1// Copyright 2013 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "platform/time.h"
29
30#if V8_OS_POSIX
31#include <sys/time.h>
32#endif
33#if V8_OS_MACOSX
34#include <mach/mach_time.h>
35#endif
36
37#include <cstring>
38
39#include "checks.h"
40#include "cpu.h"
41#include "platform.h"
42#if V8_OS_WIN
43#include "win32-headers.h"
44#endif
45
46namespace v8 {
47namespace internal {
48
49TimeDelta TimeDelta::FromDays(int days) {
50  return TimeDelta(days * Time::kMicrosecondsPerDay);
51}
52
53
54TimeDelta TimeDelta::FromHours(int hours) {
55  return TimeDelta(hours * Time::kMicrosecondsPerHour);
56}
57
58
59TimeDelta TimeDelta::FromMinutes(int minutes) {
60  return TimeDelta(minutes * Time::kMicrosecondsPerMinute);
61}
62
63
64TimeDelta TimeDelta::FromSeconds(int64_t seconds) {
65  return TimeDelta(seconds * Time::kMicrosecondsPerSecond);
66}
67
68
69TimeDelta TimeDelta::FromMilliseconds(int64_t milliseconds) {
70  return TimeDelta(milliseconds * Time::kMicrosecondsPerMillisecond);
71}
72
73
74TimeDelta TimeDelta::FromNanoseconds(int64_t nanoseconds) {
75  return TimeDelta(nanoseconds / Time::kNanosecondsPerMicrosecond);
76}
77
78
79int TimeDelta::InDays() const {
80  return static_cast<int>(delta_ / Time::kMicrosecondsPerDay);
81}
82
83
84int TimeDelta::InHours() const {
85  return static_cast<int>(delta_ / Time::kMicrosecondsPerHour);
86}
87
88
89int TimeDelta::InMinutes() const {
90  return static_cast<int>(delta_ / Time::kMicrosecondsPerMinute);
91}
92
93
94double TimeDelta::InSecondsF() const {
95  return static_cast<double>(delta_) / Time::kMicrosecondsPerSecond;
96}
97
98
99int64_t TimeDelta::InSeconds() const {
100  return delta_ / Time::kMicrosecondsPerSecond;
101}
102
103
104double TimeDelta::InMillisecondsF() const {
105  return static_cast<double>(delta_) / Time::kMicrosecondsPerMillisecond;
106}
107
108
109int64_t TimeDelta::InMilliseconds() const {
110  return delta_ / Time::kMicrosecondsPerMillisecond;
111}
112
113
114int64_t TimeDelta::InNanoseconds() const {
115  return delta_ * Time::kNanosecondsPerMicrosecond;
116}
117
118
119#if V8_OS_MACOSX
120
121TimeDelta TimeDelta::FromMachTimespec(struct mach_timespec ts) {
122  ASSERT_GE(ts.tv_nsec, 0);
123  ASSERT_LT(ts.tv_nsec,
124            static_cast<long>(Time::kNanosecondsPerSecond));  // NOLINT
125  return TimeDelta(ts.tv_sec * Time::kMicrosecondsPerSecond +
126                   ts.tv_nsec / Time::kNanosecondsPerMicrosecond);
127}
128
129
130struct mach_timespec TimeDelta::ToMachTimespec() const {
131  struct mach_timespec ts;
132  ASSERT(delta_ >= 0);
133  ts.tv_sec = delta_ / Time::kMicrosecondsPerSecond;
134  ts.tv_nsec = (delta_ % Time::kMicrosecondsPerSecond) *
135      Time::kNanosecondsPerMicrosecond;
136  return ts;
137}
138
139#endif  // V8_OS_MACOSX
140
141
142#if V8_OS_POSIX
143
144TimeDelta TimeDelta::FromTimespec(struct timespec ts) {
145  ASSERT_GE(ts.tv_nsec, 0);
146  ASSERT_LT(ts.tv_nsec,
147            static_cast<long>(Time::kNanosecondsPerSecond));  // NOLINT
148  return TimeDelta(ts.tv_sec * Time::kMicrosecondsPerSecond +
149                   ts.tv_nsec / Time::kNanosecondsPerMicrosecond);
150}
151
152
153struct timespec TimeDelta::ToTimespec() const {
154  struct timespec ts;
155  ts.tv_sec = delta_ / Time::kMicrosecondsPerSecond;
156  ts.tv_nsec = (delta_ % Time::kMicrosecondsPerSecond) *
157      Time::kNanosecondsPerMicrosecond;
158  return ts;
159}
160
161#endif  // V8_OS_POSIX
162
163
164#if V8_OS_WIN
165
166// We implement time using the high-resolution timers so that we can get
167// timeouts which are smaller than 10-15ms. To avoid any drift, we
168// periodically resync the internal clock to the system clock.
