1/* 2****************************************************************************** 3* Copyright (C) 1997-2009, International Business Machines 4* Corporation and others. All Rights Reserved. 5****************************************************************************** 6* Date Name Description 7* 03/22/00 aliu Adapted from original C++ ICU Hashtable. 8* 07/06/01 aliu Modified to support int32_t keys on 9* platforms with sizeof(void*) < 32. 10****************************************************************************** 11*/ 12 13#include "uhash.h" 14#include "unicode/ustring.h" 15#include "cstring.h" 16#include "cmemory.h" 17#include "uassert.h" 18 19/* This hashtable is implemented as a double hash. All elements are 20 * stored in a single array with no secondary storage for collision 21 * resolution (no linked list, etc.). When there is a hash collision 22 * (when two unequal keys have the same hashcode) we resolve this by 23 * using a secondary hash. The secondary hash is an increment 24 * computed as a hash function (a different one) of the primary 25 * hashcode. This increment is added to the initial hash value to 26 * obtain further slots assigned to the same hash code. For this to 27 * work, the length of the array and the increment must be relatively 28 * prime. The easiest way to achieve this is to have the length of 29 * the array be prime, and the increment be any value from 30 * 1..length-1. 31 * 32 * Hashcodes are 32-bit integers. We make sure all hashcodes are 33 * non-negative by masking off the top bit. This has two effects: (1) 34 * modulo arithmetic is simplified. If we allowed negative hashcodes, 35 * then when we computed hashcode % length, we could get a negative 36 * result, which we would then have to adjust back into range. It's 37 * simpler to just make hashcodes non-negative. (2) It makes it easy 38 * to check for empty vs. occupied slots in the table. We just mark 39 * empty or deleted slots with a negative hashcode. 40 * 41 * The central function is _uhash_find(). This function looks for a 42 * slot matching the given key and hashcode. If one is found, it 43 * returns a pointer to that slot. If the table is full, and no match 44 * is found, it returns NULL -- in theory. This would make the code 45 * more complicated, since all callers of _uhash_find() would then 46 * have to check for a NULL result. To keep this from happening, we 47 * don't allow the table to fill. When there is only one 48 * empty/deleted slot left, uhash_put() will refuse to increase the 49 * count, and fail. This simplifies the code. In practice, one will 50 * seldom encounter this using default UHashtables. However, if a 51 * hashtable is set to a U_FIXED resize policy, or if memory is 52 * exhausted, then the table may fill. 53 * 54 * High and low water ratios control rehashing. They establish levels 55 * of fullness (from 0 to 1) outside of which the data array is 56 * reallocated and repopulated. Setting the low water ratio to zero 57 * means the table will never shrink. Setting the high water ratio to 58 * one means the table will never grow. The ratios should be 59 * coordinated with the ratio between successive elements of the 60 * PRIMES table, so that when the primeIndex is incremented or 61 * decremented during rehashing, it brings the ratio of count / length 62 * back into the desired range (between low and high water ratios). 63 */ 64 65/******************************************************************** 66 * PRIVATE Constants, Macros 67 ********************************************************************/ 68 69/* This is a list of non-consecutive primes chosen such that 70 * PRIMES[i+1] ~ 2*PRIMES[i]. (Currently, the ratio ranges from 1.81 71 * to 2.18; the inverse ratio ranges from 0.459 to 0.552.) If this 72 * ratio is changed, the low and high water ratios should also be 73 * adjusted to suit. 74 * 75 * These prime numbers were also chosen so that they are the largest 76 * prime number while being less than a power of two. 77 */ 78static