// many values, because we need to know what type to create for forward
976/// references.  However, most operands are not forward references, so this type
977/// field is not needed.
978///
979/// This function adds V's value ID to Vals.  If the value ID is higher than the
980/// instruction ID, then it is a forward reference, and it also includes the
981/// type ID.
982static bool PushValueAndType(const Value *V, unsigned InstID,
983                             SmallVector<unsigned, 64> &Vals,
984                             llvm_2_9_func::ValueEnumerator &VE) {
985  unsigned ValID = VE.getValueID(V);
986  Vals.push_back(ValID);
987  if (ValID >= InstID) {
988    Vals.push_back(VE.getTypeID(V->getType()));
989    return true;
990  }
991  return false;
992}
993
994/// WriteInstruction - Emit an instruction to the specified stream.
995static void WriteInstruction(const Instruction &I, unsigned InstID,
996                             llvm_2_9_func::ValueEnumerator &VE,
997                             BitstreamWriter &Stream,
998                             SmallVector<unsigned, 64> &Vals) {
999  unsigned Code = 0;
1000  unsigned AbbrevToUse = 0;
1001  VE.setInstructionID(&I);
1002  switch (I.getOpcode()) {
1003  default:
1004    if (Instruction::isCast(I.getOpcode())) {
1005      Code = bitc::FUNC_CODE_INST_CAST;
1006      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1007        AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
1008      Vals.push_back(VE.getTypeID(I.getType()));
1009      Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
1010    } else {
1011      assert(isa<BinaryOperator>(I) && "Unknown instruction!");
1012      Code = bitc::FUNC_CODE_INST_BINOP;
1013      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1014        AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
1015      Vals.push_back(VE.getValueID(I.getOperand(1)));
1016      Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
1017      uint64_t Flags = GetOptimizationFlags(&I);
1018      if (Flags != 0) {
1019        if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
1020          AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
1021        Vals.push_back(Flags);
1022      }
1023    }
1024    break;
1025
1026  case Instruction::GetElementPtr:
1027    Code = bitc::FUNC_CODE_INST_GEP;
1028    if (cast<GEPOperator>(&I)->isInBounds())
1029      Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
1030    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1031      PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1032    break;
1033  case Instruction::ExtractValue: {
1034    Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
1035    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1036    const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
1037    for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1038      Vals.push_back(*i);
1039    break;
1040  }
1041  case Instruction::InsertValue: {
1042    Code = bitc::FUNC_CODE_INST_INSERTVAL;
1043    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1044    PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1045    const InsertValueInst *IVI = cast<InsertValueInst>(&I);
1046    for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1047      Vals.push_back(*i);
1048    break;
1049  }
1050  case Instruction::Select:
1051    Code = bitc::FUNC_CODE_INST_VSELECT;
1052    PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1053    Vals.push_back(VE.getValueID(I.getOperand(2)));
1054    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1055    break;
1056  case Instruction::ExtractElement:
1057    Code = bitc::FUNC_CODE_INST_EXTRACTELT;
1058    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1059    Vals.push_back(VE.getValueID(I.getOperand(1)));
1060    break;
1061  case Instruction::InsertElement:
1062    Code = bitc::FUNC_CODE_INST_INSERTELT;
1063    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1064    Vals.push_back(VE.getValueID(I.getOperand(1)));
