1// Copyright (c) 2005, 2007, Google Inc.
2// All rights reserved.
3// Copyright (C) 2005, 2006, 2007, 2008, 2009, 2011 Apple Inc. All rights reserved.
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are
7// met:
8//
9//     * Redistributions of source code must retain the above copyright
10// notice, this list of conditions and the following disclaimer.
11//     * Redistributions in binary form must reproduce the above
12// copyright notice, this list of conditions and the following disclaimer
13// in the documentation and/or other materials provided with the
14// distribution.
15//     * Neither the name of Google Inc. nor the names of its
16// contributors may be used to endorse or promote products derived from
17// this software without specific prior written permission.
18//
19// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31// ---
32// Author: Sanjay Ghemawat <opensource@google.com>
33//
34// A malloc that uses a per-thread cache to satisfy small malloc requests.
35// (The time for malloc/free of a small object drops from 300 ns to 50 ns.)
36//
37// See doc/tcmalloc.html for a high-level
38// description of how this malloc works.
39//
40// SYNCHRONIZATION
41//  1. The thread-specific lists are accessed without acquiring any locks.
42//     This is safe because each such list is only accessed by one thread.
43//  2. We have a lock per central free-list, and hold it while manipulating
44//     the central free list for a particular size.
45//  3. The central page allocator is protected by "pageheap_lock".
46//  4. The pagemap (which maps from page-number to descriptor),
47//     can be read without holding any locks, and written while holding
48//     the "pageheap_lock".
49//  5. To improve performance, a subset of the information one can get
50//     from the pagemap is cached in a data structure, pagemap_cache_,
51//     that atomically reads and writes its entries.  This cache can be
52//     read and written without locking.
53//
54//     This multi-threaded access to the pagemap is safe for fairly
55//     subtle reasons.  We basically assume that when an object X is
56//     allocated by thread A and deallocated by thread B, there must
57//     have been appropriate synchronization in the handoff of object
58//     X from thread A to thread B.  The same logic applies to pagemap_cache_.
59//
60// THE PAGEID-TO-SIZECLASS CACHE
61// Hot PageID-to-sizeclass mappings are held by pagemap_cache_.  If this cache
62// returns 0 for a particular PageID then that means "no information," not that
63// the sizeclass is 0.  The cache may have stale information for pages that do
64// not hold the beginning of any free()'able object.  Staleness is eliminated
65// in Populate() for pages with sizeclass > 0 objects, and in do_malloc() and
66// do_memalign() for all other relevant pages.
67//
68// TODO: Bias reclamation to larger addresses
69// TODO: implement mallinfo/mallopt
70// TODO: Better testing
71//
72// 9/28/2003 (new page-level allocator replaces ptmalloc2):
73// * malloc/free of small objects goes from ~300 ns to ~50 ns.
74// * allocation of a reasonably complicated struct
75//   goes from about 1100 ns to about 300 ns.
76
77#include "config.h"
78#include "wtf/FastMalloc.h"
79
80#include "wtf/Assertions.h"
81#include "wtf/CPU.h"
82#include "wtf/StdLibExtras.h"
83
84#if OS(MACOSX)
85#include <AvailabilityMacros.h>
86#endif
87
88#include <limits>
89#if OS(WIN)
90#include <windows.h>
91#else
92#include <pthread.h>
93#endif
94#include <stdlib.h>
95#include <string.h>
96
97#ifndef NO_TCMALLOC_SAMPLES
98#define NO_TCMALLOC_SAMPLES
99#endif
100
101#if !USE(SYSTEM_MALLOC) && defined(NDEBUG)
102#define FORCE_SYSTEM_MALLOC 0
103#else
104#define FORCE_SYSTEM_MALLOC 1
105#endif
106
107// Harden the pointers stored in the TCMalloc linked lists
108#if COMPILER(GCC)
109#define ENABLE_TCMALLOC_HARDENING 1
110#endif
111
112// Use a background thread to periodically scavenge memory to release back to the system
113#define USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY 1
114
115#ifndef NDEBUG
116namespace WTF {
117
118#if OS(WIN)
119
120// TLS_OUT_OF_INDEXES is not defined on WinCE.
121#ifndef TLS_OUT_OF_INDEXES
122#define TLS_OUT_OF_INDEXES 0xffffffff
123#endif
124
125static DWORD isForibiddenTlsIndex = TLS_OUT_OF_INDEXES;
126static const LPVOID kTlsAllowValue = reinterpret_cast<LPVOID>(0); // Must be zero.
127static const LPVOID kTlsForbiddenValue = reinterpret_cast<LPVOID>(1);
128
129#if !ASSERT_DISABLED
130static bool isForbidden()
131{
132    // By default, fastMalloc is allowed so we don't allocate the
133    // tls index unless we're asked to make it forbidden. If TlsSetValue
134    // has not been called on a thread, the value returned by TlsGetValue is 0.
135    return (isForibiddenTlsIndex != TLS_OUT_OF_INDEXES) && (TlsGetValue(isForibiddenTlsIndex) == kTlsForbiddenValue);
136}
137#endif
138
139void fastMallocForbid()
140{
141    if (isForibiddenTlsIndex == TLS_OUT_OF_INDEXES)
142        isForibiddenTlsIndex = TlsAlloc(); // a little racey, but close enough for debug only
143    TlsSetValue(isForibiddenTlsIndex, kTlsForbiddenValue);
144}
145
146void fastMallocAllow()
147{
148    if (isForibiddenTlsIndex == TLS_OUT_OF_INDEXES)
149        return;
150    TlsSetValue(isForibiddenTlsIndex, kTlsAllowValue);
151}
152
153#else // !OS(WIN)
154
155static pthread_key_t isForbiddenKey;
156static pthread_once_t isForbiddenKeyOnce = PTHREAD_ONCE_INIT;
157static void initializeIsForbiddenKey()
158{
159  pthread_key_create(&isForbiddenKey, 0);
160}
161
162#if !ASSERT_DISABLED
163static bool isForbidden()
164{
165    pthread_once(&isForbiddenKeyOnce, initializeIsForbiddenKey);
166    return !!pthread_getspecific(isForbiddenKey);
167}
168#endif
169
170void fastMallocForbid()
171{
172    pthread_once(&isForbiddenKeyOnce, initializeIsForbiddenKey);
173    pthread_setspecific(isForbiddenKey, &isForbiddenKey);
174}
175
176void fastMallocAllow()
177{
178    pthread_once(&isForbiddenKeyOnce, initializeIsForbiddenKey);
179    pthread_setspecific(isForbiddenKey, 0);
180}
181#endif // OS(WIN)
182
183} // namespace WTF
184#endif // NDEBUG
185
186namespace WTF {
187
188void* fastZeroedMalloc(size_t n)
189{
190    void* result = fastMalloc(n);
191    memset(result, 0, n);
192    return result;
193}
194
195char* fastStrDup(const char* src)
196{
197    size_t len = strlen(src) + 1;
198    char* dup = static_cast<char*>(fastMalloc(len));
199    memcpy(dup, src, len);
200    return dup;
201}
202
203} // namespace WTF
204
205#if FORCE_SYSTEM_MALLOC
206
207#if OS(MACOSX)
208#include <malloc/malloc.h>
209#elif OS(WIN)
210#include <malloc.h>
211#endif
212
213namespace WTF {
214
215void* fastMalloc(size_t n)
216{
217    ASSERT(!isForbidden());
218
219    void* result = malloc(n);
220    ASSERT(result);  // We expect tcmalloc underneath, which would crash instead of getting here.
221
222    return result;
223}
224
225void* fastCalloc(size_t n_elements, size_t element_size)
226{
227    ASSERT(!isForbidden());
228
229    void* result = calloc(n_elements, element_size);
230    ASSERT(result);  // We expect tcmalloc underneath, which would crash instead of getting here.
231
232    return result;
233}
234
235void fastFree(void* p)
236{
237    ASSERT(!isForbidden());
238
239    free(p);
240}
241
242void* fastRealloc(void* p, size_t n)
243{
244    ASSERT(!isForbidden());
245
246    void* result = realloc(p, n);
247    ASSERT(result);  // We expect tcmalloc underneath, which would crash instead of getting here.
248
249    return result;
250}
251
252void releaseFastMallocFreeMemory() { }
253
254FastMallocStatistics fastMallocStatistics()
255{
256    FastMallocStatistics statistics = { 0, 0, 0 };
257    return statistics;
258}
259
260} // namespace WTF
261
262#if OS(MACOSX)
263// This symbol is present in the JavaScriptCore exports file even when FastMalloc is disabled.
264// It will never be used in this case, so it's type and value are less interesting than its presence.
265extern "C"  const int jscore_fastmalloc_introspection = 0;
266#endif
267
268#else // FORCE_SYSTEM_MALLOC
269
270#include "Compiler.h"
271#include "TCPackedCache.h"
272#include "TCPageMap.h"
273#include "TCSpinLock.h"
274#include "TCSystemAlloc.h"
275#include <algorithm>
276#include <errno.h>
277#include <pthread.h>
278#include <stdarg.h>
279#include <stddef.h>
280#if OS(POSIX)
281#include <unistd.h>
282#endif
283#if OS(WIN)
284#ifndef WIN32_LEAN_AND_MEAN
285#define WIN32_LEAN_AND_MEAN
286#endif
287#include <windows.h>
288#endif
289
290#if OS(MACOSX)
291#include "MallocZoneSupport.h"
292#include "wtf/HashSet.h"
293#include "wtf/Vector.h"
294#else
295#include "wtf/CurrentTime.h"
296#endif
297
298#if HAVE(DISPATCH_H)
299#include <dispatch/dispatch.h>
300#endif
301
302#ifndef PRIuS
303#define PRIuS "zu"
304#endif
305
306// Calling pthread_getspecific through a global function pointer is faster than a normal
307// call to the function on Mac OS X, and it's used in performance-critical code. So we
308// use a function pointer. But that's not necessarily faster on other platforms, and we had
309// problems with this technique on Windows, so we'll do this only on Mac OS X.
310#if OS(MACOSX)
311static void* (*pthread_getspecific_function_pointer)(pthread_key_t) = pthread_getspecific;
312#define pthread_getspecific(key) pthread_getspecific_function_pointer(key)
313#endif
314
315#define DEFINE_VARIABLE(type, name, value, meaning) \
316  namespace FLAG__namespace_do_not_use_directly_use_DECLARE_##type##_instead {  \
317  type FLAGS_##name(value);                                \
318  char FLAGS_no##name;                                                        \
319  }                                                                           \
320  using FLAG__namespace_do_not_use_directly_use_DECLARE_##type##_instead::FLAGS_##name
321
322#define DEFINE_int64(name, value, meaning) \
323  DEFINE_VARIABLE(int64_t, name, value, meaning)
324
325#define DEFINE_double(name, value, meaning) \
326  DEFINE_VARIABLE(double, name, value, meaning)
327
328namespace WTF {
329
330#define malloc fastMalloc
331#define calloc fastCalloc
332#define free fastFree
333#define realloc fastRealloc
334
335#define MESSAGE WTF_LOG_ERROR
336#define CHECK_CONDITION ASSERT
337
338#if !OS(MACOSX)
339static const char kLLHardeningMask = 0;
340#endif
341
342template <unsigned> struct EntropySource;
343template <> struct EntropySource<4> {
344    static uint32_t value()
345    {
346#if OS(MACOSX)
347        return arc4random();
348#else
349        return static_cast<uint32_t>(static_cast<uintptr_t>(currentTime() * 10000) ^ reinterpret_cast<uintptr_t>(&kLLHardeningMask));
350#endif
351    }
352};
353
354template <> struct EntropySource<8> {
355    static uint64_t value()
356    {
357        return EntropySource<4>::value() | (static_cast<uint64_t>(EntropySource<4>::value()) << 32);
358    }
359};
360
361#if ENABLE(TCMALLOC_HARDENING)
362/*
363 * To make it harder to exploit use-after free style exploits
364 * we mask the addresses we put into our linked lists with the
365 * address of kLLHardeningMask.  Due to ASLR the address of
366 * kLLHardeningMask should be sufficiently randomized to make direct
367 * freelist manipulation much more difficult.
368 */
369enum {
370    MaskKeyShift = 13
371};
372
373static ALWAYS_INLINE uintptr_t internalEntropyValue()
374{
375    static uintptr_t value = EntropySource<sizeof(uintptr_t)>::value() | 1;
376    ASSERT(value);
377    return value;
378}
379
380#define HARDENING_ENTROPY internalEntropyValue()
381#define ROTATE_VALUE(value, amount) (((value) >> (amount)) | ((value) << (sizeof(value) * 8 - (amount))))
382#define XOR_MASK_PTR_WITH_KEY(ptr, key, entropy) (reinterpret_cast<typeof(ptr)>(reinterpret_cast<uintptr_t>(ptr)^(ROTATE_VALUE(reinterpret_cast<uintptr_t>(key), MaskKeyShift)^entropy)))
383
384
385static ALWAYS_INLINE uint32_t freedObjectStartPoison()
386{
387    static uint32_t value = EntropySource<sizeof(uint32_t)>::value() | 1;
388    ASSERT(value);
389    return value;
390}
391
392static ALWAYS_INLINE uint32_t freedObjectEndPoison()
393{
394    static uint32_t value = EntropySource<sizeof(uint32_t)>::value() | 1;
395    ASSERT(value);
396    return value;
397}
398
399#define PTR_TO_UINT32(ptr) static_cast<uint32_t>(reinterpret_cast<uintptr_t>(ptr))
400#define END_POISON_INDEX(allocationSize) (((allocationSize) - sizeof(uint32_t)) / sizeof(uint32_t))
401#define POISON_ALLOCATION(allocation, allocationSize) do { \
402    ASSERT((allocationSize) >= 2 * sizeof(uint32_t)); \
403    reinterpret_cast<uint32_t*>(allocation)[0] = 0xbadbeef1; \
404    reinterpret_cast<uint32_t*>(allocation)[1] = 0xbadbeef3; \
405    if ((allocationSize) < 4 * sizeof(uint32_t)) \
406        break; \
407    reinterpret_cast<uint32_t*>(allocation)[2] = 0xbadbeef5; \
408    reinterpret_cast<uint32_t*>(allocation)[END_POISON_INDEX(allocationSize)] = 0xbadbeef7; \
409} while (false);
410
411#define POISON_DEALLOCATION_EXPLICIT(allocation, allocationSize, startPoison, endPoison) do { \
412    ASSERT((allocationSize) >= 2 * sizeof(uint32_t)); \
413    reinterpret_cast<uint32_t*>(allocation)[0] = 0xbadbeef9; \
414    reinterpret_cast<uint32_t*>(allocation)[1] = 0xbadbeefb; \
415    if ((allocationSize) < 4 * sizeof(uint32_t)) \
416        break; \
417    reinterpret_cast<uint32_t*>(allocation)[2] = (startPoison) ^ PTR_TO_UINT32(allocation); \
418    reinterpret_cast<uint32_t*>(allocation)[END_POISON_INDEX(allocationSize)] = (endPoison) ^ PTR_TO_UINT32(allocation); \
419} while (false)
420
421#define POISON_DEALLOCATION(allocation, allocationSize) \
422    POISON_DEALLOCATION_EXPLICIT(allocation, (allocationSize), freedObjectStartPoison(), freedObjectEndPoison())
423
424#define MAY_BE_POISONED(allocation, allocationSize) (((allocationSize) >= 4 * sizeof(uint32_t)) && ( \
425    (reinterpret_cast<uint32_t*>(allocation)[2] == (freedObjectStartPoison() ^ PTR_TO_UINT32(allocation))) || \
426    (reinterpret_cast<uint32_t*>(allocation)[END_POISON_INDEX(allocationSize)] == (freedObjectEndPoison() ^ PTR_TO_UINT32(allocation))) \
427))
428
429#define IS_DEFINITELY_POISONED(allocation, allocationSize) (((allocationSize) < 4 * sizeof(uint32_t)) || ( \
430    (reinterpret_cast<uint32_t*>(allocation)[2] == (freedObjectStartPoison() ^ PTR_TO_UINT32(allocation))) && \
431    (reinterpret_cast<uint32_t*>(allocation)[END_POISON_INDEX(allocationSize)] == (freedObjectEndPoison() ^ PTR_TO_UINT32(allocation))) \
432))
433
434#else
435
436#define POISON_ALLOCATION(allocation, allocationSize)
437#define POISON_DEALLOCATION(allocation, allocationSize)
438#define POISON_DEALLOCATION_EXPLICIT(allocation, allocationSize, startPoison, endPoison)
439#define MAY_BE_POISONED(allocation, allocationSize) (false)
440#define IS_DEFINITELY_POISONED(allocation, allocationSize) (true)
441#define XOR_MASK_PTR_WITH_KEY(ptr, key, entropy) (((void)entropy), ((void)key), ptr)
442
443#define HARDENING_ENTROPY 0
444
445#endif
446
447//-------------------------------------------------------------------
448// Configuration
449//-------------------------------------------------------------------
450
451// Not all possible combinations of the following parameters make
452// sense.  In particular, if kMaxSize increases, you may have to
453// increase kNumClasses as well.
454static const size_t kPageShift  = 12;
455static const size_t kPageSize   = 1 << kPageShift;
456static const size_t kMaxSize    = 8u * kPageSize;
457static const size_t kAlignShift = 3;
458static const size_t kAlignment  = 1 << kAlignShift;
459static const size_t kNumClasses = 68;
460
461// Allocates a big block of memory for the pagemap once we reach more than
462// 128MB
463static const size_t kPageMapBigAllocationThreshold = 128 << 20;
464
465// Minimum number of pages to fetch from system at a time.  Must be
466// significantly bigger than kPageSize to amortize system-call
467// overhead, and also to reduce external fragementation.  Also, we
468// should keep this value big because various incarnations of Linux
469// have small limits on the number of mmap() regions per
470// address-space.
471static const size_t kMinSystemAlloc = 1 << (20 - kPageShift);
472
473// Number of objects to move between a per-thread list and a central
474// list in one shot.  We want this to be not too small so we can
475// amortize the lock overhead for accessing the central list.  Making
476// it too big may temporarily cause unnecessary memory wastage in the
477// per-thread free list until the scavenger cleans up the list.
478static int num_objects_to_move[kNumClasses];
479
480// Maximum length we allow a per-thread free-list to have before we
481// move objects from it into the corresponding central free-list.  We
482// want this big to avoid locking the central free-list too often.  It
483// should not hurt to make this list somewhat big because the
484// scavenging code will shrink it down when its contents are not in use.
485static const int kMaxFreeListLength = 256;
486
487// Lower and upper bounds on the per-thread cache sizes
488static const size_t kMinThreadCacheSize = kMaxSize * 2;
489static const size_t kMaxThreadCacheSize = 2 << 20;
490
491// Default bound on the total amount of thread caches
492static const size_t kDefaultOverallThreadCacheSize = 16 << 20;
493
494// For all span-lengths < kMaxPages we keep an exact-size list.
495// REQUIRED: kMaxPages >= kMinSystemAlloc;
496static const size_t kMaxPages = kMinSystemAlloc;
497
498/* The smallest prime > 2^n */
499static int primes_list[] = {
500    // Small values might cause high rates of sampling
501    // and hence commented out.
502    // 2, 5, 11, 17, 37, 67, 131, 257,
503    // 521, 1031, 2053, 4099, 8209, 16411,
504    32771, 65537, 131101, 262147, 524309, 1048583,
505    2097169, 4194319, 8388617, 16777259, 33554467 };
506
507// Twice the approximate gap between sampling actions.
