1/*
2 * Copyright 2011 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#include "GrAAHairLinePathRenderer.h"
9
10#include "GrContext.h"
11#include "GrDrawState.h"
12#include "GrDrawTargetCaps.h"
13#include "GrEffect.h"
14#include "GrGpu.h"
15#include "GrIndexBuffer.h"
16#include "GrPathUtils.h"
17#include "GrTBackendEffectFactory.h"
18#include "SkGeometry.h"
19#include "SkStroke.h"
20#include "SkTemplates.h"
21
22#include "effects/GrBezierEffect.h"
23
24namespace {
25// quadratics are rendered as 5-sided polys in order to bound the
26// AA stroke around the center-curve. See comments in push_quad_index_buffer and
27// bloat_quad. Quadratics and conics share an index buffer
28static const int kVertsPerQuad = 5;
29static const int kIdxsPerQuad = 9;
30
31// lines are rendered as:
32//      *______________*
33//      |\ -_______   /|
34//      | \        \ / |
35//      |  *--------*  |
36//      | /  ______/ \ |
37//      */_-__________\*
38// For: 6 vertices and 18 indices (for 6 triangles)
39static const int kVertsPerLineSeg = 6;
40static const int kIdxsPerLineSeg = 18;
41
42static const int kNumQuadsInIdxBuffer = 256;
43static const size_t kQuadIdxSBufize = kIdxsPerQuad *
44                                      sizeof(uint16_t) *
45                                      kNumQuadsInIdxBuffer;
46
47static const int kNumLineSegsInIdxBuffer = 256;
48static const size_t kLineSegIdxSBufize = kIdxsPerLineSeg *
49                                         sizeof(uint16_t) *
50                                         kNumLineSegsInIdxBuffer;
51
52static bool push_quad_index_data(GrIndexBuffer* qIdxBuffer) {
53    uint16_t* data = (uint16_t*) qIdxBuffer->lock();
54    bool tempData = NULL == data;
55    if (tempData) {
56        data = SkNEW_ARRAY(uint16_t, kNumQuadsInIdxBuffer * kIdxsPerQuad);
57    }
58    for (int i = 0; i < kNumQuadsInIdxBuffer; ++i) {
59
60        // Each quadratic is rendered as a five sided polygon. This poly bounds
61        // the quadratic's bounding triangle but has been expanded so that the
62        // 1-pixel wide area around the curve is inside the poly.
63        // If a,b,c are the original control points then the poly a0,b0,c0,c1,a1
64        // that is rendered would look like this:
65        //              b0
66        //              b
67        //
68        //     a0              c0
69        //      a            c
70        //       a1       c1
71        // Each is drawn as three triangles specified by these 9 indices:
72        int baseIdx = i * kIdxsPerQuad;
73        uint16_t baseVert = (uint16_t)(i * kVertsPerQuad);
74        data[0 + baseIdx] = baseVert + 0; // a0
75        data[1 + baseIdx] = baseVert + 1; // a1
76        data[2 + baseIdx] = baseVert + 2; // b0
77        data[3 + baseIdx] = baseVert + 2; // b0
78        data[4 + baseIdx] = baseVert + 4; // c1
79        data[5 + baseIdx] = baseVert + 3; // c0
80        data[6 + baseIdx] = baseVert + 1; // a1
81        data[7 + baseIdx] = baseVert + 4; // c1
82        data[8 + baseIdx] = baseVert + 2; // b0
83    }
84    if (tempData) {
85        bool ret = qIdxBuffer->updateData(data, kQuadIdxSBufize);
86        delete[] data;
87        return ret;
88    } else {
89        qIdxBuffer->unlock();
90        return true;
91    }
92}
93
94static bool push_line_index_data(GrIndexBuffer* lIdxBuffer) {
95    uint16_t* data = (uint16_t*) lIdxBuffer->lock();
96    bool tempData = NULL == data;
97    if (tempData) {
98        data = SkNEW_ARRAY(uint16_t, kNumLineSegsInIdxBuffer * kIdxsPerLineSeg);
99    }
100    for (int i = 0; i < kNumLineSegsInIdxBuffer; ++i) {
101        // Each line segment is rendered as two quads and two triangles.
102        // p0 and p1 have alpha = 1 while all other points have alpha = 0.
103        // The four external points are offset 1 pixel perpendicular to the
104        // line and half a pixel parallel to the line.