const int32_t PRIMES[] = { 79 13, 31, 61, 127, 251, 509, 1021, 2039, 4093, 8191, 16381, 32749, 80 65521, 131071, 262139, 524287, 1048573, 2097143, 4194301, 8388593, 81 16777213, 33554393, 67108859, 134217689, 268435399, 536870909, 82 1073741789, 2147483647 /*, 4294967291 */ 83}; 84 85#define PRIMES_LENGTH (sizeof(PRIMES) / sizeof(PRIMES[0])) 86#define DEFAULT_PRIME_INDEX 3 87 88/* These ratios are tuned to the PRIMES array such that a resize 89 * places the table back into the zone of non-resizing. That is, 90 * after a call to _uhash_rehash(), a subsequent call to 91 * _uhash_rehash() should do nothing (should not churn). This is only 92 * a potential problem with U_GROW_AND_SHRINK. 93 */ 94static const float RESIZE_POLICY_RATIO_TABLE[6] = { 95 /* low, high water ratio */ 96 0.0F, 0.5F, /* U_GROW: Grow on demand, do not shrink */ 97 0.1F, 0.5F, /* U_GROW_AND_SHRINK: Grow and shrink on demand */ 98 0.0F, 1.0F /* U_FIXED: Never change size */ 99}; 100 101/* 102 Invariants for hashcode values: 103 104 * DELETED < 0 105 * EMPTY < 0 106 * Real hashes >= 0 107 108 Hashcodes may not start out this way, but internally they are 109 adjusted so that they are always positive. We assume 32-bit 110 hashcodes; adjust these constants for other hashcode sizes. 111*/ 112#define HASH_DELETED ((int32_t) 0x80000000) 113#define HASH_EMPTY ((int32_t) HASH_DELETED + 1) 114 115#define IS_EMPTY_OR_DELETED(x) ((x) < 0) 116 117/* This macro expects a UHashTok.pointer as its keypointer and 118 valuepointer parameters */ 119#define HASH_DELETE_KEY_VALUE(hash, keypointer, valuepointer) \ 120 if (hash->keyDeleter != NULL && keypointer != NULL) { \ 121 (*hash->keyDeleter)(keypointer); \ 122 } \ 123 if (hash->valueDeleter != NULL && valuepointer != NULL) { \ 124 (*hash->valueDeleter)(valuepointer); \ 125 } 126 127/* 128 * Constants for hinting whether a key or value is an integer 129 * or a pointer. If a hint bit is zero, then the associated 130 * token is assumed to be an integer. 131 */ 132#define HINT_KEY_POINTER (1) 133#define HINT_VALUE_POINTER (2) 134 135/******************************************************************** 136 * PRIVATE Implementation 137 ********************************************************************/ 138 139static UHashTok 140_uhash_setElement(UHashtable *hash, UHashElement* e, 141 int32_t hashcode, 142 UHashTok key, UHashTok value, int8_t hint) { 143 144 UHashTok oldValue = e->value; 145 if (hash->keyDeleter != NULL && e->key.pointer != NULL && 146 e->key.pointer != key.pointer) { /* Avoid double deletion */ 147 (*hash->keyDeleter)(e->key.pointer); 148 } 149 if (hash->valueDeleter != NULL) { 150 if (oldValue.pointer != NULL && 151 oldValue.pointer != value.pointer) { /* Avoid double deletion */ 152 (*hash->valueDeleter)(oldValue.pointer); 153 } 154 oldValue.pointer = NULL; 155 } 156 /* Compilers should copy the UHashTok union correctly, but even if 157 * they do, memory heap tools (e.g. BoundsChecker) can get 158 * confused when a pointer is cloaked in a union and then copied. 159 * TO ALLEVIATE THIS, we use hints (based on what API the user is 160 * calling) to copy pointers when we know the user thinks 161 * something is a pointer. */ 162 if (hint & HINT_KEY_POINTER) { 163 e->key.pointer = key.pointer; 164 } else { 165 e->key = key; 166 } 167 if (hint & HINT_VALUE_POINTER) { 168 e->value.pointer = value.pointer; 169 } else { 170 e->value = value; 171 } 172 e->hashcode = hashcode; 173 return oldValue; 174} 175 176/** 177 * Assumes that the given element is not empty or deleted. 178 */ 179static UHashTok 180_uhash_internalRemoveElement(UHashtable *hash, UHashElement* e) { 181 UHashTok empty; 182 U_ASSERT(!IS_EMPTY_OR_DELETED(e->hashcode)); 183 --hash->count; 184 empty.pointer = NULL; empty.integer = 0; 185 return _uhash_setElement(hash, e, HASH_DELETED, empty, empty, 0); 186} 187 188static void 189_uhash_internalSetResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) { 190 U_ASSERT(hash != NULL); 191 U_ASSERT(((int32_t)policy) >= 0); 192 U_ASSERT(((int32_t)policy) < 3); 193 hash->lowWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2]; 194 hash->highWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2 + 1]; 195} 196 197/** 198 * Allocate internal data array of a size determined by the given 199 * prime index. If the index is out of range it is pinned into range. 