508// I.e., we take one sample approximately once every
509//      tcmalloc_sample_parameter/2
510// bytes of allocation, i.e., ~ once every 128KB.
511// Must be a prime number.
512#ifdef NO_TCMALLOC_SAMPLES
513DEFINE_int64(tcmalloc_sample_parameter, 0,
514             "Unused: code is compiled with NO_TCMALLOC_SAMPLES");
515static size_t sample_period = 0;
516#else
517DEFINE_int64(tcmalloc_sample_parameter, 262147,
518         "Twice the approximate gap between sampling actions."
519         " Must be a prime number. Otherwise will be rounded up to a "
520         " larger prime number");
521static size_t sample_period = 262147;
522#endif
523
524// Protects sample_period above
525static SpinLock sample_period_lock = SPINLOCK_INITIALIZER;
526
527// Parameters for controlling how fast memory is returned to the OS.
528
529DEFINE_double(tcmalloc_release_rate, 1,
530              "Rate at which we release unused memory to the system.  "
531              "Zero means we never release memory back to the system.  "
532              "Increase this flag to return memory faster; decrease it "
533              "to return memory slower.  Reasonable rates are in the "
534              "range [0,10]");
535
536//-------------------------------------------------------------------
537// Mapping from size to size_class and vice versa
538//-------------------------------------------------------------------
539
540// Sizes <= 1024 have an alignment >= 8.  So for such sizes we have an
541// array indexed by ceil(size/8).  Sizes > 1024 have an alignment >= 128.
542// So for these larger sizes we have an array indexed by ceil(size/128).
543//
544// We flatten both logical arrays into one physical array and use
545// arithmetic to compute an appropriate index.  The constants used by
546// ClassIndex() were selected to make the flattening work.
547//
548// Examples:
549//   Size       Expression                      Index
550//   -------------------------------------------------------
551//   0          (0 + 7) / 8                     0
552//   1          (1 + 7) / 8                     1
553//   ...
554//   1024       (1024 + 7) / 8                  128
555//   1025       (1025 + 127 + (120<<7)) / 128   129
556//   ...
557//   32768      (32768 + 127 + (120<<7)) / 128  376
558static const size_t kMaxSmallSize = 1024;
559static const int shift_amount[2] = { 3, 7 };  // For divides by 8 or 128
560static const int add_amount[2] = { 7, 127 + (120 << 7) };
561static unsigned char class_array[377];
562
563// Compute index of the class_array[] entry for a given size
564static inline int ClassIndex(size_t s) {
565  const int i = (s > kMaxSmallSize);
566  return static_cast<int>((s + add_amount[i]) >> shift_amount[i]);
567}
568
569// Mapping from size class to max size storable in that class
570static size_t class_to_size[kNumClasses];
571
572// Mapping from size class to number of pages to allocate at a time
573static size_t class_to_pages[kNumClasses];
574
575// Hardened singly linked list.  We make this a class to allow compiler to
576// statically prevent mismatching hardened and non-hardened list
577class HardenedSLL {
578public:
579    static ALWAYS_INLINE HardenedSLL create(void* value)
580    {
581        HardenedSLL result;
582        result.m_value = value;
583        return result;
584    }
585
586    static ALWAYS_INLINE HardenedSLL null()
587    {
588        HardenedSLL result;
589        result.m_value = 0;
590        return result;
591    }
592
593    ALWAYS_INLINE void setValue(void* value) { m_value = value; }
594    ALWAYS_INLINE void* value() const { return m_value; }
595    ALWAYS_INLINE bool operator!() const { return !m_value; }
596    typedef void* (HardenedSLL::*UnspecifiedBoolType);
597    ALWAYS_INLINE operator UnspecifiedBoolType() const { return m_value ? &HardenedSLL::m_value : 0; }
598
599    bool operator!=(const HardenedSLL& other) const { return m_value != other.m_value; }
600    bool operator==(const HardenedSLL& other) const { return m_value == other.m_value; }
601
602private:
603    void* m_value;
604};
605
606// TransferCache is used to cache transfers of num_objects_to_move[size_class]
607// back and forth between thread caches and the central cache for a given size
608// class.
609struct TCEntry {
610  HardenedSLL head;  // Head of chain of objects.
611  HardenedSLL tail;  // Tail of chain of objects.
612};
613// A central cache freelist can have anywhere from 0 to kNumTransferEntries
614// slots to put link list chains into.  To keep memory usage bounded the total
615// number of TCEntries across size classes is fixed.  Currently each size
616// class is initially given one TCEntry which also means that the maximum any
617// one class can have is kNumClasses.
618static const int kNumTransferEntries = kNumClasses;
619
620// Note: the following only works for "n"s that fit in 32-bits, but
621// that is fine since we only use it for small sizes.
622static inline int LgFloor(size_t n) {
623  int log = 0;
624  for (int i = 4; i >= 0; --i) {
625    int shift = (1 << i);
626    size_t x = n >> shift;
627    if (x != 0) {
628      n = x;
629      log += shift;
630    }
631  }
632  ASSERT(n == 1);
633  return log;
634}
635
636// Functions for using our simple hardened singly linked list
637static ALWAYS_INLINE HardenedSLL SLL_Next(HardenedSLL t, uintptr_t entropy) {
638    return HardenedSLL::create(XOR_MASK_PTR_WITH_KEY(*(reinterpret_cast<void**>(t.value())), t.value(), entropy));
639}
640
641static ALWAYS_INLINE void SLL_SetNext(HardenedSLL t, HardenedSLL n, uintptr_t entropy) {
642    *(reinterpret_cast<void**>(t.value())) = XOR_MASK_PTR_WITH_KEY(n.value(), t.value(), entropy);
643}
644
645static ALWAYS_INLINE void SLL_Push(HardenedSLL* list, HardenedSLL element, uintptr_t entropy) {
646  SLL_SetNext(element, *list, entropy);
647  *list = element;
648}
649
650static ALWAYS_INLINE HardenedSLL SLL_Pop(HardenedSLL *list, uintptr_t entropy) {
651  HardenedSLL result = *list;
652  *list = SLL_Next(*list, entropy);
653  return result;
654}
655
656// Remove N elements from a linked list to which head points.  head will be
657// modified to point to the new head.  start and end will point to the first
658// and last nodes of the range.  Note that end will point to NULL after this
659// function is called.
660
661static ALWAYS_INLINE void SLL_PopRange(HardenedSLL* head, int N, HardenedSLL *start, HardenedSLL *end, uintptr_t entropy) {
662  if (N == 0) {
663    *start = HardenedSLL::null();
664    *end = HardenedSLL::null();
665    return;
666  }
667
668  HardenedSLL tmp = *head;
669  for (int i = 1; i < N; ++i) {
670    tmp = SLL_Next(tmp, entropy);
671  }
672
673  *start = *head;
674  *end = tmp;
675  *head = SLL_Next(tmp, entropy);
676  // Unlink range from list.
677  SLL_SetNext(tmp, HardenedSLL::null(), entropy);
678}
679
680static ALWAYS_INLINE void SLL_PushRange(HardenedSLL *head, HardenedSLL start, HardenedSLL end, uintptr_t entropy) {
681  if (!start) return;
682  SLL_SetNext(end, *head, entropy);
683  *head = start;
684}
685
686// Setup helper functions.
687
688static ALWAYS_INLINE size_t SizeClass(size_t size) {
689  return class_array[ClassIndex(size)];
690}
691
692// Get the byte-size for a specified class
693static ALWAYS_INLINE size_t ByteSizeForClass(size_t cl) {
694  return class_to_size[cl];
695}
696static int NumMoveSize(size_t size) {
697  if (size == 0) return 0;
698  // Use approx 64k transfers between thread and central caches.
699  int num = static_cast<int>(64.0 * 1024.0 / size);
700  if (num < 2) num = 2;
701  // Clamp well below kMaxFreeListLength to avoid ping pong between central
702  // and thread caches.
703  if (num > static_cast<int>(0.8 * kMaxFreeListLength))
704    num = static_cast<int>(0.8 * kMaxFreeListLength);
705
706  // Also, avoid bringing in too many objects into small object free
707  // lists.  There are lots of such lists, and if we allow each one to
708  // fetch too many at a time, we end up having to scavenge too often
709  // (especially when there are lots of threads and each thread gets a
710  // small allowance for its thread cache).
711  //
712  // TODO: Make thread cache free list sizes dynamic so that we do not
713  // have to equally divide a fixed resource amongst lots of threads.
714  if (num > 32) num = 32;
715
716  return num;
717}
718
719// Initialize the mapping arrays
720static void InitSizeClasses() {
721  // Do some sanity checking on add_amount[]/shift_amount[]/class_array[]
722  if (ClassIndex(0) < 0) {
723    MESSAGE("Invalid class index %d for size 0\n", ClassIndex(0));
724    CRASH();
725  }
726  if (static_cast<size_t>(ClassIndex(kMaxSize)) >= sizeof(class_array)) {
727    MESSAGE("Invalid class index %d for kMaxSize\n", ClassIndex(kMaxSize));
728    CRASH();
729  }
730
731  // Compute the size classes we want to use
732  size_t sc = 1;   // Next size class to assign
733  unsigned char alignshift = kAlignShift;
734  int last_lg = -1;
735  for (size_t size = kAlignment; size <= kMaxSize; size += (1 << alignshift)) {
736    int lg = LgFloor(size);
737    if (lg > last_lg) {
738      // Increase alignment every so often.
739      //
740      // Since we double the alignment every time size doubles and
741      // size >= 128, this means that space wasted due to alignment is
742      // at most 16/128 i.e., 12.5%.  Plus we cap the alignment at 256
743      // bytes, so the space wasted as a percentage starts falling for
744      // sizes > 2K.
745      if ((lg >= 7) && (alignshift < 8)) {
746        alignshift++;
747      }
748      last_lg = lg;
749    }
750
751    // Allocate enough pages so leftover is less than 1/8 of total.
752    // This bounds wasted space to at most 12.5%.
753    size_t psize = kPageSize;
754    while ((psize % size) > (psize >> 3)) {
755      psize += kPageSize;
756    }
757    const size_t my_pages = psize >> kPageShift;
758
759    if (sc > 1 && my_pages == class_to_pages[sc-1]) {
760      // See if we can merge this into the previous class without
761      // increasing the fragmentation of the previous class.
762      const size_t my_objects = (my_pages << kPageShift) / size;
763      const size_t prev_objects = (class_to_pages[sc-1] << kPageShift)
764                                  / class_to_size[sc-1];
765      if (my_objects == prev_objects) {
766        // Adjust last class to include this size
767        class_to_size[sc-1] = size;
768        continue;
769      }
770    }
771
772    // Add new class
773    class_to_pages[sc] = my_pages;
774    class_to_size[sc] = size;
775    sc++;
776  }
777  if (sc != kNumClasses) {
778    MESSAGE("wrong number of size classes: found %" PRIuS " instead of %d\n",
779            sc, int(kNumClasses));
780    CRASH();
781  }
782
783  // Initialize the mapping arrays
784  int next_size = 0;
785  for (unsigned char c = 1; c < kNumClasses; c++) {
786    const size_t max_size_in_class = class_to_size[c];
787    for (size_t s = next_size; s <= max_size_in_class; s += kAlignment) {
788      class_array[ClassIndex(s)] = c;
789    }
790    next_size = static_cast<int>(max_size_in_class + kAlignment);
791  }
792
793  // Double-check sizes just to be safe
794  for (size_t size = 0; size <= kMaxSize; size++) {
795    const size_t sc = SizeClass(size);
796    if (sc == 0) {
797      MESSAGE("Bad size class %" PRIuS " for %" PRIuS "\n", sc, size);
798      CRASH();
799    }
800    if (sc > 1 && size <= class_to_size[sc-1]) {
801      MESSAGE("Allocating unnecessarily large class %" PRIuS " for %" PRIuS
802              "\n", sc, size);
803      CRASH();
804    }
805    if (sc >= kNumClasses) {
806      MESSAGE("Bad size class %" PRIuS " for %" PRIuS "\n", sc, size);
807      CRASH();
808    }
809    const size_t s = class_to_size[sc];
810    if (size > s) {
811     MESSAGE("Bad size %" PRIuS " for %" PRIuS " (sc = %" PRIuS ")\n", s, size, sc);
812      CRASH();
813    }
814    if (s == 0) {
815      MESSAGE("Bad size %" PRIuS " for %" PRIuS " (sc = %" PRIuS ")\n", s, size, sc);
816      CRASH();
817    }
818  }
819
820  // Initialize the num_objects_to_move array.
821  for (size_t cl = 1; cl  < kNumClasses; ++cl) {
822    num_objects_to_move[cl] = NumMoveSize(ByteSizeForClass(cl));
823  }
824}
825
826// -------------------------------------------------------------------------
827// Simple allocator for objects of a specified type.  External locking
828// is required before accessing one of these objects.
829// -------------------------------------------------------------------------
830
831// Metadata allocator -- keeps stats about how many bytes allocated
832static uint64_t metadata_system_bytes = 0;
833static void* MetaDataAlloc(size_t bytes) {
834  void* result = TCMalloc_SystemAlloc(bytes, 0);
835  if (result != NULL) {
836    metadata_system_bytes += bytes;
837  }
838  return result;
839}
840
841template <class T>
842class PageHeapAllocator {
843 private:
844  // How much to allocate from system at a time
845  static const size_t kAllocIncrement = 32 << 10;
846
847  // Aligned size of T
848  static const size_t kAlignedSize
849  = (((sizeof(T) + kAlignment - 1) / kAlignment) * kAlignment);
850
851  // Free area from which to carve new objects
852  char* free_area_;
853  size_t free_avail_;
854
855  // Linked list of all regions allocated by this allocator
856  HardenedSLL allocated_regions_;
857
858  // Free list of already carved objects
859  HardenedSLL free_list_;
860
861  // Number of allocated but unfreed objects
862  int inuse_;
863  uintptr_t entropy_;
864
865 public:
866  void Init(uintptr_t entropy) {
867    ASSERT(kAlignedSize <= kAllocIncrement);
868    inuse_ = 0;
869    allocated_regions_ = HardenedSLL::null();
870    free_area_ = NULL;
871    free_avail_ = 0;
872    free_list_.setValue(NULL);
873    entropy_ = entropy;
874  }
875
876  T* New() {
877    // Consult free list
878    void* result;
879    if (free_list_) {
880      result = free_list_.value();
881      free_list_ = SLL_Next(free_list_, entropy_);
882    } else {
883      if (free_avail_ < kAlignedSize) {
884        // Need more room
885        char* new_allocation = reinterpret_cast<char*>(MetaDataAlloc(kAllocIncrement));
886        if (!new_allocation)
887          CRASH();
888
889        HardenedSLL new_head = HardenedSLL::create(new_allocation);
890        SLL_SetNext(new_head, allocated_regions_, entropy_);
891        allocated_regions_ = new_head;
892        free_area_ = new_allocation + kAlignedSize;
893        free_avail_ = kAllocIncrement - kAlignedSize;
894      }
895      result = free_area_;
896      free_area_ += kAlignedSize;
897      free_avail_ -= kAlignedSize;
898    }
899    inuse_++;
900    return reinterpret_cast<T*>(result);
901  }
902
903  void Delete(T* p) {
904    HardenedSLL new_head = HardenedSLL::create(p);
905    SLL_SetNext(new_head, free_list_, entropy_);
906    free_list_ = new_head;
907    inuse_--;
908  }
909
910  int inuse() const { return inuse_; }
911
912#if OS(MACOSX)
913  template <class Recorder>
914  void recordAdministrativeRegions(Recorder& recorder, const RemoteMemoryReader& reader)
915  {
916      for (HardenedSLL adminAllocation = allocated_regions_; adminAllocation; adminAllocation.setValue(reader.nextEntryInHardenedLinkedList(reinterpret_cast<void**>(adminAllocation.value()), entropy_)))
917          recorder.recordRegion(reinterpret_cast<vm_address_t>(adminAllocation.value()), kAllocIncrement);
918  }
919#endif
920};
921
922// -------------------------------------------------------------------------
923// Span - a contiguous run of pages
924// -------------------------------------------------------------------------
925
926// Type that can hold a page number
927typedef uintptr_t PageID;
928
929// Type that can hold the length of a run of pages
930typedef uintptr_t Length;
931
932static const Length kMaxValidPages = (~static_cast<Length>(0)) >> kPageShift;
933
934// Convert byte size into pages.  This won't overflow, but may return
935// an unreasonably large value if bytes is huge enough.
936static inline Length pages(size_t bytes) {
937  return (bytes >> kPageShift) +
938      ((bytes & (kPageSize - 1)) > 0 ? 1 : 0);
939}
940
941// Convert a user size into the number of bytes that will actually be
942// allocated
943static size_t AllocationSize(size_t bytes) {
944  if (bytes > kMaxSize) {
945    // Large object: we allocate an integral number of pages
946    ASSERT(bytes <= (kMaxValidPages << kPageShift));
947    return pages(bytes) << kPageShift;
948  } else {
949    // Small object: find the size class to which it belongs
950    return ByteSizeForClass(SizeClass(bytes));
951  }
952}
953
954enum {
955    kSpanCookieBits = 10,
956    kSpanCookieMask = (1 << 10) - 1,
957    kSpanThisShift = 7
958};
959
960static uint32_t spanValidationCookie;
961static uint32_t spanInitializerCookie()
962{
963    static uint32_t value = EntropySource<sizeof(uint32_t)>::value() & kSpanCookieMask;
964    spanValidationCookie = value;
965    return value;
966}
967
968// Information kept for a span (a contiguous run of pages).
969struct Span {
970  PageID        start;          // Starting page number
971  Length        length;         // Number of pages in span
972  Span* next(uintptr_t entropy) const { return XOR_MASK_PTR_WITH_KEY(m_next, this, entropy); }
973  Span* remoteNext(const Span* remoteSpanPointer, uintptr_t entropy) const { return XOR_MASK_PTR_WITH_KEY(m_next, remoteSpanPointer, entropy); }
974  Span* prev(uintptr_t entropy) const { return XOR_MASK_PTR_WITH_KEY(m_prev, this, entropy); }
975  void setNext(Span* next, uintptr_t entropy) { m_next = XOR_MASK_PTR_WITH_KEY(next, this, entropy); }
976  void setPrev(Span* prev, uintptr_t entropy) { m_prev = XOR_MASK_PTR_WITH_KEY(prev, this, entropy); }
977
978private:
979  Span*         m_next;           // Used when in link list
980  Span*         m_prev;           // Used when in link list
981public:
982  HardenedSLL    objects;        // Linked list of free objects
983  unsigned int  free : 1;       // Is the span free
984#ifndef NO_TCMALLOC_SAMPLES
985  unsigned int  sample : 1;     // Sampled object?