105        //
106        // p4                  p5
107        //      p0         p1
108        // p2                  p3
109        //
110        // Each is drawn as six triangles specified by these 18 indices:
111        int baseIdx = i * kIdxsPerLineSeg;
112        uint16_t baseVert = (uint16_t)(i * kVertsPerLineSeg);
113        data[0 + baseIdx] = baseVert + 0;
114        data[1 + baseIdx] = baseVert + 1;
115        data[2 + baseIdx] = baseVert + 3;
116
117        data[3 + baseIdx] = baseVert + 0;
118        data[4 + baseIdx] = baseVert + 3;
119        data[5 + baseIdx] = baseVert + 2;
120
121        data[6 + baseIdx] = baseVert + 0;
122        data[7 + baseIdx] = baseVert + 4;
123        data[8 + baseIdx] = baseVert + 5;
124
125        data[9 + baseIdx] = baseVert + 0;
126        data[10+ baseIdx] = baseVert + 5;
127        data[11+ baseIdx] = baseVert + 1;
128
129        data[12 + baseIdx] = baseVert + 0;
130        data[13 + baseIdx] = baseVert + 2;
131        data[14 + baseIdx] = baseVert + 4;
132
133        data[15 + baseIdx] = baseVert + 1;
134        data[16 + baseIdx] = baseVert + 5;
135        data[17 + baseIdx] = baseVert + 3;
136    }
137    if (tempData) {
138        bool ret = lIdxBuffer->updateData(data, kLineSegIdxSBufize);
139        delete[] data;
140        return ret;
141    } else {
142        lIdxBuffer->unlock();
143        return true;
144    }
145}
146}
147
148GrPathRenderer* GrAAHairLinePathRenderer::Create(GrContext* context) {
149    GrGpu* gpu = context->getGpu();
150    GrIndexBuffer* qIdxBuf = gpu->createIndexBuffer(kQuadIdxSBufize, false);
151    SkAutoTUnref<GrIndexBuffer> qIdxBuffer(qIdxBuf);
152    if (NULL == qIdxBuf || !push_quad_index_data(qIdxBuf)) {
153        return NULL;
154    }
155    GrIndexBuffer* lIdxBuf = gpu->createIndexBuffer(kLineSegIdxSBufize, false);
156    SkAutoTUnref<GrIndexBuffer> lIdxBuffer(lIdxBuf);
157    if (NULL == lIdxBuf || !push_line_index_data(lIdxBuf)) {
158        return NULL;
159    }
160    return SkNEW_ARGS(GrAAHairLinePathRenderer,
161                      (context, lIdxBuf, qIdxBuf));
162}
163
164GrAAHairLinePathRenderer::GrAAHairLinePathRenderer(
165                                        const GrContext* context,
166                                        const GrIndexBuffer* linesIndexBuffer,
167                                        const GrIndexBuffer* quadsIndexBuffer) {
168    fLinesIndexBuffer = linesIndexBuffer;
169    linesIndexBuffer->ref();
170    fQuadsIndexBuffer = quadsIndexBuffer;
171    quadsIndexBuffer->ref();
172}
173
174GrAAHairLinePathRenderer::~GrAAHairLinePathRenderer() {
175    fLinesIndexBuffer->unref();
176    fQuadsIndexBuffer->unref();
177}
178
179namespace {
180
181#define PREALLOC_PTARRAY(N) SkSTArray<(N),SkPoint, true>
182
183// Takes 178th time of logf on Z600 / VC2010
184int get_float_exp(float x) {
185    GR_STATIC_ASSERT(sizeof(int) == sizeof(float));
186#ifdef SK_DEBUG
187    static bool tested;
188    if (!tested) {
189        tested = true;
190        SkASSERT(get_float_exp(0.25f) == -2);
191        SkASSERT(get_float_exp(0.3f) == -2);
192        SkASSERT(get_float_exp(0.5f) == -1);
193        SkASSERT(get_float_exp(1.f) == 0);
194        SkASSERT(get_float_exp(2.f) == 1);
195        SkASSERT(get_float_exp(2.5f) == 1);
196        SkASSERT(get_float_exp(8.f) == 3);
197        SkASSERT(get_float_exp(100.f) == 6);
198        SkASSERT(get_float_exp(1000.f) == 9);
199        SkASSERT(get_float_exp(1024.f) == 10);
200        SkASSERT(get_float_exp(3000000.f) == 21);
201    }
202#endif
203    const int* iptr = (const int*)&x;
204    return (((*iptr) & 0x7f800000) >> 23) - 127;
205}
206
207// Uses the max curvature function for quads to estimate
208// where to chop the conic. If the max curvature is not
209// found along the curve segment it will return 1 and
210// dst[0] is the original conic. If it returns 2 the dst[0]
211// and dst[1] are the two new conics.
212int split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) {
213    SkScalar t = SkFindQuadMaxCurvature(src);
214    if (t == 0) {
215        if (dst) {
216            dst[0].set(src, weight);
217        }
218        return 1;
219    } else {
220        if (dst) {
221            SkConic conic;
222            conic.set(src, weight);
223            conic.chopAt(t, dst);
224        }
225        return 2;
226    }
227}
228
229// Calls split_conic on the entire conic and then once more on each subsection.
230// Most cases will result in either 1 conic (chop point is not within t range)
231// or 3 points (split once and then one subsection is split again).
