1// Copyright (c) 2012 The Chromium Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style license that can be 3// found in the LICENSE file. 4 5#include "net/disk_cache/sparse_control.h" 6 7#include "base/bind.h" 8#include "base/format_macros.h" 9#include "base/logging.h" 10#include "base/message_loop/message_loop.h" 11#include "base/strings/string_util.h" 12#include "base/strings/stringprintf.h" 13#include "base/time/time.h" 14#include "net/base/io_buffer.h" 15#include "net/base/net_errors.h" 16#include "net/disk_cache/backend_impl.h" 17#include "net/disk_cache/entry_impl.h" 18#include "net/disk_cache/file.h" 19#include "net/disk_cache/net_log_parameters.h" 20 21using base::Time; 22 23namespace { 24 25// Stream of the sparse data index. 26const int kSparseIndex = 2; 27 28// Stream of the sparse data. 29const int kSparseData = 1; 30 31// We can have up to 64k children. 32const int kMaxMapSize = 8 * 1024; 33 34// The maximum number of bytes that a child can store. 35const int kMaxEntrySize = 0x100000; 36 37// The size of each data block (tracked by the child allocation bitmap). 38const int kBlockSize = 1024; 39 40// Returns the name of a child entry given the base_name and signature of the 41// parent and the child_id. 42// If the entry is called entry_name, child entries will be named something 43// like Range_entry_name:XXX:YYY where XXX is the entry signature and YYY is the 44// number of the particular child. 45std::string GenerateChildName(const std::string& base_name, int64 signature, 46 int64 child_id) { 47 return base::StringPrintf("Range_%s:%" PRIx64 ":%" PRIx64, base_name.c_str(), 48 signature, child_id); 49} 50 51// This class deletes the children of a sparse entry. 52class ChildrenDeleter 53 : public base::RefCounted<ChildrenDeleter>, 54 public disk_cache::FileIOCallback { 55 public: 56 ChildrenDeleter(disk_cache::BackendImpl* backend, const std::string& name) 57 : backend_(backend->GetWeakPtr()), name_(name), signature_(0) {} 58 59 virtual void OnFileIOComplete(int bytes_copied) OVERRIDE; 60 61 // Two ways of deleting the children: if we have the children map, use Start() 62 // directly, otherwise pass the data address to ReadData(). 63 void Start(char* buffer, int len); 64 void ReadData(disk_cache::Addr address, int len); 65 66 private: 67 friend class base::RefCounted<ChildrenDeleter>; 68 virtual ~ChildrenDeleter() {} 69 70 void DeleteChildren(); 71 72 base::WeakPtr<disk_cache::BackendImpl> backend_; 73 std::string name_; 74 disk_cache::Bitmap children_map_; 75 int64 signature_; 76 scoped_ptr<char[]> buffer_; 77 DISALLOW_COPY_AND_ASSIGN(ChildrenDeleter); 78}; 79 80// This is the callback of the file operation. 81void ChildrenDeleter::OnFileIOComplete(int bytes_copied) { 82 char* buffer = buffer_.release(); 83 Start(buffer, bytes_copied); 84} 85 86void ChildrenDeleter::Start(char* buffer, int len) { 87 buffer_.reset(buffer); 88 if (len < static_cast<int>(sizeof(disk_cache::SparseData))) 89 return Release(); 90 91 // Just copy the information from |buffer|, delete |buffer| and start deleting 92 // the child entries. 