986#endif
987  unsigned int  sizeclass : 8;  // Size-class for small objects (or 0)
988  unsigned int  refcount : 11;  // Number of non-free objects
989  bool decommitted : 1;
990  void initCookie()
991  {
992      m_cookie = ((reinterpret_cast<uintptr_t>(this) >> kSpanThisShift) & kSpanCookieMask) ^ spanInitializerCookie();
993  }
994  void clearCookie() { m_cookie = 0; }
995  bool isValid() const
996  {
997      return (((reinterpret_cast<uintptr_t>(this) >> kSpanThisShift) & kSpanCookieMask) ^ m_cookie) == spanValidationCookie;
998  }
999private:
1000  uint32_t m_cookie : kSpanCookieBits;
1001
1002#undef SPAN_HISTORY
1003#ifdef SPAN_HISTORY
1004  // For debugging, we can keep a log events per span
1005  int nexthistory;
1006  char history[64];
1007  int value[64];
1008#endif
1009};
1010
1011#define ASSERT_SPAN_COMMITTED(span) ASSERT(!span->decommitted)
1012
1013#ifdef SPAN_HISTORY
1014void Event(Span* span, char op, int v = 0) {
1015  span->history[span->nexthistory] = op;
1016  span->value[span->nexthistory] = v;
1017  span->nexthistory++;
1018  if (span->nexthistory == sizeof(span->history)) span->nexthistory = 0;
1019}
1020#else
1021#define Event(s,o,v) ((void) 0)
1022#endif
1023
1024// Allocator/deallocator for spans
1025static PageHeapAllocator<Span> span_allocator;
1026static Span* NewSpan(PageID p, Length len) {
1027  Span* result = span_allocator.New();
1028  memset(result, 0, sizeof(*result));
1029  result->start = p;
1030  result->length = len;
1031  result->initCookie();
1032#ifdef SPAN_HISTORY
1033  result->nexthistory = 0;
1034#endif
1035  return result;
1036}
1037
1038static inline void DeleteSpan(Span* span) {
1039  RELEASE_ASSERT(span->isValid());
1040#ifndef NDEBUG
1041  // In debug mode, trash the contents of deleted Spans
1042  memset(span, 0x3f, sizeof(*span));
1043#endif
1044  span->clearCookie();
1045  span_allocator.Delete(span);
1046}
1047
1048// -------------------------------------------------------------------------
1049// Doubly linked list of spans.
1050// -------------------------------------------------------------------------
1051
1052static inline void DLL_Init(Span* list, uintptr_t entropy) {
1053  list->setNext(list, entropy);
1054  list->setPrev(list, entropy);
1055}
1056
1057static inline void DLL_Remove(Span* span, uintptr_t entropy) {
1058  span->prev(entropy)->setNext(span->next(entropy), entropy);
1059  span->next(entropy)->setPrev(span->prev(entropy), entropy);
1060  span->setPrev(NULL, entropy);
1061  span->setNext(NULL, entropy);
1062}
1063
1064static ALWAYS_INLINE bool DLL_IsEmpty(const Span* list, uintptr_t entropy) {
1065  return list->next(entropy) == list;
1066}
1067
1068static int DLL_Length(const Span* list, uintptr_t entropy) {
1069  int result = 0;
1070  for (Span* s = list->next(entropy); s != list; s = s->next(entropy)) {
1071    result++;
1072  }
1073  return result;
1074}
1075
1076#if 0 /* Not needed at the moment -- causes compiler warnings if not used */
1077static void DLL_Print(const char* label, const Span* list) {
1078  MESSAGE("%-10s %p:", label, list);
1079  for (const Span* s = list->next; s != list; s = s->next) {
1080    MESSAGE(" <%p,%u,%u>", s, s->start, s->length);
1081  }
1082  MESSAGE("\n");
1083}
1084#endif
1085
1086static inline void DLL_Prepend(Span* list, Span* span, uintptr_t entropy) {
1087  span->setNext(list->next(entropy), entropy);
1088  span->setPrev(list, entropy);
1089  list->next(entropy)->setPrev(span, entropy);
1090  list->setNext(span, entropy);
1091}
1092
1093//-------------------------------------------------------------------
1094// Data kept per size-class in central cache
1095//-------------------------------------------------------------------
1096
1097class TCMalloc_Central_FreeList {
1098 public:
1099  void Init(size_t cl, uintptr_t entropy);
1100
1101  // These methods all do internal locking.
1102
1103  // Insert the specified range into the central freelist.  N is the number of
1104  // elements in the range.
1105  void InsertRange(HardenedSLL start, HardenedSLL end, int N);
1106
1107  // Returns the actual number of fetched elements into N.
1108  void RemoveRange(HardenedSLL* start, HardenedSLL* end, int *N);
1109
1110  // Returns the number of free objects in cache.
1111  size_t length() {
1112    SpinLockHolder h(&lock_);
1113    return counter_;
1114  }
1115
1116  // Returns the number of free objects in the transfer cache.
1117  int tc_length() {
1118    SpinLockHolder h(&lock_);
1119    return used_slots_ * num_objects_to_move[size_class_];
1120  }
1121
1122  template <class Finder, class Reader>
1123  void enumerateFreeObjects(Finder& finder, const Reader& reader, TCMalloc_Central_FreeList* remoteCentralFreeList)
1124  {
1125    {
1126      static const ptrdiff_t emptyOffset = reinterpret_cast<const char*>(&empty_) - reinterpret_cast<const char*>(this);
1127      Span* remoteEmpty = reinterpret_cast<Span*>(reinterpret_cast<char*>(remoteCentralFreeList) + emptyOffset);
1128      Span* remoteSpan = nonempty_.remoteNext(remoteEmpty, entropy_);
1129      for (Span* span = reader(remoteEmpty); span && span != &empty_; remoteSpan = span->remoteNext(remoteSpan, entropy_), span = (remoteSpan ? reader(remoteSpan) : 0))
1130        ASSERT(!span->objects);
1131    }
1132
1133    ASSERT(!nonempty_.objects);
1134    static const ptrdiff_t nonemptyOffset = reinterpret_cast<const char*>(&nonempty_) - reinterpret_cast<const char*>(this);
1135
1136    Span* remoteNonempty = reinterpret_cast<Span*>(reinterpret_cast<char*>(remoteCentralFreeList) + nonemptyOffset);
1137    Span* remoteSpan = nonempty_.remoteNext(remoteNonempty, entropy_);
1138
1139    for (Span* span = reader(remoteSpan); span && remoteSpan != remoteNonempty; remoteSpan = span->remoteNext(remoteSpan, entropy_), span = (remoteSpan ? reader(remoteSpan) : 0)) {
1140      for (HardenedSLL nextObject = span->objects; nextObject; nextObject.setValue(reader.nextEntryInHardenedLinkedList(reinterpret_cast<void**>(nextObject.value()), entropy_))) {
1141        finder.visit(nextObject.value());
1142      }
1143    }
1144  }
1145
1146  uintptr_t entropy() const { return entropy_; }
1147 private:
1148  // REQUIRES: lock_ is held
1149  // Remove object from cache and return.
1150  // Return NULL if no free entries in cache.
1151  HardenedSLL FetchFromSpans();
1152
1153  // REQUIRES: lock_ is held
1154  // Remove object from cache and return.  Fetches
1155  // from pageheap if cache is empty.  Only returns
1156  // NULL on allocation failure.
1157  HardenedSLL FetchFromSpansSafe();
1158
1159  // REQUIRES: lock_ is held
1160  // Release a linked list of objects to spans.
1161  // May temporarily release lock_.
1162  void ReleaseListToSpans(HardenedSLL start);
1163
1164  // REQUIRES: lock_ is held
1165  // Release an object to spans.
1166  // May temporarily release lock_.
1167  ALWAYS_INLINE void ReleaseToSpans(HardenedSLL object);
1168
1169  // REQUIRES: lock_ is held
1170  // Populate cache by fetching from the page heap.
1171  // May temporarily release lock_.
1172  ALWAYS_INLINE void Populate();
1173
1174  // REQUIRES: lock is held.
1175  // Tries to make room for a TCEntry.  If the cache is full it will try to
1176  // expand it at the cost of some other cache size.  Return false if there is
1177  // no space.
1178  bool MakeCacheSpace();
1179
1180  // REQUIRES: lock_ for locked_size_class is held.
1181  // Picks a "random" size class to steal TCEntry slot from.  In reality it
1182  // just iterates over the sizeclasses but does so without taking a lock.
1183  // Returns true on success.
1184  // May temporarily lock a "random" size class.
1185  static ALWAYS_INLINE bool EvictRandomSizeClass(size_t locked_size_class, bool force);
1186
1187  // REQUIRES: lock_ is *not* held.
1188  // Tries to shrink the Cache.  If force is true it will relase objects to
1189  // spans if it allows it to shrink the cache.  Return false if it failed to
1190  // shrink the cache.  Decrements cache_size_ on succeess.
1191  // May temporarily take lock_.  If it takes lock_, the locked_size_class
1192  // lock is released to the thread from holding two size class locks
1193  // concurrently which could lead to a deadlock.
1194  bool ShrinkCache(int locked_size_class, bool force);
1195
1196  // This lock protects all the data members.  cached_entries and cache_size_
1197  // may be looked at without holding the lock.
1198  SpinLock lock_;
1199
1200  // We keep linked lists of empty and non-empty spans.
1201  size_t   size_class_;     // My size class
1202  Span     empty_;          // Dummy header for list of empty spans
1203  Span     nonempty_;       // Dummy header for list of non-empty spans
1204  size_t   counter_;        // Number of free objects in cache entry
1205
1206  // Here we reserve space for TCEntry cache slots.  Since one size class can
1207  // end up getting all the TCEntries quota in the system we just preallocate
1208  // sufficient number of entries here.
1209  TCEntry tc_slots_[kNumTransferEntries];
1210
1211  // Number of currently used cached entries in tc_slots_.  This variable is
1212  // updated under a lock but can be read without one.
1213  int32_t used_slots_;
1214  // The current number of slots for this size class.  This is an
1215  // adaptive value that is increased if there is lots of traffic
1216  // on a given size class.
1217  int32_t cache_size_;
1218  uintptr_t entropy_;
1219};
1220
1221#if COMPILER(CLANG) && defined(__has_warning)
1222#pragma clang diagnostic push
1223#if __has_warning("-Wunused-private-field")
1224#pragma clang diagnostic ignored "-Wunused-private-field"
1225#endif
1226#endif
1227
1228// Pad each CentralCache object to multiple of 64 bytes
1229template <size_t SizeToPad>
1230class TCMalloc_Central_FreeListPadded_Template : public TCMalloc_Central_FreeList {
1231private:
1232    char pad[64 - SizeToPad];
1233};
1234
1235// Zero-size specialization to avoid compiler error when TCMalloc_Central_FreeList happens
1236// to be exactly 64 bytes.
1237template <> class TCMalloc_Central_FreeListPadded_Template<0> : public TCMalloc_Central_FreeList {
1238};
1239
1240typedef TCMalloc_Central_FreeListPadded_Template<sizeof(TCMalloc_Central_FreeList) % 64> TCMalloc_Central_FreeListPadded;
1241
1242#if COMPILER(CLANG) && defined(__has_warning)
1243#pragma clang diagnostic pop
1244#endif
1245
1246#if OS(MACOSX)
1247struct Span;
1248class TCMalloc_PageHeap;
1249class TCMalloc_ThreadCache;
1250template <typename T> class PageHeapAllocator;
1251
1252class FastMallocZone {
1253public:
1254    static void init();
1255
1256    static kern_return_t enumerate(task_t, void*, unsigned typeMmask, vm_address_t zoneAddress, memory_reader_t, vm_range_recorder_t);
1257    static size_t goodSize(malloc_zone_t*, size_t size) { return size; }
1258    static boolean_t check(malloc_zone_t*) { return true; }
1259    static void  print(malloc_zone_t*, boolean_t) { }
1260    static void log(malloc_zone_t*, void*) { }
1261    static void forceLock(malloc_zone_t*) { }
1262    static void forceUnlock(malloc_zone_t*) { }
1263    static void statistics(malloc_zone_t*, malloc_statistics_t* stats) { memset(stats, 0, sizeof(malloc_statistics_t)); }
1264
1265private:
1266    FastMallocZone(TCMalloc_PageHeap*, TCMalloc_ThreadCache**, TCMalloc_Central_FreeListPadded*, PageHeapAllocator<Span>*, PageHeapAllocator<TCMalloc_ThreadCache>*);
1267    static size_t size(malloc_zone_t*, const void*);
1268    static void* zoneMalloc(malloc_zone_t*, size_t);
1269    static void* zoneCalloc(malloc_zone_t*, size_t numItems, size_t size);
1270    static void zoneFree(malloc_zone_t*, void*);
1271    static void* zoneRealloc(malloc_zone_t*, void*, size_t);
1272    static void* zoneValloc(malloc_zone_t*, size_t) { WTF_LOG_ERROR("valloc is not supported"); return 0; }
1273    static void zoneDestroy(malloc_zone_t*) { }
1274
1275    malloc_zone_t m_zone;
1276    TCMalloc_PageHeap* m_pageHeap;
1277    TCMalloc_ThreadCache** m_threadHeaps;
1278    TCMalloc_Central_FreeListPadded* m_centralCaches;
1279    PageHeapAllocator<Span>* m_spanAllocator;
1280    PageHeapAllocator<TCMalloc_ThreadCache>* m_pageHeapAllocator;
1281};
1282
1283#endif
1284
1285// Even if we have support for thread-local storage in the compiler
1286// and linker, the OS may not support it.  We need to check that at
1287// runtime.  Right now, we have to keep a manual set of "bad" OSes.
1288#if defined(HAVE_TLS)
1289  static bool kernel_supports_tls = false;      // be conservative
1290  static inline bool KernelSupportsTLS() {
1291    return kernel_supports_tls;
1292  }
1293# if !HAVE_DECL_UNAME   // if too old for uname, probably too old for TLS
1294    static void CheckIfKernelSupportsTLS() {
1295      kernel_supports_tls = false;
1296    }
1297# else
1298#   include <sys/utsname.h>    // DECL_UNAME checked for <sys/utsname.h> too
1299    static void CheckIfKernelSupportsTLS() {
1300      struct utsname buf;
1301      if (uname(&buf) != 0) {   // should be impossible
1302        MESSAGE("uname failed assuming no TLS support (errno=%d)\n", errno);
1303        kernel_supports_tls = false;
1304      } else if (strcasecmp(buf.sysname, "linux") == 0) {
1305        // The linux case: the first kernel to support TLS was 2.6.0
1306        if (buf.release[0] < '2' && buf.release[1] == '.')    // 0.x or 1.x
1307          kernel_supports_tls = false;
1308        else if (buf.release[0] == '2' && buf.release[1] == '.' &&
1309                 buf.release[2] >= '0' && buf.release[2] < '6' &&
1310                 buf.release[3] == '.')                       // 2.0 - 2.5
1311          kernel_supports_tls = false;
1312        else
1313          kernel_supports_tls = true;
1314      } else {        // some other kernel, we'll be optimisitic
1315        kernel_supports_tls = true;
1316      }
1317      // TODO(csilvers): VLOG(1) the tls status once we support RAW_VLOG
1318    }
1319#  endif  // HAVE_DECL_UNAME
1320#endif    // HAVE_TLS
1321
1322// __THROW is defined in glibc systems.  It means, counter-intuitively,
1323// "This function will never throw an exception."  It's an optional
1324// optimization tool, but we may need to use it to match glibc prototypes.
1325#ifndef __THROW    // I guess we're not on a glibc system
1326# define __THROW   // __THROW is just an optimization, so ok to make it ""
1327#endif
1328
1329// -------------------------------------------------------------------------
1330// Stack traces kept for sampled allocations
1331//   The following state is protected by pageheap_lock_.
1332// -------------------------------------------------------------------------
1333
1334// size/depth are made the same size as a pointer so that some generic
1335// code below can conveniently cast them back and forth to void*.
1336static const int kMaxStackDepth = 31;
1337struct StackTrace {
1338  uintptr_t size;          // Size of object
1339  uintptr_t depth;         // Number of PC values stored in array below
1340  void*     stack[kMaxStackDepth];
1341};
1342static PageHeapAllocator<StackTrace> stacktrace_allocator;
1343static Span sampled_objects;
1344
1345// -------------------------------------------------------------------------
1346// Map from page-id to per-page data
1347// -------------------------------------------------------------------------
1348
1349// We use PageMap2<> for 32-bit and PageMap3<> for 64-bit machines.
1350// We also use a simple one-level cache for hot PageID-to-sizeclass mappings,
1351// because sometimes the sizeclass is all the information we need.
1352
1353// Selector class -- general selector uses 3-level map
1354template <int BITS> class MapSelector {
1355 public:
1356  typedef TCMalloc_PageMap3<BITS-kPageShift> Type;
1357  typedef PackedCache<BITS, uint64_t> CacheType;
1358};
1359
1360#if CPU(X86_64)
1361// On all known X86-64 platforms, the upper 16 bits are always unused and therefore
1362// can be excluded from the PageMap key.
1363// See http://en.wikipedia.org/wiki/X86-64#Virtual_address_space_details
1364
1365static const size_t kBitsUnusedOn64Bit = 16;
1366#else
1367static const size_t kBitsUnusedOn64Bit = 0;
1368#endif
1369
1370// A three-level map for 64-bit machines
1371template <> class MapSelector<64> {
1372 public:
1373  typedef TCMalloc_PageMap3<64 - kPageShift - kBitsUnusedOn64Bit> Type;
1374  typedef PackedCache<64, uint64_t> CacheType;
1375};
1376
1377// A two-level map for 32-bit machines
1378template <> class MapSelector<32> {
1379 public:
1380  typedef TCMalloc_PageMap2<32 - kPageShift> Type;
1381  typedef PackedCache<32 - kPageShift, uint16_t> CacheType;
1382};
1383
1384// -------------------------------------------------------------------------
1385// Page-level allocator
1386//  * Eager coalescing
1387//
1388// Heap for page-level allocation.  We allow allocating and freeing a
1389// contiguous runs of pages (called a "span").
1390// -------------------------------------------------------------------------
1391
1392#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1393// The page heap maintains a free list for spans that are no longer in use by
1394// the central cache or any thread caches. We use a background thread to
1395// periodically scan the free list and release a percentage of it back to the OS.
1396
1397// If free_committed_pages_ exceeds kMinimumFreeCommittedPageCount, the
1398// background thread:
1399//     - wakes up
1400//     - pauses for kScavengeDelayInSeconds
1401//     - returns to the OS a percentage of the memory that remained unused during
1402//       that pause (kScavengePercentage * min_free_committed_pages_since_last_scavenge_)
1403// The goal of this strategy is to reduce memory pressure in a timely fashion
1404// while avoiding thrashing the OS allocator.
1405
1406// Time delay before the page heap scavenger will consider returning pages to
1407// the OS.
1408static const int kScavengeDelayInSeconds = 2;
1409
1410// Approximate percentage of free committed pages to return to the OS in one
1411// scavenge.
1412static const float kScavengePercentage = .5f;
1413
1414// number of span lists to keep spans in when memory is returned.
1415static const int kMinSpanListsWithSpans = 32;
1416
1417// Number of free committed pages that we want to keep around.  The minimum number of pages used when there
1418// is 1 span in each of the first kMinSpanListsWithSpans spanlists.  Currently 528 pages.
1419static const size_t kMinimumFreeCommittedPageCount = kMinSpanListsWithSpans * ((1.0f+kMinSpanListsWithSpans) / 2.0f);
1420
1421#endif
1422
1423static SpinLock pageheap_lock = SPINLOCK_INITIALIZER;
1424
1425class TCMalloc_PageHeap {
1426 public:
1427  void init();
1428
1429  // Allocate a run of "n" pages.  Returns zero if out of memory.
1430  Span* New(Length n);
1431
1432  // Delete the span "[p, p+n-1]".
1433  // REQUIRES: span was returned by earlier call to New() and
1434  //           has not yet been deleted.
1435  void Delete(Span* span);
1436
1437  // Mark an allocated span as being used for small objects of the
1438  // specified size-class.
1439  // REQUIRES: span was returned by an earlier call to New()
1440  //           and has not yet been deleted.
1441  void RegisterSizeClass(Span* span, size_t sc);
1442
1443  // Split an allocated span into two spans: one of length "n" pages
1444  // followed by another span of length "span->length - n" pages.