232int chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weight) {
233    SkConic dstTemp[2];
234    int conicCnt = split_conic(src, dstTemp, weight);
235    if (2 == conicCnt) {
236        int conicCnt2 = split_conic(dstTemp[0].fPts, dst, dstTemp[0].fW);
237        conicCnt = conicCnt2 + split_conic(dstTemp[1].fPts, &dst[conicCnt2], dstTemp[1].fW);
238    } else {
239        dst[0] = dstTemp[0];
240    }
241    return conicCnt;
242}
243
244// returns 0 if quad/conic is degen or close to it
245// in this case approx the path with lines
246// otherwise returns 1
247int is_degen_quad_or_conic(const SkPoint p[3]) {
248    static const SkScalar gDegenerateToLineTol = SK_Scalar1;
249    static const SkScalar gDegenerateToLineTolSqd =
250        SkScalarMul(gDegenerateToLineTol, gDegenerateToLineTol);
251
252    if (p[0].distanceToSqd(p[1]) < gDegenerateToLineTolSqd ||
253        p[1].distanceToSqd(p[2]) < gDegenerateToLineTolSqd) {
254        return 1;
255    }
256
257    SkScalar dsqd = p[1].distanceToLineBetweenSqd(p[0], p[2]);
258    if (dsqd < gDegenerateToLineTolSqd) {
259        return 1;
260    }
261
262    if (p[2].distanceToLineBetweenSqd(p[1], p[0]) < gDegenerateToLineTolSqd) {
263        return 1;
264    }
265    return 0;
266}
267
268// we subdivide the quads to avoid huge overfill
269// if it returns -1 then should be drawn as lines
270int num_quad_subdivs(const SkPoint p[3]) {
271    static const SkScalar gDegenerateToLineTol = SK_Scalar1;
272    static const SkScalar gDegenerateToLineTolSqd =
273        SkScalarMul(gDegenerateToLineTol, gDegenerateToLineTol);
274
275    if (p[0].distanceToSqd(p[1]) < gDegenerateToLineTolSqd ||
276        p[1].distanceToSqd(p[2]) < gDegenerateToLineTolSqd) {
277        return -1;
278    }
279
280    SkScalar dsqd = p[1].distanceToLineBetweenSqd(p[0], p[2]);
281    if (dsqd < gDegenerateToLineTolSqd) {
282        return -1;
283    }
284
285    if (p[2].distanceToLineBetweenSqd(p[1], p[0]) < gDegenerateToLineTolSqd) {
286        return -1;
287    }
288
289    // tolerance of triangle height in pixels
290    // tuned on windows  Quadro FX 380 / Z600
291    // trade off of fill vs cpu time on verts
292    // maybe different when do this using gpu (geo or tess shaders)
293    static const SkScalar gSubdivTol = 175 * SK_Scalar1;
294
295    if (dsqd <= SkScalarMul(gSubdivTol, gSubdivTol)) {
296        return 0;
297    } else {
298        static const int kMaxSub = 4;
299        // subdividing the quad reduces d by 4. so we want x = log4(d/tol)
300        // = log4(d*d/tol*tol)/2
301        // = log2(d*d/tol*tol)
302
303#ifdef SK_SCALAR_IS_FLOAT
304        // +1 since we're ignoring the mantissa contribution.
305        int log = get_float_exp(dsqd/(gSubdivTol*gSubdivTol)) + 1;
306        log = GrMin(GrMax(0, log), kMaxSub);
307        return log;
308#else
309        SkScalar log = SkScalarLog(
310                          SkScalarDiv(dsqd,
311                                      SkScalarMul(gSubdivTol, gSubdivTol)));
312        static const SkScalar conv = SkScalarInvert(SkScalarLog(2));
313        log = SkScalarMul(log, conv);
314        return  GrMin(GrMax(0, SkScalarCeilToInt(log)),kMaxSub);
315#endif
316    }
317}
318
319/**
320 * Generates the lines and quads to be rendered. Lines are always recorded in
321 * device space. We will do a device space bloat to account for the 1pixel
322 * thickness.
323 * Quads are recorded in device space unless m contains
324 * perspective, then in they are in src space. We do this because we will
325 * subdivide large quads to reduce over-fill. This subdivision has to be
326 * performed before applying the perspective matrix.
327 */
328int generate_lines_and_quads(const SkPath& path,
329                             const SkMatrix& m,
330                             const SkIRect& devClipBounds,
331                             GrAAHairLinePathRenderer::PtArray* lines,
332                             GrAAHairLinePathRenderer::PtArray* quads,
333                             GrAAHairLinePathRenderer::PtArray* conics,
334                             GrAAHairLinePathRenderer::IntArray* quadSubdivCnts,
335                             GrAAHairLinePathRenderer::FloatArray* conicWeights) {
336    SkPath::Iter iter(path, false);
337
338    int totalQuadCount = 0;
339    SkRect bounds;
340    SkIRect ibounds;
341
342    bool persp = m.hasPerspective();
343
344    for (;;) {
345        GrPoint pathPts[4];
346        GrPoint devPts[4];
347        SkPath::Verb verb = iter.next(pathPts);
348        switch (verb) {
349            case SkPath::kConic_Verb: {
350                SkConic dst[4];
351                // We chop the conics to create tighter clipping to hide error
352                // that appears near max curvature of very thin conics. Thin
353                // hyperbolas with high weight still show error.
354                int conicCnt = chop_conic(pathPts, dst, iter.conicWeight());
355                for (int i = 0; i < conicCnt; ++i) {
356                    SkPoint* chopPnts = dst[i].fPts;
357                    m.mapPoints(devPts, chopPnts, 3);
358                    bounds.setBounds(devPts, 3);
359                    bounds.outset(SK_Scalar1, SK_Scalar1);
360                    bounds.roundOut(&ibounds);
361                    if (SkIRect::Intersects(devClipBounds, ibounds)) {
362                        if (is_degen_quad_or_conic(devPts)) {
363                            SkPoint* pts = lines->push_back_n(4);
364                            pts[0] = devPts[0];
365                            pts[1] = devPts[1];
366                            pts[2] = devPts[1];
367                            pts[3] = devPts[2];
368                        } else {
369                            // when in perspective keep conics in src space
370                            SkPoint* cPts = persp ? chopPnts : devPts;
371                            SkPoint* pts = conics->push_back_n(3);
372                            pts[0] = cPts[0];
373                            pts[1] = cPts[1];
374                            pts[2] = cPts[2];
375                            conicWeights->push_back() = dst[i].fW;
376                        }
377                    }
378                }
379                break;
380            }
381            case SkPath::kMove_Verb:
382                break;
383            case SkPath::kLine_Verb:
384                m.mapPoints(devPts, pathPts, 2);
385                bounds.setBounds(devPts, 2);
386                bounds.outset(SK_Scalar1, SK_Scalar1);
387                bounds.roundOut(&ibounds);
388                if (SkIRect::Intersects(devClipBounds, ibounds)) {
389                    SkPoint* pts = lines->push_back_n(2);
390                    pts[0] = devPts[0];
391                    pts[1] = devPts[1];
392                }
393                break;
394            case SkPath::kQuad_Verb: {
395                SkPoint choppedPts[5];
396                // Chopping the quad helps when the quad is either degenerate or nearly degenerate.
