1//===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr constant evaluator.
11//
12// Constant expression evaluation produces four main results:
13//
14//  * A success/failure flag indicating whether constant folding was successful.
15//    This is the 'bool' return value used by most of the code in this file. A
16//    'false' return value indicates that constant folding has failed, and any
17//    appropriate diagnostic has already been produced.
18//
19//  * An evaluated result, valid only if constant folding has not failed.
20//
21//  * A flag indicating if evaluation encountered (unevaluated) side-effects.
22//    These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
23//    where it is possible to determine the evaluated result regardless.
24//
25//  * A set of notes indicating why the evaluation was not a constant expression
26//    (under the C++11 / C++1y rules only, at the moment), or, if folding failed
27//    too, why the expression could not be folded.
28//
29// If we are checking for a potential constant expression, failure to constant
30// fold a potential constant sub-expression will be indicated by a 'false'
31// return value (the expression could not be folded) and no diagnostic (the
32// expression is not necessarily non-constant).
33//
34//===----------------------------------------------------------------------===//
35
36#include "clang/AST/APValue.h"
37#include "clang/AST/ASTContext.h"
38#include "clang/AST/ASTDiagnostic.h"
39#include "clang/AST/CharUnits.h"
40#include "clang/AST/Expr.h"
41#include "clang/AST/RecordLayout.h"
42#include "clang/AST/StmtVisitor.h"
43#include "clang/AST/TypeLoc.h"
44#include "clang/Basic/Builtins.h"
45#include "clang/Basic/TargetInfo.h"
46#include "llvm/ADT/SmallString.h"
47#include "llvm/Support/raw_ostream.h"
48#include <cstring>
49#include <functional>
50
51using namespace clang;
52using llvm::APSInt;
53using llvm::APFloat;
54
55static bool IsGlobalLValue(APValue::LValueBase B);
56
57namespace {
58  struct LValue;
59  struct CallStackFrame;
60  struct EvalInfo;
61
62  static QualType getType(APValue::LValueBase B) {
63    if (!B) return QualType();
64    if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>())
65      return D->getType();
66
67    const Expr *Base = B.get<const Expr*>();
68
69    // For a materialized temporary, the type of the temporary we materialized
70    // may not be the type of the expression.
71    if (const MaterializeTemporaryExpr *MTE =
72            dyn_cast<MaterializeTemporaryExpr>(Base)) {
73      SmallVector<const Expr *, 2> CommaLHSs;
74      SmallVector<SubobjectAdjustment, 2> Adjustments;
75      const Expr *Temp = MTE->GetTemporaryExpr();
76      const Expr *Inner = Temp->skipRValueSubobjectAdjustments(CommaLHSs,
77                                                               Adjustments);
78      // Keep any cv-qualifiers from the reference if we generated a temporary
79      // for it.
80      if (Inner != Temp)
81        return Inner->getType();
82    }
83
84    return Base->getType();
85  }
86
87  /// Get an LValue path entry, which is known to not be an array index, as a
88  /// field or base class.
89  static
90  APValue::BaseOrMemberType getAsBaseOrMember(APValue::LValuePathEntry E) {
91    APValue::BaseOrMemberType Value;
92    Value.setFromOpaqueValue(E.BaseOrMember);
93    return Value;
94  }
95
96  /// Get an LValue path entry, which is known to not be an array index, as a
97  /// field declaration.
98  static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
99    return dyn_cast<FieldDecl>(getAsBaseOrMember(E).getPointer());
100  }
101  /// Get an LValue path entry, which is known to not be an array index, as a
102  /// base class declaration.
103  static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
104    return dyn_cast<CXXRecordDecl>(getAsBaseOrMember(E).getPointer());
105  }
106  /// Determine whether this LValue path entry for a base class names a virtual
107  /// base class.
108  static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
109    return getAsBaseOrMember(E).getInt();
110  }
111
112  /// Find the path length and type of the most-derived subobject in the given
113  /// path, and find the size of the containing array, if any.
114  static
115  unsigned findMostDerivedSubobject(ASTContext &Ctx, QualType Base,
116                                    ArrayRef<APValue::LValuePathEntry> Path,
117                                    uint64_t &ArraySize, QualType &Type) {
118    unsigned MostDerivedLength = 0;
119    Type = Base;
120    for (unsigned I = 0, N = Path.size(); I != N; ++I) {
121      if (Type->isArrayType()) {
122        const ConstantArrayType *CAT =
123          cast<ConstantArrayType>(Ctx.getAsArrayType(Type));
124        Type = CAT->getElementType();
125        ArraySize = CAT->getSize().getZExtValue();
126        MostDerivedLength = I + 1;
127      } else if (Type->isAnyComplexType()) {
128        const ComplexType *CT = Type->castAs<ComplexType>();
129        Type = CT->getElementType();
130        ArraySize = 2;
131        MostDerivedLength = I + 1;
132      } else if (const FieldDecl *FD = getAsField(Path[I])) {
133        Type = FD->getType();
134        ArraySize = 0;
135        MostDerivedLength = I + 1;
136      } else {
137        // Path[I] describes a base class.
