1// Ceres Solver - A fast non-linear least squares minimizer 2// Copyright 2013 Google Inc. All rights reserved. 3// http://code.google.com/p/ceres-solver/ 4// 5// Redistribution and use in source and binary forms, with or without 6// modification, are permitted provided that the following conditions are met: 7// 8// * Redistributions of source code must retain the above copyright notice, 9// this list of conditions and the following disclaimer. 10// * Redistributions in binary form must reproduce the above copyright notice, 11// this list of conditions and the following disclaimer in the documentation 12// and/or other materials provided with the distribution. 13// * Neither the name of Google Inc. nor the names of its contributors may be 14// used to endorse or promote products derived from this software without 15// specific prior written permission. 16// 17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 27// POSSIBILITY OF SUCH DAMAGE. 28// 29// Author: sameeragarwal@google.com (Sameer Agarwal) 30 31#ifndef CERES_PUBLIC_COVARIANCE_H_ 32#define CERES_PUBLIC_COVARIANCE_H_ 33 34#include <utility> 35#include <vector> 36#include "ceres/internal/port.h" 37#include "ceres/internal/scoped_ptr.h" 38#include "ceres/types.h" 39 40namespace ceres { 41 42class Problem; 43 44namespace internal { 45class CovarianceImpl; 46} // namespace internal 47 48// WARNING 49// ======= 50// It is very easy to use this class incorrectly without understanding 51// the underlying mathematics. Please read and understand the 52// documentation completely before attempting to use this class. 53// 54// 55// This class allows the user to evaluate the covariance for a 56// non-linear least squares problem and provides random access to its 57// blocks 58// 59// Background 60// ========== 61// One way to assess the quality of the solution returned by a 62// non-linear least squares solve is to analyze the covariance of the 63// solution. 64// 65// Let us consider the non-linear regression problem 66// 67// y = f(x) + N(0, I) 68// 69// i.e., the observation y is a random non-linear function of the 70// independent variable x with mean f(x) and identity covariance. Then 71// the maximum likelihood estimate of x given observations y is the 72// solution to the non-linear least squares problem: 73// 74// x* = arg min_x |f(x)|^2 75// 76// And the covariance of x* is given by 77// 78// C(x*) = inverse[J'(x*)J(x*)] 79// 80// Here J(x*) is the Jacobian of f at x*. The above formula assumes 81// that J(x*) has full column rank. 82// 83// If J(x*) is rank deficient, then the covariance matrix C(x*) is 84// also rank deficient and is given by 85// 86// C(x*) = pseudoinverse[J'(x*)J(x*)] 87// 88// Note that in the above, we assumed that the covariance 89// matrix for y was identity. This is an important assumption. If this 90// is not the case and we have 91// 92// y = f(x) + N(0, S) 93// 94// Where S is a positive semi-definite matrix denoting the covariance 95// of y, then the maximum likelihood problem to be solved is 96// 97// x* = arg min_x f'(x) inverse[S] f(x) 98// 99// and the corresponding covariance estimate of x* is given by 100// 101// C(x*) = inverse[J'(x*) inverse[S] J(x*)] 102// 103// So, if it is the case that the observations being fitted to have a 104// covariance matrix not equal to identity, then it is the user's 105// responsibility that the corresponding cost functions are correctly 106// scaled, e.g. in the above case the cost function for this problem 107// should evaluate S^{-1/2} f(x) instead of just f(x), where S^{-1/2} 108// is the inverse square root of the covariance matrix S. 109// 110// This class allows the user to evaluate the covariance for a 111// non-linear least squares problem and provides random access to its 112// blocks. The computation assumes that the CostFunctions compute 113// residuals such that their covariance is identity. 