1065    Vals.push_back(VE.getValueID(I.getOperand(2)));
1066    break;
1067  case Instruction::ShuffleVector:
1068    Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
1069    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1070    Vals.push_back(VE.getValueID(I.getOperand(1)));
1071    Vals.push_back(VE.getValueID(I.getOperand(2)));
1072    break;
1073  case Instruction::ICmp:
1074  case Instruction::FCmp:
1075    // compare returning Int1Ty or vector of Int1Ty
1076    Code = bitc::FUNC_CODE_INST_CMP2;
1077    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1078    Vals.push_back(VE.getValueID(I.getOperand(1)));
1079    Vals.push_back(cast<CmpInst>(I).getPredicate());
1080    break;
1081
1082  case Instruction::Ret:
1083    {
1084      Code = bitc::FUNC_CODE_INST_RET;
1085      unsigned NumOperands = I.getNumOperands();
1086      if (NumOperands == 0)
1087        AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
1088      else if (NumOperands == 1) {
1089        if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1090          AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
1091      } else {
1092        for (unsigned i = 0, e = NumOperands; i != e; ++i)
1093          PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1094      }
1095    }
1096    break;
1097  case Instruction::Br:
1098    {
1099      Code = bitc::FUNC_CODE_INST_BR;
1100      const BranchInst &II = cast<BranchInst>(I);
1101      Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1102      if (II.isConditional()) {
1103        Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1104        Vals.push_back(VE.getValueID(II.getCondition()));
1105      }
1106    }
1107    break;
1108  case Instruction::Switch:
1109    {
1110      Code = bitc::FUNC_CODE_INST_SWITCH;
1111      const SwitchInst &SI = cast<SwitchInst>(I);
1112
1113      Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
1114      Vals.push_back(VE.getValueID(SI.getCondition()));
1115      Vals.push_back(VE.getValueID(SI.getDefaultDest()));
1116      for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
1117           i != e; ++i) {
1118        const IntegersSubset& CaseRanges = i.getCaseValueEx();
1119
1120        if (CaseRanges.isSingleNumber()) {
1121          Vals.push_back(VE.getValueID(CaseRanges.getSingleNumber(0).toConstantInt()));
1122          Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
1123        } else if (CaseRanges.isSingleNumbersOnly()) {
1124          for (unsigned ri = 0, rn = CaseRanges.getNumItems();
1125               ri != rn; ++ri) {
1126            Vals.push_back(VE.getValueID(CaseRanges.getSingleNumber(ri).toConstantInt()));
1127            Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
1128          }
1129        } else {
1130          llvm_unreachable("Not single number?");
1131        }
1132      }
1133    }
1134    break;
1135  case Instruction::IndirectBr:
1136    Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1137    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1138    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1139      Vals.push_back(VE.getValueID(I.getOperand(i)));
1140    break;
1141
1142  case Instruction::Invoke: {
1143    const InvokeInst *II = cast<InvokeInst>(&I);
1144    const Value *Callee(II->getCalledValue());
1145    PointerType *PTy = cast<PointerType>(Callee->getType());
1146    FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1147    Code = bitc::FUNC_CODE_INST_INVOKE;
1148
1149    Vals.push_back(VE.getAttributeID(II->getAttributes()));
1150    Vals.push_back(II->getCallingConv());
1151    Vals.push_back(VE.getValueID(II->getNormalDest()));
1152    Vals.push_back(VE.getValueID(II->getUnwindDest()));
1153    PushValueAndType(Callee, InstID, Vals, VE);
1154
1155    // Emit value #'s for the fixed parameters.
1156    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1157      Vals.push_back(VE.getValueID(I.getOperand(i)));  // fixed param.
1158
1159    // Emit type/value pairs for varargs params.