138        ArraySize = 0;
139      }
140    }
141    return MostDerivedLength;
142  }
143
144  // The order of this enum is important for diagnostics.
145  enum CheckSubobjectKind {
146    CSK_Base, CSK_Derived, CSK_Field, CSK_ArrayToPointer, CSK_ArrayIndex,
147    CSK_This, CSK_Real, CSK_Imag
148  };
149
150  /// A path from a glvalue to a subobject of that glvalue.
151  struct SubobjectDesignator {
152    /// True if the subobject was named in a manner not supported by C++11. Such
153    /// lvalues can still be folded, but they are not core constant expressions
154    /// and we cannot perform lvalue-to-rvalue conversions on them.
155    bool Invalid : 1;
156
157    /// Is this a pointer one past the end of an object?
158    bool IsOnePastTheEnd : 1;
159
160    /// The length of the path to the most-derived object of which this is a
161    /// subobject.
162    unsigned MostDerivedPathLength : 30;
163
164    /// The size of the array of which the most-derived object is an element, or
165    /// 0 if the most-derived object is not an array element.
166    uint64_t MostDerivedArraySize;
167
168    /// The type of the most derived object referred to by this address.
169    QualType MostDerivedType;
170
171    typedef APValue::LValuePathEntry PathEntry;
172
173    /// The entries on the path from the glvalue to the designated subobject.
174    SmallVector<PathEntry, 8> Entries;
175
176    SubobjectDesignator() : Invalid(true) {}
177
178    explicit SubobjectDesignator(QualType T)
179      : Invalid(false), IsOnePastTheEnd(false), MostDerivedPathLength(0),
180        MostDerivedArraySize(0), MostDerivedType(T) {}
181
182    SubobjectDesignator(ASTContext &Ctx, const APValue &V)
183      : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
184        MostDerivedPathLength(0), MostDerivedArraySize(0) {
185      if (!Invalid) {
186        IsOnePastTheEnd = V.isLValueOnePastTheEnd();
187        ArrayRef<PathEntry> VEntries = V.getLValuePath();
188        Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
189        if (V.getLValueBase())
190          MostDerivedPathLength =
191              findMostDerivedSubobject(Ctx, getType(V.getLValueBase()),
192                                       V.getLValuePath(), MostDerivedArraySize,
193                                       MostDerivedType);
194      }
195    }
196
197    void setInvalid() {
198      Invalid = true;
199      Entries.clear();
200    }
201
202    /// Determine whether this is a one-past-the-end pointer.
203    bool isOnePastTheEnd() const {
204      if (IsOnePastTheEnd)
205        return true;
206      if (MostDerivedArraySize &&
207          Entries[MostDerivedPathLength - 1].ArrayIndex == MostDerivedArraySize)
208        return true;
209      return false;
210    }
211
212    /// Check that this refers to a valid subobject.
213    bool isValidSubobject() const {
214      if (Invalid)
215        return false;
216      return !isOnePastTheEnd();
217    }
218    /// Check that this refers to a valid subobject, and if not, produce a
219    /// relevant diagnostic and set the designator as invalid.
220    bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
221
222    /// Update this designator to refer to the first element within this array.
223    void addArrayUnchecked(const ConstantArrayType *CAT) {
224      PathEntry Entry;
225      Entry.ArrayIndex = 0;
226      Entries.push_back(Entry);
227
228      // This is a most-derived object.
229      MostDerivedType = CAT->getElementType();
230      MostDerivedArraySize = CAT->getSize().getZExtValue();
231      MostDerivedPathLength = Entries.size();
232    }
233    /// Update this designator to refer to the given base or member of this
234    /// object.
235    void addDeclUnchecked(const Decl *D, bool Virtual = false) {
236      PathEntry Entry;
237      APValue::BaseOrMemberType Value(D, Virtual);
238      Entry.BaseOrMember = Value.getOpaqueValue();
239      Entries.push_back(Entry);
240
241      // If this isn't a base class, it's a new most-derived object.