1445  // Modifies "*span" to point to the first span of length "n" pages.
1446  // Returns a pointer to the second span.
1447  //
1448  // REQUIRES: "0 < n < span->length"
1449  // REQUIRES: !span->free
1450  // REQUIRES: span->sizeclass == 0
1451  Span* Split(Span* span, Length n);
1452
1453  // Return the descriptor for the specified page.
1454  inline Span* GetDescriptor(PageID p) const {
1455    return reinterpret_cast<Span*>(pagemap_.get(p));
1456  }
1457
1458  inline Span* GetDescriptorEnsureSafe(PageID p)
1459  {
1460      pagemap_.Ensure(p, 1);
1461      return GetDescriptor(p);
1462  }
1463
1464  size_t ReturnedBytes() const;
1465
1466  // Return number of bytes allocated from system
1467  inline uint64_t SystemBytes() const { return system_bytes_; }
1468
1469  // Return number of free bytes in heap
1470  uint64_t FreeBytes() const {
1471    return (static_cast<uint64_t>(free_pages_) << kPageShift);
1472  }
1473
1474  bool Check();
1475  size_t CheckList(Span* list, Length min_pages, Length max_pages, bool decommitted);
1476
1477  // Release all pages on the free list for reuse by the OS:
1478  void ReleaseFreePages();
1479  void ReleaseFreeList(Span*, Span*);
1480
1481  // Return 0 if we have no information, or else the correct sizeclass for p.
1482  // Reads and writes to pagemap_cache_ do not require locking.
1483  // The entries are 64 bits on 64-bit hardware and 16 bits on
1484  // 32-bit hardware, and we don't mind raciness as long as each read of
1485  // an entry yields a valid entry, not a partially updated entry.
1486  size_t GetSizeClassIfCached(PageID p) const {
1487    return pagemap_cache_.GetOrDefault(p, 0);
1488  }
1489  void CacheSizeClass(PageID p, size_t cl) const { pagemap_cache_.Put(p, cl); }
1490
1491 private:
1492  // Pick the appropriate map and cache types based on pointer size
1493  typedef MapSelector<8*sizeof(uintptr_t)>::Type PageMap;
1494  typedef MapSelector<8*sizeof(uintptr_t)>::CacheType PageMapCache;
1495  PageMap pagemap_;
1496  mutable PageMapCache pagemap_cache_;
1497
1498  // We segregate spans of a given size into two circular linked
1499  // lists: one for normal spans, and one for spans whose memory
1500  // has been returned to the system.
1501  struct SpanList {
1502    Span        normal;
1503    Span        returned;
1504  };
1505
1506  // List of free spans of length >= kMaxPages
1507  SpanList large_;
1508
1509  // Array mapping from span length to a doubly linked list of free spans
1510  SpanList free_[kMaxPages];
1511
1512  // Number of pages kept in free lists
1513  uintptr_t free_pages_;
1514
1515  // Used for hardening
1516  uintptr_t entropy_;
1517
1518  // Bytes allocated from system
1519  uint64_t system_bytes_;
1520
1521#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1522  // Number of pages kept in free lists that are still committed.
1523  Length free_committed_pages_;
1524
1525  // Minimum number of free committed pages since last scavenge. (Can be 0 if
1526  // we've committed new pages since the last scavenge.)
1527  Length min_free_committed_pages_since_last_scavenge_;
1528#endif
1529
1530  bool GrowHeap(Length n);
1531
1532  // REQUIRES   span->length >= n
1533  // Remove span from its free list, and move any leftover part of
1534  // span into appropriate free lists.  Also update "span" to have
1535  // length exactly "n" and mark it as non-free so it can be returned
1536  // to the client.
1537  //
1538  // "released" is true iff "span" was found on a "returned" list.
1539  void Carve(Span* span, Length n, bool released);
1540
1541  void RecordSpan(Span* span) {
1542    pagemap_.set(span->start, span);
1543    if (span->length > 1) {
1544      pagemap_.set(span->start + span->length - 1, span);
1545    }
1546  }
1547
1548    // Allocate a large span of length == n.  If successful, returns a
1549  // span of exactly the specified length.  Else, returns NULL.
1550  Span* AllocLarge(Length n);
1551
1552#if !USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1553  // Incrementally release some memory to the system.
1554  // IncrementalScavenge(n) is called whenever n pages are freed.
1555  void IncrementalScavenge(Length n);
1556#endif
1557
1558  // Number of pages to deallocate before doing more scavenging
1559  int64_t scavenge_counter_;
1560
1561  // Index of last free list we scavenged
1562  size_t scavenge_index_;
1563
1564#if OS(MACOSX)
1565  friend class FastMallocZone;
1566#endif
1567
1568#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1569  void initializeScavenger();
1570  ALWAYS_INLINE void signalScavenger();
1571  void scavenge();
1572  ALWAYS_INLINE bool shouldScavenge() const;
1573
1574#if HAVE(DISPATCH_H) || OS(WIN)
1575  void periodicScavenge();
1576  ALWAYS_INLINE bool isScavengerSuspended();
1577  ALWAYS_INLINE void scheduleScavenger();
1578  ALWAYS_INLINE void rescheduleScavenger();
1579  ALWAYS_INLINE void suspendScavenger();
1580#endif
1581
1582#if HAVE(DISPATCH_H)
1583  dispatch_queue_t m_scavengeQueue;
1584  dispatch_source_t m_scavengeTimer;
1585  bool m_scavengingSuspended;
1586#elif OS(WIN)
1587  static void CALLBACK scavengerTimerFired(void*, BOOLEAN);
1588  HANDLE m_scavengeQueueTimer;
1589#else
1590  static NO_RETURN_WITH_VALUE void* runScavengerThread(void*);
1591  NO_RETURN void scavengerThread();
1592
1593  // Keeps track of whether the background thread is actively scavenging memory every kScavengeDelayInSeconds, or
1594  // it's blocked waiting for more pages to be deleted.
1595  bool m_scavengeThreadActive;
1596
1597  pthread_mutex_t m_scavengeMutex;
1598  pthread_cond_t m_scavengeCondition;
1599#endif
1600
1601#endif  // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1602};
1603
1604void TCMalloc_PageHeap::init()
1605{
1606  pagemap_.init(MetaDataAlloc);
1607  pagemap_cache_ = PageMapCache(0);
1608  free_pages_ = 0;
1609  system_bytes_ = 0;
1610  entropy_ = HARDENING_ENTROPY;
1611
1612#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1613  free_committed_pages_ = 0;
1614  min_free_committed_pages_since_last_scavenge_ = 0;
1615#endif  // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1616
1617  scavenge_counter_ = 0;
1618  // Start scavenging at kMaxPages list
1619  scavenge_index_ = kMaxPages-1;
1620  COMPILE_ASSERT(kNumClasses <= (1 << PageMapCache::kValuebits), valuebits);
1621  DLL_Init(&large_.normal, entropy_);
1622  DLL_Init(&large_.returned, entropy_);
1623  for (size_t i = 0; i < kMaxPages; i++) {
1624    DLL_Init(&free_[i].normal, entropy_);
1625    DLL_Init(&free_[i].returned, entropy_);
1626  }
1627
1628#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1629  initializeScavenger();
1630#endif  // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1631}
1632
1633#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1634
1635#if HAVE(DISPATCH_H)
1636
1637void TCMalloc_PageHeap::initializeScavenger()
1638{
1639    m_scavengeQueue = dispatch_queue_create("com.apple.JavaScriptCore.FastMallocSavenger", NULL);
1640    m_scavengeTimer = dispatch_source_create(DISPATCH_SOURCE_TYPE_TIMER, 0, 0, m_scavengeQueue);
1641    uint64_t scavengeDelayInNanoseconds = kScavengeDelayInSeconds * NSEC_PER_SEC;
1642    dispatch_time_t startTime = dispatch_time(DISPATCH_TIME_NOW, scavengeDelayInNanoseconds);
1643    dispatch_source_set_timer(m_scavengeTimer, startTime, scavengeDelayInNanoseconds, scavengeDelayInNanoseconds / 10);
1644    dispatch_source_set_event_handler(m_scavengeTimer, ^{ periodicScavenge(); });
1645    m_scavengingSuspended = true;
1646}
1647
1648ALWAYS_INLINE bool TCMalloc_PageHeap::isScavengerSuspended()
1649{
1650    ASSERT(pageheap_lock.IsHeld());
1651    return m_scavengingSuspended;
1652}
1653
1654ALWAYS_INLINE void TCMalloc_PageHeap::scheduleScavenger()
1655{
1656    ASSERT(pageheap_lock.IsHeld());
1657    m_scavengingSuspended = false;
1658    dispatch_resume(m_scavengeTimer);
1659}
1660
1661ALWAYS_INLINE void TCMalloc_PageHeap::rescheduleScavenger()
1662{
1663    // Nothing to do here for libdispatch.
1664}
1665
1666ALWAYS_INLINE void TCMalloc_PageHeap::suspendScavenger()
1667{
1668    ASSERT(pageheap_lock.IsHeld());
1669    m_scavengingSuspended = true;
1670    dispatch_suspend(m_scavengeTimer);
1671}
1672
1673#elif OS(WIN)
1674
1675void TCMalloc_PageHeap::scavengerTimerFired(void* context, BOOLEAN)
1676{
1677    static_cast<TCMalloc_PageHeap*>(context)->periodicScavenge();
1678}
1679
1680void TCMalloc_PageHeap::initializeScavenger()
1681{
1682    m_scavengeQueueTimer = 0;
1683}
1684
1685ALWAYS_INLINE bool TCMalloc_PageHeap::isScavengerSuspended()
1686{
1687    ASSERT(pageheap_lock.IsHeld());
1688    return !m_scavengeQueueTimer;
1689}
1690
1691ALWAYS_INLINE void TCMalloc_PageHeap::scheduleScavenger()
1692{
1693    // We need to use WT_EXECUTEONLYONCE here and reschedule the timer, because
1694    // Windows will fire the timer event even when the function is already running.
1695    ASSERT(pageheap_lock.IsHeld());
1696    CreateTimerQueueTimer(&m_scavengeQueueTimer, 0, scavengerTimerFired, this, kScavengeDelayInSeconds * 1000, 0, WT_EXECUTEONLYONCE);
1697}
1698
1699ALWAYS_INLINE void TCMalloc_PageHeap::rescheduleScavenger()
1700{
1701    // We must delete the timer and create it again, because it is not possible to retrigger a timer on Windows.
1702    suspendScavenger();
1703    scheduleScavenger();
1704}
1705
1706ALWAYS_INLINE void TCMalloc_PageHeap::suspendScavenger()
1707{
1708    ASSERT(pageheap_lock.IsHeld());
1709    HANDLE scavengeQueueTimer = m_scavengeQueueTimer;
1710    m_scavengeQueueTimer = 0;
1711    DeleteTimerQueueTimer(0, scavengeQueueTimer, 0);
1712}
1713
1714#else
1715
1716void TCMalloc_PageHeap::initializeScavenger()
1717{
1718    // Create a non-recursive mutex.
1719#if !defined(PTHREAD_MUTEX_NORMAL) || PTHREAD_MUTEX_NORMAL == PTHREAD_MUTEX_DEFAULT
1720    pthread_mutex_init(&m_scavengeMutex, 0);
1721#else
1722    pthread_mutexattr_t attr;
1723    pthread_mutexattr_init(&attr);
1724    pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL);
1725
1726    pthread_mutex_init(&m_scavengeMutex, &attr);
1727
1728    pthread_mutexattr_destroy(&attr);
1729#endif
1730
1731    pthread_cond_init(&m_scavengeCondition, 0);
1732    m_scavengeThreadActive = true;
1733    pthread_t thread;
1734    pthread_create(&thread, 0, runScavengerThread, this);
1735}
1736
1737void* TCMalloc_PageHeap::runScavengerThread(void* context)
1738{
1739    static_cast<TCMalloc_PageHeap*>(context)->scavengerThread();
1740#if COMPILER(MSVC)
1741    // Without this, Visual Studio will complain that this method does not return a value.
1742    return 0;
1743#endif
1744}
1745
1746ALWAYS_INLINE void TCMalloc_PageHeap::signalScavenger()
1747{
1748    // shouldScavenge() should be called only when the pageheap_lock spinlock is held, additionally,
1749    // m_scavengeThreadActive is only set to false whilst pageheap_lock is held. The caller must ensure this is
1750    // taken prior to calling this method. If the scavenger thread is sleeping and shouldScavenge() indicates there
1751    // is memory to free the scavenger thread is signalled to start.
1752    ASSERT(pageheap_lock.IsHeld());
1753    if (!m_scavengeThreadActive && shouldScavenge())
1754        pthread_cond_signal(&m_scavengeCondition);
1755}
1756
1757#endif
1758
1759void TCMalloc_PageHeap::scavenge()
1760{
1761    size_t pagesToRelease = min_free_committed_pages_since_last_scavenge_ * kScavengePercentage;
1762    size_t targetPageCount = std::max<size_t>(kMinimumFreeCommittedPageCount, free_committed_pages_ - pagesToRelease);
1763
1764    Length lastFreeCommittedPages = free_committed_pages_;
1765    while (free_committed_pages_ > targetPageCount) {
1766        ASSERT(Check());
1767        for (int i = kMaxPages; i > 0 && free_committed_pages_ >= targetPageCount; i--) {
1768            SpanList* slist = (static_cast<size_t>(i) == kMaxPages) ? &large_ : &free_[i];
1769            // If the span size is bigger than kMinSpanListsWithSpans pages return all the spans in the list, else return all but 1 span.
1770            // Return only 50% of a spanlist at a time so spans of size 1 are not the only ones left.
1771            size_t length = DLL_Length(&slist->normal, entropy_);
1772            size_t numSpansToReturn = (i > kMinSpanListsWithSpans) ? length : length / 2;
1773            for (int j = 0; static_cast<size_t>(j) < numSpansToReturn && !DLL_IsEmpty(&slist->normal, entropy_) && free_committed_pages_ > targetPageCount; j++) {
1774                Span* s = slist->normal.prev(entropy_);
1775                DLL_Remove(s, entropy_);
1776                ASSERT(!s->decommitted);
1777                if (!s->decommitted) {
1778                    TCMalloc_SystemRelease(reinterpret_cast<void*>(s->start << kPageShift),
1779                                           static_cast<size_t>(s->length << kPageShift));
1780                    ASSERT(free_committed_pages_ >= s->length);
1781                    free_committed_pages_ -= s->length;
1782                    s->decommitted = true;
1783                }
1784                DLL_Prepend(&slist->returned, s, entropy_);
1785            }
1786        }
1787
1788        if (lastFreeCommittedPages == free_committed_pages_)
1789            break;
1790        lastFreeCommittedPages = free_committed_pages_;
1791    }
1792
1793    min_free_committed_pages_since_last_scavenge_ = free_committed_pages_;
1794}
1795
1796ALWAYS_INLINE bool TCMalloc_PageHeap::shouldScavenge() const
1797{
1798    return free_committed_pages_ > kMinimumFreeCommittedPageCount;
1799}
1800
1801#endif  // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1802
1803inline Span* TCMalloc_PageHeap::New(Length n) {
1804  ASSERT(Check());
1805  ASSERT(n > 0);
1806
1807  // Find first size >= n that has a non-empty list
1808  for (Length s = n; s < kMaxPages; s++) {
1809    Span* ll = NULL;
1810    bool released = false;
1811    if (!DLL_IsEmpty(&free_[s].normal, entropy_)) {
1812      // Found normal span
1813      ll = &free_[s].normal;
1814    } else if (!DLL_IsEmpty(&free_[s].returned, entropy_)) {
1815      // Found returned span; reallocate it
1816      ll = &free_[s].returned;
1817      released = true;
1818    } else {
1819      // Keep looking in larger classes
1820      continue;
1821    }
1822
1823    Span* result = ll->next(entropy_);
1824    Carve(result, n, released);
1825#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1826    // The newly allocated memory is from a span that's in the normal span list (already committed).  Update the
1827    // free committed pages count.
1828    ASSERT(free_committed_pages_ >= n);
1829    free_committed_pages_ -= n;
1830    if (free_committed_pages_ < min_free_committed_pages_since_last_scavenge_)
1831      min_free_committed_pages_since_last_scavenge_ = free_committed_pages_;
1832#endif  // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1833    ASSERT(Check());
1834    free_pages_ -= n;
1835    return result;
1836  }
1837
1838  Span* result = AllocLarge(n);
1839  if (result != NULL) {
1840      ASSERT_SPAN_COMMITTED(result);
1841      return result;
1842  }
1843
1844  // Grow the heap and try again
1845  if (!GrowHeap(n)) {
1846    ASSERT(Check());
1847    return NULL;
1848  }
1849
1850  return New(n);
1851}
1852
1853Span* TCMalloc_PageHeap::AllocLarge(Length n) {
1854  // find the best span (closest to n in size).
1855  // The following loops implements address-ordered best-fit.
1856  bool from_released = false;
1857  Span *best = NULL;
1858
1859  // Search through normal list
1860  for (Span* span = large_.normal.next(entropy_);
1861       span != &large_.normal;
1862       span = span->next(entropy_)) {
1863    if (span->length >= n) {
1864      if ((best == NULL)
1865          || (span->length < best->length)
1866          || ((span->length == best->length) && (span->start < best->start))) {
1867        best = span;
1868        from_released = false;
1869      }
1870    }
1871  }
1872
1873  // Search through released list in case it has a better fit
1874  for (Span* span = large_.returned.next(entropy_);
1875       span != &large_.returned;
1876       span = span->next(entropy_)) {
1877    if (span->length >= n) {
1878      if ((best == NULL)
1879          || (span->length < best->length)
1880          || ((span->length == best->length) && (span->start < best->start))) {
1881        best = span;
1882        from_released = true;
1883      }
1884    }
1885  }
1886
1887  if (best != NULL) {
1888    Carve(best, n, from_released);
1889#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1890    // The newly allocated memory is from a span that's in the normal span list (already committed).  Update the
1891    // free committed pages count.
1892    ASSERT(free_committed_pages_ >= n);
1893    free_committed_pages_ -= n;
1894    if (free_committed_pages_ < min_free_committed_pages_since_last_scavenge_)
1895      min_free_committed_pages_since_last_scavenge_ = free_committed_pages_;
1896#endif  // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1897    ASSERT(Check());
1898    free_pages_ -= n;
1899    return best;
1900  }
1901  return NULL;
1902}
1903
1904Span* TCMalloc_PageHeap::Split(Span* span, Length n) {
1905  ASSERT(0 < n);
1906  ASSERT(n < span->length);
1907  ASSERT(!span->free);
1908  ASSERT(span->sizeclass == 0);
1909  Event(span, 'T', n);
1910
1911  const Length extra = span->length - n;
1912  Span* leftover = NewSpan(span->start + n, extra);
1913  Event(leftover, 'U', extra);
1914  RecordSpan(leftover);
1915  pagemap_.set(span->start + n - 1, span); // Update map from pageid to span
1916  span->length = n;
1917
1918  return leftover;
1919}
1920
1921inline void TCMalloc_PageHeap::Carve(Span* span, Length n, bool released) {
1922  ASSERT(n > 0);
1923  DLL_Remove(span, entropy_);
1924  span->free = 0;
1925  Event(span, 'A', n);
1926
1927  if (released) {
1928    // If the span chosen to carve from is decommited, commit the entire span at once to avoid committing spans 1 page at a time.