397                // When it is degenerate it allows the approximation with lines to work since the
398                // chop point (if there is one) will be at the parabola's vertex. In the nearly
399                // degenerate the QuadUVMatrix computed for the points is almost singular which
400                // can cause rendering artifacts.
401                int n = SkChopQuadAtMaxCurvature(pathPts, choppedPts);
402                for (int i = 0; i < n; ++i) {
403                    SkPoint* quadPts = choppedPts + i * 2;
404                    m.mapPoints(devPts, quadPts, 3);
405                    bounds.setBounds(devPts, 3);
406                    bounds.outset(SK_Scalar1, SK_Scalar1);
407                    bounds.roundOut(&ibounds);
408
409                    if (SkIRect::Intersects(devClipBounds, ibounds)) {
410                        int subdiv = num_quad_subdivs(devPts);
411                        SkASSERT(subdiv >= -1);
412                        if (-1 == subdiv) {
413                            SkPoint* pts = lines->push_back_n(4);
414                            pts[0] = devPts[0];
415                            pts[1] = devPts[1];
416                            pts[2] = devPts[1];
417                            pts[3] = devPts[2];
418                        } else {
419                            // when in perspective keep quads in src space
420                            SkPoint* qPts = persp ? quadPts : devPts;
421                            SkPoint* pts = quads->push_back_n(3);
422                            pts[0] = qPts[0];
423                            pts[1] = qPts[1];
424                            pts[2] = qPts[2];
425                            quadSubdivCnts->push_back() = subdiv;
426                            totalQuadCount += 1 << subdiv;
427                        }
428                    }
429                }
430                break;
431            }
432            case SkPath::kCubic_Verb:
433                m.mapPoints(devPts, pathPts, 4);
434                bounds.setBounds(devPts, 4);
435                bounds.outset(SK_Scalar1, SK_Scalar1);
436                bounds.roundOut(&ibounds);
437                if (SkIRect::Intersects(devClipBounds, ibounds)) {
438                    PREALLOC_PTARRAY(32) q;
439                    // we don't need a direction if we aren't constraining the subdivision
440                    static const SkPath::Direction kDummyDir = SkPath::kCCW_Direction;
441                    // We convert cubics to quadratics (for now).
442                    // In perspective have to do conversion in src space.
443                    if (persp) {
444                        SkScalar tolScale =
445                            GrPathUtils::scaleToleranceToSrc(SK_Scalar1, m,
446                                                             path.getBounds());
447                        GrPathUtils::convertCubicToQuads(pathPts, tolScale, false, kDummyDir, &q);
448                    } else {
449                        GrPathUtils::convertCubicToQuads(devPts, SK_Scalar1, false, kDummyDir, &q);
450                    }
451                    for (int i = 0; i < q.count(); i += 3) {
452                        SkPoint* qInDevSpace;
453                        // bounds has to be calculated in device space, but q is
454                        // in src space when there is perspective.
455                        if (persp) {
456                            m.mapPoints(devPts, &q[i], 3);
457                            bounds.setBounds(devPts, 3);
458                            qInDevSpace = devPts;
459                        } else {
460                            bounds.setBounds(&q[i], 3);
461                            qInDevSpace = &q[i];
462                        }
463                        bounds.outset(SK_Scalar1, SK_Scalar1);
464                        bounds.roundOut(&ibounds);
465                        if (SkIRect::Intersects(devClipBounds, ibounds)) {
466                            int subdiv = num_quad_subdivs(qInDevSpace);
467                            SkASSERT(subdiv >= -1);
468                            if (-1 == subdiv) {
469                                SkPoint* pts = lines->push_back_n(4);
470                                // lines should always be in device coords
471                                pts[0] = qInDevSpace[0];
472                                pts[1] = qInDevSpace[1];
473                                pts[2] = qInDevSpace[1];
474                                pts[3] = qInDevSpace[2];
475                            } else {
476                                SkPoint* pts = quads->push_back_n(3);
477                                // q is already in src space when there is no
478                                // perspective and dev coords otherwise.