1160    if (FTy->isVarArg()) {
1161      for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
1162           i != e; ++i)
1163        PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1164    }
1165    break;
1166  }
1167  case Instruction::Resume:
1168    Code = bitc::FUNC_CODE_INST_RESUME;
1169    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1170    break;
1171  case Instruction::Unreachable:
1172    Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1173    AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1174    break;
1175
1176  case Instruction::PHI: {
1177    const PHINode &PN = cast<PHINode>(I);
1178    Code = bitc::FUNC_CODE_INST_PHI;
1179    Vals.push_back(VE.getTypeID(PN.getType()));
1180    for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1181      Vals.push_back(VE.getValueID(PN.getIncomingValue(i)));
1182      Vals.push_back(VE.getValueID(PN.getIncomingBlock(i)));
1183    }
1184    break;
1185  }
1186
1187  case Instruction::LandingPad: {
1188    const LandingPadInst &LP = cast<LandingPadInst>(I);
1189    Code = bitc::FUNC_CODE_INST_LANDINGPAD;
1190    Vals.push_back(VE.getTypeID(LP.getType()));
1191    PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE);
1192    Vals.push_back(LP.isCleanup());
1193    Vals.push_back(LP.getNumClauses());
1194    for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
1195      if (LP.isCatch(I))
1196        Vals.push_back(LandingPadInst::Catch);
1197      else
1198        Vals.push_back(LandingPadInst::Filter);
1199      PushValueAndType(LP.getClause(I), InstID, Vals, VE);
1200    }
1201    break;
1202  }
1203
1204  case Instruction::Alloca:
1205    Code = bitc::FUNC_CODE_INST_ALLOCA;
1206    Vals.push_back(VE.getTypeID(I.getType()));
1207    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1208    Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1209    Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
1210    break;
1211
1212  case Instruction::Load:
1213    if (cast<LoadInst>(I).isAtomic()) {
1214      Code = bitc::FUNC_CODE_INST_LOADATOMIC;
1215      PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1216    } else {
1217      Code = bitc::FUNC_CODE_INST_LOAD;
1218      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
1219        AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1220    }
1221    Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1222    Vals.push_back(cast<LoadInst>(I).isVolatile());
1223    if (cast<LoadInst>(I).isAtomic()) {
1224      Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
1225      Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
1226    }
1227    break;
1228  case Instruction::Store:
1229    if (cast<StoreInst>(I).isAtomic())
1230      Code = bitc::FUNC_CODE_INST_STOREATOMIC;
1231    else
1232      Code = bitc::FUNC_CODE_INST_STORE;
1233    PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
1234    Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
1235    Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1236    Vals.push_back(cast<StoreInst>(I).isVolatile());
1237    if (cast<StoreInst>(I).isAtomic()) {
1238      Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
1239      Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
1240    }
1241    break;
1242  case Instruction::AtomicCmpXchg:
1243    Code = bitc::FUNC_CODE_INST_CMPXCHG;
1244    PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
1245    Vals.push_back(VE.getValueID(I.getOperand(1)));       // cmp.
1246    Vals.push_back(VE.getValueID(I.getOperand(2)));       // newval.
1247    Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
1248    Vals.push_back(GetEncodedOrdering(
1249                     cast<AtomicCmpXchgInst>(I).getOrdering()));
1250    Vals.push_back(GetEncodedSynchScope(
1251                     cast<AtomicCmpXchgInst>(I).getSynchScope()));
1252    break;
1253  case Instruction::AtomicRMW:
1254    Code = bitc::FUNC_CODE_INST_ATOMICRMW;
1255    PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
1256    Vals.push_back(VE.getValueID(I.getOperand(1)));       // val.
1257    Vals.push_back(GetEncodedRMWOperation(
1258                     cast<AtomicRMWInst>(I).getOperation()));
1259    Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
1260    Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
1261    Vals.push_back(GetEncodedSynchScope(
1262                     cast<AtomicRMWInst>(I).getSynchScope()));
1263    break;
1264  case Instruction::Fence:
1265    Code = bitc::FUNC_CODE_INST_FENCE;
1266    Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
1267    Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
1268    break;
1269  case Instruction::Call: {
1270    const CallInst &CI = cast<CallInst>(I);
1271    PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
1272    FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1273
1274    Code = bitc::FUNC_CODE_INST_CALL;
1275
1276    Vals.push_back(VE.getAttributeID(CI.getAttributes()));
1277    Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()));
1278    PushValueAndType(CI.getCalledValue(), InstID, Vals, VE);  // Callee
1279
1280    // Emit value #'s for the fixed parameters.
1281    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1282      Vals.push_back(VE.getValueID(CI.getArgOperand(i)));  // fixed param.