93 disk_cache::SparseData* data = 94 reinterpret_cast<disk_cache::SparseData*>(buffer); 95 signature_ = data->header.signature; 96 97 int num_bits = (len - sizeof(disk_cache::SparseHeader)) * 8; 98 children_map_.Resize(num_bits, false); 99 children_map_.SetMap(data->bitmap, num_bits / 32); 100 buffer_.reset(); 101 102 DeleteChildren(); 103} 104 105void ChildrenDeleter::ReadData(disk_cache::Addr address, int len) { 106 DCHECK(address.is_block_file()); 107 if (!backend_.get()) 108 return Release(); 109 110 disk_cache::File* file(backend_->File(address)); 111 if (!file) 112 return Release(); 113 114 size_t file_offset = address.start_block() * address.BlockSize() + 115 disk_cache::kBlockHeaderSize; 116 117 buffer_.reset(new char[len]); 118 bool completed; 119 if (!file->Read(buffer_.get(), len, file_offset, this, &completed)) 120 return Release(); 121 122 if (completed) 123 OnFileIOComplete(len); 124 125 // And wait until OnFileIOComplete gets called. 126} 127 128void ChildrenDeleter::DeleteChildren() { 129 int child_id = 0; 130 if (!children_map_.FindNextSetBit(&child_id) || !backend_.get()) { 131 // We are done. Just delete this object. 132 return Release(); 133 } 134 std::string child_name = GenerateChildName(name_, signature_, child_id); 135 backend_->SyncDoomEntry(child_name); 136 children_map_.Set(child_id, false); 137 138 // Post a task to delete the next child. 139 base::MessageLoop::current()->PostTask( 140 FROM_HERE, base::Bind(&ChildrenDeleter::DeleteChildren, this)); 141} 142 143// Returns the NetLog event type corresponding to a SparseOperation. 144net::NetLog::EventType GetSparseEventType( 145 disk_cache::SparseControl::SparseOperation operation) { 146 switch (operation) { 147 case disk_cache::SparseControl::kReadOperation: 148 return net::NetLog::TYPE_SPARSE_READ; 149 case disk_cache::SparseControl::kWriteOperation: 150 return net::NetLog::TYPE_SPARSE_WRITE; 151 case disk_cache::SparseControl::kGetRangeOperation: 152 return net::NetLog::TYPE_SPARSE_GET_RANGE; 153 default: 154 NOTREACHED(); 155 return net::NetLog::TYPE_CANCELLED; 156 } 157} 158 159// Logs the end event for |operation| on a child entry. Range operations log 160// no events for each child they search through. 161void LogChildOperationEnd(const net::BoundNetLog& net_log, 162 disk_cache::SparseControl::SparseOperation operation, 163 int result) { 164 if (net_log.IsLoggingAllEvents()) { 165 net::NetLog::EventType event_type; 166 switch (operation) { 167 case disk_cache::SparseControl::kReadOperation: 168 event_type = net::NetLog::TYPE_SPARSE_READ_CHILD_DATA; 169 break; 170 case disk_cache::SparseControl::kWriteOperation: 171 event_type = net::NetLog::TYPE_SPARSE_WRITE_CHILD_DATA; 172 break; 173 case disk_cache::SparseControl::kGetRangeOperation: 174 return; 175 default: 176 NOTREACHED(); 177 return; 178 } 179 net_log.EndEventWithNetErrorCode(event_type, result); 180 } 181} 182 183} // namespace. 184 185namespace disk_cache { 186 187SparseControl::SparseControl(EntryImpl* entry) 188 : entry_(entry), 189 child_(NULL), 190 operation_(kNoOperation), 191 pending_(false), 192 finished_(false), 193 init_(false), 194 range_found_(false), 195 abort_(false), 196 child_map_(child_data_.bitmap, kNumSparseBits, kNumSparseBits / 32), 197 offset_(0), 198 buf_len_(0), 199 child_offset_(0), 200 child_len_(0), 201 result_(0) { 202 memset(&sparse_header_, 0, sizeof(sparse_header_)); 203 memset(&child_data_, 0, sizeof(child_data_)); 204} 205 206SparseControl::~SparseControl() { 207 if (child_) 208 CloseChild(); 209 if (init_) 210 WriteSparseData(); 211} 212 213int SparseControl::Init() { 214 DCHECK(!init_); 215 216 // We should not have sparse data for the exposed entry. 217 if (entry_->GetDataSize(kSparseData)) 218 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED; 219 220 // Now see if there is something where we store our data. 221 int rv = net::OK; 222 int data_len = entry_->GetDataSize(kSparseIndex); 223 if (!data_len) { 224 rv = CreateSparseEntry(); 225 } else { 226 rv = OpenSparseEntry(data_len); 227 } 228 229 if (rv == net::OK) 230 init_ = true; 231 return rv; 232} 233 234bool SparseControl::CouldBeSparse() const { 235 DCHECK(!init_); 236 237 if (entry_->GetDataSize(kSparseData)) 238 return false; 239 240 // We don't verify the data, just see if it could be there. 