242      if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
243        MostDerivedType = FD->getType();
244        MostDerivedArraySize = 0;
245        MostDerivedPathLength = Entries.size();
246      }
247    }
248    /// Update this designator to refer to the given complex component.
249    void addComplexUnchecked(QualType EltTy, bool Imag) {
250      PathEntry Entry;
251      Entry.ArrayIndex = Imag;
252      Entries.push_back(Entry);
253
254      // This is technically a most-derived object, though in practice this
255      // is unlikely to matter.
256      MostDerivedType = EltTy;
257      MostDerivedArraySize = 2;
258      MostDerivedPathLength = Entries.size();
259    }
260    void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E, uint64_t N);
261    /// Add N to the address of this subobject.
262    void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
263      if (Invalid) return;
264      if (MostDerivedPathLength == Entries.size() && MostDerivedArraySize) {
265        Entries.back().ArrayIndex += N;
266        if (Entries.back().ArrayIndex > MostDerivedArraySize) {
267          diagnosePointerArithmetic(Info, E, Entries.back().ArrayIndex);
268          setInvalid();
269        }
270        return;
271      }
272      // [expr.add]p4: For the purposes of these operators, a pointer to a
273      // nonarray object behaves the same as a pointer to the first element of
274      // an array of length one with the type of the object as its element type.
275      if (IsOnePastTheEnd && N == (uint64_t)-1)
276        IsOnePastTheEnd = false;
277      else if (!IsOnePastTheEnd && N == 1)
278        IsOnePastTheEnd = true;
279      else if (N != 0) {
280        diagnosePointerArithmetic(Info, E, uint64_t(IsOnePastTheEnd) + N);
281        setInvalid();
282      }
283    }
284  };
285
286  /// A stack frame in the constexpr call stack.
287  struct CallStackFrame {
288    EvalInfo &Info;
289
290    /// Parent - The caller of this stack frame.
291    CallStackFrame *Caller;
292
293    /// CallLoc - The location of the call expression for this call.
294    SourceLocation CallLoc;
295
296    /// Callee - The function which was called.
297    const FunctionDecl *Callee;
298
299    /// Index - The call index of this call.
300    unsigned Index;
301
302    /// This - The binding for the this pointer in this call, if any.
303    const LValue *This;
304
305    /// ParmBindings - Parameter bindings for this function call, indexed by
306    /// parameters' function scope indices.
307    APValue *Arguments;
308
309    // Note that we intentionally use std::map here so that references to
310    // values are stable.
311    typedef std::map<const void*, APValue> MapTy;
312    typedef MapTy::const_iterator temp_iterator;
313    /// Temporaries - Temporary lvalues materialized within this stack frame.
314    MapTy Temporaries;
315
316    CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
317                   const FunctionDecl *Callee, const LValue *This,
318                   APValue *Arguments);
319    ~CallStackFrame();
320
321    APValue *getTemporary(const void *Key) {
322      MapTy::iterator I = Temporaries.find(Key);
323      return I == Temporaries.end() ? 0 : &I->second;
324    }
325    APValue &createTemporary(const void *Key, bool IsLifetimeExtended);
326  };
327
328  /// Temporarily override 'this'.
329  class ThisOverrideRAII {
330  public:
331    ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable)
332        : Frame(Frame), OldThis(Frame.This) {
333      if (Enable)
334        Frame.This = NewThis;
335    }
336    ~ThisOverrideRAII() {
337      Frame.This = OldThis;
338    }
339  private:
340    CallStackFrame &Frame;
341    const LValue *OldThis;
342  };
343
344  /// A partial diagnostic which we might know in advance that we are not going
345  /// to emit.
346  class OptionalDiagnostic {
347    PartialDiagnostic *Diag;
348
349  public:
350    explicit OptionalDiagnostic(PartialDiagnostic *Diag = 0) : Diag(Diag) {}
351
352    template<typename T>
353    OptionalDiagnostic &operator<<(const T &v) {
354      if (Diag)
355        *Diag << v;
356      return *this;
357    }
358
359    OptionalDiagnostic &operator<<(const APSInt &I) {
360      if (Diag) {
361        SmallVector<char, 32> Buffer;
362        I.toString(Buffer);
363        *Diag << StringRef(Buffer.data(), Buffer.size());
364      }
365      return *this;
366    }
367
368    OptionalDiagnostic &operator<<(const APFloat &F) {
369      if (Diag) {
370        SmallVector<char, 32> Buffer;
371        F.toString(Buffer);
372        *Diag << StringRef(Buffer.data(), Buffer.size());
373      }
374      return *this;
375    }
376  };
377
378  /// A cleanup, and a flag indicating whether it is lifetime-extended.