1283
1284    // Emit type/value pairs for varargs params.
1285    if (FTy->isVarArg()) {
1286      for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
1287           i != e; ++i)
1288        PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE);  // varargs
1289    }
1290    break;
1291  }
1292  case Instruction::VAArg:
1293    Code = bitc::FUNC_CODE_INST_VAARG;
1294    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
1295    Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
1296    Vals.push_back(VE.getTypeID(I.getType())); // restype.
1297    break;
1298  }
1299
1300  Stream.EmitRecord(Code, Vals, AbbrevToUse);
1301  Vals.clear();
1302}
1303
1304// Emit names for globals/functions etc.
1305static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1306                                  const llvm_2_9_func::ValueEnumerator &VE,
1307                                  BitstreamWriter &Stream) {
1308  if (VST.empty()) return;
1309  Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1310
1311  // FIXME: Set up the abbrev, we know how many values there are!
1312  // FIXME: We know if the type names can use 7-bit ascii.
1313  SmallVector<unsigned, 64> NameVals;
1314
1315  for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1316       SI != SE; ++SI) {
1317
1318    const ValueName &Name = *SI;
1319
1320    // Figure out the encoding to use for the name.
1321    bool is7Bit = true;
1322    bool isChar6 = true;
1323    for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1324         C != E; ++C) {
1325      if (isChar6)
1326        isChar6 = BitCodeAbbrevOp::isChar6(*C);
1327      if ((unsigned char)*C & 128) {
1328        is7Bit = false;
1329        break;  // don't bother scanning the rest.
1330      }
1331    }
1332
1333    unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1334
1335    // VST_ENTRY:   [valueid, namechar x N]
1336    // VST_BBENTRY: [bbid, namechar x N]
1337    unsigned Code;
1338    if (isa<BasicBlock>(SI->getValue())) {
1339      Code = bitc::VST_CODE_BBENTRY;
1340      if (isChar6)
1341        AbbrevToUse = VST_BBENTRY_6_ABBREV;
1342    } else {
1343      Code = bitc::VST_CODE_ENTRY;
1344      if (isChar6)
1345        AbbrevToUse = VST_ENTRY_6_ABBREV;
1346      else if (is7Bit)
1347        AbbrevToUse = VST_ENTRY_7_ABBREV;
1348    }
1349
1350    NameVals.push_back(VE.getValueID(SI->getValue()));
1351    for (const char *P = Name.getKeyData(),
1352         *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1353      NameVals.push_back((unsigned char)*P);
1354
1355    // Emit the finished record.
1356    Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1357    NameVals.clear();
1358  }
1359  Stream.ExitBlock();
1360}
1361
1362/// WriteFunction - Emit a function body to the module stream.
1363static void WriteFunction(const Function &F, llvm_2_9_func::ValueEnumerator &VE,
1364                          BitstreamWriter &Stream) {
1365  Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1366  VE.incorporateFunction(F);
1367
1368  SmallVector<unsigned, 64> Vals;
1369
1370  // Emit the number of basic blocks, so the reader can create them ahead of
1371  // time.
1372  Vals.push_back(VE.getBasicBlocks().size());
1373  Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1374  Vals.clear();
1375
1376  // If there are function-local constants, emit them now.
1377  unsigned CstStart, CstEnd;
1378  VE.getFunctionConstantRange(CstStart, CstEnd);
1379  WriteConstants(CstStart, CstEnd, VE, Stream, false);
1380
1381  // If there is function-local metadata, emit it now.
1382  WriteFunctionLocalMetadata(F, VE, Stream);
1383
1384  // Keep a running idea of what the instruction ID is.
1385  unsigned InstID = CstEnd;
1386
1387  bool NeedsMetadataAttachment = false;
1388
1389  DebugLoc LastDL;
1390
1391  // Finally, emit all the instructions, in order.