241 return (entry_->GetDataSize(kSparseIndex) != 0); 242} 243 244int SparseControl::StartIO(SparseOperation op, int64 offset, net::IOBuffer* buf, 245 int buf_len, const CompletionCallback& callback) { 246 DCHECK(init_); 247 // We don't support simultaneous IO for sparse data. 248 if (operation_ != kNoOperation) 249 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED; 250 251 if (offset < 0 || buf_len < 0) 252 return net::ERR_INVALID_ARGUMENT; 253 254 // We only support up to 64 GB. 255 if (offset + buf_len >= 0x1000000000LL || offset + buf_len < 0) 256 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED; 257 258 DCHECK(!user_buf_.get()); 259 DCHECK(user_callback_.is_null()); 260 261 if (!buf && (op == kReadOperation || op == kWriteOperation)) 262 return 0; 263 264 // Copy the operation parameters. 265 operation_ = op; 266 offset_ = offset; 267 user_buf_ = buf ? new net::DrainableIOBuffer(buf, buf_len) : NULL; 268 buf_len_ = buf_len; 269 user_callback_ = callback; 270 271 result_ = 0; 272 pending_ = false; 273 finished_ = false; 274 abort_ = false; 275 276 if (entry_->net_log().IsLoggingAllEvents()) { 277 entry_->net_log().BeginEvent( 278 GetSparseEventType(operation_), 279 CreateNetLogSparseOperationCallback(offset_, buf_len_)); 280 } 281 DoChildrenIO(); 282 283 if (!pending_) { 284 // Everything was done synchronously. 285 operation_ = kNoOperation; 286 user_buf_ = NULL; 287 user_callback_.Reset(); 288 return result_; 289 } 290 291 return net::ERR_IO_PENDING; 292} 293 294int SparseControl::GetAvailableRange(int64 offset, int len, int64* start) { 295 DCHECK(init_); 296 // We don't support simultaneous IO for sparse data. 297 if (operation_ != kNoOperation) 298 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED; 299 300 DCHECK(start); 301 302 range_found_ = false; 303 int result = StartIO( 304 kGetRangeOperation, offset, NULL, len, CompletionCallback()); 305 if (range_found_) { 306 *start = offset_; 307 return result; 308 } 309 310 // This is a failure. We want to return a valid start value in any case. 311 *start = offset; 312 return result < 0 ? result : 0; // Don't mask error codes to the caller. 313} 314 315void SparseControl::CancelIO() { 316 if (operation_ == kNoOperation) 317 return; 318 abort_ = true; 319} 320 321int SparseControl::ReadyToUse(const CompletionCallback& callback) { 322 if (!abort_) 323 return net::OK; 324 325 // We'll grab another reference to keep this object alive because we just have 326 // one extra reference due to the pending IO operation itself, but we'll 327 // release that one before invoking user_callback_. 328 entry_->AddRef(); // Balanced in DoAbortCallbacks. 329 abort_callbacks_.push_back(callback); 330 return net::ERR_IO_PENDING; 331} 332 333// Static 334void SparseControl::DeleteChildren(EntryImpl* entry) { 335 DCHECK(entry->GetEntryFlags() & PARENT_ENTRY); 336 int data_len = entry->GetDataSize(kSparseIndex); 337 if (data_len < static_cast<int>(sizeof(SparseData)) || 338 entry->GetDataSize(kSparseData)) 339 return; 340 341 int map_len = data_len - sizeof(SparseHeader); 342 if (map_len > kMaxMapSize || map_len % 4) 343 return; 344 345 char* buffer; 346 Addr address; 347 entry->GetData(kSparseIndex, &buffer, &address); 348 if (!buffer && !address.is_initialized()) 349 return; 350 351 entry->net_log().AddEvent(net::NetLog::TYPE_SPARSE_DELETE_CHILDREN); 352 353 DCHECK(entry->backend_.get()); 354 ChildrenDeleter* deleter = new ChildrenDeleter(entry->backend_.get(), 355 entry->GetKey()); 356 // The object will self destruct when finished. 