1929    ASSERT(span->decommitted);
1930    TCMalloc_SystemCommit(reinterpret_cast<void*>(span->start << kPageShift), static_cast<size_t>(span->length << kPageShift));
1931    span->decommitted = false;
1932#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1933    free_committed_pages_ += span->length;
1934#endif
1935  }
1936
1937  const int extra = static_cast<int>(span->length - n);
1938  ASSERT(extra >= 0);
1939  if (extra > 0) {
1940    Span* leftover = NewSpan(span->start + n, extra);
1941    leftover->free = 1;
1942    leftover->decommitted = false;
1943    Event(leftover, 'S', extra);
1944    RecordSpan(leftover);
1945
1946    // Place leftover span on appropriate free list
1947    SpanList* listpair = (static_cast<size_t>(extra) < kMaxPages) ? &free_[extra] : &large_;
1948    Span* dst = &listpair->normal;
1949    DLL_Prepend(dst, leftover, entropy_);
1950
1951    span->length = n;
1952    pagemap_.set(span->start + n - 1, span);
1953  }
1954}
1955
1956static ALWAYS_INLINE void mergeDecommittedStates(Span* destination, Span* other)
1957{
1958    if (destination->decommitted && !other->decommitted) {
1959        TCMalloc_SystemRelease(reinterpret_cast<void*>(other->start << kPageShift),
1960                               static_cast<size_t>(other->length << kPageShift));
1961    } else if (other->decommitted && !destination->decommitted) {
1962        TCMalloc_SystemRelease(reinterpret_cast<void*>(destination->start << kPageShift),
1963                               static_cast<size_t>(destination->length << kPageShift));
1964        destination->decommitted = true;
1965    }
1966}
1967
1968inline void TCMalloc_PageHeap::Delete(Span* span) {
1969  ASSERT(Check());
1970  ASSERT(!span->free);
1971  ASSERT(span->length > 0);
1972  ASSERT(GetDescriptor(span->start) == span);
1973  ASSERT(GetDescriptor(span->start + span->length - 1) == span);
1974  span->sizeclass = 0;
1975#ifndef NO_TCMALLOC_SAMPLES
1976  span->sample = 0;
1977#endif
1978
1979  // Coalesce -- we guarantee that "p" != 0, so no bounds checking
1980  // necessary.  We do not bother resetting the stale pagemap
1981  // entries for the pieces we are merging together because we only
1982  // care about the pagemap entries for the boundaries.
1983#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1984  // Track the total size of the neighboring free spans that are committed.
1985  Length neighboringCommittedSpansLength = 0;
1986#endif
1987  const PageID p = span->start;
1988  const Length n = span->length;
1989  Span* prev = GetDescriptor(p-1);
1990  if (prev != NULL && prev->free) {
1991    // Merge preceding span into this span
1992    ASSERT(prev->start + prev->length == p);
1993    const Length len = prev->length;
1994#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1995    if (!prev->decommitted)
1996        neighboringCommittedSpansLength += len;
1997#endif
1998    mergeDecommittedStates(span, prev);
1999    DLL_Remove(prev, entropy_);
2000    DeleteSpan(prev);
2001    span->start -= len;
2002    span->length += len;
2003    pagemap_.set(span->start, span);
2004    Event(span, 'L', len);
2005  }
2006  Span* next = GetDescriptor(p+n);
2007  if (next != NULL && next->free) {
2008    // Merge next span into this span
2009    ASSERT(next->start == p+n);
2010    const Length len = next->length;
2011#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
2012    if (!next->decommitted)
2013        neighboringCommittedSpansLength += len;
2014#endif
2015    mergeDecommittedStates(span, next);
2016    DLL_Remove(next, entropy_);
2017    DeleteSpan(next);
2018    span->length += len;
2019    pagemap_.set(span->start + span->length - 1, span);
2020    Event(span, 'R', len);
2021  }
2022
2023  Event(span, 'D', span->length);
2024  span->free = 1;
2025  if (span->decommitted) {
2026    if (span->length < kMaxPages)
2027      DLL_Prepend(&free_[span->length].returned, span, entropy_);
2028    else
2029      DLL_Prepend(&large_.returned, span, entropy_);
2030  } else {
2031    if (span->length < kMaxPages)
2032      DLL_Prepend(&free_[span->length].normal, span, entropy_);
2033    else
2034      DLL_Prepend(&large_.normal, span, entropy_);
2035  }
2036  free_pages_ += n;
2037
2038#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
2039  if (span->decommitted) {
2040      // If the merged span is decommitted, that means we decommitted any neighboring spans that were
2041      // committed.  Update the free committed pages count.
2042      free_committed_pages_ -= neighboringCommittedSpansLength;
2043      if (free_committed_pages_ < min_free_committed_pages_since_last_scavenge_)
2044            min_free_committed_pages_since_last_scavenge_ = free_committed_pages_;
2045  } else {
2046      // If the merged span remains committed, add the deleted span's size to the free committed pages count.
2047      free_committed_pages_ += n;
2048  }
2049
2050  // Make sure the scavenge thread becomes active if we have enough freed pages to release some back to the system.
2051  signalScavenger();
2052#else
2053  IncrementalScavenge(n);
2054#endif
2055
2056  ASSERT(Check());
2057}
2058
2059#if !USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
2060void TCMalloc_PageHeap::IncrementalScavenge(Length n) {
2061  // Fast path; not yet time to release memory
2062  scavenge_counter_ -= n;
2063  if (scavenge_counter_ >= 0) return;  // Not yet time to scavenge
2064
2065  // If there is nothing to release, wait for so many pages before
2066  // scavenging again.  With 4K pages, this comes to 16MB of memory.
2067  static const size_t kDefaultReleaseDelay = 1 << 8;
2068
2069  // Find index of free list to scavenge
2070  size_t index = scavenge_index_ + 1;
2071  uintptr_t entropy = entropy_;
2072  for (size_t i = 0; i < kMaxPages+1; i++) {
2073    if (index > kMaxPages) index = 0;
2074    SpanList* slist = (index == kMaxPages) ? &large_ : &free_[index];
2075    if (!DLL_IsEmpty(&slist->normal, entropy)) {
2076      // Release the last span on the normal portion of this list
2077      Span* s = slist->normal.prev(entropy);
2078      DLL_Remove(s, entropy_);
2079      TCMalloc_SystemRelease(reinterpret_cast<void*>(s->start << kPageShift),
2080                             static_cast<size_t>(s->length << kPageShift));
2081      s->decommitted = true;
2082      DLL_Prepend(&slist->returned, s, entropy);
2083
2084      scavenge_counter_ = std::max<size_t>(64UL, std::min<size_t>(kDefaultReleaseDelay, kDefaultReleaseDelay - (free_pages_ / kDefaultReleaseDelay)));
2085
2086      if (index == kMaxPages && !DLL_IsEmpty(&slist->normal, entropy))
2087        scavenge_index_ = index - 1;
2088      else
2089        scavenge_index_ = index;
2090      return;
2091    }
2092    index++;
2093  }
2094
2095  // Nothing to scavenge, delay for a while
2096  scavenge_counter_ = kDefaultReleaseDelay;
2097}
2098#endif
2099
2100void TCMalloc_PageHeap::RegisterSizeClass(Span* span, size_t sc) {
2101  // Associate span object with all interior pages as well
2102  ASSERT(!span->free);
2103  ASSERT(GetDescriptor(span->start) == span);
2104  ASSERT(GetDescriptor(span->start+span->length-1) == span);
2105  Event(span, 'C', sc);
2106  span->sizeclass = static_cast<unsigned int>(sc);
2107  for (Length i = 1; i < span->length-1; i++) {
2108    pagemap_.set(span->start+i, span);
2109  }
2110}
2111
2112size_t TCMalloc_PageHeap::ReturnedBytes() const {
2113    size_t result = 0;
2114    for (unsigned s = 0; s < kMaxPages; s++) {
2115        const int r_length = DLL_Length(&free_[s].returned, entropy_);
2116        unsigned r_pages = s * r_length;
2117        result += r_pages << kPageShift;
2118    }
2119
2120    for (Span* s = large_.returned.next(entropy_); s != &large_.returned; s = s->next(entropy_))
2121        result += s->length << kPageShift;
2122    return result;
2123}
2124
2125bool TCMalloc_PageHeap::GrowHeap(Length n) {
2126  ASSERT(kMaxPages >= kMinSystemAlloc);
2127  if (n > kMaxValidPages) return false;
2128  Length ask = (n>kMinSystemAlloc) ? n : static_cast<Length>(kMinSystemAlloc);
2129  size_t actual_size;
2130  void* ptr = TCMalloc_SystemAlloc(ask << kPageShift, &actual_size, kPageSize);
2131  if (ptr == NULL) {
2132    if (n < ask) {
2133      // Try growing just "n" pages
2134      ask = n;
2135      ptr = TCMalloc_SystemAlloc(ask << kPageShift, &actual_size, kPageSize);
2136    }
2137    if (ptr == NULL) return false;
2138  }
2139  ask = actual_size >> kPageShift;
2140
2141  uint64_t old_system_bytes = system_bytes_;
2142  system_bytes_ += (ask << kPageShift);
2143  const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
2144  ASSERT(p > 0);
2145
2146  // If we have already a lot of pages allocated, just pre allocate a bunch of
2147  // memory for the page map. This prevents fragmentation by pagemap metadata
2148  // when a program keeps allocating and freeing large blocks.
2149
2150  if (old_system_bytes < kPageMapBigAllocationThreshold
2151      && system_bytes_ >= kPageMapBigAllocationThreshold) {
2152    pagemap_.PreallocateMoreMemory();
2153  }
2154
2155  // Make sure pagemap_ has entries for all of the new pages.
2156  // Plus ensure one before and one after so coalescing code
2157  // does not need bounds-checking.
2158  if (pagemap_.Ensure(p-1, ask+2)) {
2159    // Pretend the new area is allocated and then Delete() it to
2160    // cause any necessary coalescing to occur.
2161    //
2162    // We do not adjust free_pages_ here since Delete() will do it for us.
2163    Span* span = NewSpan(p, ask);
2164    RecordSpan(span);
2165    Delete(span);
2166    ASSERT(Check());
2167    return true;
2168  } else {
2169    // We could not allocate memory within "pagemap_"
2170    // TODO: Once we can return memory to the system, return the new span
2171    return false;
2172  }
2173}
2174
2175bool TCMalloc_PageHeap::Check() {
2176#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
2177  size_t totalFreeCommitted = 0;
2178#endif
2179  ASSERT(free_[0].normal.next(entropy_) == &free_[0].normal);
2180  ASSERT(free_[0].returned.next(entropy_) == &free_[0].returned);
2181#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
2182  totalFreeCommitted = CheckList(&large_.normal, kMaxPages, 1000000000, false);
2183#else
2184  CheckList(&large_.normal, kMaxPages, 1000000000, false);
2185#endif
2186    CheckList(&large_.returned, kMaxPages, 1000000000, true);
2187  for (Length s = 1; s < kMaxPages; s++) {
2188#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
2189    totalFreeCommitted += CheckList(&free_[s].normal, s, s, false);
2190#else
2191    CheckList(&free_[s].normal, s, s, false);
2192#endif
2193    CheckList(&free_[s].returned, s, s, true);
2194  }
2195#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
2196  ASSERT(totalFreeCommitted == free_committed_pages_);
2197#endif
2198  return true;
2199}
2200
2201#if ASSERT_DISABLED
2202size_t TCMalloc_PageHeap::CheckList(Span*, Length, Length, bool) {
2203  return 0;
2204}
2205#else
2206size_t TCMalloc_PageHeap::CheckList(Span* list, Length min_pages, Length max_pages, bool decommitted) {
2207  size_t freeCount = 0;
2208  for (Span* s = list->next(entropy_); s != list; s = s->next(entropy_)) {
2209    CHECK_CONDITION(s->free);
2210    CHECK_CONDITION(s->length >= min_pages);
2211    CHECK_CONDITION(s->length <= max_pages);
2212    CHECK_CONDITION(GetDescriptor(s->start) == s);
2213    CHECK_CONDITION(GetDescriptor(s->start+s->length-1) == s);
2214    CHECK_CONDITION(s->decommitted == decommitted);
2215    freeCount += s->length;
2216  }
2217  return freeCount;
2218}
2219#endif
2220
2221void TCMalloc_PageHeap::ReleaseFreeList(Span* list, Span* returned) {
2222  // Walk backwards through list so that when we push these
2223  // spans on the "returned" list, we preserve the order.
2224#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
2225  size_t freePageReduction = 0;
2226#endif
2227
2228  while (!DLL_IsEmpty(list, entropy_)) {
2229    Span* s = list->prev(entropy_);
2230
2231    DLL_Remove(s, entropy_);
2232    s->decommitted = true;
2233    DLL_Prepend(returned, s, entropy_);
2234    TCMalloc_SystemRelease(reinterpret_cast<void*>(s->start << kPageShift),
2235                           static_cast<size_t>(s->length << kPageShift));
2236#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
2237    freePageReduction += s->length;
2238#endif
2239  }
2240
2241#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
2242    free_committed_pages_ -= freePageReduction;
2243    if (free_committed_pages_ < min_free_committed_pages_since_last_scavenge_)
2244        min_free_committed_pages_since_last_scavenge_ = free_committed_pages_;
2245#endif
2246}
2247
2248void TCMalloc_PageHeap::ReleaseFreePages() {
2249  for (Length s = 0; s < kMaxPages; s++) {
2250    ReleaseFreeList(&free_[s].normal, &free_[s].returned);
2251  }
2252  ReleaseFreeList(&large_.normal, &large_.returned);
2253  ASSERT(Check());
2254}
2255
2256//-------------------------------------------------------------------
2257// Free list
2258//-------------------------------------------------------------------
2259
2260class TCMalloc_ThreadCache_FreeList {
2261 private:
2262  HardenedSLL list_;       // Linked list of nodes
2263  uint16_t length_;     // Current length
2264  uint16_t lowater_;    // Low water mark for list length
2265  uintptr_t entropy_;   // Entropy source for hardening
2266
2267 public:
2268  void Init(uintptr_t entropy) {
2269    list_.setValue(NULL);
2270    length_ = 0;
2271    lowater_ = 0;
2272    entropy_ = entropy;
2273#if ENABLE(TCMALLOC_HARDENING)
2274    ASSERT(entropy_);
2275#endif
2276  }
2277
2278  // Return current length of list
2279  int length() const {
2280    return length_;
2281  }
2282
2283  // Is list empty?
2284  bool empty() const {
2285    return !list_;
2286  }
2287
2288  // Low-water mark management
2289  int lowwatermark() const { return lowater_; }
2290  void clear_lowwatermark() { lowater_ = length_; }
2291
2292  ALWAYS_INLINE void Push(HardenedSLL ptr) {
2293    SLL_Push(&list_, ptr, entropy_);
2294    length_++;
2295  }
2296
2297  void PushRange(int N, HardenedSLL start, HardenedSLL end) {
2298    SLL_PushRange(&list_, start, end, entropy_);
2299    length_ = length_ + static_cast<uint16_t>(N);
2300  }
2301
2302  void PopRange(int N, HardenedSLL* start, HardenedSLL* end) {
2303    SLL_PopRange(&list_, N, start, end, entropy_);
2304    ASSERT(length_ >= N);
2305    length_ = length_ - static_cast<uint16_t>(N);
2306    if (length_ < lowater_) lowater_ = length_;
2307  }
2308
2309  ALWAYS_INLINE void* Pop() {
2310    ASSERT(list_);
2311    length_--;
2312    if (length_ < lowater_) lowater_ = length_;
2313    return SLL_Pop(&list_, entropy_).value();
2314  }
2315
2316    // Runs through the linked list to ensure that
2317    // we can do that, and ensures that 'missing'
2318    // is not present
2319    NEVER_INLINE void Validate(HardenedSLL missing, size_t size) {
2320        HardenedSLL node = list_;
2321        while (node) {
2322            RELEASE_ASSERT(node != missing);
2323            RELEASE_ASSERT(IS_DEFINITELY_POISONED(node.value(), size));
2324            node = SLL_Next(node, entropy_);
2325        }
2326    }
2327
2328  template <class Finder, class Reader>
2329  void enumerateFreeObjects(Finder& finder, const Reader& reader)
2330  {
2331      for (HardenedSLL nextObject = list_; nextObject; nextObject.setValue(reader.nextEntryInHardenedLinkedList(reinterpret_cast<void**>(nextObject.value()), entropy_)))
2332          finder.visit(nextObject.value());
2333  }
2334};
2335
2336//-------------------------------------------------------------------
2337// Data kept per thread
2338//-------------------------------------------------------------------
2339
2340class TCMalloc_ThreadCache {
2341 private:
2342  typedef TCMalloc_ThreadCache_FreeList FreeList;
2343#if OS(WIN)
2344  typedef DWORD ThreadIdentifier;
2345#else
2346  typedef pthread_t ThreadIdentifier;
2347#endif
2348
2349  size_t        size_;                  // Combined size of data
2350  ThreadIdentifier tid_;                // Which thread owns it
2351  bool          in_setspecific_;           // Called pthread_setspecific?
2352  FreeList      list_[kNumClasses];     // Array indexed by size-class
2353
2354  // We sample allocations, biased by the size of the allocation
2355  uint32_t      rnd_;                   // Cheap random number generator
2356  size_t        bytes_until_sample_;    // Bytes until we sample next
2357
2358  uintptr_t     entropy_;               // Entropy value used for hardening
2359
2360  // Allocate a new heap. REQUIRES: pageheap_lock is held.
2361  static inline TCMalloc_ThreadCache* NewHeap(ThreadIdentifier tid, uintptr_t entropy);
2362
2363  // Use only as pthread thread-specific destructor function.
2364  static void DestroyThreadCache(void* ptr);
2365 public:
2366  // All ThreadCache objects are kept in a linked list (for stats collection)
2367  TCMalloc_ThreadCache* next_;
2368  TCMalloc_ThreadCache* prev_;
2369
2370  void Init(ThreadIdentifier tid, uintptr_t entropy);
2371  void Cleanup();
2372
2373  // Accessors (mostly just for printing stats)
2374  int freelist_length(size_t cl) const { return list_[cl].length(); }
2375
2376  // Total byte size in cache
2377  size_t Size() const { return size_; }
2378
2379  ALWAYS_INLINE void* Allocate(size_t size);
2380  void Deallocate(HardenedSLL ptr, size_t size_class);
2381
2382  ALWAYS_INLINE void FetchFromCentralCache(size_t cl, size_t allocationSize);
2383  void ReleaseToCentralCache(size_t cl, int N);
2384  void Scavenge();
2385  void Print() const;
2386
2387  // Record allocation of "k" bytes.  Return true iff allocation
2388  // should be sampled
2389  bool SampleAllocation(size_t k);
2390
2391  // Pick next sampling point
2392  void PickNextSample(size_t k);
2393
2394  static void                  InitModule();
2395  static void                  InitTSD();
2396  static TCMalloc_ThreadCache* GetThreadHeap();
2397  static TCMalloc_ThreadCache* GetCache();
2398  static TCMalloc_ThreadCache* GetCacheIfPresent();
2399  static TCMalloc_ThreadCache* CreateCacheIfNecessary();
2400  static void                  DeleteCache(TCMalloc_ThreadCache* heap);
2401  static void                  BecomeIdle();
2402  static void                  RecomputeThreadCacheSize();
2403
2404  template <class Finder, class Reader>
2405  void enumerateFreeObjects(Finder& finder, const Reader& reader)
2406  {
2407      for (unsigned sizeClass = 0; sizeClass < kNumClasses; sizeClass++)
2408          list_[sizeClass].enumerateFreeObjects(finder, reader);
2409  }
2410};
2411
2412//-------------------------------------------------------------------
2413// Global variables
2414//-------------------------------------------------------------------
2415
2416// Central cache -- a collection of free-lists, one per size-class.