379  class Cleanup {
380    llvm::PointerIntPair<APValue*, 1, bool> Value;
381
382  public:
383    Cleanup(APValue *Val, bool IsLifetimeExtended)
384        : Value(Val, IsLifetimeExtended) {}
385
386    bool isLifetimeExtended() const { return Value.getInt(); }
387    void endLifetime() {
388      *Value.getPointer() = APValue();
389    }
390  };
391
392  /// EvalInfo - This is a private struct used by the evaluator to capture
393  /// information about a subexpression as it is folded.  It retains information
394  /// about the AST context, but also maintains information about the folded
395  /// expression.
396  ///
397  /// If an expression could be evaluated, it is still possible it is not a C
398  /// "integer constant expression" or constant expression.  If not, this struct
399  /// captures information about how and why not.
400  ///
401  /// One bit of information passed *into* the request for constant folding
402  /// indicates whether the subexpression is "evaluated" or not according to C
403  /// rules.  For example, the RHS of (0 && foo()) is not evaluated.  We can
404  /// evaluate the expression regardless of what the RHS is, but C only allows
405  /// certain things in certain situations.
406  struct EvalInfo {
407    ASTContext &Ctx;
408
409    /// EvalStatus - Contains information about the evaluation.
410    Expr::EvalStatus &EvalStatus;
411
412    /// CurrentCall - The top of the constexpr call stack.
413    CallStackFrame *CurrentCall;
414
415    /// CallStackDepth - The number of calls in the call stack right now.
416    unsigned CallStackDepth;
417
418    /// NextCallIndex - The next call index to assign.
419    unsigned NextCallIndex;
420
421    /// StepsLeft - The remaining number of evaluation steps we're permitted
422    /// to perform. This is essentially a limit for the number of statements
423    /// we will evaluate.
424    unsigned StepsLeft;
425
426    /// BottomFrame - The frame in which evaluation started. This must be
427    /// initialized after CurrentCall and CallStackDepth.
428    CallStackFrame BottomFrame;
429
430    /// A stack of values whose lifetimes end at the end of some surrounding
431    /// evaluation frame.
432    llvm::SmallVector<Cleanup, 16> CleanupStack;
433
434    /// EvaluatingDecl - This is the declaration whose initializer is being
435    /// evaluated, if any.
436    APValue::LValueBase EvaluatingDecl;
437
438    /// EvaluatingDeclValue - This is the value being constructed for the
439    /// declaration whose initializer is being evaluated, if any.
440    APValue *EvaluatingDeclValue;
441
442    /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
443    /// notes attached to it will also be stored, otherwise they will not be.
444    bool HasActiveDiagnostic;
445
446    /// CheckingPotentialConstantExpression - Are we checking whether the
447    /// expression is a potential constant expression? If so, some diagnostics
448    /// are suppressed.
449    bool CheckingPotentialConstantExpression;
450
451    bool IntOverflowCheckMode;
452
453    EvalInfo(const ASTContext &C, Expr::EvalStatus &S,
454             bool OverflowCheckMode = false)
455      : Ctx(const_cast<ASTContext&>(C)), EvalStatus(S), CurrentCall(0),
456        CallStackDepth(0), NextCallIndex(1),
457        StepsLeft(getLangOpts().ConstexprStepLimit),
458        BottomFrame(*this, SourceLocation(), 0, 0, 0),
459        EvaluatingDecl((const ValueDecl*)0), EvaluatingDeclValue(0),
460        HasActiveDiagnostic(false), CheckingPotentialConstantExpression(false),
461        IntOverflowCheckMode(OverflowCheckMode) {}
462
463    void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value) {
464      EvaluatingDecl = Base;
465      EvaluatingDeclValue = &Value;
466    }
467
468    const LangOptions &getLangOpts() const { return Ctx.getLangOpts(); }
469
470    bool CheckCallLimit(SourceLocation Loc) {
471      // Don't perform any constexpr calls (other than the call we're checking)
472      // when checking a potential constant expression.
473      if (CheckingPotentialConstantExpression && CallStackDepth > 1)
474        return false;
475      if (NextCallIndex == 0) {
476        // NextCallIndex has wrapped around.
477        Diag(Loc, diag::note_constexpr_call_limit_exceeded);
478        return false;
479      }
480      if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
481        return true;
482      Diag(Loc, diag::note_constexpr_depth_limit_exceeded)
483        << getLangOpts().ConstexprCallDepth;
484      return false;
485    }
486
487    CallStackFrame *getCallFrame(unsigned CallIndex) {
488      assert(CallIndex && "no call index in getCallFrame");
489      // We will eventually hit BottomFrame, which has Index 1, so Frame can't
490      // be null in this loop.
