1// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3// http://code.google.com/p/ceres-solver/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9//   this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11//   this list of conditions and the following disclaimer in the documentation
12//   and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14//   used to endorse or promote products derived from this software without
15//   specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: keir@google.com (Keir Mierle)
30//
31// The ProgramEvaluator runs the cost functions contained in each residual block
32// and stores the result into a jacobian. The particular type of jacobian is
33// abstracted out using two template parameters:
34//
35//   - An "EvaluatePreparer" that is responsible for creating the array with
36//     pointers to the jacobian blocks where the cost function evaluates to.
37//   - A "JacobianWriter" that is responsible for storing the resulting
38//     jacobian blocks in the passed sparse matrix.
39//
40// This abstraction affords an efficient evaluator implementation while still
41// supporting writing to multiple sparse matrix formats. For example, when the
42// ProgramEvaluator is parameterized for writing to block sparse matrices, the
43// residual jacobians are written directly into their final position in the
44// block sparse matrix by the user's CostFunction; there is no copying.
45//
46// The evaluation is threaded with OpenMP.
47//
48// The EvaluatePreparer and JacobianWriter interfaces are as follows:
49//
50//   class EvaluatePreparer {
51//     // Prepare the jacobians array for use as the destination of a call to
52//     // a cost function's evaluate method.
53//     void Prepare(const ResidualBlock* residual_block,
54//                  int residual_block_index,
55//                  SparseMatrix* jacobian,
56//                  double** jacobians);
57//   }
58//
59//   class JacobianWriter {
60//     // Create a jacobian that this writer can write. Same as
61//     // Evaluator::CreateJacobian.
62//     SparseMatrix* CreateJacobian() const;
63//
64//     // Create num_threads evaluate preparers. Caller owns result which must
65//     // be freed with delete[]. Resulting preparers are valid while *this is.
66//     EvaluatePreparer* CreateEvaluatePreparers(int num_threads);
67//
68//     // Write the block jacobians from a residual block evaluation to the
69//     // larger sparse jacobian.
70//     void Write(int residual_id,
71//                int residual_offset,
72//                double** jacobians,
73//                SparseMatrix* jacobian);
74//   }
75//
76// Note: The ProgramEvaluator is not thread safe, since internally it maintains
77// some per-thread scratch space.
78
79#ifndef CERES_INTERNAL_PROGRAM_EVALUATOR_H_
80#define CERES_INTERNAL_PROGRAM_EVALUATOR_H_
81
82#ifdef CERES_USE_OPENMP
83#include <omp.h>
84#endif
85
86#include <map>
87#include <string>
88#include <vector>
89#include "ceres/execution_summary.h"
90#include "ceres/internal/eigen.h"
91#include "ceres/internal/scoped_ptr.h"
92#include "ceres/parameter_block.h"
93#include "ceres/program.h"
94#include "ceres/residual_block.h"
95#include "ceres/small_blas.h"
96
97namespace ceres {
98namespace internal {
99
100template<typename EvaluatePreparer, typename JacobianWriter>
101class ProgramEvaluator : public Evaluator {
102 public:
103  ProgramEvaluator(const Evaluator::Options &options, Program* program)
104      : options_(options),
105        program_(program),
106        jacobian_writer_(options, program),
107        evaluate_preparers_(
108            jacobian_writer_.CreateEvaluatePreparers(options.num_threads)) {
109#ifndef CERES_USE_OPENMP
110    CHECK_EQ(1, options_.num_threads)
111        << "OpenMP support is not compiled into this binary; "
112        << "only options.num_threads=1 is supported.";
113#endif
114
115    BuildResidualLayout(*program, &residual_layout_);
116    evaluate_scratch_.reset(CreateEvaluatorScratch(*program,
117                                                   options.num_threads));
118  }
119
120  // Implementation of Evaluator interface.
121  SparseMatrix* CreateJacobian() const {
122    return jacobian_writer_.CreateJacobian();
123  }
124
125  bool Evaluate(const Evaluator::EvaluateOptions& evaluate_options,
126                const double* state,
127                double* cost,
128                double* residuals,
129                double* gradient,
130                SparseMatrix* jacobian) {
131    ScopedExecutionTimer total_timer("Evaluator::Total", &execution_summary_);
132    ScopedExecutionTimer call_type_timer(gradient == NULL && jacobian == NULL
133                                         ? "Evaluator::Residual"
134                                         : "Evaluator::Jacobian",
135                                         &execution_summary_);
136
137    // The parameters are stateful, so set the state before evaluating.
