1/* 2** 2011 March 24 3** 4** The author disclaims copyright to this source code. In place of 5** a legal notice, here is a blessing: 6** 7** May you do good and not evil. 8** May you find forgiveness for yourself and forgive others. 9** May you share freely, never taking more than you give. 10** 11************************************************************************* 12** 13** Code for demonstartion virtual table that generates variations 14** on an input word at increasing edit distances from the original. 15** 16** A fuzzer virtual table is created like this: 17** 18** CREATE VIRTUAL TABLE temp.f USING fuzzer; 19** 20** The name of the new virtual table in the example above is "f". 21** Note that all fuzzer virtual tables must be TEMP tables. The 22** "temp." prefix in front of the table name is required when the 23** table is being created. The "temp." prefix can be omitted when 24** using the table as long as the name is unambiguous. 25** 26** Before being used, the fuzzer needs to be programmed by giving it 27** character transformations and a cost associated with each transformation. 28** Examples: 29** 30** INSERT INTO f(cFrom,cTo,Cost) VALUES('','a',100); 31** 32** The above statement says that the cost of inserting a letter 'a' is 33** 100. (All costs are integers. We recommend that costs be scaled so 34** that the average cost is around 100.) 35** 36** INSERT INTO f(cFrom,cTo,Cost) VALUES('b','',87); 37** 38** The above statement says that the cost of deleting a single letter 39** 'b' is 87. 40** 41** INSERT INTO f(cFrom,cTo,Cost) VALUES('o','oe',38); 42** INSERT INTO f(cFrom,cTo,Cost) VALUES('oe','o',40); 43** 44** This third example says that the cost of transforming the single 45** letter "o" into the two-letter sequence "oe" is 38 and that the 46** cost of transforming "oe" back into "o" is 40. 47** 48** After all the transformation costs have been set, the fuzzer table 49** can be queried as follows: 50** 51** SELECT word, distance FROM f 52** WHERE word MATCH 'abcdefg' 53** AND distance<200; 54** 55** This first query outputs the string "abcdefg" and all strings that 56** can be derived from that string by appling the specified transformations. 57** The strings are output together with their total transformation cost 58** (called "distance") and appear in order of increasing cost. No string 59** is output more than once. If there are multiple ways to transform the 60** target string into the output string then the lowest cost transform is 61** the one that is returned. In the example, the search is limited to 62** strings with a total distance of less than 200. 63** 64** It is important to put some kind of a limit on the fuzzer output. This 65** can be either in the form of a LIMIT clause at the end of the query, 66** or better, a "distance<NNN" constraint where NNN is some number. The 67** running time and memory requirement is exponential in the value of NNN 68** so you want to make sure that NNN is not too big. A value of NNN that 69** is about twice the average transformation cost seems to give good results. 70** 71** The fuzzer table can be useful for tasks such as spelling correction. 72** Suppose there is a second table vocabulary(w) where the w column contains 73** all correctly spelled words. Let $word be a word you want to look up. 74** 75** SELECT vocabulary.w FROM f, vocabulary 76** WHERE f.word MATCH $word 77** AND f.distance<=200 78** AND f.word=vocabulary.w 79** LIMIT 20 80** 81** The query above gives the 20 closest words to the $word being tested. 