200 * If the allocation fails the status is set to 201 * U_MEMORY_ALLOCATION_ERROR and all array storage is freed. In 202 * either case the previous array pointer is overwritten. 203 * 204 * Caller must ensure primeIndex is in range 0..PRIME_LENGTH-1. 205 */ 206static void 207_uhash_allocate(UHashtable *hash, 208 int32_t primeIndex, 209 UErrorCode *status) { 210 211 UHashElement *p, *limit; 212 UHashTok emptytok; 213 214 if (U_FAILURE(*status)) return; 215 216 U_ASSERT(primeIndex >= 0 && primeIndex < PRIMES_LENGTH); 217 218 hash->primeIndex = primeIndex; 219 hash->length = PRIMES[primeIndex]; 220 221 p = hash->elements = (UHashElement*) 222 uprv_malloc(sizeof(UHashElement) * hash->length); 223 224 if (hash->elements == NULL) { 225 *status = U_MEMORY_ALLOCATION_ERROR; 226 return; 227 } 228 229 emptytok.pointer = NULL; /* Only one of these two is needed */ 230 emptytok.integer = 0; /* but we don't know which one. */ 231 232 limit = p + hash->length; 233 while (p < limit) { 234 p->key = emptytok; 235 p->value = emptytok; 236 p->hashcode = HASH_EMPTY; 237 ++p; 238 } 239 240 hash->count = 0; 241 hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio); 242 hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio); 243} 244 245static UHashtable* 246_uhash_init(UHashtable *result, 247 UHashFunction *keyHash, 248 UKeyComparator *keyComp, 249 UValueComparator *valueComp, 250 int32_t primeIndex, 251 UErrorCode *status) 252{ 253 if (U_FAILURE(*status)) return NULL; 254 U_ASSERT(keyHash != NULL); 255 U_ASSERT(keyComp != NULL); 256 257 result->keyHasher = keyHash; 258 result->keyComparator = keyComp; 259 result->valueComparator = valueComp; 260 result->keyDeleter = NULL; 261 result->valueDeleter = NULL; 262 result->allocated = FALSE; 263 _uhash_internalSetResizePolicy(result, U_GROW); 264 265 _uhash_allocate(result, primeIndex, status); 266 267 if (U_FAILURE(*status)) { 268 return NULL; 269 } 270 271 return result; 272} 273 274static UHashtable* 275_uhash_create(UHashFunction *keyHash, 276 UKeyComparator *keyComp, 277 UValueComparator *valueComp, 278 int32_t primeIndex, 279 UErrorCode *status) { 280 UHashtable *result; 281 282 if (U_FAILURE(*status)) return NULL; 283 284 result = (UHashtable*) uprv_malloc(sizeof(UHashtable)); 285 if (result == NULL) { 286 *status = U_MEMORY_ALLOCATION_ERROR; 287 return NULL; 288 } 289 290 _uhash_init(result, keyHash, keyComp, valueComp, primeIndex, status); 291 result->allocated = TRUE; 292 293 if (U_FAILURE(*status)) { 294 uprv_free(result); 295 return NULL; 296 } 297 298 return result; 299} 300 301/** 302 * Look for a key in the table, or if no such key exists, the first 303 * empty slot matching the given hashcode. Keys are compared using 304 * the keyComparator function. 305 * 306 * First find the start position, which is the hashcode modulo 307 * the length. Test it to see if it is: 308 * 309 * a. identical: First check the hash values for a quick check, 310 * then compare keys for equality using keyComparator. 311 * b. deleted 312 * c. empty 313 * 314 * Stop if it is identical or empty, otherwise continue by adding a 315 * "jump" value (moduloing by the length again to keep it within 316 * range) and retesting. For efficiency, there need enough empty 317 * values so that the searchs stop within a reasonable amount of time. 318 * This can be changed by changing the high/low water marks. 319 * 320 * In theory, this function can return NULL, if it is full (no empty 321 * or deleted slots) and if no matching key is found. In practice, we 322 * prevent this elsewhere (in uhash_put) by making sure the last slot 323 * in the table is never filled. 