357 deleter->AddRef(); 358 359 if (buffer) { 360 base::MessageLoop::current()->PostTask( 361 FROM_HERE, 362 base::Bind(&ChildrenDeleter::Start, deleter, buffer, data_len)); 363 } else { 364 base::MessageLoop::current()->PostTask( 365 FROM_HERE, 366 base::Bind(&ChildrenDeleter::ReadData, deleter, address, data_len)); 367 } 368} 369 370// We are going to start using this entry to store sparse data, so we have to 371// initialize our control info. 372int SparseControl::CreateSparseEntry() { 373 if (CHILD_ENTRY & entry_->GetEntryFlags()) 374 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED; 375 376 memset(&sparse_header_, 0, sizeof(sparse_header_)); 377 sparse_header_.signature = Time::Now().ToInternalValue(); 378 sparse_header_.magic = kIndexMagic; 379 sparse_header_.parent_key_len = entry_->GetKey().size(); 380 children_map_.Resize(kNumSparseBits, true); 381 382 // Save the header. The bitmap is saved in the destructor. 383 scoped_refptr<net::IOBuffer> buf( 384 new net::WrappedIOBuffer(reinterpret_cast<char*>(&sparse_header_))); 385 386 int rv = entry_->WriteData(kSparseIndex, 0, buf.get(), sizeof(sparse_header_), 387 CompletionCallback(), false); 388 if (rv != sizeof(sparse_header_)) { 389 DLOG(ERROR) << "Unable to save sparse_header_"; 390 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED; 391 } 392 393 entry_->SetEntryFlags(PARENT_ENTRY); 394 return net::OK; 395} 396 397// We are opening an entry from disk. Make sure that our control data is there. 398int SparseControl::OpenSparseEntry(int data_len) { 399 if (data_len < static_cast<int>(sizeof(SparseData))) 400 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED; 401 402 if (entry_->GetDataSize(kSparseData)) 403 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED; 404 405 if (!(PARENT_ENTRY & entry_->GetEntryFlags())) 406 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED; 407 408 // Dont't go over board with the bitmap. 8 KB gives us offsets up to 64 GB. 409 int map_len = data_len - sizeof(sparse_header_); 410 if (map_len > kMaxMapSize || map_len % 4) 411 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED; 412 413 scoped_refptr<net::IOBuffer> buf( 414 new net::WrappedIOBuffer(reinterpret_cast<char*>(&sparse_header_))); 415 416 // Read header. 417 int rv = entry_->ReadData(kSparseIndex, 0, buf.get(), sizeof(sparse_header_), 418 CompletionCallback()); 419 if (rv != static_cast<int>(sizeof(sparse_header_))) 420 return net::ERR_CACHE_READ_FAILURE; 421 422 // The real validation should be performed by the caller. This is just to 423 // double check. 424 if (sparse_header_.magic != kIndexMagic || 425 sparse_header_.parent_key_len != 426 static_cast<int>(entry_->GetKey().size())) 427 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED; 428 429 // Read the actual bitmap. 430 buf = new net::IOBuffer(map_len); 431 rv = entry_->ReadData(kSparseIndex, sizeof(sparse_header_), buf.get(), 432 map_len, CompletionCallback()); 433 if (rv != map_len) 434 return net::ERR_CACHE_READ_FAILURE; 435 436 // Grow the bitmap to the current size and copy the bits. 437 children_map_.Resize(map_len * 8, false); 438 children_map_.SetMap(reinterpret_cast<uint32*>(buf->data()), map_len); 439 return net::OK; 440} 441 442bool SparseControl::OpenChild() { 443 DCHECK_GE(result_, 0); 444 445 std::string key = GenerateChildKey(); 446 if (child_) { 447 // Keep using the same child or open another one?. 448 if (key == child_->GetKey()) 449 return true; 450 CloseChild(); 451 } 452 453 // See if we are tracking this child. 