479                                pts[0] = q[0 + i];
480                                pts[1] = q[1 + i];
481                                pts[2] = q[2 + i];
482                                quadSubdivCnts->push_back() = subdiv;
483                                totalQuadCount += 1 << subdiv;
484                            }
485                        }
486                    }
487                }
488                break;
489            case SkPath::kClose_Verb:
490                break;
491            case SkPath::kDone_Verb:
492                return totalQuadCount;
493        }
494    }
495}
496
497struct LineVertex {
498    GrPoint fPos;
499    GrColor fCoverage;
500};
501
502struct BezierVertex {
503    GrPoint fPos;
504    union {
505        struct {
506            SkScalar fK;
507            SkScalar fL;
508            SkScalar fM;
509        } fConic;
510        GrVec   fQuadCoord;
511        struct {
512            SkScalar fBogus[4];
513        };
514    };
515};
516
517GR_STATIC_ASSERT(sizeof(BezierVertex) == 3 * sizeof(GrPoint));
518
519void intersect_lines(const SkPoint& ptA, const SkVector& normA,
520                     const SkPoint& ptB, const SkVector& normB,
521                     SkPoint* result) {
522
523    SkScalar lineAW = -normA.dot(ptA);
524    SkScalar lineBW = -normB.dot(ptB);
525
526    SkScalar wInv = SkScalarMul(normA.fX, normB.fY) -
527        SkScalarMul(normA.fY, normB.fX);
528    wInv = SkScalarInvert(wInv);
529
530    result->fX = SkScalarMul(normA.fY, lineBW) - SkScalarMul(lineAW, normB.fY);
531    result->fX = SkScalarMul(result->fX, wInv);
532
533    result->fY = SkScalarMul(lineAW, normB.fX) - SkScalarMul(normA.fX, lineBW);
534    result->fY = SkScalarMul(result->fY, wInv);
535}
536
537void set_uv_quad(const SkPoint qpts[3], BezierVertex verts[kVertsPerQuad]) {
538    // this should be in the src space, not dev coords, when we have perspective
539    GrPathUtils::QuadUVMatrix DevToUV(qpts);
540    DevToUV.apply<kVertsPerQuad, sizeof(BezierVertex), sizeof(GrPoint)>(verts);
541}
542
543void bloat_quad(const SkPoint qpts[3], const SkMatrix* toDevice,
544                const SkMatrix* toSrc, BezierVertex verts[kVertsPerQuad],
545                SkRect* devBounds) {
546    SkASSERT(!toDevice == !toSrc);
547    // original quad is specified by tri a,b,c
548    SkPoint a = qpts[0];
549    SkPoint b = qpts[1];
550    SkPoint c = qpts[2];
551
552    if (toDevice) {
553        toDevice->mapPoints(&a, 1);
554        toDevice->mapPoints(&b, 1);
555        toDevice->mapPoints(&c, 1);
556    }
557    // make a new poly where we replace a and c by a 1-pixel wide edges orthog
558    // to edges ab and bc:
559    //
560    //   before       |        after
561    //                |              b0
562    //         b      |
563    //                |
564    //                |     a0            c0
565    // a         c    |        a1       c1
566    //
567    // edges a0->b0 and b0->c0 are parallel to original edges a->b and b->c,
568    // respectively.
569    BezierVertex& a0 = verts[0];
570    BezierVertex& a1 = verts[1];
571    BezierVertex& b0 = verts[2];
572    BezierVertex& c0 = verts[3];
573    BezierVertex& c1 = verts[4];
574
575    SkVector ab = b;
576    ab -= a;
577    SkVector ac = c;
578    ac -= a;
579    SkVector cb = b;
580    cb -= c;
581
582    // We should have already handled degenerates
583    SkASSERT(ab.length() > 0 && cb.length() > 0);
584
585    ab.normalize();
586    SkVector abN;
587    abN.setOrthog(ab, SkVector::kLeft_Side);
588    if (abN.dot(ac) > 0) {
589        abN.negate();
590    }
591
592    cb.normalize();
593    SkVector cbN;
594    cbN.setOrthog(cb, SkVector::kLeft_Side);
595    if (cbN.dot(ac) < 0) {
596        cbN.negate();
597    }
598
599    a0.fPos = a;
600    a0.fPos += abN;
601    a1.fPos = a;
602    a1.fPos -= abN;
603
604    c0.fPos = c;
605    c0.fPos += cbN;
606    c1.fPos = c;
607    c1.fPos -= cbN;
608
609    intersect_lines(a0.fPos, abN, c0.fPos, cbN, &b0.fPos);
610    devBounds->growToInclude(&verts[0].fPos, sizeof(BezierVertex), kVertsPerQuad);
611
612    if (toSrc) {
613        toSrc->mapPointsWithStride(&verts[0].fPos, sizeof(BezierVertex), kVertsPerQuad);
614    }
615}
616
617// Equations based off of Loop-Blinn Quadratic GPU Rendering
618// Input Parametric:
619// P(t) = (P0*(1-t)^2 + 2*w*P1*t*(1-t) + P2*t^2) / (1-t)^2 + 2*w*t*(1-t) + t^2)
620// Output Implicit:
621// f(x, y, w) = f(P) = K^2 - LM
622// K = dot(k, P), L = dot(l, P), M = dot(m, P)
623// k, l, m are calculated in function GrPathUtils::getConicKLM
624void set_conic_coeffs(const SkPoint p[3], BezierVertex verts[kVertsPerQuad],
625                      const SkScalar weight) {
626    SkScalar klm[9];
627
628    GrPathUtils::getConicKLM(p, weight, klm);
629
630    for (int i = 0; i < kVertsPerQuad; ++i) {
631        const SkPoint pnt = verts[i].fPos;