324 * 325 * The size of the table should be prime for this algorithm to work; 326 * otherwise we are not guaranteed that the jump value (the secondary 327 * hash) is relatively prime to the table length. 328 */ 329static UHashElement* 330_uhash_find(const UHashtable *hash, UHashTok key, 331 int32_t hashcode) { 332 333 int32_t firstDeleted = -1; /* assume invalid index */ 334 int32_t theIndex, startIndex; 335 int32_t jump = 0; /* lazy evaluate */ 336 int32_t tableHash; 337 UHashElement *elements = hash->elements; 338 339 hashcode &= 0x7FFFFFFF; /* must be positive */ 340 startIndex = theIndex = (hashcode ^ 0x4000000) % hash->length; 341 342 do { 343 tableHash = elements[theIndex].hashcode; 344 if (tableHash == hashcode) { /* quick check */ 345 if ((*hash->keyComparator)(key, elements[theIndex].key)) { 346 return &(elements[theIndex]); 347 } 348 } else if (!IS_EMPTY_OR_DELETED(tableHash)) { 349 /* We have hit a slot which contains a key-value pair, 350 * but for which the hash code does not match. Keep 351 * looking. 352 */ 353 } else if (tableHash == HASH_EMPTY) { /* empty, end o' the line */ 354 break; 355 } else if (firstDeleted < 0) { /* remember first deleted */ 356 firstDeleted = theIndex; 357 } 358 if (jump == 0) { /* lazy compute jump */ 359 /* The jump value must be relatively prime to the table 360 * length. As long as the length is prime, then any value 361 * 1..length-1 will be relatively prime to it. 362 */ 363 jump = (hashcode % (hash->length - 1)) + 1; 364 } 365 theIndex = (theIndex + jump) % hash->length; 366 } while (theIndex != startIndex); 367 368 if (firstDeleted >= 0) { 369 theIndex = firstDeleted; /* reset if had deleted slot */ 370 } else if (tableHash != HASH_EMPTY) { 371 /* We get to this point if the hashtable is full (no empty or 372 * deleted slots), and we've failed to find a match. THIS 373 * WILL NEVER HAPPEN as long as uhash_put() makes sure that 374 * count is always < length. 375 */ 376 U_ASSERT(FALSE); 377 return NULL; /* Never happens if uhash_put() behaves */ 378 } 379 return &(elements[theIndex]); 380} 381 382/** 383 * Attempt to grow or shrink the data arrays in order to make the 384 * count fit between the high and low water marks. hash_put() and 385 * hash_remove() call this method when the count exceeds the high or 386 * low water marks. This method may do nothing, if memory allocation 387 * fails, or if the count is already in range, or if the length is 388 * already at the low or high limit. In any case, upon return the 389 * arrays will be valid. 390 */ 391static void 392_uhash_rehash(UHashtable *hash, UErrorCode *status) { 393 394 UHashElement *old = hash->elements; 395 int32_t oldLength = hash->length; 396 int32_t newPrimeIndex = hash->primeIndex; 397 int32_t i; 398 399 if (hash->count > hash->highWaterMark) { 400 if (++newPrimeIndex >= PRIMES_LENGTH) { 401 return; 402 } 403 } else if (hash->count < hash->lowWaterMark) { 404 if (--newPrimeIndex < 0) { 405 return; 406 } 407 } else { 408 return; 409 } 410 411 _uhash_allocate(hash, newPrimeIndex, status); 412 413 if (U_FAILURE(*status)) { 414 hash->elements = old; 415 hash->length = oldLength; 416 return; 417 } 418 419 for (i = oldLength - 1; i >= 0; --i) { 420 if (!IS_EMPTY_OR_DELETED(old[i].hashcode)) { 421 UHashElement *e = _uhash_find(hash, old[i].key, old[i].hashcode); 422 U_ASSERT(e != NULL); 423 U_ASSERT(e->hashcode == HASH_EMPTY); 424 e->key = old[i].key; 425 e->value = old[i].value; 426 e->hashcode = old[i].hashcode; 427 ++hash->count; 428 } 429 } 430 431 uprv_free(old); 432} 433 434static UHashTok 435_uhash_remove(UHashtable *hash, 436 UHashTok key) { 437 /* First find the position of the key in the table. If the object 438 * has not been removed already, remove it. If the user wanted 439 * keys deleted, then delete it also. We have to put a special 440 * hashcode in that position that means that something has been 441 * deleted, since when we do a find, we have to continue PAST any 442 * deleted values. 