82** (Note that for good performance, the vocubulary.w column should be 83** indexed.) 84** 85** A similar query can be used to find all words in the dictionary that 86** begin with some prefix $prefix: 87** 88** SELECT vocabulary.w FROM f, vocabulary 89** WHERE f.word MATCH $prefix 90** AND f.distance<=200 91** AND vocabulary.w BETWEEN f.word AND (f.word || x'F7BFBFBF') 92** LIMIT 50 93** 94** This last query will show up to 50 words out of the vocabulary that 95** match or nearly match the $prefix. 96*/ 97#include "sqlite3.h" 98#include <stdlib.h> 99#include <string.h> 100#include <assert.h> 101#include <stdio.h> 102 103#ifndef SQLITE_OMIT_VIRTUALTABLE 104 105/* 106** Forward declaration of objects used by this implementation 107*/ 108typedef struct fuzzer_vtab fuzzer_vtab; 109typedef struct fuzzer_cursor fuzzer_cursor; 110typedef struct fuzzer_rule fuzzer_rule; 111typedef struct fuzzer_seen fuzzer_seen; 112typedef struct fuzzer_stem fuzzer_stem; 113 114/* 115** Type of the "cost" of an edit operation. Might be changed to 116** "float" or "double" or "sqlite3_int64" in the future. 117*/ 118typedef int fuzzer_cost; 119 120 121/* 122** Each transformation rule is stored as an instance of this object. 123** All rules are kept on a linked list sorted by rCost. 124*/ 125struct fuzzer_rule { 126 fuzzer_rule *pNext; /* Next rule in order of increasing rCost */ 127 fuzzer_cost rCost; /* Cost of this transformation */ 128 int nFrom, nTo; /* Length of the zFrom and zTo strings */ 129 char *zFrom; /* Transform from */ 130 char zTo[4]; /* Transform to (extra space appended) */ 131}; 132 133/* 134** A stem object is used to generate variants. It is also used to record 135** previously generated outputs. 136** 137** Every stem is added to a hash table as it is output. Generation of 138** duplicate stems is suppressed. 139** 140** Active stems (those that might generate new outputs) are kepts on a linked 141** list sorted by increasing cost. The cost is the sum of rBaseCost and 142** pRule->rCost. 143*/ 144struct fuzzer_stem { 145 char *zBasis; /* Word being fuzzed */ 146 int nBasis; /* Length of the zBasis string */ 147 const fuzzer_rule *pRule; /* Current rule to apply */ 148 int n; /* Apply pRule at this character offset */ 149 fuzzer_cost rBaseCost; /* Base cost of getting to zBasis */ 150 fuzzer_cost rCostX; /* Precomputed rBaseCost + pRule->rCost */ 151 fuzzer_stem *pNext; /* Next stem in rCost order */ 152 fuzzer_stem *pHash; /* Next stem with same hash on zBasis */ 153}; 154 155/* 156** A fuzzer virtual-table object 157*/ 158struct fuzzer_vtab { 159 sqlite3_vtab base; /* Base class - must be first */ 160 char *zClassName; /* Name of this class. Default: "fuzzer" */ 161 fuzzer_rule *pRule; /* All active rules in this fuzzer */ 162 fuzzer_rule *pNewRule; /* New rules to add when last cursor expires */ 163 int nCursor; /* Number of active cursors */ 164}; 165 166#define FUZZER_HASH 4001 /* Hash table size */ 167#define FUZZER_NQUEUE 20 /* Number of slots on the stem queue */ 168 169/* A fuzzer cursor object */ 170struct fuzzer_cursor { 171 sqlite3_vtab_cursor base; /* Base class - must be first */ 172 sqlite3_int64 iRowid; /* The rowid of the current word */ 173 fuzzer_vtab *pVtab; /* The virtual table this cursor belongs to */ 174 fuzzer_cost rLimit; /* Maximum cost of any term */ 175 fuzzer_stem *pStem; /* Stem with smallest rCostX */ 176 fuzzer_stem *pDone; /* Stems already processed to completion */ 177 fuzzer_stem *aQueue[FUZZER_NQUEUE]; /* Queue