114// 115// Since the computation of the covariance matrix requires computing 116// the inverse of a potentially large matrix, this can involve a 117// rather large amount of time and memory. However, it is usually the 118// case that the user is only interested in a small part of the 119// covariance matrix. Quite often just the block diagonal. This class 120// allows the user to specify the parts of the covariance matrix that 121// she is interested in and then uses this information to only compute 122// and store those parts of the covariance matrix. 123// 124// Rank of the Jacobian 125// -------------------- 126// As we noted above, if the jacobian is rank deficient, then the 127// inverse of J'J is not defined and instead a pseudo inverse needs to 128// be computed. 129// 130// The rank deficiency in J can be structural -- columns which are 131// always known to be zero or numerical -- depending on the exact 132// values in the Jacobian. 133// 134// Structural rank deficiency occurs when the problem contains 135// parameter blocks that are constant. This class correctly handles 136// structural rank deficiency like that. 137// 138// Numerical rank deficiency, where the rank of the matrix cannot be 139// predicted by its sparsity structure and requires looking at its 140// numerical values is more complicated. Here again there are two 141// cases. 142// 143// a. The rank deficiency arises from overparameterization. e.g., a 144// four dimensional quaternion used to parameterize SO(3), which is 145// a three dimensional manifold. In cases like this, the user should 146// use an appropriate LocalParameterization. Not only will this lead 147// to better numerical behaviour of the Solver, it will also expose 148// the rank deficiency to the Covariance object so that it can 149// handle it correctly. 150// 151// b. More general numerical rank deficiency in the Jacobian 152// requires the computation of the so called Singular Value 153// Decomposition (SVD) of J'J. We do not know how to do this for 154// large sparse matrices efficiently. For small and moderate sized 155// problems this is done using dense linear algebra. 156// 157// Gauge Invariance 158// ---------------- 159// In structure from motion (3D reconstruction) problems, the 160// reconstruction is ambiguous upto a similarity transform. This is 161// known as a Gauge Ambiguity. Handling Gauges correctly requires the 162// use of SVD or custom inversion algorithms. For small problems the 163// user can use the dense algorithm. For more details see 164// 165// Ken-ichi Kanatani, Daniel D. Morris: Gauges and gauge 166// transformations for uncertainty description of geometric structure 167// with indeterminacy. IEEE Transactions on Information Theory 47(5): 168// 2017-2028 (2001) 169// 170// Example Usage 171// ============= 172// 173// double x[3]; 174// double y[2]; 175// 176// Problem problem; 177// problem.AddParameterBlock(x, 3); 178// problem.AddParameterBlock(y, 2); 179// <Build Problem> 180// <Solve Problem> 181// 182// Covariance::Options options; 183// Covariance covariance(options); 184// 185// vector<pair<const double*, const double*> > covariance_blocks; 186// covariance_blocks.push_back(make_pair(x, x)); 187// covariance_blocks.push_back(make_pair(y, y)); 188// covariance_blocks.push_back(make_pair(x, y)); 189// 190// CHECK(covariance.Compute(covariance_blocks, &problem)); 191// 192// double covariance_xx[3 * 3]; 193// double covariance_yy[2 * 2]; 194// double covariance_xy[3 * 2]; 195// covariance.GetCovarianceBlock(x, x, covariance_xx) 196// covariance.GetCovarianceBlock(y, y, covariance_yy) 197// covariance.GetCovarianceBlock(x, y, covariance_xy) 198// 199class Covariance { 200 public: 201 struct Options { 202 Options() 203#ifndef CERES_NO_SUITESPARSE 204 : algorithm_type(SPARSE_QR), 205#else 206 : algorithm_type(DENSE_SVD), 207#endif 208 min_reciprocal_condition_number(1e-14), 209 null_space_rank(0), 210 num_threads(1), 211 apply_loss_function(true) { 212 } 213 214 // Ceres supports three different algorithms for covariance 215 // estimation, which represent different tradeoffs in speed, 216 // accuracy and reliability. 