1// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3// http://code.google.com/p/ceres-solver/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9//   this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11//   this list of conditions and the following disclaimer in the documentation
12//   and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14//   used to endorse or promote products derived from this software without
15//   specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30//
31// Abstract interface for objects solving linear systems of various
32// kinds.
33
34#ifndef CERES_INTERNAL_LINEAR_SOLVER_H_
35#define CERES_INTERNAL_LINEAR_SOLVER_H_
36
37#include <cstddef>
38#include <map>
39#include <string>
40#include <vector>
41#include "ceres/block_sparse_matrix.h"
42#include "ceres/casts.h"
43#include "ceres/compressed_row_sparse_matrix.h"
44#include "ceres/dense_sparse_matrix.h"
45#include "ceres/execution_summary.h"
46#include "ceres/triplet_sparse_matrix.h"
47#include "ceres/types.h"
48#include "glog/logging.h"
49
50namespace ceres {
51namespace internal {
52
53class LinearOperator;
54
55// Abstract base class for objects that implement algorithms for
56// solving linear systems
57//
58//   Ax = b
59//
60// It is expected that a single instance of a LinearSolver object
61// maybe used multiple times for solving multiple linear systems with
62// the same sparsity structure. This allows them to cache and reuse
63// information across solves. This means that calling Solve on the
64// same LinearSolver instance with two different linear systems will
65// result in undefined behaviour.
66//
67// Subclasses of LinearSolver use two structs to configure themselves.
68// The Options struct configures the LinearSolver object for its
69// lifetime. The PerSolveOptions struct is used to specify options for
70// a particular Solve call.
71class LinearSolver {
72 public:
73  struct Options {
74    Options()
75        : type(SPARSE_NORMAL_CHOLESKY),
76          preconditioner_type(JACOBI),
77          dense_linear_algebra_library_type(EIGEN),
78          sparse_linear_algebra_library_type(SUITE_SPARSE),
79          use_postordering(false),
80          min_num_iterations(1),
81          max_num_iterations(1),
82          num_threads(1),
83          residual_reset_period(10),
84          row_block_size(Eigen::Dynamic),
85          e_block_size(Eigen::Dynamic),
86          f_block_size(Eigen::Dynamic) {
87    }
88
89    LinearSolverType type;
90
91    PreconditionerType preconditioner_type;
92
93    DenseLinearAlgebraLibraryType dense_linear_algebra_library_type;
94    SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type;
95
96    // See solver.h for information about this flag.
97    bool use_postordering;
98
99    // Number of internal iterations that the solver uses. This
100    // parameter only makes sense for iterative solvers like CG.
101    int min_num_iterations;
102    int max_num_iterations;
103
104    // If possible, how many threads can the solver use.
105    int num_threads;
106
107    // Hints about the order in which the parameter blocks should be
108    // eliminated by the linear solver.
109    //
110    // For example if elimination_groups is a vector of size k, then
111    // the linear solver is informed that it should eliminate the
112    // parameter blocks 0 ... elimination_groups[0] - 1 first, and
113    // then elimination_groups[0] ... elimination_groups[1] - 1 and so
114    // on. Within each elimination group, the linear solver is free to
115    // choose how the parameter blocks are ordered. Different linear
116    // solvers have differing requirements on elimination_groups.
117    //
118    // The most common use is for Schur type solvers, where there
119    // should be at least two elimination groups and the first
120    // elimination group must form an independent set in the normal
121    // equations. The first elimination group corresponds to the
122    // num_eliminate_blocks in the Schur type solvers.
123    vector<int> elimination_groups;
124
125    // Iterative solvers, e.g. Preconditioned Conjugate Gradients
126    // maintain a cheap estimate of the residual which may become
127    // inaccurate over time. Thus for non-zero values of this
128    // parameter, the solver can be told to recalculate the value of
129    // the residual using a |b - Ax| evaluation.
130    int residual_reset_period;
131
132    // If the block sizes in a BlockSparseMatrix are fixed, then in
133    // some cases the Schur complement based solvers can detect and
134    // specialize on them.
135    //
136    // It is expected that these parameters are set programmatically
137    // rather than manually.
138    //
139    // Please see schur_complement_solver.h and schur_eliminator.h for
140    // more details.
141    int row_block_size;
142    int e_block_size;
143    int f_block_size;
144  };
145
146  // Options for the Solve method.
147  struct PerSolveOptions {
148    PerSolveOptions()
149        : D(NULL),
150          preconditioner(NULL),
151          r_tolerance(0.0),
152          q_tolerance(0.0) {
153    }
154
155    // This option only makes sense for unsymmetric linear solvers
156    // that can solve rectangular linear systems.
157    //
158    // Given a matrix A, an optional diagonal matrix D as a vector,
159    // and a vector b, the linear solver will solve for
160    //
161    //   | A | x = | b |
162    //   | D |     | 0 |
163    //
164    // If D is null, then it is treated as zero, and the solver returns
165    // the solution to
166    //
167    //   A x = b
168    //
169    // In either case, x is the vector that solves the following
170    // optimization problem.
171    //
172    //   arg min_x ||Ax - b||^2 + ||Dx||^2
173    //
174    // Here A is a matrix of size m x n, with full column rank. If A
175    // does not have full column rank, the results returned by the
176    // solver cannot be relied on. D, if it is not null is an array of
177    // size n.  b is an array of size m and x is an array of size n.
178    double * D;
179
180    // This option only makes sense for iterative solvers.