of stems with higher rCostX */ 178 int mxQueue; /* Largest used index in aQueue[] */ 179 char *zBuf; /* Temporary use buffer */ 180 int nBuf; /* Bytes allocated for zBuf */ 181 int nStem; /* Number of stems allocated */ 182 fuzzer_rule nullRule; /* Null rule used first */ 183 fuzzer_stem *apHash[FUZZER_HASH]; /* Hash of previously generated terms */ 184}; 185 186/* Methods for the fuzzer module */ 187static int fuzzerConnect( 188 sqlite3 *db, 189 void *pAux, 190 int argc, const char *const*argv, 191 sqlite3_vtab **ppVtab, 192 char **pzErr 193){ 194 fuzzer_vtab *pNew; 195 int n; 196 if( strcmp(argv[1],"temp")!=0 ){ 197 *pzErr = sqlite3_mprintf("%s virtual tables must be TEMP", argv[0]); 198 return SQLITE_ERROR; 199 } 200 n = strlen(argv[0]) + 1; 201 pNew = sqlite3_malloc( sizeof(*pNew) + n ); 202 if( pNew==0 ) return SQLITE_NOMEM; 203 pNew->zClassName = (char*)&pNew[1]; 204 memcpy(pNew->zClassName, argv[0], n); 205 sqlite3_declare_vtab(db, "CREATE TABLE x(word,distance,cFrom,cTo,cost)"); 206 memset(pNew, 0, sizeof(*pNew)); 207 *ppVtab = &pNew->base; 208 return SQLITE_OK; 209} 210/* Note that for this virtual table, the xCreate and xConnect 211** methods are identical. */ 212 213static int fuzzerDisconnect(sqlite3_vtab *pVtab){ 214 fuzzer_vtab *p = (fuzzer_vtab*)pVtab; 215 assert( p->nCursor==0 ); 216 do{ 217 while( p->pRule ){ 218 fuzzer_rule *pRule = p->pRule; 219 p->pRule = pRule->pNext; 220 sqlite3_free(pRule); 221 } 222 p->pRule = p->pNewRule; 223 p->pNewRule = 0; 224 }while( p->pRule ); 225 sqlite3_free(p); 226 return SQLITE_OK; 227} 228/* The xDisconnect and xDestroy methods are also the same */ 229 230/* 231** The two input rule lists are both sorted in order of increasing 232** cost. Merge them together into a single list, sorted by cost, and 233** return a pointer to the head of that list. 234*/ 235static fuzzer_rule *fuzzerMergeRules(fuzzer_rule *pA, fuzzer_rule *pB){ 236 fuzzer_rule head; 237 fuzzer_rule *pTail; 238 239 pTail = &head; 240 while( pA && pB ){ 241 if( pA->rCost<=pB->rCost ){ 242 pTail->pNext = pA; 243 pTail = pA; 244 pA = pA->pNext; 245 }else{ 246 pTail->pNext = pB; 247 pTail = pB; 248 pB = pB->pNext; 249 } 250 } 251 if( pA==0 ){ 252 pTail->pNext = pB; 253 }else{ 254 pTail->pNext = pA; 255 } 256 return head.pNext; 257} 258 259 260/* 261** Open a new fuzzer cursor. 262*/ 263static int fuzzerOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ 264 fuzzer_vtab *p = (fuzzer_vtab*)pVTab; 265 fuzzer_cursor *pCur; 266 pCur = sqlite3_malloc( sizeof(*pCur) ); 267 if( pCur==0 ) return SQLITE_NOMEM; 268 memset(pCur, 0, sizeof(*pCur)); 269 pCur->pVtab = p; 270 *ppCursor = &pCur->base; 271 if( p->nCursor==0 && p->pNewRule ){ 272 unsigned int i; 273 fuzzer_rule *pX; 274 fuzzer_rule *a[15]; 275 for(i=0; i<sizeof(a)/sizeof(a[0]); i++) a[i] = 0; 276 while( (pX = p->pNewRule)!=0 ){ 277 p->pNewRule = pX->pNext; 278 pX->pNext = 0; 279 for(i=0; a[i] && i<sizeof(a)/sizeof(a[0])-1; i++){ 280 pX = fuzzerMergeRules(a[i], pX); 281 a[i] = 0; 282 } 283 a[i] = fuzzerMergeRules(a[i], pX); 284 } 285 for(pX=a[0], i=1; i<sizeof(a)/sizeof(a[0]); i++){ 286 pX = fuzzerMergeRules(a[i], pX); 287 } 288 p->pRule = fuzzerMergeRules(p->pRule, pX); 289 } 290 p->nCursor++; 291 return SQLITE_OK; 292} 293 294/* 295** Free all stems in a list. 296*/ 297static void fuzzerClearStemList(fuzzer_stem *pStem){ 298 while( pStem ){ 299 fuzzer_stem *pNext = pStem->pNext; 300 sqlite3_free(pStem); 301 pStem = pNext; 302 } 303} 304 305/* 306** Free up all the memory allocated