454 if (!ChildPresent()) 455 return ContinueWithoutChild(key); 456 457 if (!entry_->backend_.get()) 458 return false; 459 460 child_ = entry_->backend_->OpenEntryImpl(key); 461 if (!child_) 462 return ContinueWithoutChild(key); 463 464 EntryImpl* child = static_cast<EntryImpl*>(child_); 465 if (!(CHILD_ENTRY & child->GetEntryFlags()) || 466 child->GetDataSize(kSparseIndex) < 467 static_cast<int>(sizeof(child_data_))) 468 return KillChildAndContinue(key, false); 469 470 scoped_refptr<net::WrappedIOBuffer> buf( 471 new net::WrappedIOBuffer(reinterpret_cast<char*>(&child_data_))); 472 473 // Read signature. 474 int rv = child_->ReadData(kSparseIndex, 0, buf.get(), sizeof(child_data_), 475 CompletionCallback()); 476 if (rv != sizeof(child_data_)) 477 return KillChildAndContinue(key, true); // This is a fatal failure. 478 479 if (child_data_.header.signature != sparse_header_.signature || 480 child_data_.header.magic != kIndexMagic) 481 return KillChildAndContinue(key, false); 482 483 if (child_data_.header.last_block_len < 0 || 484 child_data_.header.last_block_len > kBlockSize) { 485 // Make sure these values are always within range. 486 child_data_.header.last_block_len = 0; 487 child_data_.header.last_block = -1; 488 } 489 490 return true; 491} 492 493void SparseControl::CloseChild() { 494 scoped_refptr<net::WrappedIOBuffer> buf( 495 new net::WrappedIOBuffer(reinterpret_cast<char*>(&child_data_))); 496 497 // Save the allocation bitmap before closing the child entry. 498 int rv = child_->WriteData(kSparseIndex, 0, buf.get(), sizeof(child_data_), 499 CompletionCallback(), false); 500 if (rv != sizeof(child_data_)) 501 DLOG(ERROR) << "Failed to save child data"; 502 child_->Release(); 503 child_ = NULL; 504} 505 506std::string SparseControl::GenerateChildKey() { 507 return GenerateChildName(entry_->GetKey(), sparse_header_.signature, 508 offset_ >> 20); 509} 510 511// We are deleting the child because something went wrong. 512bool SparseControl::KillChildAndContinue(const std::string& key, bool fatal) { 513 SetChildBit(false); 514 child_->DoomImpl(); 515 child_->Release(); 516 child_ = NULL; 517 if (fatal) { 518 result_ = net::ERR_CACHE_READ_FAILURE; 519 return false; 520 } 521 return ContinueWithoutChild(key); 522} 523 524// We were not able to open this child; see what we can do. 525bool SparseControl::ContinueWithoutChild(const std::string& key) { 526 if (kReadOperation == operation_) 527 return false; 528 if (kGetRangeOperation == operation_) 529 return true; 530 531 if (!entry_->backend_.get()) 532 return false; 533 534 child_ = entry_->backend_->CreateEntryImpl(key); 535 if (!child_) { 536 child_ = NULL; 537 result_ = net::ERR_CACHE_READ_FAILURE; 538 return false; 539 } 540 // Write signature. 541 InitChildData(); 542 return true; 543} 544 545bool SparseControl::ChildPresent() { 546 int child_bit = static_cast<int>(offset_ >> 20); 547 if (children_map_.Size() <= child_bit) 548 return false; 549 550 return children_map_.Get(child_bit); 551} 552 553void SparseControl::SetChildBit(bool value) { 554 int child_bit = static_cast<int>(offset_ >> 20); 555 556 // We may have to increase the bitmap of child entries. 