169class Clock V8_FINAL {
170 public:
171  Clock() : initial_ticks_(GetSystemTicks()), initial_time_(GetSystemTime()) {}
172
173  Time Now() {
174    // Time between resampling the un-granular clock for this API (1 minute).
175    const TimeDelta kMaxElapsedTime = TimeDelta::FromMinutes(1);
176
177    LockGuard<Mutex> lock_guard(&mutex_);
178
179    // Determine current time and ticks.
180    TimeTicks ticks = GetSystemTicks();
181    Time time = GetSystemTime();
182
183    // Check if we need to synchronize with the system clock due to a backwards
184    // time change or the amount of time elapsed.
185    TimeDelta elapsed = ticks - initial_ticks_;
186    if (time < initial_time_ || elapsed > kMaxElapsedTime) {
187      initial_ticks_ = ticks;
188      initial_time_ = time;
189      return time;
190    }
191
192    return initial_time_ + elapsed;
193  }
194
195  Time NowFromSystemTime() {
196    LockGuard<Mutex> lock_guard(&mutex_);
197    initial_ticks_ = GetSystemTicks();
198    initial_time_ = GetSystemTime();
199    return initial_time_;
200  }
201
202 private:
203  static TimeTicks GetSystemTicks() {
204    return TimeTicks::Now();
205  }
206
207  static Time GetSystemTime() {
208    FILETIME ft;
209    ::GetSystemTimeAsFileTime(&ft);
210    return Time::FromFiletime(ft);
211  }
212
213  TimeTicks initial_ticks_;
214  Time initial_time_;
215  Mutex mutex_;
216};
217
218
219static LazyStaticInstance<Clock,
220    DefaultConstructTrait<Clock>,
221    ThreadSafeInitOnceTrait>::type clock = LAZY_STATIC_INSTANCE_INITIALIZER;
222
223
224Time Time::Now() {
225  return clock.Pointer()->Now();
226}
227
228
229Time Time::NowFromSystemTime() {
230  return clock.Pointer()->NowFromSystemTime();
231}
232
233
234// Time between windows epoch and standard epoch.
235static const int64_t kTimeToEpochInMicroseconds = V8_INT64_C(11644473600000000);
236
237
238Time Time::FromFiletime(FILETIME ft) {
239  if (ft.dwLowDateTime == 0 && ft.dwHighDateTime == 0) {
240    return Time();
241  }
242  if (ft.dwLowDateTime == std::numeric_limits<DWORD>::max() &&
243      ft.dwHighDateTime == std::numeric_limits<DWORD>::max()) {
244    return Max();
245  }
246  int64_t us = (static_cast<uint64_t>(ft.dwLowDateTime) +
247                (static_cast<uint64_t>(ft.dwHighDateTime) << 32)) / 10;
248  return Time(us - kTimeToEpochInMicroseconds);
249}
250
251
252FILETIME Time::ToFiletime() const {
253  ASSERT(us_ >= 0);
254  FILETIME ft;
255  if (IsNull()) {
256    ft.dwLowDateTime = 0;
257    ft.dwHighDateTime = 0;
258    return ft;
259  }
260  if (IsMax()) {
261    ft.dwLowDateTime = std::numeric_limits<DWORD>::max();
262    ft.dwHighDateTime = std::numeric_limits<DWORD>::max();
263    return ft;
264  }
265  uint64_t us = static_cast<uint64_t>(us_ + kTimeToEpochInMicroseconds) * 10;
266  ft.dwLowDateTime = static_cast<DWORD>(us);
267  ft.dwHighDateTime = static_cast<DWORD>(us >> 32);
268  return ft;
269}
270
271#elif V8_OS_POSIX
272
273Time Time::Now() {
274  struct timeval tv;
275  int result = gettimeofday(&tv, NULL);
276  ASSERT_EQ(0, result);
277  USE(result);
278  return FromTimeval(tv);
279}
280
281
282Time Time::NowFromSystemTime() {
283  return Now();
284}
285
286
287Time Time::FromTimespec(struct timespec ts) {
288  ASSERT(ts.tv_nsec >= 0);