2417// We have a separate lock per free-list to reduce contention.
2418static TCMalloc_Central_FreeListPadded central_cache[kNumClasses];
2419
2420// Page-level allocator
2421static AllocAlignmentInteger pageheap_memory[(sizeof(TCMalloc_PageHeap) + sizeof(AllocAlignmentInteger) - 1) / sizeof(AllocAlignmentInteger)];
2422static bool phinited = false;
2423
2424// Avoid extra level of indirection by making "pageheap" be just an alias
2425// of pageheap_memory.
2426typedef union {
2427    void* m_memory;
2428    TCMalloc_PageHeap* m_pageHeap;
2429} PageHeapUnion;
2430
2431static inline TCMalloc_PageHeap* getPageHeap()
2432{
2433    PageHeapUnion u = { &pageheap_memory[0] };
2434    return u.m_pageHeap;
2435}
2436
2437#define pageheap getPageHeap()
2438
2439#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
2440
2441#if HAVE(DISPATCH_H) || OS(WIN)
2442
2443void TCMalloc_PageHeap::periodicScavenge()
2444{
2445    SpinLockHolder h(&pageheap_lock);
2446    pageheap->scavenge();
2447
2448    if (shouldScavenge()) {
2449        rescheduleScavenger();
2450        return;
2451    }
2452
2453    suspendScavenger();
2454}
2455
2456ALWAYS_INLINE void TCMalloc_PageHeap::signalScavenger()
2457{
2458    ASSERT(pageheap_lock.IsHeld());
2459    if (isScavengerSuspended() && shouldScavenge())
2460        scheduleScavenger();
2461}
2462
2463#else
2464
2465void TCMalloc_PageHeap::scavengerThread()
2466{
2467#if HAVE(PTHREAD_SETNAME_NP)
2468    pthread_setname_np("JavaScriptCore: FastMalloc scavenger");
2469#endif
2470
2471    while (1) {
2472        pageheap_lock.Lock();
2473        if (!shouldScavenge()) {
2474            // Set to false so that signalScavenger() will check whether we need to be siganlled.
2475            m_scavengeThreadActive = false;
2476
2477            // We need to unlock now, as this thread will block on the condvar until scavenging is required.
2478            pageheap_lock.Unlock();
2479
2480            // Block until there are enough free committed pages to release back to the system.
2481            pthread_mutex_lock(&m_scavengeMutex);
2482            pthread_cond_wait(&m_scavengeCondition, &m_scavengeMutex);
2483            // After exiting the pthread_cond_wait, we hold the lock on m_scavengeMutex. Unlock it to prevent
2484            // deadlock next time round the loop.
2485            pthread_mutex_unlock(&m_scavengeMutex);
2486
2487            // Set to true to prevent unnecessary signalling of the condvar.
2488            m_scavengeThreadActive = true;
2489        } else
2490            pageheap_lock.Unlock();
2491
2492        // Wait for a while to calculate how much memory remains unused during this pause.
2493        sleep(kScavengeDelayInSeconds);
2494
2495        {
2496            SpinLockHolder h(&pageheap_lock);
2497            pageheap->scavenge();
2498        }
2499    }
2500}
2501
2502#endif
2503
2504#endif
2505
2506// If TLS is available, we also store a copy
2507// of the per-thread object in a __thread variable
2508// since __thread variables are faster to read
2509// than pthread_getspecific().  We still need
2510// pthread_setspecific() because __thread
2511// variables provide no way to run cleanup
2512// code when a thread is destroyed.
2513#ifdef HAVE_TLS
2514static __thread TCMalloc_ThreadCache *threadlocal_heap;
2515#endif
2516// Thread-specific key.  Initialization here is somewhat tricky
2517// because some Linux startup code invokes malloc() before it
2518// is in a good enough state to handle pthread_keycreate().
2519// Therefore, we use TSD keys only after tsd_inited is set to true.
2520// Until then, we use a slow path to get the heap object.
2521static bool tsd_inited = false;
2522static pthread_key_t heap_key;
2523#if OS(WIN)
2524DWORD tlsIndex = TLS_OUT_OF_INDEXES;
2525#endif
2526
2527static ALWAYS_INLINE void setThreadHeap(TCMalloc_ThreadCache* heap)
2528{
2529    // Still do pthread_setspecific even if there's an alternate form
2530    // of thread-local storage in use, to benefit from the delete callback.
2531    pthread_setspecific(heap_key, heap);
2532
2533#if OS(WIN)
2534    TlsSetValue(tlsIndex, heap);
2535#endif
2536}
2537
2538// Allocator for thread heaps
2539static PageHeapAllocator<TCMalloc_ThreadCache> threadheap_allocator;
2540
2541// Linked list of heap objects.  Protected by pageheap_lock.
2542static TCMalloc_ThreadCache* thread_heaps = NULL;
2543static int thread_heap_count = 0;
2544
2545// Overall thread cache size.  Protected by pageheap_lock.
2546static size_t overall_thread_cache_size = kDefaultOverallThreadCacheSize;
2547
2548// Global per-thread cache size.  Writes are protected by
2549// pageheap_lock.  Reads are done without any locking, which should be
2550// fine as long as size_t can be written atomically and we don't place
2551// invariants between this variable and other pieces of state.
2552static volatile size_t per_thread_cache_size = kMaxThreadCacheSize;
2553
2554//-------------------------------------------------------------------
2555// Central cache implementation
2556//-------------------------------------------------------------------
2557
2558void TCMalloc_Central_FreeList::Init(size_t cl, uintptr_t entropy) {
2559  lock_.Init();
2560  size_class_ = cl;
2561  entropy_ = entropy;
2562#if ENABLE(TCMALLOC_HARDENING)
2563  ASSERT(entropy_);
2564#endif
2565  DLL_Init(&empty_, entropy_);
2566  DLL_Init(&nonempty_, entropy_);
2567  counter_ = 0;
2568
2569  cache_size_ = 1;
2570  used_slots_ = 0;
2571  ASSERT(cache_size_ <= kNumTransferEntries);
2572}
2573
2574void TCMalloc_Central_FreeList::ReleaseListToSpans(HardenedSLL start) {
2575  while (start) {
2576    HardenedSLL next = SLL_Next(start, entropy_);
2577    ReleaseToSpans(start);
2578    start = next;
2579  }
2580}
2581
2582ALWAYS_INLINE void TCMalloc_Central_FreeList::ReleaseToSpans(HardenedSLL object) {
2583  const PageID p = reinterpret_cast<uintptr_t>(object.value()) >> kPageShift;
2584  Span* span = pageheap->GetDescriptor(p);
2585  ASSERT(span != NULL);
2586  ASSERT(span->refcount > 0);
2587
2588  // If span is empty, move it to non-empty list
2589  if (!span->objects) {
2590    DLL_Remove(span, entropy_);
2591    DLL_Prepend(&nonempty_, span, entropy_);
2592    Event(span, 'N', 0);
2593  }
2594
2595  // The following check is expensive, so it is disabled by default
2596  if (false) {
2597    // Check that object does not occur in list
2598    unsigned got = 0;
2599    for (HardenedSLL p = span->objects; !p; SLL_Next(p, entropy_)) {
2600      ASSERT(p.value() != object.value());
2601      got++;
2602    }
2603    ASSERT(got + span->refcount ==
2604           (span->length<<kPageShift)/ByteSizeForClass(span->sizeclass));
2605  }
2606
2607  counter_++;
2608  span->refcount--;
2609  if (span->refcount == 0) {
2610    Event(span, '#', 0);
2611    counter_ -= (span->length<<kPageShift) / ByteSizeForClass(span->sizeclass);
2612    DLL_Remove(span, entropy_);
2613
2614    // Release central list lock while operating on pageheap
2615    lock_.Unlock();
2616    {
2617      SpinLockHolder h(&pageheap_lock);
2618      pageheap->Delete(span);
2619    }
2620    lock_.Lock();
2621  } else {
2622    SLL_SetNext(object, span->objects, entropy_);
2623    span->objects.setValue(object.value());
2624  }
2625}
2626
2627ALWAYS_INLINE bool TCMalloc_Central_FreeList::EvictRandomSizeClass(
2628    size_t locked_size_class, bool force) {
2629  static int race_counter = 0;
2630  int t = race_counter++;  // Updated without a lock, but who cares.
2631  if (t >= static_cast<int>(kNumClasses)) {
2632    while (t >= static_cast<int>(kNumClasses)) {
2633      t -= kNumClasses;
2634    }
2635    race_counter = t;
2636  }
2637  ASSERT(t >= 0);
2638  ASSERT(t < static_cast<int>(kNumClasses));
2639  if (t == static_cast<int>(locked_size_class)) return false;
2640  return central_cache[t].ShrinkCache(static_cast<int>(locked_size_class), force);
2641}
2642
2643bool TCMalloc_Central_FreeList::MakeCacheSpace() {
2644  // Is there room in the cache?
2645  if (used_slots_ < cache_size_) return true;
2646  // Check if we can expand this cache?
2647  if (cache_size_ == kNumTransferEntries) return false;
2648  // Ok, we'll try to grab an entry from some other size class.
2649  if (EvictRandomSizeClass(size_class_, false) ||
2650      EvictRandomSizeClass(size_class_, true)) {
2651    // Succeeded in evicting, we're going to make our cache larger.
2652    cache_size_++;
2653    return true;
2654  }
2655  return false;
2656}
2657
2658
2659namespace {
2660class LockInverter {
2661 private:
2662  SpinLock *held_, *temp_;
2663 public:
2664  inline explicit LockInverter(SpinLock* held, SpinLock *temp)
2665    : held_(held), temp_(temp) { held_->Unlock(); temp_->Lock(); }
2666  inline ~LockInverter() { temp_->Unlock(); held_->Lock();  }
2667};
2668}
2669
2670bool TCMalloc_Central_FreeList::ShrinkCache(int locked_size_class, bool force) {
2671  // Start with a quick check without taking a lock.
2672  if (cache_size_ == 0) return false;
2673  // We don't evict from a full cache unless we are 'forcing'.
2674  if (force == false && used_slots_ == cache_size_) return false;
2675
2676  // Grab lock, but first release the other lock held by this thread.  We use
2677  // the lock inverter to ensure that we never hold two size class locks
2678  // concurrently.  That can create a deadlock because there is no well
2679  // defined nesting order.
2680  LockInverter li(&central_cache[locked_size_class].lock_, &lock_);
2681  ASSERT(used_slots_ <= cache_size_);
2682  ASSERT(0 <= cache_size_);
2683  if (cache_size_ == 0) return false;
2684  if (used_slots_ == cache_size_) {
2685    if (force == false) return false;
2686    // ReleaseListToSpans releases the lock, so we have to make all the
2687    // updates to the central list before calling it.
2688    cache_size_--;
2689    used_slots_--;
2690    ReleaseListToSpans(tc_slots_[used_slots_].head);
2691    return true;
2692  }
2693  cache_size_--;
2694  return true;
2695}
2696
2697void TCMalloc_Central_FreeList::InsertRange(HardenedSLL start, HardenedSLL end, int N) {
2698  SpinLockHolder h(&lock_);
2699  if (N == num_objects_to_move[size_class_] &&
2700    MakeCacheSpace()) {
2701    int slot = used_slots_++;
2702    ASSERT(slot >=0);
2703    ASSERT(slot < kNumTransferEntries);
2704    TCEntry *entry = &tc_slots_[slot];
2705    entry->head = start;
2706    entry->tail = end;
2707    return;
2708  }
2709  ReleaseListToSpans(start);
2710}
2711
2712void TCMalloc_Central_FreeList::RemoveRange(HardenedSLL* start, HardenedSLL* end, int *N) {
2713  int num = *N;
2714  ASSERT(num > 0);
2715
2716  SpinLockHolder h(&lock_);
2717  if (num == num_objects_to_move[size_class_] && used_slots_ > 0) {
2718    int slot = --used_slots_;
2719    ASSERT(slot >= 0);
2720    TCEntry *entry = &tc_slots_[slot];
2721    *start = entry->head;
2722    *end = entry->tail;
2723    return;
2724  }
2725
2726  // TODO: Prefetch multiple TCEntries?
2727  HardenedSLL tail = FetchFromSpansSafe();
2728  if (!tail) {
2729    // We are completely out of memory.
2730    *start = *end = HardenedSLL::null();
2731    *N = 0;
2732    return;
2733  }
2734
2735  SLL_SetNext(tail, HardenedSLL::null(), entropy_);
2736  HardenedSLL head = tail;
2737  int count = 1;
2738  while (count < num) {
2739    HardenedSLL t = FetchFromSpans();
2740    if (!t) break;
2741    SLL_Push(&head, t, entropy_);
2742    count++;
2743  }
2744  *start = head;
2745  *end = tail;
2746  *N = count;
2747}
2748
2749
2750HardenedSLL TCMalloc_Central_FreeList::FetchFromSpansSafe() {
2751  HardenedSLL t = FetchFromSpans();
2752  if (!t) {
2753    Populate();
2754    t = FetchFromSpans();
2755  }
2756  return t;
2757}
2758
2759HardenedSLL TCMalloc_Central_FreeList::FetchFromSpans() {
2760  if (DLL_IsEmpty(&nonempty_, entropy_)) return HardenedSLL::null();
2761  Span* span = nonempty_.next(entropy_);
2762
2763  ASSERT(span->objects);
2764  ASSERT_SPAN_COMMITTED(span);
2765  span->refcount++;
2766  HardenedSLL result = span->objects;
2767  span->objects = SLL_Next(result, entropy_);
2768  if (!span->objects) {
2769    // Move to empty list
2770    DLL_Remove(span, entropy_);
2771    DLL_Prepend(&empty_, span, entropy_);
2772    Event(span, 'E', 0);
2773  }
2774  counter_--;
2775  return result;
2776}
2777
2778// Fetch memory from the system and add to the central cache freelist.
2779ALWAYS_INLINE void TCMalloc_Central_FreeList::Populate() {
2780  // Release central list lock while operating on pageheap
2781  lock_.Unlock();
2782  const size_t npages = class_to_pages[size_class_];
2783
2784  Span* span;
2785  {
2786    SpinLockHolder h(&pageheap_lock);
2787    span = pageheap->New(npages);
2788    if (span) pageheap->RegisterSizeClass(span, size_class_);
2789  }
2790  if (span == NULL) {
2791#if OS(WIN)
2792    MESSAGE("allocation failed: %d\n", ::GetLastError());
2793#else
2794    MESSAGE("allocation failed: %d\n", errno);
2795#endif
2796    lock_.Lock();
2797    return;
2798  }
2799  ASSERT_SPAN_COMMITTED(span);
2800  ASSERT(span->length == npages);
2801  // Cache sizeclass info eagerly.  Locking is not necessary.
2802  // (Instead of being eager, we could just replace any stale info
2803  // about this span, but that seems to be no better in practice.)
2804  for (size_t i = 0; i < npages; i++) {
2805    pageheap->CacheSizeClass(span->start + i, size_class_);
2806  }
2807
2808  // Split the block into pieces and add to the free-list
2809  // TODO: coloring of objects to avoid cache conflicts?
2810  HardenedSLL head = HardenedSLL::null();
2811  char* start = reinterpret_cast<char*>(span->start << kPageShift);
2812  const size_t size = ByteSizeForClass(size_class_);
2813  char* ptr = start + (npages << kPageShift) - ((npages << kPageShift) % size);
2814  int num = 0;
2815#if ENABLE(TCMALLOC_HARDENING)
2816  uint32_t startPoison = freedObjectStartPoison();
2817  uint32_t endPoison = freedObjectEndPoison();
2818#endif
2819
2820  while (ptr > start) {
2821    ptr -= size;
2822    HardenedSLL node = HardenedSLL::create(ptr);
2823    POISON_DEALLOCATION_EXPLICIT(ptr, size, startPoison, endPoison);
2824    SLL_SetNext(node, head, entropy_);
2825    head = node;
2826    num++;
2827  }
2828  ASSERT(ptr == start);
2829  ASSERT(ptr == head.value());
2830#ifndef NDEBUG
2831    {
2832        HardenedSLL node = head;
2833        while (node) {
2834            ASSERT(IS_DEFINITELY_POISONED(node.value(), size));
2835            node = SLL_Next(node, entropy_);
2836        }
2837    }
2838#endif
2839  span->objects = head;
2840  ASSERT(span->objects.value() == head.value());
2841  span->refcount = 0; // No sub-object in use yet
2842
2843  // Add span to list of non-empty spans
2844  lock_.Lock();
2845  DLL_Prepend(&nonempty_, span, entropy_);
2846  counter_ += num;
2847}
2848
2849//-------------------------------------------------------------------
2850// TCMalloc_ThreadCache implementation
2851//-------------------------------------------------------------------
2852
2853inline bool TCMalloc_ThreadCache::SampleAllocation(size_t k) {
2854  if (bytes_until_sample_ < k) {
2855    PickNextSample(k);
2856    return true;
2857  } else {
2858    bytes_until_sample_ -= k;
2859    return false;
2860  }
2861}
2862
2863void TCMalloc_ThreadCache::Init(ThreadIdentifier tid, uintptr_t entropy) {
2864  size_ = 0;
2865  next_ = NULL;
2866  prev_ = NULL;
2867  tid_  = tid;
2868  in_setspecific_ = false;
2869  entropy_ = entropy;
2870#if ENABLE(TCMALLOC_HARDENING)
2871  ASSERT(entropy_);
2872#endif
2873  for (size_t cl = 0; cl < kNumClasses; ++cl) {
2874    list_[cl].Init(entropy_);
2875  }
2876
2877  // Initialize RNG -- run it for a bit to get to good values
2878  bytes_until_sample_ = 0;
2879  rnd_ = static_cast<uint32_t>(reinterpret_cast<uintptr_t>(this));
2880  for (int i = 0; i < 100; i++) {
2881    PickNextSample(static_cast<size_t>(FLAGS_tcmalloc_sample_parameter * 2));
2882  }
2883}
2884
2885void TCMalloc_ThreadCache::Cleanup() {
2886  // Put unused memory back into central cache
2887  for (size_t cl = 0; cl < kNumClasses; ++cl) {
2888    if (list_[cl].length() > 0) {
2889      ReleaseToCentralCache(cl, list_[cl].length());
2890    }
2891  }
2892}
2893
2894ALWAYS_INLINE void* TCMalloc_ThreadCache::Allocate(size_t size) {
2895  ASSERT(size <= kMaxSize);
2896  const size_t cl = SizeClass(size);
2897  FreeList* list = &list_[cl];
2898  size_t allocationSize = ByteSizeForClass(cl);
2899  if (list->empty()) {
2900    FetchFromCentralCache(cl, allocationSize);
2901    if (list->empty()) return NULL;
2902  }
2903  size_ -= allocationSize;
2904  void* result = list->Pop();
2905  if (!result)
2906      return 0;
2907  RELEASE_ASSERT(IS_DEFINITELY_POISONED(result, allocationSize));
2908  POISON_ALLOCATION(result, allocationSize);
2909  return result;
2910}
2911
2912inline void TCMalloc_ThreadCache::Deallocate(HardenedSLL ptr, size_t cl) {
2913  size_t allocationSize = ByteSizeForClass(cl);
2914  size_ += allocationSize;
2915  FreeList* list = &list_[cl];
2916  if (MAY_BE_POISONED(ptr.value(), allocationSize))
2917      list->Validate(ptr, allocationSize);
2918
2919  POISON_DEALLOCATION(ptr.value(), allocationSize);
2920  list->Push(ptr);
2921  // If enough data is free, put back into central cache
2922  if (list->length() > kMaxFreeListLength) {
2923    ReleaseToCentralCache(cl, num_objects_to_move[cl]);
2924  }
2925  if (size_ >= per_thread_cache_size) Scavenge();
2926}
2927
2928// Remove some objects of class "cl" from central cache and add to thread heap
2929ALWAYS_INLINE void TCMalloc_ThreadCache::FetchFromCentralCache(size_t cl, size_t allocationSize) {
2930  int fetch_count = num_objects_to_move[cl];
2931  HardenedSLL start, end;
2932  central_cache[cl].RemoveRange(&start, &end, &fetch_count);
2933  list_[cl].PushRange(fetch_count, start, end);
2934  size_ += allocationSize * fetch_count;
2935}
2936
2937// Remove some objects of class "cl" from thread heap and add to central cache
2938inline void TCMalloc_ThreadCache::ReleaseToCentralCache(size_t cl, int N) {
2939  ASSERT(N > 0);
2940  FreeList* src = &list_[cl];
2941  if (N > src->length()) N = src->length();
2942  size_ -= N*ByteSizeForClass(cl);
2943
2944  // We return prepackaged chains of the correct size to the central cache.