557 if (children_map_.Size() <= child_bit) 558 children_map_.Resize(Bitmap::RequiredArraySize(child_bit + 1) * 32, true); 559 560 children_map_.Set(child_bit, value); 561} 562 563void SparseControl::WriteSparseData() { 564 scoped_refptr<net::IOBuffer> buf(new net::WrappedIOBuffer( 565 reinterpret_cast<const char*>(children_map_.GetMap()))); 566 567 int len = children_map_.ArraySize() * 4; 568 int rv = entry_->WriteData(kSparseIndex, sizeof(sparse_header_), buf.get(), 569 len, CompletionCallback(), false); 570 if (rv != len) { 571 DLOG(ERROR) << "Unable to save sparse map"; 572 } 573} 574 575bool SparseControl::VerifyRange() { 576 DCHECK_GE(result_, 0); 577 578 child_offset_ = static_cast<int>(offset_) & (kMaxEntrySize - 1); 579 child_len_ = std::min(buf_len_, kMaxEntrySize - child_offset_); 580 581 // We can write to (or get info from) anywhere in this child. 582 if (operation_ != kReadOperation) 583 return true; 584 585 // Check that there are no holes in this range. 586 int last_bit = (child_offset_ + child_len_ + 1023) >> 10; 587 int start = child_offset_ >> 10; 588 if (child_map_.FindNextBit(&start, last_bit, false)) { 589 // Something is not here. 590 DCHECK_GE(child_data_.header.last_block_len, 0); 591 DCHECK_LT(child_data_.header.last_block_len, kMaxEntrySize); 592 int partial_block_len = PartialBlockLength(start); 593 if (start == child_offset_ >> 10) { 594 // It looks like we don't have anything. 595 if (partial_block_len <= (child_offset_ & (kBlockSize - 1))) 596 return false; 597 } 598 599 // We have the first part. 600 child_len_ = (start << 10) - child_offset_; 601 if (partial_block_len) { 602 // We may have a few extra bytes. 603 child_len_ = std::min(child_len_ + partial_block_len, buf_len_); 604 } 605 // There is no need to read more after this one. 606 buf_len_ = child_len_; 607 } 608 return true; 609} 610 611void SparseControl::UpdateRange(int result) { 612 if (result <= 0 || operation_ != kWriteOperation) 613 return; 614 615 DCHECK_GE(child_data_.header.last_block_len, 0); 616 DCHECK_LT(child_data_.header.last_block_len, kMaxEntrySize); 617 618 // Write the bitmap. 619 int first_bit = child_offset_ >> 10; 620 int block_offset = child_offset_ & (kBlockSize - 1); 621 if (block_offset && (child_data_.header.last_block != first_bit || 622 child_data_.header.last_block_len < block_offset)) { 623 // The first block is not completely filled; ignore it. 624 first_bit++; 625 } 626 627 int last_bit = (child_offset_ + result) >> 10; 628 block_offset = (child_offset_ + result) & (kBlockSize - 1); 629 630 // This condition will hit with the following criteria: 631 // 1. The first byte doesn't follow the last write. 632 // 2. The first byte is in the middle of a block. 633 // 3. The first byte and the last byte are in the same block. 634 if (first_bit > last_bit) 635 return; 636 637 if (block_offset && !child_map_.Get(last_bit)) { 638 // The last block is not completely filled; save it for later. 639 child_data_.header.last_block = last_bit; 640 child_data_.header.last_block_len = block_offset; 641 } else { 642 child_data_.header.last_block = -1; 643 } 644 645 child_map_.SetRange(first_bit, last_bit, true); 646} 647 648int SparseControl::PartialBlockLength(int block_index) const { 649 if (block_index == child_data_.header.last_block) 650 return child_data_.header.last_block_len; 651 652 // This may be the last stored index. 653 int entry_len = child_->GetDataSize(kSparseData); 654 if (block_index == entry_len >> 10) 655 return entry_len & (kBlockSize - 1); 656 657 // This is really empty. 658 return 0; 659} 660 661void SparseControl::InitChildData() { 662 // We know the real type of child_. 