491      CallStackFrame *Frame = CurrentCall;
492      while (Frame->Index > CallIndex)
493        Frame = Frame->Caller;
494      return (Frame->Index == CallIndex) ? Frame : 0;
495    }
496
497    bool nextStep(const Stmt *S) {
498      if (!StepsLeft) {
499        Diag(S->getLocStart(), diag::note_constexpr_step_limit_exceeded);
500        return false;
501      }
502      --StepsLeft;
503      return true;
504    }
505
506  private:
507    /// Add a diagnostic to the diagnostics list.
508    PartialDiagnostic &addDiag(SourceLocation Loc, diag::kind DiagId) {
509      PartialDiagnostic PD(DiagId, Ctx.getDiagAllocator());
510      EvalStatus.Diag->push_back(std::make_pair(Loc, PD));
511      return EvalStatus.Diag->back().second;
512    }
513
514    /// Add notes containing a call stack to the current point of evaluation.
515    void addCallStack(unsigned Limit);
516
517  public:
518    /// Diagnose that the evaluation cannot be folded.
519    OptionalDiagnostic Diag(SourceLocation Loc, diag::kind DiagId
520                              = diag::note_invalid_subexpr_in_const_expr,
521                            unsigned ExtraNotes = 0) {
522      // If we have a prior diagnostic, it will be noting that the expression
523      // isn't a constant expression. This diagnostic is more important.
524      // FIXME: We might want to show both diagnostics to the user.
525      if (EvalStatus.Diag) {
526        unsigned CallStackNotes = CallStackDepth - 1;
527        unsigned Limit = Ctx.getDiagnostics().getConstexprBacktraceLimit();
528        if (Limit)
529          CallStackNotes = std::min(CallStackNotes, Limit + 1);
530        if (CheckingPotentialConstantExpression)
531          CallStackNotes = 0;
532
533        HasActiveDiagnostic = true;
534        EvalStatus.Diag->clear();
535        EvalStatus.Diag->reserve(1 + ExtraNotes + CallStackNotes);
536        addDiag(Loc, DiagId);
537        if (!CheckingPotentialConstantExpression)
538          addCallStack(Limit);
539        return OptionalDiagnostic(&(*EvalStatus.Diag)[0].second);
540      }
541      HasActiveDiagnostic = false;
542      return OptionalDiagnostic();
543    }
544
545    OptionalDiagnostic Diag(const Expr *E, diag::kind DiagId
546                              = diag::note_invalid_subexpr_in_const_expr,
547                            unsigned ExtraNotes = 0) {
548      if (EvalStatus.Diag)
549        return Diag(E->getExprLoc(), DiagId, ExtraNotes);
550      HasActiveDiagnostic = false;
551      return OptionalDiagnostic();
552    }
553
554    bool getIntOverflowCheckMode() { return IntOverflowCheckMode; }
555
556    /// Diagnose that the evaluation does not produce a C++11 core constant
557    /// expression.
558    template<typename LocArg>
559    OptionalDiagnostic CCEDiag(LocArg Loc, diag::kind DiagId
560                                 = diag::note_invalid_subexpr_in_const_expr,
561                               unsigned ExtraNotes = 0) {
562      // Don't override a previous diagnostic.
563      if (!EvalStatus.Diag || !EvalStatus.Diag->empty()) {
564        HasActiveDiagnostic = false;
565        return OptionalDiagnostic();
566      }
567      return Diag(Loc, DiagId, ExtraNotes);
568    }
569
570    /// Add a note to a prior diagnostic.
571    OptionalDiagnostic Note(SourceLocation Loc, diag::kind DiagId) {
572      if (!HasActiveDiagnostic)
573        return OptionalDiagnostic();
574      return OptionalDiagnostic(&addDiag(Loc, DiagId));
575    }
576
577    /// Add a stack of notes to a prior diagnostic.
578    void addNotes(ArrayRef<PartialDiagnosticAt> Diags) {
579      if (HasActiveDiagnostic) {
580        EvalStatus.Diag->insert(EvalStatus.Diag->end(),
581                                Diags.begin(), Diags.end());
582      }
583    }
584
585    /// Should we continue evaluation as much as possible after encountering a
586    /// construct which can't be folded?
587    bool keepEvaluatingAfterFailure() {
588      // Should return true in IntOverflowCheckMode, so that we check for
589      // overflow even if some subexpressions can't be evaluated as constants.