138    if (!program_->StateVectorToParameterBlocks(state)) {
139      return false;
140    }
141
142    if (residuals != NULL) {
143      VectorRef(residuals, program_->NumResiduals()).setZero();
144    }
145
146    if (jacobian != NULL) {
147      jacobian->SetZero();
148    }
149
150    // Each thread gets it's own cost and evaluate scratch space.
151    for (int i = 0; i < options_.num_threads; ++i) {
152      evaluate_scratch_[i].cost = 0.0;
153      if (gradient != NULL) {
154        VectorRef(evaluate_scratch_[i].gradient.get(),
155                  program_->NumEffectiveParameters()).setZero();
156      }
157    }
158
159    // This bool is used to disable the loop if an error is encountered
160    // without breaking out of it. The remaining loop iterations are still run,
161    // but with an empty body, and so will finish quickly.
162    bool abort = false;
163    int num_residual_blocks = program_->NumResidualBlocks();
164#pragma omp parallel for num_threads(options_.num_threads)
165    for (int i = 0; i < num_residual_blocks; ++i) {
166// Disable the loop instead of breaking, as required by OpenMP.
167#pragma omp flush(abort)
168      if (abort) {
169        continue;
170      }
171
172#ifdef CERES_USE_OPENMP
173      int thread_id = omp_get_thread_num();
174#else
175      int thread_id = 0;
176#endif
177      EvaluatePreparer* preparer = &evaluate_preparers_[thread_id];
178      EvaluateScratch* scratch = &evaluate_scratch_[thread_id];
179
180      // Prepare block residuals if requested.
181      const ResidualBlock* residual_block = program_->residual_blocks()[i];
182      double* block_residuals = NULL;
183      if (residuals != NULL) {
184        block_residuals = residuals + residual_layout_[i];
185      } else if (gradient != NULL) {
186        block_residuals = scratch->residual_block_residuals.get();
187      }
188
189      // Prepare block jacobians if requested.
190      double** block_jacobians = NULL;
191      if (jacobian != NULL || gradient != NULL) {
192        preparer->Prepare(residual_block,
193                          i,
194                          jacobian,
195                          scratch->jacobian_block_ptrs.get());
196        block_jacobians = scratch->jacobian_block_ptrs.get();
197      }
198
199      // Evaluate the cost, residuals, and jacobians.
200      double block_cost;
201      if (!residual_block->Evaluate(
202              evaluate_options.apply_loss_function,
203              &block_cost,
204              block_residuals,
205              block_jacobians,
206              scratch->residual_block_evaluate_scratch.get())) {
207        abort = true;
208// This ensures that the OpenMP threads have a consistent view of 'abort'. Do
209// the flush inside the failure case so that there is usually only one
210// synchronization point per loop iteration instead of two.
211#pragma omp flush(abort)
212        continue;
213      }
214
215      scratch->cost += block_cost;
216
217      // Store the jacobians, if they were requested.
218      if (jacobian != NULL) {
219        jacobian_writer_.Write(i,
220                               residual_layout_[i],
221                               block_jacobians,
222                               jacobian);
223      }
224
225      // Compute and store the gradient, if it was requested.
226      if (gradient != NULL) {
227        int num_residuals = residual_block->NumResiduals();
228        int num_parameter_blocks = residual_block->NumParameterBlocks();
229        for (int j = 0; j < num_parameter_blocks; ++j) {
230          const ParameterBlock* parameter_block =
231              residual_block->parameter_blocks()[j];
232          if (parameter_block->IsConstant()) {
233            continue;
234          }
235
236          MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>(
237              block_jacobians[j],
238              num_residuals,
239              parameter_block->LocalSize(),
240              block_residuals,
241              scratch->gradient.get() + parameter_block->delta_offset());
242        }
243      }
244    }
245
246    if (!abort) {
247      // Sum the cost and gradient (if requested) from each thread.