443 */ 444 UHashTok result; 445 UHashElement* e = _uhash_find(hash, key, hash->keyHasher(key)); 446 U_ASSERT(e != NULL); 447 result.pointer = NULL; 448 result.integer = 0; 449 if (!IS_EMPTY_OR_DELETED(e->hashcode)) { 450 result = _uhash_internalRemoveElement(hash, e); 451 if (hash->count < hash->lowWaterMark) { 452 UErrorCode status = U_ZERO_ERROR; 453 _uhash_rehash(hash, &status); 454 } 455 } 456 return result; 457} 458 459static UHashTok 460_uhash_put(UHashtable *hash, 461 UHashTok key, 462 UHashTok value, 463 int8_t hint, 464 UErrorCode *status) { 465 466 /* Put finds the position in the table for the new value. If the 467 * key is already in the table, it is deleted, if there is a 468 * non-NULL keyDeleter. Then the key, the hash and the value are 469 * all put at the position in their respective arrays. 470 */ 471 int32_t hashcode; 472 UHashElement* e; 473 UHashTok emptytok; 474 475 if (U_FAILURE(*status)) { 476 goto err; 477 } 478 U_ASSERT(hash != NULL); 479 /* Cannot always check pointer here or iSeries sees NULL every time. */ 480 if ((hint & HINT_VALUE_POINTER) && value.pointer == NULL) { 481 /* Disallow storage of NULL values, since NULL is returned by 482 * get() to indicate an absent key. Storing NULL == removing. 483 */ 484 return _uhash_remove(hash, key); 485 } 486 if (hash->count > hash->highWaterMark) { 487 _uhash_rehash(hash, status); 488 if (U_FAILURE(*status)) { 489 goto err; 490 } 491 } 492 493 hashcode = (*hash->keyHasher)(key); 494 e = _uhash_find(hash, key, hashcode); 495 U_ASSERT(e != NULL); 496 497 if (IS_EMPTY_OR_DELETED(e->hashcode)) { 498 /* Important: We must never actually fill the table up. If we 499 * do so, then _uhash_find() will return NULL, and we'll have 500 * to check for NULL after every call to _uhash_find(). To 501 * avoid this we make sure there is always at least one empty 502 * or deleted slot in the table. This only is a problem if we 503 * are out of memory and rehash isn't working. 504 */ 505 ++hash->count; 506 if (hash->count == hash->length) { 507 /* Don't allow count to reach length */ 508 --hash->count; 509 *status = U_MEMORY_ALLOCATION_ERROR; 510 goto err; 511 } 512 } 513 514 /* We must in all cases handle storage properly. If there was an 515 * old key, then it must be deleted (if the deleter != NULL). 516 * Make hashcodes stored in table positive. 517 */ 518 return _uhash_setElement(hash, e, hashcode & 0x7FFFFFFF, key, value, hint); 519 520 err: 521 /* If the deleters are non-NULL, this method adopts its key and/or 522 * value arguments, and we must be sure to delete the key and/or 523 * value in all cases, even upon failure. 524 */ 525 HASH_DELETE_KEY_VALUE(hash, key.pointer, value.pointer); 526 emptytok.pointer = NULL; emptytok.integer = 0; 527 return emptytok; 528} 529 530 531/******************************************************************** 532 * PUBLIC API 533 ********************************************************************/ 534 535U_CAPI UHashtable* U_EXPORT2 536uhash_open(UHashFunction *keyHash, 537 UKeyComparator *keyComp, 538 UValueComparator *valueComp, 539 UErrorCode *status) { 540 541 return _uhash_create(keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status); 542} 543 544U_CAPI UHashtable* U_EXPORT2 545uhash_openSize(UHashFunction *keyHash, 546 UKeyComparator *keyComp, 547 UValueComparator *valueComp, 548 int32_t size, 549 UErrorCode *status) { 550 551 /* Find the smallest index i for which PRIMES[i] >= size. */ 552 int32_t i = 0; 553 while (i<(PRIMES_LENGTH-1) && PRIMES[i]<size) { 554 ++i; 555 } 556 557 return _uhash_create(keyHash, keyComp, valueComp, i, status); 558} 559 560U_CAPI UHashtable* U_EXPORT2 561uhash_init(UHashtable *fillinResult, 562 UHashFunction *keyHash, 563 UKeyComparator *keyComp, 564 UValueComparator *valueComp, 565 UErrorCode *status) { 566 567 return _uhash_init(fillinResult, keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status); 568} 569 570U_CAPI void U_EXPORT2 571uhash_close(UHashtable *hash) { 572 if (hash == NULL) { 573 return; 574 } 575 if (hash->elements != NULL) { 576 if (hash->keyDeleter != NULL || hash->valueDeleter != NULL) { 577 int32_t