632        verts[i].fConic.fK = pnt.fX * klm[0] + pnt.fY * klm[1] + klm[2];
633        verts[i].fConic.fL = pnt.fX * klm[3] + pnt.fY * klm[4] + klm[5];
634        verts[i].fConic.fM = pnt.fX * klm[6] + pnt.fY * klm[7] + klm[8];
635    }
636}
637
638void add_conics(const SkPoint p[3],
639                const SkScalar weight,
640                const SkMatrix* toDevice,
641                const SkMatrix* toSrc,
642                BezierVertex** vert,
643                SkRect* devBounds) {
644    bloat_quad(p, toDevice, toSrc, *vert, devBounds);
645    set_conic_coeffs(p, *vert, weight);
646    *vert += kVertsPerQuad;
647}
648
649void add_quads(const SkPoint p[3],
650               int subdiv,
651               const SkMatrix* toDevice,
652               const SkMatrix* toSrc,
653               BezierVertex** vert,
654               SkRect* devBounds) {
655    SkASSERT(subdiv >= 0);
656    if (subdiv) {
657        SkPoint newP[5];
658        SkChopQuadAtHalf(p, newP);
659        add_quads(newP + 0, subdiv-1, toDevice, toSrc, vert, devBounds);
660        add_quads(newP + 2, subdiv-1, toDevice, toSrc, vert, devBounds);
661    } else {
662        bloat_quad(p, toDevice, toSrc, *vert, devBounds);
663        set_uv_quad(p, *vert);
664        *vert += kVertsPerQuad;
665    }
666}
667
668void add_line(const SkPoint p[2],
669              const SkMatrix* toSrc,
670              GrColor coverage,
671              LineVertex** vert) {
672    const SkPoint& a = p[0];
673    const SkPoint& b = p[1];
674
675    SkVector ortho, vec = b;
676    vec -= a;
677
678    if (vec.setLength(SK_ScalarHalf)) {
679        // Create a vector orthogonal to 'vec' and of unit length
680        ortho.fX = 2.0f * vec.fY;
681        ortho.fY = -2.0f * vec.fX;
682
683        (*vert)[0].fPos = a;
684        (*vert)[0].fCoverage = coverage;
685        (*vert)[1].fPos = b;
686        (*vert)[1].fCoverage = coverage;
687        (*vert)[2].fPos = a - vec + ortho;
688        (*vert)[2].fCoverage = 0;
689        (*vert)[3].fPos = b + vec + ortho;
690        (*vert)[3].fCoverage = 0;
691        (*vert)[4].fPos = a - vec - ortho;
692        (*vert)[4].fCoverage = 0;
693        (*vert)[5].fPos = b + vec - ortho;
694        (*vert)[5].fCoverage = 0;
695
696        if (NULL != toSrc) {
697            toSrc->mapPointsWithStride(&(*vert)->fPos,
698                                       sizeof(LineVertex),
699                                       kVertsPerLineSeg);
700        }
701    } else {
702        // just make it degenerate and likely offscreen
703        for (int i = 0; i < kVertsPerLineSeg; ++i) {
704            (*vert)[i].fPos.set(SK_ScalarMax, SK_ScalarMax);
705        }
706    }
707
708    *vert += kVertsPerLineSeg;
709}
710
711}
712
713///////////////////////////////////////////////////////////////////////////////
714
715namespace {
716
717// position + edge
718extern const GrVertexAttrib gHairlineBezierAttribs[] = {
719    {kVec2f_GrVertexAttribType, 0,                  kPosition_GrVertexAttribBinding},
720    {kVec4f_GrVertexAttribType, sizeof(GrPoint),    kEffect_GrVertexAttribBinding}
721};
722
723// position + coverage
724extern const GrVertexAttrib gHairlineLineAttribs[] = {
725    {kVec2f_GrVertexAttribType,  0,               kPosition_GrVertexAttribBinding},
726    {kVec4ub_GrVertexAttribType, sizeof(GrPoint), kCoverage_GrVertexAttribBinding},
727};
728
729};
730
731bool GrAAHairLinePathRenderer::createLineGeom(const SkPath& path,
732                                              GrDrawTarget* target,
733                                              const PtArray& lines,
734                                              int lineCnt,
735                                              GrDrawTarget::AutoReleaseGeometry* arg,
736                                              SkRect* devBounds) {
737    GrDrawState* drawState = target->drawState();
738
739    const SkMatrix& viewM = drawState->getViewMatrix();
740
741    int vertCnt = kVertsPerLineSeg * lineCnt;
742
743    drawState->setVertexAttribs<gHairlineLineAttribs>(SK_ARRAY_COUNT(gHairlineLineAttribs));
744    SkASSERT(sizeof(LineVertex) == drawState->getVertexSize());
745
746    if (!arg->set(target, vertCnt, 0)) {
747        return false;
748    }
749
750    LineVertex* verts = reinterpret_cast<LineVertex*>(arg->vertices());
751
752    const SkMatrix* toSrc = NULL;
753    SkMatrix ivm;
754
755    if (viewM.hasPerspective()) {
756        if (viewM.invert(&ivm)) {
757            toSrc = &ivm;
758        }
759    }
760    devBounds->set(lines.begin(), lines.count());
761    for (int i = 0; i < lineCnt; ++i) {
762        add_line(&lines[2*i], toSrc, drawState->getCoverageColor(), &verts);
763    }
764    // All the verts computed by add_line are within sqrt(1^2 + 0.5^2) of the end points.
765    static const SkScalar kSqrtOfOneAndAQuarter = 1.118f;
766    // Add a little extra to account for vector normalization precision.