590      return StepsLeft && (IntOverflowCheckMode ||
591                           (CheckingPotentialConstantExpression &&
592                            EvalStatus.Diag && EvalStatus.Diag->empty()));
593    }
594  };
595
596  /// Object used to treat all foldable expressions as constant expressions.
597  struct FoldConstant {
598    bool Enabled;
599
600    explicit FoldConstant(EvalInfo &Info)
601      : Enabled(Info.EvalStatus.Diag && Info.EvalStatus.Diag->empty() &&
602                !Info.EvalStatus.HasSideEffects) {
603    }
604    // Treat the value we've computed since this object was created as constant.
605    void Fold(EvalInfo &Info) {
606      if (Enabled && !Info.EvalStatus.Diag->empty() &&
607          !Info.EvalStatus.HasSideEffects)
608        Info.EvalStatus.Diag->clear();
609    }
610  };
611
612  /// RAII object used to suppress diagnostics and side-effects from a
613  /// speculative evaluation.
614  class SpeculativeEvaluationRAII {
615    EvalInfo &Info;
616    Expr::EvalStatus Old;
617
618  public:
619    SpeculativeEvaluationRAII(EvalInfo &Info,
620                              SmallVectorImpl<PartialDiagnosticAt> *NewDiag = 0)
621      : Info(Info), Old(Info.EvalStatus) {
622      Info.EvalStatus.Diag = NewDiag;
623    }
624    ~SpeculativeEvaluationRAII() {
625      Info.EvalStatus = Old;
626    }
627  };
628
629  /// RAII object wrapping a full-expression or block scope, and handling
630  /// the ending of the lifetime of temporaries created within it.
631  template<bool IsFullExpression>
632  class ScopeRAII {
633    EvalInfo &Info;
634    unsigned OldStackSize;
635  public:
636    ScopeRAII(EvalInfo &Info)
637        : Info(Info), OldStackSize(Info.CleanupStack.size()) {}
638    ~ScopeRAII() {
639      // Body moved to a static method to encourage the compiler to inline away
640      // instances of this class.
641      cleanup(Info, OldStackSize);
642    }
643  private:
644    static void cleanup(EvalInfo &Info, unsigned OldStackSize) {
645      unsigned NewEnd = OldStackSize;
646      for (unsigned I = OldStackSize, N = Info.CleanupStack.size();
647           I != N; ++I) {
648        if (IsFullExpression && Info.CleanupStack[I].isLifetimeExtended()) {
649          // Full-expression cleanup of a lifetime-extended temporary: nothing
650          // to do, just move this cleanup to the right place in the stack.
651          std::swap(Info.CleanupStack[I], Info.CleanupStack[NewEnd]);
652          ++NewEnd;
653        } else {
654          // End the lifetime of the object.
655          Info.CleanupStack[I].endLifetime();
656        }
657      }
658      Info.CleanupStack.erase(Info.CleanupStack.begin() + NewEnd,
659                              Info.CleanupStack.end());
660    }
661  };
662  typedef ScopeRAII<false> BlockScopeRAII;
663  typedef ScopeRAII<true> FullExpressionRAII;
664}
665
666bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
667                                         CheckSubobjectKind CSK) {
668  if (Invalid)
669    return false;
670  if (isOnePastTheEnd()) {
671    Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
672      << CSK;
673    setInvalid();
674    return false;
675  }
676  return true;
677}
678
679void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
680                                                    const Expr *E, uint64_t N) {
681  if (MostDerivedPathLength == Entries.size() && MostDerivedArraySize)
682    Info.CCEDiag(E, diag::note_constexpr_array_index)
683      << static_cast<int>(N) << /*array*/ 0
684      << static_cast<unsigned>(MostDerivedArraySize);
685  else
686    Info.CCEDiag(E, diag::note_constexpr_array_index)
687      << static_cast<int>(N) << /*non-array*/ 1;
688  setInvalid();
689}
690
691CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
692                               const FunctionDecl *Callee, const LValue *This,
693                               APValue *Arguments)
694    : Info(Info), Caller(Info.CurrentCall), CallLoc(CallLoc), Callee(Callee),
695      Index(Info.NextCallIndex++), This(This), Arguments(Arguments) {
696  Info.CurrentCall = this;
697  ++Info.CallStackDepth;
698}
699
700CallStackFrame::~CallStackFrame() {
701  assert(Info.CurrentCall == this && "calls retired out of order");
702  --Info.CallStackDepth;
703  Info.CurrentCall = Caller;
704}
705
706APValue &CallStackFrame::createTemporary(const void *Key,
707                                         bool IsLifetimeExtended) {
708  APValue &Result = Temporaries[Key];
709  assert(Result.isUninit() && "temporary created multiple times");
710  Info.CleanupStack.push_back(Cleanup(&Result, IsLifetimeExtended));
711  return Result;
712}
713
714static void describeCall(CallStackFrame *Frame, raw_ostream &Out);
715
716void EvalInfo::addCallStack(unsigned Limit) {
717  // Determine which calls to skip, if any.