2945  // TODO: Use the same format internally in the thread caches?
2946  int batch_size = num_objects_to_move[cl];
2947  while (N > batch_size) {
2948    HardenedSLL tail, head;
2949    src->PopRange(batch_size, &head, &tail);
2950    central_cache[cl].InsertRange(head, tail, batch_size);
2951    N -= batch_size;
2952  }
2953  HardenedSLL tail, head;
2954  src->PopRange(N, &head, &tail);
2955  central_cache[cl].InsertRange(head, tail, N);
2956}
2957
2958// Release idle memory to the central cache
2959inline void TCMalloc_ThreadCache::Scavenge() {
2960  // If the low-water mark for the free list is L, it means we would
2961  // not have had to allocate anything from the central cache even if
2962  // we had reduced the free list size by L.  We aim to get closer to
2963  // that situation by dropping L/2 nodes from the free list.  This
2964  // may not release much memory, but if so we will call scavenge again
2965  // pretty soon and the low-water marks will be high on that call.
2966  //int64 start = CycleClock::Now();
2967
2968  for (size_t cl = 0; cl < kNumClasses; cl++) {
2969    FreeList* list = &list_[cl];
2970    const int lowmark = list->lowwatermark();
2971    if (lowmark > 0) {
2972      const int drop = (lowmark > 1) ? lowmark/2 : 1;
2973      ReleaseToCentralCache(cl, drop);
2974    }
2975    list->clear_lowwatermark();
2976  }
2977
2978  //int64 finish = CycleClock::Now();
2979  //CycleTimer ct;
2980  //MESSAGE("GC: %.0f ns\n", ct.CyclesToUsec(finish-start)*1000.0);
2981}
2982
2983void TCMalloc_ThreadCache::PickNextSample(size_t k) {
2984  // Make next "random" number
2985  // x^32+x^22+x^2+x^1+1 is a primitive polynomial for random numbers
2986  static const uint32_t kPoly = (1 << 22) | (1 << 2) | (1 << 1) | (1 << 0);
2987  uint32_t r = rnd_;
2988  rnd_ = (r << 1) ^ ((static_cast<int32_t>(r) >> 31) & kPoly);
2989
2990  // Next point is "rnd_ % (sample_period)".  I.e., average
2991  // increment is "sample_period/2".
2992  const int flag_value = static_cast<int>(FLAGS_tcmalloc_sample_parameter);
2993  static int last_flag_value = -1;
2994
2995  if (flag_value != last_flag_value) {
2996    SpinLockHolder h(&sample_period_lock);
2997    int i;
2998    for (i = 0; i < (static_cast<int>(sizeof(primes_list)/sizeof(primes_list[0])) - 1); i++) {
2999      if (primes_list[i] >= flag_value) {
3000        break;
3001      }
3002    }
3003    sample_period = primes_list[i];
3004    last_flag_value = flag_value;
3005  }
3006
3007  bytes_until_sample_ += rnd_ % sample_period;
3008
3009  if (k > (static_cast<size_t>(-1) >> 2)) {
3010    // If the user has asked for a huge allocation then it is possible
3011    // for the code below to loop infinitely.  Just return (note that
3012    // this throws off the sampling accuracy somewhat, but a user who
3013    // is allocating more than 1G of memory at a time can live with a
3014    // minor inaccuracy in profiling of small allocations, and also
3015    // would rather not wait for the loop below to terminate).
3016    return;
3017  }
3018
3019  while (bytes_until_sample_ < k) {
3020    // Increase bytes_until_sample_ by enough average sampling periods
3021    // (sample_period >> 1) to allow us to sample past the current
3022    // allocation.
3023    bytes_until_sample_ += (sample_period >> 1);
3024  }
3025
3026  bytes_until_sample_ -= k;
3027}
3028
3029void TCMalloc_ThreadCache::InitModule() {
3030  // There is a slight potential race here because of double-checked
3031  // locking idiom.  However, as long as the program does a small
3032  // allocation before switching to multi-threaded mode, we will be
3033  // fine.  We increase the chances of doing such a small allocation
3034  // by doing one in the constructor of the module_enter_exit_hook
3035  // object declared below.
3036  SpinLockHolder h(&pageheap_lock);
3037  if (!phinited) {
3038    uintptr_t entropy = HARDENING_ENTROPY;
3039    InitTSD();
3040    InitSizeClasses();
3041    threadheap_allocator.Init(entropy);
3042    span_allocator.Init(entropy);
3043    span_allocator.New(); // Reduce cache conflicts
3044    span_allocator.New(); // Reduce cache conflicts
3045    stacktrace_allocator.Init(entropy);
3046    DLL_Init(&sampled_objects, entropy);
3047    for (size_t i = 0; i < kNumClasses; ++i) {
3048      central_cache[i].Init(i, entropy);
3049    }
3050    pageheap->init();
3051    phinited = 1;
3052#if OS(MACOSX)
3053    FastMallocZone::init();
3054#endif
3055  }
3056}
3057
3058inline TCMalloc_ThreadCache* TCMalloc_ThreadCache::NewHeap(ThreadIdentifier tid, uintptr_t entropy) {
3059  // Create the heap and add it to the linked list
3060  TCMalloc_ThreadCache *heap = threadheap_allocator.New();
3061  heap->Init(tid, entropy);
3062  heap->next_ = thread_heaps;
3063  heap->prev_ = NULL;
3064  if (thread_heaps != NULL) thread_heaps->prev_ = heap;
3065  thread_heaps = heap;
3066  thread_heap_count++;
3067  RecomputeThreadCacheSize();
3068  return heap;
3069}
3070
3071inline TCMalloc_ThreadCache* TCMalloc_ThreadCache::GetThreadHeap() {
3072#ifdef HAVE_TLS
3073    // __thread is faster, but only when the kernel supports it
3074  if (KernelSupportsTLS())
3075    return threadlocal_heap;
3076#elif OS(WIN)
3077    return static_cast<TCMalloc_ThreadCache*>(TlsGetValue(tlsIndex));
3078#else
3079    return static_cast<TCMalloc_ThreadCache*>(pthread_getspecific(heap_key));
3080#endif
3081}
3082
3083inline TCMalloc_ThreadCache* TCMalloc_ThreadCache::GetCache() {
3084  TCMalloc_ThreadCache* ptr = NULL;
3085  if (!tsd_inited) {
3086    InitModule();
3087  } else {
3088    ptr = GetThreadHeap();
3089  }
3090  if (ptr == NULL) ptr = CreateCacheIfNecessary();
3091  return ptr;
3092}
3093
3094// In deletion paths, we do not try to create a thread-cache.  This is
3095// because we may be in the thread destruction code and may have
3096// already cleaned up the cache for this thread.
3097inline TCMalloc_ThreadCache* TCMalloc_ThreadCache::GetCacheIfPresent() {
3098  if (!tsd_inited) return NULL;
3099  void* const p = GetThreadHeap();
3100  return reinterpret_cast<TCMalloc_ThreadCache*>(p);
3101}
3102
3103void TCMalloc_ThreadCache::InitTSD() {
3104  ASSERT(!tsd_inited);
3105  pthread_key_create(&heap_key, DestroyThreadCache);
3106#if OS(WIN)
3107  tlsIndex = TlsAlloc();
3108#endif
3109  tsd_inited = true;
3110
3111#if !OS(WIN)
3112  // We may have used a fake pthread_t for the main thread.  Fix it.
3113  pthread_t zero;
3114  memset(&zero, 0, sizeof(zero));
3115#endif
3116  ASSERT(pageheap_lock.IsHeld());
3117  for (TCMalloc_ThreadCache* h = thread_heaps; h != NULL; h = h->next_) {
3118#if OS(WIN)
3119    if (h->tid_ == 0) {
3120      h->tid_ = GetCurrentThreadId();
3121    }
3122#else
3123    if (pthread_equal(h->tid_, zero)) {
3124      h->tid_ = pthread_self();
3125    }
3126#endif
3127  }
3128}
3129
3130TCMalloc_ThreadCache* TCMalloc_ThreadCache::CreateCacheIfNecessary() {
3131  // Initialize per-thread data if necessary
3132  TCMalloc_ThreadCache* heap = NULL;
3133  {
3134    SpinLockHolder h(&pageheap_lock);
3135
3136#if OS(WIN)
3137    DWORD me;
3138    if (!tsd_inited) {
3139      me = 0;
3140    } else {
3141      me = GetCurrentThreadId();
3142    }
3143#else
3144    // Early on in glibc's life, we cannot even call pthread_self()
3145    pthread_t me;
3146    if (!tsd_inited) {
3147      memset(&me, 0, sizeof(me));
3148    } else {
3149      me = pthread_self();
3150    }
3151#endif
3152
3153    // This may be a recursive malloc call from pthread_setspecific()
3154    // In that case, the heap for this thread has already been created
3155    // and added to the linked list.  So we search for that first.
3156    for (TCMalloc_ThreadCache* h = thread_heaps; h != NULL; h = h->next_) {
3157#if OS(WIN)
3158      if (h->tid_ == me) {
3159#else
3160      if (pthread_equal(h->tid_, me)) {
3161#endif
3162        heap = h;
3163        break;
3164      }
3165    }
3166
3167    if (heap == NULL) heap = NewHeap(me, HARDENING_ENTROPY);
3168  }
3169
3170  // We call pthread_setspecific() outside the lock because it may
3171  // call malloc() recursively.  The recursive call will never get
3172  // here again because it will find the already allocated heap in the
3173  // linked list of heaps.
3174  if (!heap->in_setspecific_ && tsd_inited) {
3175    heap->in_setspecific_ = true;
3176    setThreadHeap(heap);
3177  }
3178  return heap;
3179}
3180
3181void TCMalloc_ThreadCache::BecomeIdle() {
3182  if (!tsd_inited) return;              // No caches yet
3183  TCMalloc_ThreadCache* heap = GetThreadHeap();
3184  if (heap == NULL) return;             // No thread cache to remove
3185  if (heap->in_setspecific_) return;    // Do not disturb the active caller
3186
3187  heap->in_setspecific_ = true;
3188  setThreadHeap(NULL);
3189#ifdef HAVE_TLS
3190  // Also update the copy in __thread
3191  threadlocal_heap = NULL;
3192#endif
3193  heap->in_setspecific_ = false;
3194  if (GetThreadHeap() == heap) {
3195    // Somehow heap got reinstated by a recursive call to malloc
3196    // from pthread_setspecific.  We give up in this case.
3197    return;
3198  }
3199
3200  // We can now get rid of the heap
3201  DeleteCache(heap);
3202}
3203
3204void TCMalloc_ThreadCache::DestroyThreadCache(void* ptr) {
3205  // Note that "ptr" cannot be NULL since pthread promises not
3206  // to invoke the destructor on NULL values, but for safety,
3207  // we check anyway.
3208  if (ptr == NULL) return;
3209#ifdef HAVE_TLS
3210  // Prevent fast path of GetThreadHeap() from returning heap.
3211  threadlocal_heap = NULL;
3212#endif
3213  DeleteCache(reinterpret_cast<TCMalloc_ThreadCache*>(ptr));
3214}
3215
3216void TCMalloc_ThreadCache::DeleteCache(TCMalloc_ThreadCache* heap) {
3217  // Remove all memory from heap
3218  heap->Cleanup();
3219
3220  // Remove from linked list
3221  SpinLockHolder h(&pageheap_lock);
3222  if (heap->next_ != NULL) heap->next_->prev_ = heap->prev_;
3223  if (heap->prev_ != NULL) heap->prev_->next_ = heap->next_;
3224  if (thread_heaps == heap) thread_heaps = heap->next_;
3225  thread_heap_count--;
3226  RecomputeThreadCacheSize();
3227
3228  threadheap_allocator.Delete(heap);
3229}
3230
3231void TCMalloc_ThreadCache::RecomputeThreadCacheSize() {
3232  // Divide available space across threads
3233  int n = thread_heap_count > 0 ? thread_heap_count : 1;
3234  size_t space = overall_thread_cache_size / n;
3235
3236  // Limit to allowed range
3237  if (space < kMinThreadCacheSize) space = kMinThreadCacheSize;
3238  if (space > kMaxThreadCacheSize) space = kMaxThreadCacheSize;
3239
3240  per_thread_cache_size = space;
3241}
3242
3243void TCMalloc_ThreadCache::Print() const {
3244  for (size_t cl = 0; cl < kNumClasses; ++cl) {
3245    MESSAGE("      %5" PRIuS " : %4d len; %4d lo\n",
3246            ByteSizeForClass(cl),
3247            list_[cl].length(),
3248            list_[cl].lowwatermark());
3249  }
3250}
3251
3252// Extract interesting stats
3253struct TCMallocStats {
3254  uint64_t system_bytes;        // Bytes alloced from system
3255  uint64_t thread_bytes;        // Bytes in thread caches
3256  uint64_t central_bytes;       // Bytes in central cache
3257  uint64_t transfer_bytes;      // Bytes in central transfer cache
3258  uint64_t pageheap_bytes;      // Bytes in page heap
3259  uint64_t metadata_bytes;      // Bytes alloced for metadata
3260};
3261
3262// The constructor allocates an object to ensure that initialization
3263// runs before main(), and therefore we do not have a chance to become
3264// multi-threaded before initialization.  We also create the TSD key
3265// here.  Presumably by the time this constructor runs, glibc is in
3266// good enough shape to handle pthread_key_create().
3267//
3268// The constructor also takes the opportunity to tell STL to use
3269// tcmalloc.  We want to do this early, before construct time, so
3270// all user STL allocations go through tcmalloc (which works really
3271// well for STL).
3272//
3273// The destructor prints stats when the program exits.
3274class TCMallocGuard {
3275 public:
3276
3277  TCMallocGuard() {
3278#ifdef HAVE_TLS    // this is true if the cc/ld/libc combo support TLS
3279    // Check whether the kernel also supports TLS (needs to happen at runtime)
3280    CheckIfKernelSupportsTLS();
3281#endif
3282    free(malloc(1));
3283    TCMalloc_ThreadCache::InitTSD();
3284    free(malloc(1));
3285  }
3286};
3287
3288//-------------------------------------------------------------------
3289// Helpers for the exported routines below
3290//-------------------------------------------------------------------
3291
3292#if !ASSERT_DISABLED
3293static inline bool CheckCachedSizeClass(void *ptr) {
3294  PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
3295  size_t cached_value = pageheap->GetSizeClassIfCached(p);
3296  return cached_value == 0 ||
3297      cached_value == pageheap->GetDescriptor(p)->sizeclass;
3298}
3299#endif
3300
3301static inline void* CheckedMallocResult(void *result)
3302{
3303  ASSERT(result == 0 || CheckCachedSizeClass(result));
3304  return result;
3305}
3306
3307static inline void* SpanToMallocResult(Span *span) {
3308  ASSERT_SPAN_COMMITTED(span);
3309  pageheap->CacheSizeClass(span->start, 0);
3310  void* result = reinterpret_cast<void*>(span->start << kPageShift);
3311  POISON_ALLOCATION(result, span->length << kPageShift);
3312  return CheckedMallocResult(result);
3313}
3314
3315static ALWAYS_INLINE void* do_malloc(size_t size) {
3316    void* ret = 0;
3317
3318    ASSERT(!isForbidden());
3319
3320    // The following call forces module initialization
3321    TCMalloc_ThreadCache* heap = TCMalloc_ThreadCache::GetCache();
3322    if (size > kMaxSize) {
3323        // Use page-level allocator
3324        SpinLockHolder h(&pageheap_lock);
3325        Span* span = pageheap->New(pages(size));
3326        if (span)
3327            ret = SpanToMallocResult(span);
3328    } else {
3329        // The common case, and also the simplest. This just pops the
3330        // size-appropriate freelist, afer replenishing it if it's empty.
3331        ret = CheckedMallocResult(heap->Allocate(size));
3332    }
3333    // This is the out-of-memory crash line.
3334    RELEASE_ASSERT(ret);
3335    return ret;
3336}
3337
3338static ALWAYS_INLINE void do_free(void* ptr) {
3339  if (ptr == NULL) return;
3340  ASSERT(pageheap != NULL);  // Should not call free() before malloc()
3341  const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
3342  Span* span = NULL;
3343  size_t cl = pageheap->GetSizeClassIfCached(p);
3344
3345  if (cl == 0) {
3346    span = pageheap->GetDescriptor(p);
3347    RELEASE_ASSERT(span->isValid());
3348    cl = span->sizeclass;
3349    pageheap->CacheSizeClass(p, cl);
3350  }
3351  if (cl != 0) {
3352#ifndef NO_TCMALLOC_SAMPLES
3353    ASSERT(!pageheap->GetDescriptor(p)->sample);
3354#endif
3355    TCMalloc_ThreadCache* heap = TCMalloc_ThreadCache::GetCacheIfPresent();
3356    if (heap != NULL) {
3357      heap->Deallocate(HardenedSLL::create(ptr), cl);
3358    } else {
3359      // Delete directly into central cache
3360      POISON_DEALLOCATION(ptr, ByteSizeForClass(cl));
3361      SLL_SetNext(HardenedSLL::create(ptr), HardenedSLL::null(), central_cache[cl].entropy());
3362      central_cache[cl].InsertRange(HardenedSLL::create(ptr), HardenedSLL::create(ptr), 1);
3363    }
3364  } else {
3365    SpinLockHolder h(&pageheap_lock);
3366    ASSERT(reinterpret_cast<uintptr_t>(ptr) % kPageSize == 0);
3367    ASSERT(span != NULL && span->start == p);
3368#ifndef NO_TCMALLOC_SAMPLES
3369    if (span->sample) {
3370      DLL_Remove(span);
3371      stacktrace_allocator.Delete(reinterpret_cast<StackTrace*>(span->objects));
3372      span->objects = NULL;
3373    }
3374#endif
3375
3376    POISON_DEALLOCATION(ptr, span->length << kPageShift);
3377    pageheap->Delete(span);
3378  }
3379}
3380
3381// Helpers for use by exported routines below:
3382
3383#ifdef HAVE_STRUCT_MALLINFO  // mallinfo isn't defined on freebsd, for instance
3384static inline struct mallinfo do_mallinfo() {
3385  TCMallocStats stats;
3386  ExtractStats(&stats, NULL);
3387
3388  // Just some of the fields are filled in.