1392  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1393    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1394         I != E; ++I) {
1395      WriteInstruction(*I, InstID, VE, Stream, Vals);
1396
1397      if (!I->getType()->isVoidTy())
1398        ++InstID;
1399
1400      // If the instruction has metadata, write a metadata attachment later.
1401      NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
1402
1403      // If the instruction has a debug location, emit it.
1404      DebugLoc DL = I->getDebugLoc();
1405      if (DL.isUnknown()) {
1406        // nothing todo.
1407      } else if (DL == LastDL) {
1408        // Just repeat the same debug loc as last time.
1409        Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
1410      } else {
1411        MDNode *Scope, *IA;
1412        DL.getScopeAndInlinedAt(Scope, IA, I->getContext());
1413
1414        Vals.push_back(DL.getLine());
1415        Vals.push_back(DL.getCol());
1416        Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0);
1417        Vals.push_back(IA ? VE.getValueID(IA)+1 : 0);
1418        Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
1419        Vals.clear();
1420
1421        LastDL = DL;
1422      }
1423    }
1424
1425  // Emit names for all the instructions etc.
1426  WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1427
1428  if (NeedsMetadataAttachment)
1429    WriteMetadataAttachment(F, VE, Stream);
1430  VE.purgeFunction();
1431  Stream.ExitBlock();
1432}
1433
1434// Emit blockinfo, which defines the standard abbreviations etc.
1435static void WriteBlockInfo(const llvm_2_9_func::ValueEnumerator &VE,
1436                           BitstreamWriter &Stream) {
1437  // We only want to emit block info records for blocks that have multiple
1438  // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
1439  // blocks can defined their abbrevs inline.
1440  Stream.EnterBlockInfoBlock(2);
1441
1442  { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1443    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1444    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1445    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1446    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1447    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1448    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1449                                   Abbv) != VST_ENTRY_8_ABBREV)
1450      llvm_unreachable("Unexpected abbrev ordering!");
1451  }
1452
1453  { // 7-bit fixed width VST_ENTRY strings.
1454    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1455    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1456    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1457    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1458    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1459    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1460                                   Abbv) != VST_ENTRY_7_ABBREV)
1461      llvm_unreachable("Unexpected abbrev ordering!");
1462  }
1463  { // 6-bit char6 VST_ENTRY strings.
1464    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1465    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1466    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1467    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1468    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1469    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1470                                   Abbv) != VST_ENTRY_6_ABBREV)
1471      llvm_unreachable("Unexpected abbrev ordering!");
1472  }
1473  { // 6-bit char6 VST_BBENTRY strings.
1474    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1475    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1476    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1477    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1478    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1479    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1480                                   Abbv) != VST_BBENTRY_6_ABBREV)
1481      llvm_unreachable("Unexpected abbrev ordering!");
1482  }
1483
1484
1485
1486  { // SETTYPE abbrev for CONSTANTS_BLOCK.
1487    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1488    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1489    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1490                              Log2_32_Ceil(VE.getTypes().size()+1)));
1491    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1492                                   Abbv) != CONSTANTS_SETTYPE_ABBREV)
1493      llvm_unreachable("Unexpected abbrev ordering!");
1494  }
1495
1496  { // INTEGER abbrev for CONSTANTS_BLOCK.
1497    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1498    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1499    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1500    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1501                                   Abbv) != CONSTANTS_INTEGER_ABBREV)
1502      llvm_unreachable("Unexpected abbrev ordering!");
1503  }
1504
1505  { // CE_CAST abbrev for CONSTANTS_BLOCK.
1506    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1507    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1508    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1509    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1510                              Log2_32_Ceil(VE.getTypes().size()+1)));
1511    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1512
1513    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1514                                   Abbv) != CONSTANTS_CE_CAST_Abbrev)
1515      llvm_unreachable("Unexpected abbrev ordering!");
1516  }
1517  { // NULL abbrev for CONSTANTS_BLOCK.