217 // 218 // 1. DENSE_SVD uses Eigen's JacobiSVD to perform the 219 // computations. It computes the singular value decomposition 220 // 221 // U * S * V' = J 222 // 223 // and then uses it to compute the pseudo inverse of J'J as 224 // 225 // pseudoinverse[J'J]^ = V * pseudoinverse[S] * V' 226 // 227 // It is an accurate but slow method and should only be used 228 // for small to moderate sized problems. It can handle 229 // full-rank as well as rank deficient Jacobians. 230 // 231 // 2. SPARSE_CHOLESKY uses the CHOLMOD sparse Cholesky 232 // factorization library to compute the decomposition : 233 // 234 // R'R = J'J 235 // 236 // and then 237 // 238 // [J'J]^-1 = [R'R]^-1 239 // 240 // It a fast algorithm for sparse matrices that should be used 241 // when the Jacobian matrix J is well conditioned. For 242 // ill-conditioned matrices, this algorithm can fail 243 // unpredictabily. This is because Cholesky factorization is 244 // not a rank-revealing factorization, i.e., it cannot reliably 245 // detect when the matrix being factorized is not of full 246 // rank. SuiteSparse/CHOLMOD supplies a heuristic for checking 247 // if the matrix is rank deficient (cholmod_rcond), but it is 248 // only a heuristic and can have both false positive and false 249 // negatives. 250 // 251 // Recent versions of SuiteSparse (>= 4.2.0) provide a much 252 // more efficient method for solving for rows of the covariance 253 // matrix. Therefore, if you are doing SPARSE_CHOLESKY, we 254 // strongly recommend using a recent version of SuiteSparse. 255 // 256 // 3. SPARSE_QR uses the SuiteSparseQR sparse QR factorization 257 // library to compute the decomposition 258 // 259 // Q * R = J 260 // 261 // [J'J]^-1 = [R*R']^-1 262 // 263 // It is a moderately fast algorithm for sparse matrices, which 264 // at the price of more time and memory than the 265 // SPARSE_CHOLESKY algorithm is numerically better behaved and 266 // is rank revealing, i.e., it can reliably detect when the 267 // Jacobian matrix is rank deficient. 268 // 269 // Neither SPARSE_CHOLESKY or SPARSE_QR are capable of computing 270 // the covariance if the Jacobian is rank deficient. 271 272 CovarianceAlgorithmType algorithm_type; 273 274 // If the Jacobian matrix is near singular, then inverting J'J 275 // will result in unreliable results, e.g, if 276 // 277 // J = [1.0 1.0 ] 278 // [1.0 1.0000001 ] 279 // 280 // which is essentially a rank deficient matrix, we have 281 // 282 // inv(J'J) = [ 2.0471e+14 -2.0471e+14] 283 // [-2.0471e+14 2.0471e+14] 284 // 285 // This is not a useful result. Therefore, by default 286 // Covariance::Compute will return false if a rank deficient 287 // Jacobian is encountered. How rank deficiency is detected 288 // depends on the algorithm being used. 289 // 290 // 1. DENSE_SVD 291 // 292 // min_sigma / max_sigma < sqrt(min_reciprocal_condition_number) 293 // 294 // where min_sigma and max_sigma are the minimum and maxiumum 295 // singular values of J respectively. 296 // 297 // 2. SPARSE_CHOLESKY 298 // 299 // cholmod_rcond < min_reciprocal_conditioner_number 300 // 301 // Here cholmod_rcond is a crude estimate of the reciprocal 302 // condition number of J'J by using the maximum and minimum 303 // diagonal entries of the Cholesky factor R. There are no 304 // theoretical guarantees associated with this test. It can 305 // give false positives and negatives. Use at your own 306 // risk. The default value of min_reciprocal_condition_number 307 // has been set to a conservative value, and sometimes the 308 // Covariance::Compute may return false even if it is possible 309 // to estimate the covariance reliably. In such cases, the user 310 // should exercise their judgement before lowering the value of 311 // min_reciprocal_condition_number. 312 // 313 // 3. SPARSE_QR 314 // 315 // rank(J) < num_col(J) 316 // 317 // Here rank(J) is the estimate of the rank of J returned by the 318 // SuiteSparseQR algorithm. It is a fairly reliable indication 319 // of rank deficiency. 320 // 321 double min_reciprocal_condition_number; 322 323 // When using DENSE_SVD, the user has more control in dealing with 324 // singular and near singular covariance matrices. 