248      (*cost) = 0.0;
249      int num_parameters = program_->NumEffectiveParameters();
250      if (gradient != NULL) {
251        VectorRef(gradient, num_parameters).setZero();
252      }
253      for (int i = 0; i < options_.num_threads; ++i) {
254        (*cost) += evaluate_scratch_[i].cost;
255        if (gradient != NULL) {
256          VectorRef(gradient, num_parameters) +=
257              VectorRef(evaluate_scratch_[i].gradient.get(), num_parameters);
258        }
259      }
260    }
261    return !abort;
262  }
263
264  bool Plus(const double* state,
265            const double* delta,
266            double* state_plus_delta) const {
267    return program_->Plus(state, delta, state_plus_delta);
268  }
269
270  int NumParameters() const {
271    return program_->NumParameters();
272  }
273  int NumEffectiveParameters() const {
274    return program_->NumEffectiveParameters();
275  }
276
277  int NumResiduals() const {
278    return program_->NumResiduals();
279  }
280
281  virtual map<string, int> CallStatistics() const {
282    return execution_summary_.calls();
283  }
284
285  virtual map<string, double> TimeStatistics() const {
286    return execution_summary_.times();
287  }
288
289 private:
290  // Per-thread scratch space needed to evaluate and store each residual block.
291  struct EvaluateScratch {
292    void Init(int max_parameters_per_residual_block,
293              int max_scratch_doubles_needed_for_evaluate,
294              int max_residuals_per_residual_block,
295              int num_parameters) {
296      residual_block_evaluate_scratch.reset(
297          new double[max_scratch_doubles_needed_for_evaluate]);
298      gradient.reset(new double[num_parameters]);
299      VectorRef(gradient.get(), num_parameters).setZero();
300      residual_block_residuals.reset(
301          new double[max_residuals_per_residual_block]);
302      jacobian_block_ptrs.reset(
303          new double*[max_parameters_per_residual_block]);
304    }
305
306    double cost;
307    scoped_array<double> residual_block_evaluate_scratch;
308    // The gradient in the local parameterization.
309    scoped_array<double> gradient;
310    // Enough space to store the residual for the largest residual block.
311    scoped_array<double> residual_block_residuals;
312    scoped_array<double*> jacobian_block_ptrs;
313  };
314
315  static void BuildResidualLayout(const Program& program,
316                                  vector<int>* residual_layout) {
317    const vector<ResidualBlock*>& residual_blocks = program.residual_blocks();
318    residual_layout->resize(program.NumResidualBlocks());
319    int residual_pos = 0;
320    for (int i = 0; i < residual_blocks.size(); ++i) {
321      const int num_residuals = residual_blocks[i]->NumResiduals();
322      (*residual_layout)[i] = residual_pos;
323      residual_pos += num_residuals;
324    }
325  }
326
327  // Create scratch space for each thread evaluating the program.
328  static EvaluateScratch* CreateEvaluatorScratch(const Program& program,
329                                                 int num_threads) {
330    int max_parameters_per_residual_block =
331        program.MaxParametersPerResidualBlock();
332    int max_scratch_doubles_needed_for_evaluate =
333        program.MaxScratchDoublesNeededForEvaluate();
334    int max_residuals_per_residual_block =
335        program.MaxResidualsPerResidualBlock();
336    int num_parameters = program.NumEffectiveParameters();
337
338    EvaluateScratch* evaluate_scratch = new EvaluateScratch[num_threads];
339    for (int i = 0; i < num_threads; i++) {
340      evaluate_scratch[i].Init(max_parameters_per_residual_block,
341                               max_scratch_doubles_needed_for_evaluate,
342                               max_residuals_per_residual_block,
343                               num_parameters);
344    }
345    return evaluate_scratch;
346  }
347
348  Evaluator::Options options_;
349  Program* program_;
350  JacobianWriter jacobian_writer_;
351  scoped_array<EvaluatePreparer> evaluate_preparers_;
352  scoped_array<EvaluateScratch> evaluate_scratch_;
353  vector<int> residual_layout_;
354  ::ceres::internal::ExecutionSummary execution_summary_;
355};
356
357}  // namespace internal
358}  // namespace ceres
359
360#endif  // CERES_INTERNAL_PROGRAM_EVALUATOR_H_
361