pos=-1; 578 UHashElement *e; 579 while ((e = (UHashElement*) uhash_nextElement(hash, &pos)) != NULL) { 580 HASH_DELETE_KEY_VALUE(hash, e->key.pointer, e->value.pointer); 581 } 582 } 583 uprv_free(hash->elements); 584 hash->elements = NULL; 585 } 586 if (hash->allocated) { 587 uprv_free(hash); 588 } 589} 590 591U_CAPI UHashFunction *U_EXPORT2 592uhash_setKeyHasher(UHashtable *hash, UHashFunction *fn) { 593 UHashFunction *result = hash->keyHasher; 594 hash->keyHasher = fn; 595 return result; 596} 597 598U_CAPI UKeyComparator *U_EXPORT2 599uhash_setKeyComparator(UHashtable *hash, UKeyComparator *fn) { 600 UKeyComparator *result = hash->keyComparator; 601 hash->keyComparator = fn; 602 return result; 603} 604U_CAPI UValueComparator *U_EXPORT2 605uhash_setValueComparator(UHashtable *hash, UValueComparator *fn){ 606 UValueComparator *result = hash->valueComparator; 607 hash->valueComparator = fn; 608 return result; 609} 610 611U_CAPI UObjectDeleter *U_EXPORT2 612uhash_setKeyDeleter(UHashtable *hash, UObjectDeleter *fn) { 613 UObjectDeleter *result = hash->keyDeleter; 614 hash->keyDeleter = fn; 615 return result; 616} 617 618U_CAPI UObjectDeleter *U_EXPORT2 619uhash_setValueDeleter(UHashtable *hash, UObjectDeleter *fn) { 620 UObjectDeleter *result = hash->valueDeleter; 621 hash->valueDeleter = fn; 622 return result; 623} 624 625U_CAPI void U_EXPORT2 626uhash_setResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) { 627 UErrorCode status = U_ZERO_ERROR; 628 _uhash_internalSetResizePolicy(hash, policy); 629 hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio); 630 hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio); 631 _uhash_rehash(hash, &status); 632} 633 634U_CAPI int32_t U_EXPORT2 635uhash_count(const UHashtable *hash) { 636 return hash->count; 637} 638 639U_CAPI void* U_EXPORT2 640uhash_get(const UHashtable *hash, 641 const void* key) { 642 UHashTok keyholder; 643 keyholder.pointer = (void*) key; 644 return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer; 645} 646 647U_CAPI void* U_EXPORT2 648uhash_iget(const UHashtable *hash, 649 int32_t key) { 650 UHashTok keyholder; 651 keyholder.integer = key; 652 return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer; 653} 654 655U_CAPI int32_t U_EXPORT2 656uhash_geti(const UHashtable *hash, 657 const void* key) { 658 UHashTok keyholder; 659 keyholder.pointer = (void*) key; 660 return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer; 661} 662 663U_CAPI int32_t U_EXPORT2 664uhash_igeti(const UHashtable *hash, 665 int32_t key) { 666 UHashTok keyholder; 667 keyholder.integer = key; 668 return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer; 669} 670 671U_CAPI void* U_EXPORT2 672uhash_put(UHashtable *hash, 673 void* key, 674 void* value, 675 UErrorCode *status) { 676 UHashTok keyholder, valueholder; 677 keyholder.pointer = key; 678 valueholder.pointer = value; 679 return _uhash_put(hash, keyholder, valueholder, 680 HINT_KEY_POINTER | HINT_VALUE_POINTER, 681 status).pointer; 682} 683 684U_CAPI void* U_EXPORT2 685uhash_iput(UHashtable *hash, 686 int32_t key, 687 void* value, 688 UErrorCode *status) { 689 UHashTok keyholder, valueholder; 690 keyholder.integer = key; 691 valueholder.pointer = value; 692 return _uhash_put(hash, keyholder, valueholder, 693 HINT_VALUE_POINTER, 694 status).pointer; 695} 696 697U_CAPI int32_t U_EXPORT2 698uhash_puti(UHashtable *hash, 699 void* key, 700 int32_t value, 701 UErrorCode *status) { 702 UHashTok keyholder, valueholder; 703 keyholder.pointer = key; 704 valueholder.integer = value; 705 return _uhash_put(hash, keyholder, valueholder, 706 HINT_KEY_POINTER, 707 status).integer; 708} 709 710 711U_CAPI int32_t U_EXPORT2 712uhash_iputi(UHashtable *hash, 713 int32_t key, 714 int32_t value, 715 UErrorCode *status) { 716 UHashTok keyholder, valueholder; 717 keyholder.integer = key; 718 valueholder.integer = value; 719 return _uhash_put(hash, keyholder, valueholder, 720 0, /* neither is a ptr */ 721 status).integer; 722} 723 724U_CAPI void* U_EXPORT2 