718  unsigned ActiveCalls = CallStackDepth - 1;
719  unsigned SkipStart = ActiveCalls, SkipEnd = SkipStart;
720  if (Limit && Limit < ActiveCalls) {
721    SkipStart = Limit / 2 + Limit % 2;
722    SkipEnd = ActiveCalls - Limit / 2;
723  }
724
725  // Walk the call stack and add the diagnostics.
726  unsigned CallIdx = 0;
727  for (CallStackFrame *Frame = CurrentCall; Frame != &BottomFrame;
728       Frame = Frame->Caller, ++CallIdx) {
729    // Skip this call?
730    if (CallIdx >= SkipStart && CallIdx < SkipEnd) {
731      if (CallIdx == SkipStart) {
732        // Note that we're skipping calls.
733        addDiag(Frame->CallLoc, diag::note_constexpr_calls_suppressed)
734          << unsigned(ActiveCalls - Limit);
735      }
736      continue;
737    }
738
739    SmallVector<char, 128> Buffer;
740    llvm::raw_svector_ostream Out(Buffer);
741    describeCall(Frame, Out);
742    addDiag(Frame->CallLoc, diag::note_constexpr_call_here) << Out.str();
743  }
744}
745
746namespace {
747  struct ComplexValue {
748  private:
749    bool IsInt;
750
751  public:
752    APSInt IntReal, IntImag;
753    APFloat FloatReal, FloatImag;
754
755    ComplexValue() : FloatReal(APFloat::Bogus), FloatImag(APFloat::Bogus) {}
756
757    void makeComplexFloat() { IsInt = false; }
758    bool isComplexFloat() const { return !IsInt; }
759    APFloat &getComplexFloatReal() { return FloatReal; }
760    APFloat &getComplexFloatImag() { return FloatImag; }
761
762    void makeComplexInt() { IsInt = true; }
763    bool isComplexInt() const { return IsInt; }
764    APSInt &getComplexIntReal() { return IntReal; }
765    APSInt &getComplexIntImag() { return IntImag; }
766
767    void moveInto(APValue &v) const {
768      if (isComplexFloat())
769        v = APValue(FloatReal, FloatImag);
770      else
771        v = APValue(IntReal, IntImag);
772    }
773    void setFrom(const APValue &v) {
774      assert(v.isComplexFloat() || v.isComplexInt());
775      if (v.isComplexFloat()) {
776        makeComplexFloat();
777        FloatReal = v.getComplexFloatReal();
778        FloatImag = v.getComplexFloatImag();
779      } else {
780        makeComplexInt();
781        IntReal = v.getComplexIntReal();
782        IntImag = v.getComplexIntImag();
783      }
784    }
785  };
786
787  struct LValue {
788    APValue::LValueBase Base;
789    CharUnits Offset;
790    unsigned CallIndex;
791    SubobjectDesignator Designator;
792
793    const APValue::LValueBase getLValueBase() const { return Base; }
794    CharUnits &getLValueOffset() { return Offset; }
795    const CharUnits &getLValueOffset() const { return Offset; }
796    unsigned getLValueCallIndex() const { return CallIndex; }
797    SubobjectDesignator &getLValueDesignator() { return Designator; }
798    const SubobjectDesignator &getLValueDesignator() const { return Designator;}
799
800    void moveInto(APValue &V) const {
801      if (Designator.Invalid)
802        V = APValue(Base, Offset, APValue::NoLValuePath(), CallIndex);
803      else
804        V = APValue(Base, Offset, Designator.Entries,
805                    Designator.IsOnePastTheEnd, CallIndex);
806    }
807    void setFrom(ASTContext &Ctx, const APValue &V) {
808      assert(V.isLValue());
809      Base = V.getLValueBase();
810      Offset = V.getLValueOffset();
811      CallIndex = V.getLValueCallIndex();
812      Designator = SubobjectDesignator(Ctx, V);
813    }
814
815    void set(APValue::LValueBase B, unsigned I = 0) {
816      Base = B;
817      Offset = CharUnits::Zero();
818      CallIndex = I;
819      Designator = SubobjectDesignator(getType(B));
820    }
821
822    // Check that this LValue is not based on a null pointer. If it is, produce
823    // a diagnostic and mark the designator as invalid.