3389  struct mallinfo info;
3390  memset(&info, 0, sizeof(info));
3391
3392  // Unfortunately, the struct contains "int" field, so some of the
3393  // size values will be truncated.
3394  info.arena     = static_cast<int>(stats.system_bytes);
3395  info.fsmblks   = static_cast<int>(stats.thread_bytes
3396                                    + stats.central_bytes
3397                                    + stats.transfer_bytes);
3398  info.fordblks  = static_cast<int>(stats.pageheap_bytes);
3399  info.uordblks  = static_cast<int>(stats.system_bytes
3400                                    - stats.thread_bytes
3401                                    - stats.central_bytes
3402                                    - stats.transfer_bytes
3403                                    - stats.pageheap_bytes);
3404
3405  return info;
3406}
3407#endif
3408
3409//-------------------------------------------------------------------
3410// Exported routines
3411//-------------------------------------------------------------------
3412
3413// CAVEAT: The code structure below ensures that MallocHook methods are always
3414//         called from the stack frame of the invoked allocation function.
3415//         heap-checker.cc depends on this to start a stack trace from
3416//         the call to the (de)allocation function.
3417
3418void* fastMalloc(size_t size)
3419{
3420    return do_malloc(size);
3421}
3422
3423void fastFree(void* ptr)
3424{
3425    do_free(ptr);
3426}
3427
3428void* fastCalloc(size_t n, size_t elem_size)
3429{
3430  size_t totalBytes = n * elem_size;
3431
3432  // Protect against overflow
3433  if (n > 1 && elem_size && (totalBytes / elem_size) != n)
3434    return 0;
3435
3436    void* result = do_malloc(totalBytes);
3437    memset(result, 0, totalBytes);
3438
3439  return result;
3440}
3441
3442void* fastRealloc(void* old_ptr, size_t new_size)
3443{
3444  if (old_ptr == NULL) {
3445    return do_malloc(new_size);
3446  }
3447  if (new_size == 0) {
3448    free(old_ptr);
3449    return NULL;
3450  }
3451
3452  // Get the size of the old entry
3453  const PageID p = reinterpret_cast<uintptr_t>(old_ptr) >> kPageShift;
3454  size_t cl = pageheap->GetSizeClassIfCached(p);
3455  Span *span = NULL;
3456  size_t old_size;
3457  if (cl == 0) {
3458    span = pageheap->GetDescriptor(p);
3459    cl = span->sizeclass;
3460    pageheap->CacheSizeClass(p, cl);
3461  }
3462  if (cl != 0) {
3463    old_size = ByteSizeForClass(cl);
3464  } else {
3465    ASSERT(span != NULL);
3466    old_size = span->length << kPageShift;
3467  }
3468
3469  // Reallocate if the new size is larger than the old size,
3470  // or if the new size is significantly smaller than the old size.
3471  if ((new_size > old_size) || (AllocationSize(new_size) < old_size)) {
3472    // Need to reallocate
3473    void* new_ptr = do_malloc(new_size);
3474    memcpy(new_ptr, old_ptr, ((old_size < new_size) ? old_size : new_size));
3475    // We could use a variant of do_free() that leverages the fact
3476    // that we already know the sizeclass of old_ptr.  The benefit
3477    // would be small, so don't bother.
3478    do_free(old_ptr);
3479    return new_ptr;
3480  } else {
3481    return old_ptr;
3482  }
3483}
3484
3485void releaseFastMallocFreeMemory()
3486{
3487    // Flush free pages in the current thread cache back to the page heap.
3488    if (TCMalloc_ThreadCache* threadCache = TCMalloc_ThreadCache::GetCacheIfPresent())
3489        threadCache->Cleanup();
3490
3491    SpinLockHolder h(&pageheap_lock);
3492    pageheap->ReleaseFreePages();
3493}
3494
3495FastMallocStatistics fastMallocStatistics()
3496{
3497    FastMallocStatistics statistics;
3498
3499    SpinLockHolder lockHolder(&pageheap_lock);
3500    statistics.reservedVMBytes = static_cast<size_t>(pageheap->SystemBytes());
3501    statistics.committedVMBytes = statistics.reservedVMBytes - pageheap->ReturnedBytes();
3502
3503    statistics.freeListBytes = 0;
3504    for (unsigned cl = 0; cl < kNumClasses; ++cl) {
3505        const int length = central_cache[cl].length();
3506        const int tc_length = central_cache[cl].tc_length();
3507
3508        statistics.freeListBytes += ByteSizeForClass(cl) * (length + tc_length);
3509    }
3510    for (TCMalloc_ThreadCache* threadCache = thread_heaps; threadCache ; threadCache = threadCache->next_)
3511        statistics.freeListBytes += threadCache->Size();
3512
3513    return statistics;
3514}
3515
3516#if OS(MACOSX)
3517
3518template <typename T>
3519T* RemoteMemoryReader::nextEntryInHardenedLinkedList(T** remoteAddress, uintptr_t entropy) const
3520{
3521    T** localAddress = (*this)(remoteAddress);
3522    if (!localAddress)
3523        return 0;
3524    T* hardenedNext = *localAddress;
3525    if (!hardenedNext || hardenedNext == (void*)entropy)
3526        return 0;
3527    return XOR_MASK_PTR_WITH_KEY(hardenedNext, remoteAddress, entropy);
3528}
3529
3530class FreeObjectFinder {
3531    const RemoteMemoryReader& m_reader;
3532    HashSet<void*> m_freeObjects;
3533
3534public:
3535    FreeObjectFinder(const RemoteMemoryReader& reader) : m_reader(reader) { }
3536
3537    void visit(void* ptr) { m_freeObjects.add(ptr); }
3538    bool isFreeObject(void* ptr) const { return m_freeObjects.contains(ptr); }
3539    bool isFreeObject(vm_address_t ptr) const { return isFreeObject(reinterpret_cast<void*>(ptr)); }
3540    size_t freeObjectCount() const { return m_freeObjects.size(); }
3541
3542    void findFreeObjects(TCMalloc_ThreadCache* threadCache)
3543    {
3544        for (; threadCache; threadCache = (threadCache->next_ ? m_reader(threadCache->next_) : 0))
3545            threadCache->enumerateFreeObjects(*this, m_reader);
3546    }
3547
3548    void findFreeObjects(TCMalloc_Central_FreeListPadded* centralFreeList, size_t numSizes, TCMalloc_Central_FreeListPadded* remoteCentralFreeList)
3549    {
3550        for (unsigned i = 0; i < numSizes; i++)
3551            centralFreeList[i].enumerateFreeObjects(*this, m_reader, remoteCentralFreeList + i);
3552    }
3553};
3554
3555class PageMapFreeObjectFinder {
3556    const RemoteMemoryReader& m_reader;
3557    FreeObjectFinder& m_freeObjectFinder;
3558    uintptr_t m_entropy;
3559
3560public:
3561    PageMapFreeObjectFinder(const RemoteMemoryReader& reader, FreeObjectFinder& freeObjectFinder, uintptr_t entropy)
3562        : m_reader(reader)
3563        , m_freeObjectFinder(freeObjectFinder)
3564        , m_entropy(entropy)
3565    {
3566#if ENABLE(TCMALLOC_HARDENING)
3567        ASSERT(m_entropy);
3568#endif
3569    }
3570
3571    int visit(void* ptr) const
3572    {
3573        if (!ptr)
3574            return 1;
3575
3576        Span* span = m_reader(reinterpret_cast<Span*>(ptr));
3577        if (!span)
3578            return 1;
3579
3580        if (span->free) {
3581            void* ptr = reinterpret_cast<void*>(span->start << kPageShift);
3582            m_freeObjectFinder.visit(ptr);
3583        } else if (span->sizeclass) {
3584            // Walk the free list of the small-object span, keeping track of each object seen
3585            for (HardenedSLL nextObject = span->objects; nextObject; nextObject.setValue(m_reader.nextEntryInHardenedLinkedList(reinterpret_cast<void**>(nextObject.value()), m_entropy)))
3586                m_freeObjectFinder.visit(nextObject.value());
3587        }
3588        return span->length;
3589    }
3590};
3591
3592class PageMapMemoryUsageRecorder {
3593    task_t m_task;
3594    void* m_context;
3595    unsigned m_typeMask;
3596    vm_range_recorder_t* m_recorder;
3597    const RemoteMemoryReader& m_reader;
3598    const FreeObjectFinder& m_freeObjectFinder;
3599
3600    HashSet<void*> m_seenPointers;
3601    Vector<Span*> m_coalescedSpans;
3602
3603public:
3604    PageMapMemoryUsageRecorder(task_t task, void* context, unsigned typeMask, vm_range_recorder_t* recorder, const RemoteMemoryReader& reader, const FreeObjectFinder& freeObjectFinder)
3605        : m_task(task)
3606        , m_context(context)
3607        , m_typeMask(typeMask)
3608        , m_recorder(recorder)
3609        , m_reader(reader)
3610        , m_freeObjectFinder(freeObjectFinder)
3611    { }
3612
3613    ~PageMapMemoryUsageRecorder()
3614    {
3615        ASSERT(!m_coalescedSpans.size());
3616    }
3617
3618    void recordPendingRegions()
3619    {
3620        if (!(m_typeMask & (MALLOC_PTR_IN_USE_RANGE_TYPE | MALLOC_PTR_REGION_RANGE_TYPE))) {
3621            m_coalescedSpans.clear();
3622            return;
3623        }
3624
3625        Vector<vm_range_t, 1024> allocatedPointers;
3626        for (size_t i = 0; i < m_coalescedSpans.size(); ++i) {
3627            Span *theSpan = m_coalescedSpans[i];
3628            if (theSpan->free)
3629                continue;
3630
3631            vm_address_t spanStartAddress = theSpan->start << kPageShift;
3632            vm_size_t spanSizeInBytes = theSpan->length * kPageSize;
3633
3634            if (!theSpan->sizeclass) {
3635                // If it's an allocated large object span, mark it as in use
3636                if (!m_freeObjectFinder.isFreeObject(spanStartAddress))
3637                    allocatedPointers.append((vm_range_t){spanStartAddress, spanSizeInBytes});
3638            } else {
3639                const size_t objectSize = ByteSizeForClass(theSpan->sizeclass);
3640
3641                // Mark each allocated small object within the span as in use
3642                const vm_address_t endOfSpan = spanStartAddress + spanSizeInBytes;
3643                for (vm_address_t object = spanStartAddress; object + objectSize <= endOfSpan; object += objectSize) {
3644                    if (!m_freeObjectFinder.isFreeObject(object))
3645                        allocatedPointers.append((vm_range_t){object, objectSize});
3646                }
3647            }
3648        }
3649
3650        (*m_recorder)(m_task, m_context, m_typeMask & (MALLOC_PTR_IN_USE_RANGE_TYPE | MALLOC_PTR_REGION_RANGE_TYPE), allocatedPointers.data(), allocatedPointers.size());
3651
3652        m_coalescedSpans.clear();
3653    }
3654
3655    int visit(void* ptr)
3656    {
3657        if (!ptr)
3658            return 1;
3659
3660        Span* span = m_reader(reinterpret_cast<Span*>(ptr));
3661        if (!span || !span->start)
3662            return 1;
3663
3664        if (!m_seenPointers.add(ptr).isNewEntry)
3665            return span->length;
3666
3667        if (!m_coalescedSpans.size()) {
3668            m_coalescedSpans.append(span);
3669            return span->length;
3670        }
3671
3672        Span* previousSpan = m_coalescedSpans[m_coalescedSpans.size() - 1];
3673        vm_address_t previousSpanStartAddress = previousSpan->start << kPageShift;
3674        vm_size_t previousSpanSizeInBytes = previousSpan->length * kPageSize;
3675
3676        // If the new span is adjacent to the previous span, do nothing for now.
3677        vm_address_t spanStartAddress = span->start << kPageShift;
3678        if (spanStartAddress == previousSpanStartAddress + previousSpanSizeInBytes) {
3679            m_coalescedSpans.append(span);
3680            return span->length;
3681        }
3682
3683        // New span is not adjacent to previous span, so record the spans coalesced so far.
3684        recordPendingRegions();
3685        m_coalescedSpans.append(span);
3686
3687        return span->length;
3688    }
3689};
3690
3691class AdminRegionRecorder {
3692    task_t m_task;
3693    void* m_context;
3694    unsigned m_typeMask;
3695    vm_range_recorder_t* m_recorder;
3696
3697    Vector<vm_range_t, 1024> m_pendingRegions;
3698
3699public:
3700    AdminRegionRecorder(task_t task, void* context, unsigned typeMask, vm_range_recorder_t* recorder)
3701        : m_task(task)
3702        , m_context(context)
3703        , m_typeMask(typeMask)
3704        , m_recorder(recorder)
3705    { }
3706
3707    void recordRegion(vm_address_t ptr, size_t size)
3708    {
3709        if (m_typeMask & MALLOC_ADMIN_REGION_RANGE_TYPE)
3710            m_pendingRegions.append((vm_range_t){ ptr, size });
3711    }
3712
3713    void visit(void *ptr, size_t size)
3714    {
3715        recordRegion(reinterpret_cast<vm_address_t>(ptr), size);
3716    }
3717
3718    void recordPendingRegions()
3719    {
3720        if (m_pendingRegions.size()) {
3721            (*m_recorder)(m_task, m_context, MALLOC_ADMIN_REGION_RANGE_TYPE, m_pendingRegions.data(), m_pendingRegions.size());
3722            m_pendingRegions.clear();
3723        }
3724    }
3725
3726    ~AdminRegionRecorder()
3727    {
3728        ASSERT(!m_pendingRegions.size());
3729    }
3730};
3731
3732kern_return_t FastMallocZone::enumerate(task_t task, void* context, unsigned typeMask, vm_address_t zoneAddress, memory_reader_t reader, vm_range_recorder_t recorder)
3733{
3734    RemoteMemoryReader memoryReader(task, reader);
3735
3736    InitSizeClasses();
3737
3738    FastMallocZone* mzone = memoryReader(reinterpret_cast<FastMallocZone*>(zoneAddress));
3739    TCMalloc_PageHeap* pageHeap = memoryReader(mzone->m_pageHeap);
3740    TCMalloc_ThreadCache** threadHeapsPointer = memoryReader(mzone->m_threadHeaps);
3741    TCMalloc_ThreadCache* threadHeaps = memoryReader(*threadHeapsPointer);
3742
3743    TCMalloc_Central_FreeListPadded* centralCaches = memoryReader(mzone->m_centralCaches, sizeof(TCMalloc_Central_FreeListPadded) * kNumClasses);
3744
3745    FreeObjectFinder finder(memoryReader);
3746    finder.findFreeObjects(threadHeaps);
3747    finder.findFreeObjects(centralCaches, kNumClasses, mzone->m_centralCaches);
3748
3749    TCMalloc_PageHeap::PageMap* pageMap = &pageHeap->pagemap_;
3750    PageMapFreeObjectFinder pageMapFinder(memoryReader, finder, pageHeap->entropy_);
3751    pageMap->visitValues(pageMapFinder, memoryReader);
3752
3753    PageMapMemoryUsageRecorder usageRecorder(task, context, typeMask, recorder, memoryReader, finder);
3754    pageMap->visitValues(usageRecorder, memoryReader);
3755    usageRecorder.recordPendingRegions();
3756
3757    AdminRegionRecorder adminRegionRecorder(task, context, typeMask, recorder);
3758    pageMap->visitAllocations(adminRegionRecorder, memoryReader);
3759
3760    PageHeapAllocator<Span>* spanAllocator = memoryReader(mzone->m_spanAllocator);
3761    PageHeapAllocator<TCMalloc_ThreadCache>* pageHeapAllocator = memoryReader(mzone->m_pageHeapAllocator);
3762
3763    spanAllocator->recordAdministrativeRegions(adminRegionRecorder, memoryReader);
3764    pageHeapAllocator->recordAdministrativeRegions(adminRegionRecorder, memoryReader);
3765
3766    adminRegionRecorder.recordPendingRegions();
3767
3768    return 0;
3769}
3770
3771size_t FastMallocZone::size(malloc_zone_t*, const void*)
3772{
3773    return 0;
3774}
3775
3776void* FastMallocZone::zoneMalloc(malloc_zone_t*, size_t)
3777{
3778    return 0;
3779}
3780
3781void* FastMallocZone::zoneCalloc(malloc_zone_t*, size_t, size_t)
3782{
3783    return 0;
3784}
3785
3786void FastMallocZone::zoneFree(malloc_zone_t*, void* ptr)
3787{
3788    // Due to <rdar://problem/5671357> zoneFree may be called by the system free even if the pointer
3789    // is not in this zone.  When this happens, the pointer being freed was not allocated by any
3790    // zone so we need to print a useful error for the application developer.
3791    malloc_printf("*** error for object %p: pointer being freed was not allocated\n", ptr);
3792}
3793
3794void* FastMallocZone::zoneRealloc(malloc_zone_t*, void*, size_t)
3795{
3796    return 0;
3797}
3798
3799
3800#undef malloc
3801#undef free
3802#undef realloc
3803#undef calloc
3804
3805extern "C" {
3806malloc_introspection_t jscore_fastmalloc_introspection = { &FastMallocZone::enumerate, &FastMallocZone::goodSize, &FastMallocZone::check, &FastMallocZone::print,
3807    &FastMallocZone::log, &FastMallocZone::forceLock, &FastMallocZone::forceUnlock, &FastMallocZone::statistics
3808
3809#if __MAC_OS_X_VERSION_MAX_ALLOWED >= 1060
3810    , 0 // zone_locked will not be called on the zone unless it advertises itself as version five or higher.
3811#endif
3812#if __MAC_OS_X_VERSION_MAX_ALLOWED >= 1070
3813    , 0, 0, 0, 0 // These members will not be used unless the zone advertises itself as version seven or higher.
3814#endif
3815
3816    };
3817}
3818
3819FastMallocZone::FastMallocZone(TCMalloc_PageHeap* pageHeap, TCMalloc_ThreadCache** threadHeaps, TCMalloc_Central_FreeListPadded* centralCaches, PageHeapAllocator<Span>* spanAllocator, PageHeapAllocator<TCMalloc_ThreadCache>* pageHeapAllocator)
3820    : m_pageHeap(pageHeap)
3821    , m_threadHeaps(threadHeaps)
3822    , m_centralCaches(centralCaches)
3823    , m_spanAllocator(spanAllocator)
3824    , m_pageHeapAllocator(pageHeapAllocator)
3825{
3826    memset(&m_zone, 0, sizeof(m_zone));
3827    m_zone.version = 4;
3828    m_zone.zone_name = "JavaScriptCore FastMalloc";
3829    m_zone.size = &FastMallocZone::size;
3830    m_zone.malloc = &FastMallocZone::zoneMalloc;
3831    m_zone.calloc = &FastMallocZone::zoneCalloc;
3832    m_zone.realloc = &FastMallocZone::zoneRealloc;
3833    m_zone.free = &FastMallocZone::zoneFree;
3834    m_zone.valloc = &FastMallocZone::zoneValloc;
3835    m_zone.destroy = &FastMallocZone::zoneDestroy;
3836    m_zone.introspect = &jscore_fastmalloc_introspection;
3837    malloc_zone_register(&m_zone);
3838}
3839
3840
3841void FastMallocZone::init()
3842{
3843    static FastMallocZone zone(pageheap, &thread_heaps, static_cast<TCMalloc_Central_FreeListPadded*>(central_cache), &span_allocator, &threadheap_allocator);
3844}
3845
3846#endif // OS(MACOSX)
3847
3848} // namespace WTF
3849
3850#endif // FORCE_SYSTEM_MALLOC
3851