1518    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1519    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1520    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1521                                   Abbv) != CONSTANTS_NULL_Abbrev)
1522      llvm_unreachable("Unexpected abbrev ordering!");
1523  }
1524
1525  // FIXME: This should only use space for first class types!
1526
1527  { // INST_LOAD abbrev for FUNCTION_BLOCK.
1528    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1529    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1530    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1531    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1532    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1533    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1534                                   Abbv) != FUNCTION_INST_LOAD_ABBREV)
1535      llvm_unreachable("Unexpected abbrev ordering!");
1536  }
1537  { // INST_BINOP abbrev for FUNCTION_BLOCK.
1538    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1539    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1540    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1541    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1542    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1543    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1544                                   Abbv) != FUNCTION_INST_BINOP_ABBREV)
1545      llvm_unreachable("Unexpected abbrev ordering!");
1546  }
1547  { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1548    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1549    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1550    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1551    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1552    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1553    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1554    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1555                                   Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1556      llvm_unreachable("Unexpected abbrev ordering!");
1557  }
1558  { // INST_CAST abbrev for FUNCTION_BLOCK.
1559    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1560    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1561    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1562    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1563                              Log2_32_Ceil(VE.getTypes().size()+1)));
1564    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1565    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1566                                   Abbv) != FUNCTION_INST_CAST_ABBREV)
1567      llvm_unreachable("Unexpected abbrev ordering!");
1568  }
1569
1570  { // INST_RET abbrev for FUNCTION_BLOCK.
1571    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1572    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1573    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1574                                   Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1575      llvm_unreachable("Unexpected abbrev ordering!");
1576  }
1577  { // INST_RET abbrev for FUNCTION_BLOCK.
1578    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1579    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1580    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1581    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1582                                   Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1583      llvm_unreachable("Unexpected abbrev ordering!");
1584  }
1585  { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1586    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1587    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1588    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1589                                   Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1590      llvm_unreachable("Unexpected abbrev ordering!");
1591  }
1592
1593  Stream.ExitBlock();
1594}
1595
1596
1597/// WriteModule - Emit the specified module to the bitstream.
1598static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1599  Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1600
1601  // Emit the version number if it is non-zero.
1602  if (CurVersion) {
1603    SmallVector<unsigned, 1> Vals;
1604    Vals.push_back(CurVersion);
1605    Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1606  }
1607
1608  // Analyze the module, enumerating globals, functions, etc.
1609  llvm_2_9_func::ValueEnumerator VE(M);
1610
1611  // Emit blockinfo, which defines the standard abbreviations etc.
1612  WriteBlockInfo(VE, Stream);
1613
1614  // Emit information about parameter attributes.
1615  WriteAttributeTable(VE, Stream);
1616
1617  // Emit information describing all of the types in the module.
1618  WriteTypeTable(VE, Stream);
1619
1620  // Emit top-level description of module, including target triple, inline asm,
1621  // descriptors for global variables, and function prototype info.
1622  WriteModuleInfo(M, VE, Stream);
1623
1624  // Emit constants.
1625  WriteModuleConstants(VE, Stream);
1626
1627  // Emit metadata.
1628  WriteModuleMetadata(M, VE, Stream);
1629
1630  // Emit function bodies.
1631  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
1632    if (!F->isDeclaration())
1633      WriteFunction(*F, VE, Stream);
1634
1635  // Emit metadata.
1636  WriteModuleMetadataStore(M, Stream);
1637
1638  // Emit names for globals/functions etc.
1639  WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1640
1641  Stream.ExitBlock();
1642}
1643
1644/// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1645/// header and trailer to make it compatible with the system archiver.  To do
1646/// this we emit the following header, and then emit a trailer that pads the
1647/// file out to be a multiple of 16 bytes.
1648///
1649/// struct bc_header {
1650///   uint32_t Magic;         // 0x0B17C0DE
1651///   uint32_t Version;       // Version, currently always 0.