by a cursor. Set it rLimit to 0 307** to indicate that it is at EOF. 308*/ 309static void fuzzerClearCursor(fuzzer_cursor *pCur, int clearHash){ 310 int i; 311 fuzzerClearStemList(pCur->pStem); 312 fuzzerClearStemList(pCur->pDone); 313 for(i=0; i<FUZZER_NQUEUE; i++) fuzzerClearStemList(pCur->aQueue[i]); 314 pCur->rLimit = (fuzzer_cost)0; 315 if( clearHash && pCur->nStem ){ 316 pCur->mxQueue = 0; 317 pCur->pStem = 0; 318 pCur->pDone = 0; 319 memset(pCur->aQueue, 0, sizeof(pCur->aQueue)); 320 memset(pCur->apHash, 0, sizeof(pCur->apHash)); 321 } 322 pCur->nStem = 0; 323} 324 325/* 326** Close a fuzzer cursor. 327*/ 328static int fuzzerClose(sqlite3_vtab_cursor *cur){ 329 fuzzer_cursor *pCur = (fuzzer_cursor *)cur; 330 fuzzerClearCursor(pCur, 0); 331 sqlite3_free(pCur->zBuf); 332 pCur->pVtab->nCursor--; 333 sqlite3_free(pCur); 334 return SQLITE_OK; 335} 336 337/* 338** Compute the current output term for a fuzzer_stem. 339*/ 340static int fuzzerRender( 341 fuzzer_stem *pStem, /* The stem to be rendered */ 342 char **pzBuf, /* Write results into this buffer. realloc if needed */ 343 int *pnBuf /* Size of the buffer */ 344){ 345 const fuzzer_rule *pRule = pStem->pRule; 346 int n; 347 char *z; 348 349 n = pStem->nBasis + pRule->nTo - pRule->nFrom; 350 if( (*pnBuf)<n+1 ){ 351 (*pzBuf) = sqlite3_realloc((*pzBuf), n+100); 352 if( (*pzBuf)==0 ) return SQLITE_NOMEM; 353 (*pnBuf) = n+100; 354 } 355 n = pStem->n; 356 z = *pzBuf; 357 if( n<0 ){ 358 memcpy(z, pStem->zBasis, pStem->nBasis+1); 359 }else{ 360 memcpy(z, pStem->zBasis, n); 361 memcpy(&z[n], pRule->zTo, pRule->nTo); 362 memcpy(&z[n+pRule->nTo], &pStem->zBasis[n+pRule->nFrom], 363 pStem->nBasis-n-pRule->nFrom+1); 364 } 365 return SQLITE_OK; 366} 367 368/* 369** Compute a hash on zBasis. 370*/ 371static unsigned int fuzzerHash(const char *z){ 372 unsigned int h = 0; 373 while( *z ){ h = (h<<3) ^ (h>>29) ^ *(z++); } 374 return h % FUZZER_HASH; 375} 376 377/* 378** Current cost of a stem 379*/ 380static fuzzer_cost fuzzerCost(fuzzer_stem *pStem){ 381 return pStem->rCostX = pStem->rBaseCost + pStem->pRule->rCost; 382} 383 384#if 0 385/* 386** Print a description of a fuzzer_stem on stderr. 387*/ 388static void fuzzerStemPrint( 389 const char *zPrefix, 390 fuzzer_stem *pStem, 391 const char *zSuffix 392){ 393 if( pStem->n<0 ){ 394 fprintf(stderr, "%s[%s](%d)-->self%s", 395 zPrefix, 396 pStem->zBasis, pStem->rBaseCost, 397 zSuffix 398 ); 399 }else{ 400 char *zBuf = 0; 401 int nBuf = 0; 402 if( fuzzerRender(pStem, &zBuf, &nBuf)!=SQLITE_OK ) return; 403 fprintf(stderr, "%s[%s](%d)-->{%s}(%d)%s", 404 zPrefix, 405 pStem->zBasis, pStem->rBaseCost, zBuf, pStem->, 406 zSuffix 407 ); 408 sqlite3_free(zBuf); 409 } 410} 411#endif 412 413/* 414** Return 1 if the string to which the cursor is point has already 415** been emitted. Return 0 if not. Return -1 on a memory allocation 416** failures. 417*/ 418static int fuzzerSeen(fuzzer_cursor *pCur, fuzzer_stem *pStem){ 419 unsigned int h; 420 fuzzer_stem *pLookup; 421 422 if( fuzzerRender(pStem, &pCur->zBuf, &pCur->nBuf)==SQLITE_NOMEM ){ 423 return -1; 424 } 425 h = fuzzerHash(pCur->zBuf); 426 pLookup = pCur->apHash[h]; 427 while( pLookup && strcmp(pLookup->zBasis, pCur->zBuf)!=0 ){ 428 pLookup = pLookup->pHash; 429 } 430 return pLookup!=0; 431} 432 433/* 434** Advance a fuzzer_stem to its next value. Return 0 if there are 435** no more values that can be generated by this fuzzer_stem. Return 436** -1 on a memory allocation failure. 