725uhash_remove(UHashtable *hash, 726 const void* key) { 727 UHashTok keyholder; 728 keyholder.pointer = (void*) key; 729 return _uhash_remove(hash, keyholder).pointer; 730} 731 732U_CAPI void* U_EXPORT2 733uhash_iremove(UHashtable *hash, 734 int32_t key) { 735 UHashTok keyholder; 736 keyholder.integer = key; 737 return _uhash_remove(hash, keyholder).pointer; 738} 739 740U_CAPI int32_t U_EXPORT2 741uhash_removei(UHashtable *hash, 742 const void* key) { 743 UHashTok keyholder; 744 keyholder.pointer = (void*) key; 745 return _uhash_remove(hash, keyholder).integer; 746} 747 748U_CAPI int32_t U_EXPORT2 749uhash_iremovei(UHashtable *hash, 750 int32_t key) { 751 UHashTok keyholder; 752 keyholder.integer = key; 753 return _uhash_remove(hash, keyholder).integer; 754} 755 756U_CAPI void U_EXPORT2 757uhash_removeAll(UHashtable *hash) { 758 int32_t pos = -1; 759 const UHashElement *e; 760 U_ASSERT(hash != NULL); 761 if (hash->count != 0) { 762 while ((e = uhash_nextElement(hash, &pos)) != NULL) { 763 uhash_removeElement(hash, e); 764 } 765 } 766 U_ASSERT(hash->count == 0); 767} 768 769U_CAPI const UHashElement* U_EXPORT2 770uhash_find(const UHashtable *hash, const void* key) { 771 UHashTok keyholder; 772 const UHashElement *e; 773 keyholder.pointer = (void*) key; 774 e = _uhash_find(hash, keyholder, hash->keyHasher(keyholder)); 775 return IS_EMPTY_OR_DELETED(e->hashcode) ? NULL : e; 776} 777 778U_CAPI const UHashElement* U_EXPORT2 779uhash_nextElement(const UHashtable *hash, int32_t *pos) { 780 /* Walk through the array until we find an element that is not 781 * EMPTY and not DELETED. 782 */ 783 int32_t i; 784 U_ASSERT(hash != NULL); 785 for (i = *pos + 1; i < hash->length; ++i) { 786 if (!IS_EMPTY_OR_DELETED(hash->elements[i].hashcode)) { 787 *pos = i; 788 return &(hash->elements[i]); 789 } 790 } 791 792 /* No more elements */ 793 return NULL; 794} 795 796U_CAPI void* U_EXPORT2 797uhash_removeElement(UHashtable *hash, const UHashElement* e) { 798 U_ASSERT(hash != NULL); 799 U_ASSERT(e != NULL); 800 if (!IS_EMPTY_OR_DELETED(e->hashcode)) { 801 UHashElement *nce = (UHashElement *)e; 802 return _uhash_internalRemoveElement(hash, nce).pointer; 803 } 804 return NULL; 805} 806 807/******************************************************************** 808 * UHashTok convenience 809 ********************************************************************/ 810 811/** 812 * Return a UHashTok for an integer. 813 */ 814/*U_CAPI UHashTok U_EXPORT2 815uhash_toki(int32_t i) { 816 UHashTok tok; 817 tok.integer = i; 818 return tok; 819}*/ 820 821/** 822 * Return a UHashTok for a pointer. 823 */ 824/*U_CAPI UHashTok U_EXPORT2 825uhash_tokp(void* p) { 826 UHashTok tok; 827 tok.pointer = p; 828 return tok; 829}*/ 830 831/******************************************************************** 832 * PUBLIC Key Hash Functions 833 ********************************************************************/ 834 835/* 836 Compute the hash by iterating sparsely over about 32 (up to 63) 837 characters spaced evenly through the string. For each character, 838 multiply the previous hash value by a prime number and add the new 839 character in, like a linear congruential random number generator, 840 producing a pseudorandom deterministic value well distributed over 841 the output range. [LIU] 842*/ 843 844#define STRING_HASH(TYPE, STR, STRLEN, DEREF) \ 845 int32_t hash = 0; \ 846 const TYPE *p = (const TYPE*) STR; \ 847 if (p != NULL) { \ 848 int32_t len = (int32_t)(STRLEN); \ 849 int32_t inc = ((len - 32) / 32) + 1; \ 850 const TYPE *limit = p + len; \ 851 while (p<limit) { \ 852 hash = (hash * 37) + DEREF; \ 853 p += inc; \ 854 } \ 855 } \ 856 return hash 857 858U_CAPI int32_t U_EXPORT2 859uhash_hashUChars(const UHashTok key) { 860 STRING_HASH(UChar, key.pointer, u_strlen(p), *p); 861} 862 863/* Used by UnicodeString to compute its hashcode - Not public API. */ 864U_CAPI int32_t U_EXPORT2 865uhash_hashUCharsN(const UChar *str, int32_t length) { 866 STRING_HASH(UChar, str, length, *p); 867} 868 869U_CAPI int32_t U_EXPORT2 870uhash_hashChars(const UHashTok key) { 871 STRING_HASH(uint8_t, key.pointer, uprv_strlen((char*)p), *p); 872} 873 874U_CAPI int32_t U_EXPORT2 875uhash_hashIChars(const UHashTok key) { 876 STRING_HASH(uint8_t, key.pointer, uprv_strlen((char*)p), uprv_tolower(*p)); 877} 878 879U_CAPI UBool U_EXPORT2 880uhash_equals(const UHashtable* hash1, const UHashtable* hash2){ 881 882 int32_t count1, count2, pos, i; 883 884 if(hash1==hash2){ 885 return TRUE; 886 } 887 888 /* 889 * Make sure that we are comparing 2 valid hashes of the same type 890 * with valid comparison functions. 