767    static const SkScalar kOutset = kSqrtOfOneAndAQuarter + SK_Scalar1 / 20;
768    devBounds->outset(kOutset, kOutset);
769
770    return true;
771}
772
773bool GrAAHairLinePathRenderer::createBezierGeom(
774                                          const SkPath& path,
775                                          GrDrawTarget* target,
776                                          const PtArray& quads,
777                                          int quadCnt,
778                                          const PtArray& conics,
779                                          int conicCnt,
780                                          const IntArray& qSubdivs,
781                                          const FloatArray& cWeights,
782                                          GrDrawTarget::AutoReleaseGeometry* arg,
783                                          SkRect* devBounds) {
784    GrDrawState* drawState = target->drawState();
785
786    const SkMatrix& viewM = drawState->getViewMatrix();
787
788    int vertCnt = kVertsPerQuad * quadCnt + kVertsPerQuad * conicCnt;
789
790    target->drawState()->setVertexAttribs<gHairlineBezierAttribs>(SK_ARRAY_COUNT(gHairlineBezierAttribs));
791    SkASSERT(sizeof(BezierVertex) == target->getDrawState().getVertexSize());
792
793    if (!arg->set(target, vertCnt, 0)) {
794        return false;
795    }
796
797    BezierVertex* verts = reinterpret_cast<BezierVertex*>(arg->vertices());
798
799    const SkMatrix* toDevice = NULL;
800    const SkMatrix* toSrc = NULL;
801    SkMatrix ivm;
802
803    if (viewM.hasPerspective()) {
804        if (viewM.invert(&ivm)) {
805            toDevice = &viewM;
806            toSrc = &ivm;
807        }
808    }
809
810    // Seed the dev bounds with some pts known to be inside. Each quad and conic grows the bounding
811    // box to include its vertices.
812    SkPoint seedPts[2];
813    if (quadCnt) {
814        seedPts[0] = quads[0];
815        seedPts[1] = quads[2];
816    } else if (conicCnt) {
817        seedPts[0] = conics[0];
818        seedPts[1] = conics[2];
819    }
820    if (NULL != toDevice) {
821        toDevice->mapPoints(seedPts, 2);
822    }
823    devBounds->set(seedPts[0], seedPts[1]);
824
825    int unsubdivQuadCnt = quads.count() / 3;
826    for (int i = 0; i < unsubdivQuadCnt; ++i) {
827        SkASSERT(qSubdivs[i] >= 0);
828        add_quads(&quads[3*i], qSubdivs[i], toDevice, toSrc, &verts, devBounds);
829    }
830
831    // Start Conics
832    for (int i = 0; i < conicCnt; ++i) {
833        add_conics(&conics[3*i], cWeights[i], toDevice, toSrc, &verts, devBounds);
834    }
835    return true;
836}
837
838bool GrAAHairLinePathRenderer::canDrawPath(const SkPath& path,
839                                           const SkStrokeRec& stroke,
840                                           const GrDrawTarget* target,
841                                           bool antiAlias) const {
842    if (!antiAlias) {
843        return false;
844    }
845
846    if (!IsStrokeHairlineOrEquivalent(stroke,
847                                      target->getDrawState().getViewMatrix(),
848                                      NULL)) {
849        return false;
850    }
851
852    if (SkPath::kLine_SegmentMask == path.getSegmentMasks() ||
853        target->caps()->shaderDerivativeSupport()) {
854        return true;
855    }
856    return false;
857}
858
859template <class VertexType>
860bool check_bounds(GrDrawState* drawState, const SkRect& devBounds, void* vertices, int vCount)
861{
862    SkRect tolDevBounds = devBounds;
863    // The bounds ought to be tight, but in perspective the below code runs the verts
864    // through the view matrix to get back to dev coords, which can introduce imprecision.
865    if (drawState->getViewMatrix().hasPerspective()) {
866        tolDevBounds.outset(SK_Scalar1 / 1000, SK_Scalar1 / 1000);
867    } else {
868        // Non-persp matrices cause this path renderer to draw in device space.
869        SkASSERT(drawState->getViewMatrix().isIdentity());
870    }
871    SkRect actualBounds;
872
873    VertexType* verts = reinterpret_cast<VertexType*>(vertices);
874    bool first = true;
875    for (int i = 0; i < vCount; ++i) {
876        SkPoint pos = verts[i].fPos;
877        // This is a hack to workaround the fact that we move some degenerate segments offscreen.
878        if (SK_ScalarMax == pos.fX) {
879            continue;
880        }
881        drawState->getViewMatrix().mapPoints(&pos, 1);
882        if (first) {
883            actualBounds.set(pos.fX, pos.fY, pos.fX, pos.fY);
884            first = false;
885        } else {
886            actualBounds.growToInclude(pos.fX, pos.fY);
887        }
888    }
889    if (!first) {
890        return tolDevBounds.contains(actualBounds);
891    }
892
893    return true;
894}
895
896bool GrAAHairLinePathRenderer::onDrawPath(const SkPath& path,
897                                          const SkStrokeRec& stroke,
898                                          GrDrawTarget* target,
899                                          bool antiAlias) {
900    GrDrawState* drawState = target->drawState();
901
902    SkScalar hairlineCoverage;
903    if (IsStrokeHairlineOrEquivalent(stroke,
904                                     target->getDrawState().getViewMatrix(),
905                                     &hairlineCoverage)) {
906        uint8_t newCoverage = SkScalarRoundToInt(hairlineCoverage *
907                                                 target->getDrawState().getCoverage());
908        target->drawState()->setCoverage(newCoverage);
909    }
910
911    SkIRect devClipBounds;
912    target->getClip()->getConservativeBounds(drawState->getRenderTarget(), &devClipBounds);
913
914    int lineCnt;
915    int quadCnt;
916    int conicCnt;
917    PREALLOC_PTARRAY(128) lines;
918    PREALLOC_PTARRAY(128) quads;
919    PREALLOC_PTARRAY(128) conics;
920    IntArray qSubdivs;
921    FloatArray cWeights;
922    quadCnt = generate_lines_and_quads(path, drawState->getViewMatrix(), devClipBounds,
923                                       &lines, &quads, &conics, &qSubdivs, &cWeights);
924    lineCnt = lines.count() / 2;
925    conicCnt = conics.count() / 3;
926
927    // do lines first
928    if (lineCnt) {
929        GrDrawTarget::AutoReleaseGeometry arg;
930        SkRect devBounds;
931
932        if (!this->createLineGeom(path,
933                                  target,
934                                  lines,
935                                  lineCnt,
936                                  &arg,
937                                  &devBounds)) {
938            return false;
939        }
940
941        GrDrawTarget::AutoStateRestore asr;
942
943        // createLineGeom transforms the geometry to device space when the matrix does not have
944        // perspective.