437*/ 438static int fuzzerAdvance(fuzzer_cursor *pCur, fuzzer_stem *pStem){ 439 const fuzzer_rule *pRule; 440 while( (pRule = pStem->pRule)!=0 ){ 441 while( pStem->n < pStem->nBasis - pRule->nFrom ){ 442 pStem->n++; 443 if( pRule->nFrom==0 444 || memcmp(&pStem->zBasis[pStem->n], pRule->zFrom, pRule->nFrom)==0 445 ){ 446 /* Found a rewrite case. Make sure it is not a duplicate */ 447 int rc = fuzzerSeen(pCur, pStem); 448 if( rc<0 ) return -1; 449 if( rc==0 ){ 450 fuzzerCost(pStem); 451 return 1; 452 } 453 } 454 } 455 pStem->n = -1; 456 pStem->pRule = pRule->pNext; 457 if( pStem->pRule && fuzzerCost(pStem)>pCur->rLimit ) pStem->pRule = 0; 458 } 459 return 0; 460} 461 462/* 463** The two input stem lists are both sorted in order of increasing 464** rCostX. Merge them together into a single list, sorted by rCostX, and 465** return a pointer to the head of that new list. 466*/ 467static fuzzer_stem *fuzzerMergeStems(fuzzer_stem *pA, fuzzer_stem *pB){ 468 fuzzer_stem head; 469 fuzzer_stem *pTail; 470 471 pTail = &head; 472 while( pA && pB ){ 473 if( pA->rCostX<=pB->rCostX ){ 474 pTail->pNext = pA; 475 pTail = pA; 476 pA = pA->pNext; 477 }else{ 478 pTail->pNext = pB; 479 pTail = pB; 480 pB = pB->pNext; 481 } 482 } 483 if( pA==0 ){ 484 pTail->pNext = pB; 485 }else{ 486 pTail->pNext = pA; 487 } 488 return head.pNext; 489} 490 491/* 492** Load pCur->pStem with the lowest-cost stem. Return a pointer 493** to the lowest-cost stem. 494*/ 495static fuzzer_stem *fuzzerLowestCostStem(fuzzer_cursor *pCur){ 496 fuzzer_stem *pBest, *pX; 497 int iBest; 498 int i; 499 500 if( pCur->pStem==0 ){ 501 iBest = -1; 502 pBest = 0; 503 for(i=0; i<=pCur->mxQueue; i++){ 504 pX = pCur->aQueue[i]; 505 if( pX==0 ) continue; 506 if( pBest==0 || pBest->rCostX>pX->rCostX ){ 507 pBest = pX; 508 iBest = i; 509 } 510 } 511 if( pBest ){ 512 pCur->aQueue[iBest] = pBest->pNext; 513 pBest->pNext = 0; 514 pCur->pStem = pBest; 515 } 516 } 517 return pCur->pStem; 518} 519 520/* 521** Insert pNew into queue of pending stems. Then find the stem 522** with the lowest rCostX and move it into pCur->pStem. 523** list. The insert is done such the pNew is in the correct order 524** according to fuzzer_stem.zBaseCost+fuzzer_stem.pRule->rCost. 525*/ 526static fuzzer_stem *fuzzerInsert(fuzzer_cursor *pCur, fuzzer_stem *pNew){ 527 fuzzer_stem *pX; 528 int i; 529 530 /* If pCur->pStem exists and is greater than pNew, then make pNew 531 ** the new pCur->pStem and insert the old pCur->pStem instead. 532 */ 533 if( (pX = pCur->pStem)!=0 && pX->rCostX>pNew->rCostX ){ 534 pNew->pNext = 0; 535 pCur->pStem = pNew; 536 pNew = pX; 537 } 538 539 /* Insert the new value */ 540 pNew->pNext = 0; 541 pX = pNew; 542 for(i=0; i<=pCur->mxQueue; i++){ 543 if( pCur->aQueue[i] ){ 544 pX = fuzzerMergeStems(pX, pCur->aQueue[i]); 545 pCur->aQueue[i] = 0; 546 }else{ 547 pCur->aQueue[i] = pX; 548 break; 549 } 550 } 551 if( i>pCur->mxQueue ){ 552 if( i<FUZZER_NQUEUE ){ 553 pCur->mxQueue = i; 554 pCur->aQueue[i] = pX; 555 }else{ 556 assert( pCur->mxQueue==FUZZER_NQUEUE-1 ); 557 pX = fuzzerMergeStems(pX, pCur->aQueue[FUZZER_NQUEUE-1]); 558 pCur->aQueue[FUZZER_NQUEUE-1] = pX; 559 } 560 } 561 562 return fuzzerLowestCostStem(pCur); 563} 564 565/* 566** Allocate a new fuzzer_stem. Add it to the hash table but do not 567** link it into either the pCur->pStem or pCur->pDone lists. 