1652///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1653///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1654///   uint32_t CPUType;       // CPU specifier.
1655///   ... potentially more later ...
1656/// };
1657enum {
1658  DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1659  DarwinBCHeaderSize = 5*4
1660};
1661
1662static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
1663                               uint32_t &Position) {
1664  Buffer[Position + 0] = (unsigned char) (Value >>  0);
1665  Buffer[Position + 1] = (unsigned char) (Value >>  8);
1666  Buffer[Position + 2] = (unsigned char) (Value >> 16);
1667  Buffer[Position + 3] = (unsigned char) (Value >> 24);
1668  Position += 4;
1669}
1670
1671static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
1672                                         const Triple &TT) {
1673  unsigned CPUType = ~0U;
1674
1675  // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
1676  // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
1677  // number from /usr/include/mach/machine.h.  It is ok to reproduce the
1678  // specific constants here because they are implicitly part of the Darwin ABI.
1679  enum {
1680    DARWIN_CPU_ARCH_ABI64      = 0x01000000,
1681    DARWIN_CPU_TYPE_X86        = 7,
1682    DARWIN_CPU_TYPE_ARM        = 12,
1683    DARWIN_CPU_TYPE_POWERPC    = 18
1684  };
1685
1686  Triple::ArchType Arch = TT.getArch();
1687  if (Arch == Triple::x86_64)
1688    CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1689  else if (Arch == Triple::x86)
1690    CPUType = DARWIN_CPU_TYPE_X86;
1691  else if (Arch == Triple::ppc)
1692    CPUType = DARWIN_CPU_TYPE_POWERPC;
1693  else if (Arch == Triple::ppc64)
1694    CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1695  else if (Arch == Triple::arm || Arch == Triple::thumb)
1696    CPUType = DARWIN_CPU_TYPE_ARM;
1697
1698  // Traditional Bitcode starts after header.
1699  assert(Buffer.size() >= DarwinBCHeaderSize &&
1700         "Expected header size to be reserved");
1701  unsigned BCOffset = DarwinBCHeaderSize;
1702  unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
1703
1704  // Write the magic and version.
1705  unsigned Position = 0;
1706  WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
1707  WriteInt32ToBuffer(0          , Buffer, Position); // Version.
1708  WriteInt32ToBuffer(BCOffset   , Buffer, Position);
1709  WriteInt32ToBuffer(BCSize     , Buffer, Position);
1710  WriteInt32ToBuffer(CPUType    , Buffer, Position);
1711
1712  // If the file is not a multiple of 16 bytes, insert dummy padding.
1713  while (Buffer.size() & 15)
1714    Buffer.push_back(0);
1715}
1716
1717/// WriteBitcodeToFile - Write the specified module to the specified output
1718/// stream.
1719void llvm_2_9_func::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1720  SmallVector<char, 1024> Buffer;
1721  Buffer.reserve(256*1024);
1722
1723  // If this is darwin or another generic macho target, reserve space for the
1724  // header.
1725  Triple TT(M->getTargetTriple());
1726  if (TT.isOSDarwin())
1727    Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
1728
1729  // Emit the module into the buffer.
1730  {
1731    BitstreamWriter Stream(Buffer);
1732
1733    // Emit the file header.
1734    Stream.Emit((unsigned)'B', 8);
1735    Stream.Emit((unsigned)'C', 8);
1736    Stream.Emit(0x0, 4);
1737    Stream.Emit(0xC, 4);
1738    Stream.Emit(0xE, 4);
1739    Stream.Emit(0xD, 4);
1740
1741    // Emit the module.
1742    WriteModule(M, Stream);
1743  }
1744
1745  if (TT.isOSDarwin())
1746    EmitDarwinBCHeaderAndTrailer(Buffer, TT);
1747
1748  // Write the generated bitstream to "Out".
1749  Out.write((char*)&Buffer.front(), Buffer.size());
1750}
1751