945        if (target->getDrawState().getViewMatrix().hasPerspective()) {
946            asr.set(target, GrDrawTarget::kPreserve_ASRInit);
947        } else if (!asr.setIdentity(target, GrDrawTarget::kPreserve_ASRInit)) {
948            return false;
949        }
950        GrDrawState* drawState = target->drawState();
951
952        // Check devBounds
953        SkASSERT(check_bounds<LineVertex>(drawState, devBounds, arg.vertices(),
954                                          kVertsPerLineSeg * lineCnt));
955
956        {
957            GrDrawState::AutoRestoreEffects are(drawState);
958            target->setIndexSourceToBuffer(fLinesIndexBuffer);
959            int lines = 0;
960            while (lines < lineCnt) {
961                int n = GrMin(lineCnt - lines, kNumLineSegsInIdxBuffer);
962                target->drawIndexed(kTriangles_GrPrimitiveType,
963                                    kVertsPerLineSeg*lines,     // startV
964                                    0,                          // startI
965                                    kVertsPerLineSeg*n,         // vCount
966                                    kIdxsPerLineSeg*n,          // iCount
967                                    &devBounds);
968                lines += n;
969            }
970        }
971    }
972
973    // then quadratics/conics
974    if (quadCnt || conicCnt) {
975        GrDrawTarget::AutoReleaseGeometry arg;
976        SkRect devBounds;
977
978        if (!this->createBezierGeom(path,
979                                    target,
980                                    quads,
981                                    quadCnt,
982                                    conics,
983                                    conicCnt,
984                                    qSubdivs,
985                                    cWeights,
986                                    &arg,
987                                    &devBounds)) {
988            return false;
989        }
990
991        GrDrawTarget::AutoStateRestore asr;
992
993        // createGeom transforms the geometry to device space when the matrix does not have
994        // perspective.
995        if (target->getDrawState().getViewMatrix().hasPerspective()) {
996            asr.set(target, GrDrawTarget::kPreserve_ASRInit);
997        } else if (!asr.setIdentity(target, GrDrawTarget::kPreserve_ASRInit)) {
998            return false;
999        }
1000        GrDrawState* drawState = target->drawState();
1001
1002        static const int kEdgeAttrIndex = 1;
1003
1004        // Check devBounds
1005        SkASSERT(check_bounds<BezierVertex>(drawState, devBounds, arg.vertices(),
1006                                            kVertsPerQuad * quadCnt + kVertsPerQuad * conicCnt));
1007
1008        if (quadCnt > 0) {
1009            GrEffectRef* hairQuadEffect = GrQuadEffect::Create(kHairAA_GrBezierEdgeType,
1010                                                               *target->caps());
1011            SkASSERT(NULL != hairQuadEffect);
1012            GrDrawState::AutoRestoreEffects are(drawState);
1013            target->setIndexSourceToBuffer(fQuadsIndexBuffer);
1014            drawState->addCoverageEffect(hairQuadEffect, kEdgeAttrIndex)->unref();
1015            int quads = 0;
1016            while (quads < quadCnt) {
1017                int n = GrMin(quadCnt - quads, kNumQuadsInIdxBuffer);
1018                target->drawIndexed(kTriangles_GrPrimitiveType,
1019                                    kVertsPerQuad*quads,               // startV
1020                                    0,                                 // startI
1021                                    kVertsPerQuad*n,                   // vCount
1022                                    kIdxsPerQuad*n,                    // iCount
1023                                    &devBounds);
1024                quads += n;
1025            }
1026        }
1027
1028        if (conicCnt > 0) {
1029            GrDrawState::AutoRestoreEffects are(drawState);
1030            GrEffectRef* hairConicEffect = GrConicEffect::Create(kHairAA_GrBezierEdgeType,
1031                                                                 *target->caps());
1032            SkASSERT(NULL != hairConicEffect);
1033            drawState->addCoverageEffect(hairConicEffect, 1, 2)->unref();
1034            int conics = 0;
1035            while (conics < conicCnt) {
1036                int n = GrMin(conicCnt - conics, kNumQuadsInIdxBuffer);
1037                target->drawIndexed(kTriangles_GrPrimitiveType,
1038                                    kVertsPerQuad*(quadCnt + conics),  // startV
1039                                    0,                                 // startI
1040                                    kVertsPerQuad*n,                   // vCount
1041                                    kIdxsPerQuad*n,                    // iCount
1042                                    &devBounds);
1043                conics += n;
1044            }
1045        }
1046    }
1047
1048    target->resetIndexSource();
1049
1050    return true;
1051}
1052