289  ASSERT(ts.tv_nsec < static_cast<long>(kNanosecondsPerSecond));  // NOLINT
290  if (ts.tv_nsec == 0 && ts.tv_sec == 0) {
291    return Time();
292  }
293  if (ts.tv_nsec == static_cast<long>(kNanosecondsPerSecond - 1) &&  // NOLINT
294      ts.tv_sec == std::numeric_limits<time_t>::max()) {
295    return Max();
296  }
297  return Time(ts.tv_sec * kMicrosecondsPerSecond +
298              ts.tv_nsec / kNanosecondsPerMicrosecond);
299}
300
301
302struct timespec Time::ToTimespec() const {
303  struct timespec ts;
304  if (IsNull()) {
305    ts.tv_sec = 0;
306    ts.tv_nsec = 0;
307    return ts;
308  }
309  if (IsMax()) {
310    ts.tv_sec = std::numeric_limits<time_t>::max();
311    ts.tv_nsec = static_cast<long>(kNanosecondsPerSecond - 1);  // NOLINT
312    return ts;
313  }
314  ts.tv_sec = us_ / kMicrosecondsPerSecond;
315  ts.tv_nsec = (us_ % kMicrosecondsPerSecond) * kNanosecondsPerMicrosecond;
316  return ts;
317}
318
319
320Time Time::FromTimeval(struct timeval tv) {
321  ASSERT(tv.tv_usec >= 0);
322  ASSERT(tv.tv_usec < static_cast<suseconds_t>(kMicrosecondsPerSecond));
323  if (tv.tv_usec == 0 && tv.tv_sec == 0) {
324    return Time();
325  }
326  if (tv.tv_usec == static_cast<suseconds_t>(kMicrosecondsPerSecond - 1) &&
327      tv.tv_sec == std::numeric_limits<time_t>::max()) {
328    return Max();
329  }
330  return Time(tv.tv_sec * kMicrosecondsPerSecond + tv.tv_usec);
331}
332
333
334struct timeval Time::ToTimeval() const {
335  struct timeval tv;
336  if (IsNull()) {
337    tv.tv_sec = 0;
338    tv.tv_usec = 0;
339    return tv;
340  }
341  if (IsMax()) {
342    tv.tv_sec = std::numeric_limits<time_t>::max();
343    tv.tv_usec = static_cast<suseconds_t>(kMicrosecondsPerSecond - 1);
344    return tv;
345  }
346  tv.tv_sec = us_ / kMicrosecondsPerSecond;
347  tv.tv_usec = us_ % kMicrosecondsPerSecond;
348  return tv;
349}
350
351#endif  // V8_OS_WIN
352
353
354Time Time::FromJsTime(double ms_since_epoch) {
355  // The epoch is a valid time, so this constructor doesn't interpret
356  // 0 as the null time.
357  if (ms_since_epoch == std::numeric_limits<double>::max()) {
358    return Max();
359  }
360  return Time(
361      static_cast<int64_t>(ms_since_epoch * kMicrosecondsPerMillisecond));
362}
363
364
365double Time::ToJsTime() const {
366  if (IsNull()) {
367    // Preserve 0 so the invalid result doesn't depend on the platform.
368    return 0;
369  }
370  if (IsMax()) {
371    // Preserve max without offset to prevent overflow.
372    return std::numeric_limits<double>::max();
373  }
374  return static_cast<double>(us_) / kMicrosecondsPerMillisecond;
375}
376
377
378#if V8_OS_WIN
379
380class TickClock {
381 public:
382  virtual ~TickClock() {}
383  virtual int64_t Now() = 0;
384  virtual bool IsHighResolution() = 0;
385};
386
387
388// Overview of time counters:
389// (1) CPU cycle counter. (Retrieved via RDTSC)
390// The CPU counter provides the highest resolution time stamp and is the least
391// expensive to retrieve. However, the CPU counter is unreliable and should not
392// be used in production. Its biggest issue is that it is per processor and it
393// is not synchronized between processors. Also, on some computers, the counters
394// will change frequency due to thermal and power changes, and stop in some
395// states.