663 EntryImpl* child = static_cast<EntryImpl*>(child_); 664 child->SetEntryFlags(CHILD_ENTRY); 665 666 memset(&child_data_, 0, sizeof(child_data_)); 667 child_data_.header = sparse_header_; 668 669 scoped_refptr<net::WrappedIOBuffer> buf( 670 new net::WrappedIOBuffer(reinterpret_cast<char*>(&child_data_))); 671 672 int rv = child_->WriteData(kSparseIndex, 0, buf.get(), sizeof(child_data_), 673 CompletionCallback(), false); 674 if (rv != sizeof(child_data_)) 675 DLOG(ERROR) << "Failed to save child data"; 676 SetChildBit(true); 677} 678 679void SparseControl::DoChildrenIO() { 680 while (DoChildIO()) continue; 681 682 // Range operations are finished synchronously, often without setting 683 // |finished_| to true. 684 if (kGetRangeOperation == operation_ && 685 entry_->net_log().IsLoggingAllEvents()) { 686 entry_->net_log().EndEvent( 687 net::NetLog::TYPE_SPARSE_GET_RANGE, 688 CreateNetLogGetAvailableRangeResultCallback(offset_, result_)); 689 } 690 if (finished_) { 691 if (kGetRangeOperation != operation_ && 692 entry_->net_log().IsLoggingAllEvents()) { 693 entry_->net_log().EndEvent(GetSparseEventType(operation_)); 694 } 695 if (pending_) 696 DoUserCallback(); // Don't touch this object after this point. 697 } 698} 699 700bool SparseControl::DoChildIO() { 701 finished_ = true; 702 if (!buf_len_ || result_ < 0) 703 return false; 704 705 if (!OpenChild()) 706 return false; 707 708 if (!VerifyRange()) 709 return false; 710 711 // We have more work to do. Let's not trigger a callback to the caller. 712 finished_ = false; 713 CompletionCallback callback; 714 if (!user_callback_.is_null()) { 715 callback = 716 base::Bind(&SparseControl::OnChildIOCompleted, base::Unretained(this)); 717 } 718 719 int rv = 0; 720 switch (operation_) { 721 case kReadOperation: 722 if (entry_->net_log().IsLoggingAllEvents()) { 723 entry_->net_log().BeginEvent( 724 net::NetLog::TYPE_SPARSE_READ_CHILD_DATA, 725 CreateNetLogSparseReadWriteCallback(child_->net_log().source(), 726 child_len_)); 727 } 728 rv = child_->ReadDataImpl(kSparseData, child_offset_, user_buf_.get(), 729 child_len_, callback); 730 break; 731 case kWriteOperation: 732 if (entry_->net_log().IsLoggingAllEvents()) { 733 entry_->net_log().BeginEvent( 734 net::NetLog::TYPE_SPARSE_WRITE_CHILD_DATA, 735 CreateNetLogSparseReadWriteCallback(child_->net_log().source(), 736 child_len_)); 737 } 738 rv = child_->WriteDataImpl(kSparseData, child_offset_, user_buf_.get(), 739 child_len_, callback, false); 740 break; 741 case kGetRangeOperation: 742 rv = DoGetAvailableRange(); 743 break; 744 default: 745 NOTREACHED(); 746 } 747 748 if (rv == net::ERR_IO_PENDING) { 749 if (!pending_) { 750 pending_ = true; 751 // The child will protect himself against closing the entry while IO is in 752 // progress. However, this entry can still be closed, and that would not 753 // be a good thing for us, so we increase the refcount until we're 754 // finished doing sparse stuff. 755 entry_->AddRef(); // Balanced in DoUserCallback. 756 } 757 return false; 758 } 759 if (!rv) 760 return false; 761 762 DoChildIOCompleted(rv); 763 return true; 764} 765 766int SparseControl::DoGetAvailableRange() { 767 if (!child_) 768 return child_len_; // Move on to the next child. 769 770 // Check that there are no holes in this range. 771 int last_bit = (child_offset_ + child_len_ + 1023) >> 10; 772 int start = child_offset_ >> 10; 773 int partial_start_bytes = PartialBlockLength(start); 774 int found = start; 775 int bits_found = child_map_.FindBits(&found, last_bit, true); 776 777 // We don't care if there is a partial block in the middle of the range. 