891 * Without valid comparison functions, a binary comparison 892 * of the hash values will yield random results on machines 893 * with 64-bit pointers and 32-bit integer hashes. 894 * A valueComparator is normally optional. 895 */ 896 if (hash1==NULL || hash2==NULL || 897 hash1->keyComparator != hash2->keyComparator || 898 hash1->valueComparator != hash2->valueComparator || 899 hash1->valueComparator == NULL) 900 { 901 /* 902 Normally we would return an error here about incompatible hash tables, 903 but we return FALSE instead. 904 */ 905 return FALSE; 906 } 907 908 count1 = uhash_count(hash1); 909 count2 = uhash_count(hash2); 910 if(count1!=count2){ 911 return FALSE; 912 } 913 914 pos=-1; 915 for(i=0; i<count1; i++){ 916 const UHashElement* elem1 = uhash_nextElement(hash1, &pos); 917 const UHashTok key1 = elem1->key; 918 const UHashTok val1 = elem1->value; 919 /* here the keys are not compared, instead the key form hash1 is used to fetch 920 * value from hash2. If the hashes are equal then then both hashes should 921 * contain equal values for the same key! 922 */ 923 const UHashElement* elem2 = _uhash_find(hash2, key1, hash2->keyHasher(key1)); 924 const UHashTok val2 = elem2->value; 925 if(hash1->valueComparator(val1, val2)==FALSE){ 926 return FALSE; 927 } 928 } 929 return TRUE; 930} 931 932/******************************************************************** 933 * PUBLIC Comparator Functions 934 ********************************************************************/ 935 936U_CAPI UBool U_EXPORT2 937uhash_compareUChars(const UHashTok key1, const UHashTok key2) { 938 const UChar *p1 = (const UChar*) key1.pointer; 939 const UChar *p2 = (const UChar*) key2.pointer; 940 if (p1 == p2) { 941 return TRUE; 942 } 943 if (p1 == NULL || p2 == NULL) { 944 return FALSE; 945 } 946 while (*p1 != 0 && *p1 == *p2) { 947 ++p1; 948 ++p2; 949 } 950 return (UBool)(*p1 == *p2); 951} 952 953U_CAPI UBool U_EXPORT2 954uhash_compareChars(const UHashTok key1, const UHashTok key2) { 955 const char *p1 = (const char*) key1.pointer; 956 const char *p2 = (const char*) key2.pointer; 957 if (p1 == p2) { 958 return TRUE; 959 } 960 if (p1 == NULL || p2 == NULL) { 961 return FALSE; 962 } 963 while (*p1 != 0 && *p1 == *p2) { 964 ++p1; 965 ++p2; 966 } 967 return (UBool)(*p1 == *p2); 968} 969 970U_CAPI UBool U_EXPORT2 971uhash_compareIChars(const UHashTok key1, const UHashTok key2) { 972 const char *p1 = (const char*) key1.pointer; 973 const char *p2 = (const char*) key2.pointer; 974 if (p1 == p2) { 975 return TRUE; 976 } 977 if (p1 == NULL || p2 == NULL) { 978 return FALSE; 979 } 980 while (*p1 != 0 && uprv_tolower(*p1) == uprv_tolower(*p2)) { 981 ++p1; 982 ++p2; 983 } 984 return (UBool)(*p1 == *p2); 985} 986 987/******************************************************************** 988 * PUBLIC int32_t Support Functions 989 ********************************************************************/ 990 991U_CAPI int32_t U_EXPORT2 992uhash_hashLong(const UHashTok key) { 993 return key.integer; 994} 995 996U_CAPI UBool U_EXPORT2 997uhash_compareLong(const UHashTok key1, const UHashTok key2) { 998 return (UBool)(key1.integer == key2.integer); 999} 1000 1001/******************************************************************** 1002 * PUBLIC Deleter Functions 1003 ********************************************************************/ 1004 1005U_CAPI void U_EXPORT2 1006uhash_freeBlock(void *obj) { 1007 uprv_free(obj); 1008} 1009 1010