181    //
182    // In general the performance of an iterative linear solver
183    // depends on the condition number of the matrix A. For example
184    // the convergence rate of the conjugate gradients algorithm
185    // is proportional to the square root of the condition number.
186    //
187    // One particularly useful technique for improving the
188    // conditioning of a linear system is to precondition it. In its
189    // simplest form a preconditioner is a matrix M such that instead
190    // of solving Ax = b, we solve the linear system AM^{-1} y = b
191    // instead, where M is such that the condition number k(AM^{-1})
192    // is smaller than the conditioner k(A). Given the solution to
193    // this system, x = M^{-1} y. The iterative solver takes care of
194    // the mechanics of solving the preconditioned system and
195    // returning the corrected solution x. The user only needs to
196    // supply a linear operator.
197    //
198    // A null preconditioner is equivalent to an identity matrix being
199    // used a preconditioner.
200    LinearOperator* preconditioner;
201
202
203    // The following tolerance related options only makes sense for
204    // iterative solvers. Direct solvers ignore them.
205
206    // Solver terminates when
207    //
208    //   |Ax - b| <= r_tolerance * |b|.
209    //
210    // This is the most commonly used termination criterion for
211    // iterative solvers.
212    double r_tolerance;
213
214    // For PSD matrices A, let
215    //
216    //   Q(x) = x'Ax - 2b'x
217    //
218    // be the cost of the quadratic function defined by A and b. Then,
219    // the solver terminates at iteration i if
220    //
221    //   i * (Q(x_i) - Q(x_i-1)) / Q(x_i) < q_tolerance.
222    //
223    // This termination criterion is more useful when using CG to
224    // solve the Newton step. This particular convergence test comes
225    // from Stephen Nash's work on truncated Newton
226    // methods. References:
227    //
228    //   1. Stephen G. Nash & Ariela Sofer, Assessing A Search
229    //      Direction Within A Truncated Newton Method, Operation
230    //      Research Letters 9(1990) 219-221.
231    //
232    //   2. Stephen G. Nash, A Survey of Truncated Newton Methods,
233    //      Journal of Computational and Applied Mathematics,
234    //      124(1-2), 45-59, 2000.
235    //
236    double q_tolerance;
237  };
238
239  // Summary of a call to the Solve method. We should move away from
240  // the true/false method for determining solver success. We should
241  // let the summary object do the talking.
242  struct Summary {
243    Summary()
244        : residual_norm(0.0),
245          num_iterations(-1),
246          termination_type(FAILURE) {
247    }
248
249    double residual_norm;
250    int num_iterations;
251    LinearSolverTerminationType termination_type;
252  };
253
254  virtual ~LinearSolver();
255
256  // Solve Ax = b.
257  virtual Summary Solve(LinearOperator* A,
258                        const double* b,
259                        const PerSolveOptions& per_solve_options,
260                        double* x) = 0;
261
262  // The following two methods return copies instead of references so
263  // that the base class implementation does not have to worry about
264  // life time issues. Further, these calls are not expected to be
265  // frequent or performance sensitive.
266  virtual map<string, int> CallStatistics() const {
267    return map<string, int>();
268  }
269
270  virtual map<string, double> TimeStatistics() const {
271    return map<string, double>();
272  }
273
274  // Factory
275  static LinearSolver* Create(const Options& options);
276};
277
278// This templated subclass of LinearSolver serves as a base class for
279// other linear solvers that depend on the particular matrix layout of
280// the underlying linear operator. For example some linear solvers
281// need low level access to the TripletSparseMatrix implementing the
282// LinearOperator interface. This class hides those implementation
283// details behind a private virtual method, and has the Solve method
284// perform the necessary upcasting.
285template <typename MatrixType>
286class TypedLinearSolver : public LinearSolver {
287 public:
288  virtual ~TypedLinearSolver() {}
289  virtual LinearSolver::Summary Solve(
290      LinearOperator* A,
291      const double* b,
292      const LinearSolver::PerSolveOptions& per_solve_options,
293      double* x) {
294    ScopedExecutionTimer total_time("LinearSolver::Solve", &execution_summary_);
295    CHECK_NOTNULL(A);
296    CHECK_NOTNULL(b);
297    CHECK_NOTNULL(x);
298    return SolveImpl(down_cast<MatrixType*>(A), b, per_solve_options, x);
299  }
300
301  virtual map<string, int> CallStatistics() const {
302    return execution_summary_.calls();
303  }
304
305  virtual map<string, double> TimeStatistics() const {
306    return execution_summary_.times();
307  }
308
309 private:
310  virtual LinearSolver::Summary SolveImpl(
311      MatrixType* A,
312      const double* b,
313      const LinearSolver::PerSolveOptions& per_solve_options,
314      double* x) = 0;
315
316  ExecutionSummary execution_summary_;
317};
318
319// Linear solvers that depend on acccess to the low level structure of
320// a SparseMatrix.
321typedef TypedLinearSolver<BlockSparseMatrix>         BlockSparseMatrixSolver;          // NOLINT
322typedef TypedLinearSolver<CompressedRowSparseMatrix> CompressedRowSparseMatrixSolver;  // NOLINT
323typedef TypedLinearSolver<DenseSparseMatrix>         DenseSparseMatrixSolver;          // NOLINT
324typedef TypedLinearSolver<TripletSparseMatrix>       TripletSparseMatrixSolver;        // NOLINT
325
326}  // namespace internal
327}  // namespace ceres
328
329#endif  // CERES_INTERNAL_LINEAR_SOLVER_H_
330