568*/ 569static fuzzer_stem *fuzzerNewStem( 570 fuzzer_cursor *pCur, 571 const char *zWord, 572 fuzzer_cost rBaseCost 573){ 574 fuzzer_stem *pNew; 575 unsigned int h; 576 577 pNew = sqlite3_malloc( sizeof(*pNew) + strlen(zWord) + 1 ); 578 if( pNew==0 ) return 0; 579 memset(pNew, 0, sizeof(*pNew)); 580 pNew->zBasis = (char*)&pNew[1]; 581 pNew->nBasis = strlen(zWord); 582 memcpy(pNew->zBasis, zWord, pNew->nBasis+1); 583 pNew->pRule = pCur->pVtab->pRule; 584 pNew->n = -1; 585 pNew->rBaseCost = pNew->rCostX = rBaseCost; 586 h = fuzzerHash(pNew->zBasis); 587 pNew->pHash = pCur->apHash[h]; 588 pCur->apHash[h] = pNew; 589 pCur->nStem++; 590 return pNew; 591} 592 593 594/* 595** Advance a cursor to its next row of output 596*/ 597static int fuzzerNext(sqlite3_vtab_cursor *cur){ 598 fuzzer_cursor *pCur = (fuzzer_cursor*)cur; 599 int rc; 600 fuzzer_stem *pStem, *pNew; 601 602 pCur->iRowid++; 603 604 /* Use the element the cursor is currently point to to create 605 ** a new stem and insert the new stem into the priority queue. 606 */ 607 pStem = pCur->pStem; 608 if( pStem->rCostX>0 ){ 609 rc = fuzzerRender(pStem, &pCur->zBuf, &pCur->nBuf); 610 if( rc==SQLITE_NOMEM ) return SQLITE_NOMEM; 611 pNew = fuzzerNewStem(pCur, pCur->zBuf, pStem->rCostX); 612 if( pNew ){ 613 if( fuzzerAdvance(pCur, pNew)==0 ){ 614 pNew->pNext = pCur->pDone; 615 pCur->pDone = pNew; 616 }else{ 617 if( fuzzerInsert(pCur, pNew)==pNew ){ 618 return SQLITE_OK; 619 } 620 } 621 }else{ 622 return SQLITE_NOMEM; 623 } 624 } 625 626 /* Adjust the priority queue so that the first element of the 627 ** stem list is the next lowest cost word. 628 */ 629 while( (pStem = pCur->pStem)!=0 ){ 630 if( fuzzerAdvance(pCur, pStem) ){ 631 pCur->pStem = 0; 632 pStem = fuzzerInsert(pCur, pStem); 633 if( (rc = fuzzerSeen(pCur, pStem))!=0 ){ 634 if( rc<0 ) return SQLITE_NOMEM; 635 continue; 636 } 637 return SQLITE_OK; /* New word found */ 638 } 639 pCur->pStem = 0; 640 pStem->pNext = pCur->pDone; 641 pCur->pDone = pStem; 642 if( fuzzerLowestCostStem(pCur) ){ 643 rc = fuzzerSeen(pCur, pCur->pStem); 644 if( rc<0 ) return SQLITE_NOMEM; 645 if( rc==0 ){ 646 return SQLITE_OK; 647 } 648 } 649 } 650 651 /* Reach this point only if queue has been exhausted and there is 652 ** nothing left to be output. */ 653 pCur->rLimit = (fuzzer_cost)0; 654 return SQLITE_OK; 655} 656 657/* 658** Called to "rewind" a cursor back to the beginning so that 659** it starts its output over again. Always called at least once 660** prior to any fuzzerColumn, fuzzerRowid, or fuzzerEof call. 661*/ 662static int fuzzerFilter( 663 sqlite3_vtab_cursor *pVtabCursor, 664 int idxNum, const char *idxStr, 665 int argc, sqlite3_value **argv 666){ 667 fuzzer_cursor *pCur = (fuzzer_cursor *)pVtabCursor; 668 const char *zWord = 0; 669 fuzzer_stem *pStem; 670 671 fuzzerClearCursor(pCur, 1); 672 pCur->rLimit = 2147483647; 673 if( idxNum==1 ){ 674 zWord = (const char*)sqlite3_value_text(argv[0]); 675 }else if( idxNum==2 ){ 676 pCur->rLimit = (fuzzer_cost)sqlite3_value_int(argv[0]); 677 }else if( idxNum==3 ){ 678 zWord = (const char*)sqlite3_value_text(argv[0]); 679 pCur->rLimit = (fuzzer_cost)sqlite3_value_int(argv[1]); 680 } 681 if( zWord==0 ) zWord = ""; 682 pCur->pStem = pStem = fuzzerNewStem(pCur, zWord, (fuzzer_cost)0); 683 if( pStem==0 ) return SQLITE_NOMEM; 684 pCur->nullRule.pNext = pCur->pVtab->pRule; 685 pCur->nullRule.rCost = 0; 686 pCur->nullRule.nFrom = 0; 687 pCur->nullRule.nTo = 0; 688 pCur->nullRule.zFrom = ""; 689 pStem->pRule = &pCur->nullRule; 690 pStem->n = pStem->nBasis; 691 pCur->iRowid = 1; 692 return SQLITE_OK; 693} 694 695/* 696** Only the word and distance columns have values. All other columns 697** return NULL 698*/ 699static int fuzzerColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){ 700 fuzzer_cursor *pCur = (fuzzer_cursor*)cur; 701 if( i==0 ){ 702 /* the "word" column */ 703 if( fuzzerRender(pCur->pStem, &pCur->zBuf, &pCur->nBuf)==SQLITE_NOMEM ){ 704 return SQLITE_NOMEM; 705 } 706 sqlite3_result_text(ctx, pCur->zBuf, -1, SQLITE_TRANSIENT); 707 }else if( i==1 ){ 708 /* the "distance" column */ 709 sqlite3_result_int(ctx, pCur->pStem->rCostX); 710 }else{ 711 /* All other columns are NULL */ 712 sqlite3_result_null(ctx); 713 } 714 return SQLITE_OK; 715} 716 717/* 718** The rowid. 719*/ 720static int fuzzerRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){ 721 fuzzer_cursor *pCur = (fuzzer_cursor*)cur; 722 *pRowid = pCur->iRowid; 723 return SQLITE_OK; 724} 725 726/* 727** When the fuzzer_cursor.rLimit value is 0 or less, that is a signal 728** that the cursor has nothing more to output. 729*/ 730static int fuzzerEof(sqlite3_vtab_cursor *cur){ 731 fuzzer_cursor *pCur = (fuzzer_cursor*)cur; 732 return pCur->rLimit<=(fuzzer_cost)0; 733} 734 735/* 736** Search for terms of these forms: 737** 738** word MATCH $str 739** distance < $value 740** distance <= $value 741** 742** The distance< and distance<= are both treated as distance<=. 743** The query plan number is as follows: 744** 745** 0: None of the terms above are found 746** 1: There is a "word MATCH" term with $str in filter.argv[0]. 747** 2: There is a "distance<" term with $value in filter.argv[0]. 748** 3: Both "word MATCH" and "distance<" with $str in argv[0] and 749** $value in argv[1]. 750*/ 751static int fuzzerBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ 752 int iPlan = 0; 753 int iDistTerm = -1; 754 int i; 755 const struct sqlite3_index_constraint *pConstraint; 756 pConstraint = pIdxInfo->aConstraint; 757 for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){ 758 if( pConstraint->usable==0 ) continue; 759 if( (iPlan & 1)==0 760 && pConstraint->iColumn==0 761 && pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH 762 ){ 763 iPlan |= 1; 764 pIdxInfo->aConstraintUsage[i].argvIndex = 1; 765 pIdxInfo->aConstraintUsage[i].omit = 1; 766 } 767 if( (iPlan & 2)==0 768 && pConstraint->iColumn==1 769 && (pConstraint->op==SQLITE_INDEX_CONSTRAINT_LT 770 || pConstraint->op==SQLITE_INDEX_CONSTRAINT_LE) 771 ){ 772 iPlan |= 2; 773 iDistTerm = i; 774 } 775 } 776 if( iPlan==2 ){ 777 pIdxInfo->aConstraintUsage[iDistTerm].argvIndex = 1; 778 }else if( iPlan==3 ){ 779 pIdxInfo->aConstraintUsage[iDistTerm].argvIndex = 2; 780 } 781 pIdxInfo->idxNum = iPlan; 782 if( pIdxInfo->nOrderBy==1 783 && pIdxInfo->aOrderBy[0].iColumn==1 784 && pIdxInfo->aOrderBy[0].desc==0 785 ){ 786 pIdxInfo->orderByConsumed = 1; 787 } 788 pIdxInfo->estimatedCost = (double)10000; 789 790 return SQLITE_OK; 791} 792 793/* 794** Disallow all attempts to DELETE or UPDATE. Only INSERTs are allowed. 795** 796** On an insert, the cFrom, cTo, and cost columns are used to construct 797** a new rule. All other columns are ignored. The rule is ignored 798** if cFrom and cTo are identical. A NULL value for cFrom or cTo is 799** interpreted as an empty string. The cost must be positive. 800*/ 801static int fuzzerUpdate( 802 sqlite3_vtab *pVTab, 803 int argc, 804 sqlite3_value **argv, 805 sqlite_int64 *pRowid 806){ 807 fuzzer_vtab *p = (fuzzer_vtab*)pVTab; 808 fuzzer_rule *pRule; 809 const char *zFrom; 810 int nFrom; 811 const char *zTo; 812 int nTo; 813 fuzzer_cost rCost; 814 if( argc!