396//
397// (2) QueryPerformanceCounter (QPC). The QPC counter provides a high-
398// resolution (100 nanoseconds) time stamp but is comparatively more expensive
399// to retrieve. What QueryPerformanceCounter actually does is up to the HAL.
400// (with some help from ACPI).
401// According to http://blogs.msdn.com/oldnewthing/archive/2005/09/02/459952.aspx
402// in the worst case, it gets the counter from the rollover interrupt on the
403// programmable interrupt timer. In best cases, the HAL may conclude that the
404// RDTSC counter runs at a constant frequency, then it uses that instead. On
405// multiprocessor machines, it will try to verify the values returned from
406// RDTSC on each processor are consistent with each other, and apply a handful
407// of workarounds for known buggy hardware. In other words, QPC is supposed to
408// give consistent result on a multiprocessor computer, but it is unreliable in
409// reality due to bugs in BIOS or HAL on some, especially old computers.
410// With recent updates on HAL and newer BIOS, QPC is getting more reliable but
411// it should be used with caution.
412//
413// (3) System time. The system time provides a low-resolution (typically 10ms
414// to 55 milliseconds) time stamp but is comparatively less expensive to
415// retrieve and more reliable.
416class HighResolutionTickClock V8_FINAL : public TickClock {
417 public:
418  explicit HighResolutionTickClock(int64_t ticks_per_second)
419      : ticks_per_second_(ticks_per_second) {
420    ASSERT_LT(0, ticks_per_second);
421  }
422  virtual ~HighResolutionTickClock() {}
423
424  virtual int64_t Now() V8_OVERRIDE {
425    LARGE_INTEGER now;
426    BOOL result = QueryPerformanceCounter(&now);
427    ASSERT(result);
428    USE(result);
429
430    // Intentionally calculate microseconds in a round about manner to avoid
431    // overflow and precision issues. Think twice before simplifying!
432    int64_t whole_seconds = now.QuadPart / ticks_per_second_;
433    int64_t leftover_ticks = now.QuadPart % ticks_per_second_;
434    int64_t ticks = (whole_seconds * Time::kMicrosecondsPerSecond) +
435        ((leftover_ticks * Time::kMicrosecondsPerSecond) / ticks_per_second_);
436
437    // Make sure we never return 0 here, so that TimeTicks::HighResolutionNow()
438    // will never return 0.
439    return ticks + 1;
440  }
441
442  virtual bool IsHighResolution() V8_OVERRIDE {
443    return true;
444  }
445
446 private:
447  int64_t ticks_per_second_;
448};
449
450
451class RolloverProtectedTickClock V8_FINAL : public TickClock {
452 public:
453  // We initialize rollover_ms_ to 1 to ensure that we will never
454  // return 0 from TimeTicks::HighResolutionNow() and TimeTicks::Now() below.
455  RolloverProtectedTickClock() : last_seen_now_(0), rollover_ms_(1) {}
456  virtual ~RolloverProtectedTickClock() {}
457
458  virtual int64_t Now() V8_OVERRIDE {
459    LockGuard<Mutex> lock_guard(&mutex_);
460    // We use timeGetTime() to implement TimeTicks::Now(), which rolls over
461    // every ~49.7 days. We try to track rollover ourselves, which works if
462    // TimeTicks::Now() is called at least every 49 days.
463    // Note that we do not use GetTickCount() here, since timeGetTime() gives
464    // more predictable delta values, as described here:
465    // http://blogs.msdn.com/b/larryosterman/archive/2009/09/02/what-s-the-difference-between-gettickcount-and-timegettime.aspx
466    // timeGetTime() provides 1ms granularity when combined with
467    // timeBeginPeriod(). If the host application for V8 wants fast timers, it
468    // can use timeBeginPeriod() to increase the resolution.
469    DWORD now = timeGetTime();
470    if (now < last_seen_now_) {
471      rollover_ms_ += V8_INT64_C(0x100000000);  // ~49.7 days.