325 // 326 // As mentioned above, when the covariance matrix is near 327 // singular, instead of computing the inverse of J'J, the 328 // Moore-Penrose pseudoinverse of J'J should be computed. 329 // 330 // If J'J has the eigen decomposition (lambda_i, e_i), where 331 // lambda_i is the i^th eigenvalue and e_i is the corresponding 332 // eigenvector, then the inverse of J'J is 333 // 334 // inverse[J'J] = sum_i e_i e_i' / lambda_i 335 // 336 // and computing the pseudo inverse involves dropping terms from 337 // this sum that correspond to small eigenvalues. 338 // 339 // How terms are dropped is controlled by 340 // min_reciprocal_condition_number and null_space_rank. 341 // 342 // If null_space_rank is non-negative, then the smallest 343 // null_space_rank eigenvalue/eigenvectors are dropped 344 // irrespective of the magnitude of lambda_i. If the ratio of the 345 // smallest non-zero eigenvalue to the largest eigenvalue in the 346 // truncated matrix is still below 347 // min_reciprocal_condition_number, then the Covariance::Compute() 348 // will fail and return false. 349 // 350 // Setting null_space_rank = -1 drops all terms for which 351 // 352 // lambda_i / lambda_max < min_reciprocal_condition_number. 353 // 354 // This option has no effect on the SPARSE_CHOLESKY or SPARSE_QR 355 // algorithms. 356 int null_space_rank; 357 358 int num_threads; 359 360 // Even though the residual blocks in the problem may contain loss 361 // functions, setting apply_loss_function to false will turn off 362 // the application of the loss function to the output of the cost 363 // function and in turn its effect on the covariance. 364 // 365 // TODO(sameergaarwal): Expand this based on Jim's experiments. 366 bool apply_loss_function; 367 }; 368 369 explicit Covariance(const Options& options); 370 ~Covariance(); 371 372 // Compute a part of the covariance matrix. 373 // 374 // The vector covariance_blocks, indexes into the covariance matrix 375 // block-wise using pairs of parameter blocks. This allows the 376 // covariance estimation algorithm to only compute and store these 377 // blocks. 378 // 379 // Since the covariance matrix is symmetric, if the user passes 380 // (block1, block2), then GetCovarianceBlock can be called with 381 // block1, block2 as well as block2, block1. 382 // 383 // covariance_blocks cannot contain duplicates. Bad things will 384 // happen if they do. 385 // 386 // Note that the list of covariance_blocks is only used to determine 387 // what parts of the covariance matrix are computed. The full 388 // Jacobian is used to do the computation, i.e. they do not have an 389 // impact on what part of the Jacobian is used for computation. 390 // 391 // The return value indicates the success or failure of the 392 // covariance computation. Please see the documentation for 393 // Covariance::Options for more on the conditions under which this 394 // function returns false. 395 bool Compute( 396 const vector<pair<const double*, const double*> >& covariance_blocks, 397 Problem* problem); 398 399 // Return the block of the covariance matrix corresponding to 400 // parameter_block1 and parameter_block2. 401 // 402 // Compute must be called before the first call to 403 // GetCovarianceBlock and the pair <parameter_block1, 404 // parameter_block2> OR the pair <parameter_block2, 405 // parameter_block1> must have been present in the vector 406 // covariance_blocks when Compute was called. Otherwise 407 // GetCovarianceBlock will return false. 408 // 409 // covariance_block must point to a memory location that can store a 410 // parameter_block1_size x parameter_block2_size matrix. The 411 // returned covariance will be a row-major matrix. 412 bool GetCovarianceBlock(const double* parameter_block1, 413 const double* parameter_block2, 414 double* covariance_block) const; 415 416 private: 417 internal::scoped_ptr<internal::CovarianceImpl> impl_; 418}; 419 420} // namespace ceres 421 422#endif // CERES_PUBLIC_COVARIANCE_H_ 423