=7 ){ 815 sqlite3_free(pVTab->zErrMsg); 816 pVTab->zErrMsg = sqlite3_mprintf("cannot delete from a %s virtual table", 817 p->zClassName); 818 return SQLITE_CONSTRAINT; 819 } 820 if( sqlite3_value_type(argv[0])!=SQLITE_NULL ){ 821 sqlite3_free(pVTab->zErrMsg); 822 pVTab->zErrMsg = sqlite3_mprintf("cannot update a %s virtual table", 823 p->zClassName); 824 return SQLITE_CONSTRAINT; 825 } 826 zFrom = (char*)sqlite3_value_text(argv[4]); 827 if( zFrom==0 ) zFrom = ""; 828 zTo = (char*)sqlite3_value_text(argv[5]); 829 if( zTo==0 ) zTo = ""; 830 if( strcmp(zFrom,zTo)==0 ){ 831 /* Silently ignore null transformations */ 832 return SQLITE_OK; 833 } 834 rCost = sqlite3_value_int(argv[6]); 835 if( rCost<=0 ){ 836 sqlite3_free(pVTab->zErrMsg); 837 pVTab->zErrMsg = sqlite3_mprintf("cost must be positive"); 838 return SQLITE_CONSTRAINT; 839 } 840 nFrom = strlen(zFrom); 841 nTo = strlen(zTo); 842 pRule = sqlite3_malloc( sizeof(*pRule) + nFrom + nTo ); 843 if( pRule==0 ){ 844 return SQLITE_NOMEM; 845 } 846 pRule->zFrom = &pRule->zTo[nTo+1]; 847 pRule->nFrom = nFrom; 848 memcpy(pRule->zFrom, zFrom, nFrom+1); 849 memcpy(pRule->zTo, zTo, nTo+1); 850 pRule->nTo = nTo; 851 pRule->rCost = rCost; 852 pRule->pNext = p->pNewRule; 853 p->pNewRule = pRule; 854 return SQLITE_OK; 855} 856 857/* 858** A virtual table module that provides read-only access to a 859** Tcl global variable namespace. 860*/ 861static sqlite3_module fuzzerModule = { 862 0, /* iVersion */ 863 fuzzerConnect, 864 fuzzerConnect, 865 fuzzerBestIndex, 866 fuzzerDisconnect, 867 fuzzerDisconnect, 868 fuzzerOpen, /* xOpen - open a cursor */ 869 fuzzerClose, /* xClose - close a cursor */ 870 fuzzerFilter, /* xFilter - configure scan constraints */ 871 fuzzerNext, /* xNext - advance a cursor */ 872 fuzzerEof, /* xEof - check for end of scan */ 873 fuzzerColumn, /* xColumn - read data */ 874 fuzzerRowid, /* xRowid - read data */ 875 fuzzerUpdate, /* xUpdate - INSERT */ 876 0, /* xBegin */ 877 0, /* xSync */ 878 0, /* xCommit */ 879 0, /* xRollback */ 880 0, /* xFindMethod */ 881 0, /* xRename */ 882}; 883 884#endif /* SQLITE_OMIT_VIRTUALTABLE */ 885 886 887/* 888** Register the fuzzer virtual table 889*/ 890int fuzzer_register(sqlite3 *db){ 891 int rc = SQLITE_OK; 892#ifndef SQLITE_OMIT_VIRTUALTABLE 893 rc = sqlite3_create_module(db, "fuzzer", &fuzzerModule, 0); 894#endif 895 return rc; 896} 897 898#ifdef SQLITE_TEST 899#include <tcl.h> 900/* 901** Decode a pointer to an sqlite3 object. 902*/ 903extern int getDbPointer(Tcl_Interp *interp, const char *zA, sqlite3 **ppDb); 904 905/* 906** Register the echo virtual table module. 907*/ 908static int register_fuzzer_module( 909 ClientData clientData, /* Pointer to sqlite3_enable_XXX function */ 910 Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ 911 int objc, /* Number of arguments */ 912 Tcl_Obj *CONST objv[] /* Command arguments */ 913){ 914 sqlite3 *db; 915 if( objc!=2 ){ 916 Tcl_WrongNumArgs(interp, 1, objv, "DB"); 917 return TCL_ERROR; 918 } 919 if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; 920 fuzzer_register(db); 921 return TCL_OK; 922} 923 924 925/* 926** Register commands with the TCL interpreter. 927*/ 928int Sqlitetestfuzzer_Init(Tcl_Interp *interp){ 929 static struct { 930 char *zName; 931 Tcl_ObjCmdProc *xProc; 932 void *clientData; 933 } aObjCmd[] = { 934 { "register_fuzzer_module", register_fuzzer_module, 0 }, 935 }; 936 int i; 937 for(i=0; i<sizeof(aObjCmd)/sizeof(aObjCmd[0]); i++){ 938 Tcl_CreateObjCommand(interp, aObjCmd[i].zName, 939 aObjCmd[i].xProc, aObjCmd[i].clientData, 0); 940 } 941 return TCL_OK; 942} 943 944#endif /* SQLITE_TEST */ 945