778 int block_offset = child_offset_ & (kBlockSize - 1); 779 if (!bits_found && partial_start_bytes <= block_offset) 780 return child_len_; 781 782 // We are done. Just break the loop and reset result_ to our real result. 783 range_found_ = true; 784 785 // found now points to the first 1. Lets see if we have zeros before it. 786 int empty_start = std::max((found << 10) - child_offset_, 0); 787 788 int bytes_found = bits_found << 10; 789 bytes_found += PartialBlockLength(found + bits_found); 790 791 if (start == found) 792 bytes_found -= block_offset; 793 794 // If the user is searching past the end of this child, bits_found is the 795 // right result; otherwise, we have some empty space at the start of this 796 // query that we have to subtract from the range that we searched. 797 result_ = std::min(bytes_found, child_len_ - empty_start); 798 799 if (!bits_found) { 800 result_ = std::min(partial_start_bytes - block_offset, child_len_); 801 empty_start = 0; 802 } 803 804 // Only update offset_ when this query found zeros at the start. 805 if (empty_start) 806 offset_ += empty_start; 807 808 // This will actually break the loop. 809 buf_len_ = 0; 810 return 0; 811} 812 813void SparseControl::DoChildIOCompleted(int result) { 814 LogChildOperationEnd(entry_->net_log(), operation_, result); 815 if (result < 0) { 816 // We fail the whole operation if we encounter an error. 817 result_ = result; 818 return; 819 } 820 821 UpdateRange(result); 822 823 result_ += result; 824 offset_ += result; 825 buf_len_ -= result; 826 827 // We'll be reusing the user provided buffer for the next chunk. 828 if (buf_len_ && user_buf_.get()) 829 user_buf_->DidConsume(result); 830} 831 832void SparseControl::OnChildIOCompleted(int result) { 833 DCHECK_NE(net::ERR_IO_PENDING, result); 834 DoChildIOCompleted(result); 835 836 if (abort_) { 837 // We'll return the current result of the operation, which may be less than 838 // the bytes to read or write, but the user cancelled the operation. 839 abort_ = false; 840 if (entry_->net_log().IsLoggingAllEvents()) { 841 entry_->net_log().AddEvent(net::NetLog::TYPE_CANCELLED); 842 entry_->net_log().EndEvent(GetSparseEventType(operation_)); 843 } 844 // We have an indirect reference to this object for every callback so if 845 // there is only one callback, we may delete this object before reaching 846 // DoAbortCallbacks. 847 bool has_abort_callbacks = !abort_callbacks_.empty(); 848 DoUserCallback(); 849 if (has_abort_callbacks) 850 DoAbortCallbacks(); 851 return; 852 } 853 854 // We are running a callback from the message loop. It's time to restart what 855 // we were doing before. 856 DoChildrenIO(); 857} 858 859void SparseControl::DoUserCallback() { 860 DCHECK(!user_callback_.is_null()); 861 CompletionCallback cb = user_callback_; 862 user_callback_.Reset(); 863 user_buf_ = NULL; 864 pending_ = false; 865 operation_ = kNoOperation; 866 int rv = result_; 867 entry_->Release(); // Don't touch object after this line. 868 cb.Run(rv); 869} 870 871void SparseControl::DoAbortCallbacks() { 872 for (size_t i = 0; i < abort_callbacks_.size(); i++) { 873 // Releasing all references to entry_ may result in the destruction of this 874 // object so we should not be touching it after the last Release(). 875 CompletionCallback cb = abort_callbacks_[i]; 876 if (i == abort_callbacks_.size() - 1) 877 abort_callbacks_.clear(); 878 879 entry_->Release(); // Don't touch object after this line. 880 cb.Run(net::OK); 881 } 882} 883 884} // namespace disk_cache 885