472    }
473    last_seen_now_ = now;
474    return (now + rollover_ms_) * Time::kMicrosecondsPerMillisecond;
475  }
476
477  virtual bool IsHighResolution() V8_OVERRIDE {
478    return false;
479  }
480
481 private:
482  Mutex mutex_;
483  DWORD last_seen_now_;
484  int64_t rollover_ms_;
485};
486
487
488static LazyStaticInstance<RolloverProtectedTickClock,
489    DefaultConstructTrait<RolloverProtectedTickClock>,
490    ThreadSafeInitOnceTrait>::type tick_clock =
491        LAZY_STATIC_INSTANCE_INITIALIZER;
492
493
494struct CreateHighResTickClockTrait {
495  static TickClock* Create() {
496    // Check if the installed hardware supports a high-resolution performance
497    // counter, and if not fallback to the low-resolution tick clock.
498    LARGE_INTEGER ticks_per_second;
499    if (!QueryPerformanceFrequency(&ticks_per_second)) {
500      return tick_clock.Pointer();
501    }
502
503    // On Athlon X2 CPUs (e.g. model 15) the QueryPerformanceCounter
504    // is unreliable, fallback to the low-resolution tick clock.
505    CPU cpu;
506    if (strcmp(cpu.vendor(), "AuthenticAMD") == 0 && cpu.family() == 15) {
507      return tick_clock.Pointer();
508    }
509
510    return new HighResolutionTickClock(ticks_per_second.QuadPart);
511  }
512};
513
514
515static LazyDynamicInstance<TickClock,
516    CreateHighResTickClockTrait,
517    ThreadSafeInitOnceTrait>::type high_res_tick_clock =
518        LAZY_DYNAMIC_INSTANCE_INITIALIZER;
519
520
521TimeTicks TimeTicks::Now() {
522  // Make sure we never return 0 here.
523  TimeTicks ticks(tick_clock.Pointer()->Now());
524  ASSERT(!ticks.IsNull());
525  return ticks;
526}
527
528
529TimeTicks TimeTicks::HighResolutionNow() {
530  // Make sure we never return 0 here.
531  TimeTicks ticks(high_res_tick_clock.Pointer()->Now());
532  ASSERT(!ticks.IsNull());
533  return ticks;
534}
535
536
537// static
538bool TimeTicks::IsHighResolutionClockWorking() {
539  return high_res_tick_clock.Pointer()->IsHighResolution();
540}
541
542#else  // V8_OS_WIN
543
544TimeTicks TimeTicks::Now() {
545  return HighResolutionNow();
546}
547
548
549TimeTicks TimeTicks::HighResolutionNow() {
550  int64_t ticks;
551#if V8_OS_MACOSX
552  static struct mach_timebase_info info;
553  if (info.denom == 0) {
554    kern_return_t result = mach_timebase_info(&info);
555    ASSERT_EQ(KERN_SUCCESS, result);
556    USE(result);
557  }
558  ticks = (mach_absolute_time() / Time::kNanosecondsPerMicrosecond *
559           info.numer / info.denom);
560#elif V8_OS_SOLARIS
561  ticks = (gethrtime() / Time::kNanosecondsPerMicrosecond);
562#elif V8_LIBRT_NOT_AVAILABLE
563  // TODO(bmeurer): This is a temporary hack to support cross-compiling
564  // Chrome for Android in AOSP. Remove this once AOSP is fixed, also
565  // cleanup the tools/gyp/v8.gyp file.
566  struct timeval tv;
567  int result = gettimeofday(&tv, NULL);
568  ASSERT_EQ(0, result);
569  USE(result);
570  ticks = (tv.tv_sec * Time::kMicrosecondsPerSecond + tv.tv_usec);
571#elif V8_OS_POSIX
572  struct timespec ts;
573  int result = clock_gettime(CLOCK_MONOTONIC, &ts);
574  ASSERT_EQ(0, result);
575  USE(result);
576  ticks = (ts.tv_sec * Time::kMicrosecondsPerSecond +
577           ts.tv_nsec / Time::kNanosecondsPerMicrosecond);
578#endif  // V8_OS_MACOSX
579  // Make sure we never return 0 here.
580  return TimeTicks(ticks + 1);
581}
582
583
584// static
585bool TimeTicks::IsHighResolutionClockWorking() {
586  return true;
587}
588
589#endif  // V8_OS_WIN
590
591} }  // namespace v8::internal
592