824    bool checkNullPointer(EvalInfo &Info, const Expr *E,
825                          CheckSubobjectKind CSK) {
826      if (Designator.Invalid)
827        return false;
828      if (!Base) {
829        Info.CCEDiag(E, diag::note_constexpr_null_subobject)
830          << CSK;
831        Designator.setInvalid();
832        return false;
833      }
834      return true;
835    }
836
837    // Check this LValue refers to an object. If not, set the designator to be
838    // invalid and emit a diagnostic.
839    bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
840      // Outside C++11, do not build a designator referring to a subobject of
841      // any object: we won't use such a designator for anything.
842      if (!Info.getLangOpts().CPlusPlus11)
843        Designator.setInvalid();
844      return checkNullPointer(Info, E, CSK) &&
845             Designator.checkSubobject(Info, E, CSK);
846    }
847
848    void addDecl(EvalInfo &Info, const Expr *E,
849                 const Decl *D, bool Virtual = false) {
850      if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
851        Designator.addDeclUnchecked(D, Virtual);
852    }
853    void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
854      if (checkSubobject(Info, E, CSK_ArrayToPointer))
855        Designator.addArrayUnchecked(CAT);
856    }
857    void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
858      if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
859        Designator.addComplexUnchecked(EltTy, Imag);
860    }
861    void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
862      if (checkNullPointer(Info, E, CSK_ArrayIndex))
863        Designator.adjustIndex(Info, E, N);
864    }
865  };
866
867  struct MemberPtr {
868    MemberPtr() {}
869    explicit MemberPtr(const ValueDecl *Decl) :
870      DeclAndIsDerivedMember(Decl, false), Path() {}
871
872    /// The member or (direct or indirect) field referred to by this member
873    /// pointer, or 0 if this is a null member pointer.
874    const ValueDecl *getDecl() const {
875      return DeclAndIsDerivedMember.getPointer();
876    }
877    /// Is this actually a member of some type derived from the relevant class?
878    bool isDerivedMember() const {
879      return DeclAndIsDerivedMember.getInt();
880    }
881    /// Get the class which the declaration actually lives in.
882    const CXXRecordDecl *getContainingRecord() const {
883      return cast<CXXRecordDecl>(
884          DeclAndIsDerivedMember.getPointer()->getDeclContext());
885    }
886
887    void moveInto(APValue &V) const {
888      V = APValue(getDecl(), isDerivedMember(), Path);
889    }
890    void setFrom(const APValue &V) {
891      assert(V.isMemberPointer());
892      DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
893      DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
894      Path.clear();
895      ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
896      Path.insert(Path.end(), P.begin(), P.end());
897    }
898
899    /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
900    /// whether the member is a member of some class derived from the class type
901    /// of the member pointer.
902    llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
903    /// Path - The path of base/derived classes from the member declaration's
904    /// class (exclusive) to the class type of the member pointer (inclusive).
905    SmallVector<const CXXRecordDecl*, 4> Path;
906
907    /// Perform a cast towards the class of the Decl (either up or down the
908    /// hierarchy).
909    bool castBack(const CXXRecordDecl *Class) {
910      assert(!Path.empty());
911      const CXXRecordDecl *Expected;
912      if (Path.size() >= 2)
913        Expected = Path[Path.size() - 2];
914      else
915        Expected = getContainingRecord();
916      if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
917        // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
918        // if B does not contain the original member and is not a base or
919        // derived class of the class containing the original member, the result
920        // of the cast is undefined.
921        // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
922        // (D::*). We consider that to be a language defect.
923        return false;
924      }
925      Path.pop_back();
926      return true;
927    }
928    /// Perform a base-to-derived member pointer cast.
929    bool castToDerived(const CXXRecordDecl *Derived) {
930      if (!getDecl())
931        return true;
932      if (!isDerivedMember()) {
933        Path.push_back(Derived);
934        return true;
935      }
936      if (!castBack(Derived))
937        return false;
938      if (Path.empty())
939        DeclAndIsDerivedMember.setInt(false);
940      return true;
941    }
942    /// Perform a derived-to-base member pointer cast.
943    bool castToBase(const CXXRecordDecl *Base) {
944      if (!getDecl())
945        return true;
946      if (Path.empty())
947        DeclAndIsDerivedMember.setInt(true);
948      if (isDerivedMember()) {
949        Path.push_back(Base);
950        return true;
951      }
952      return castBack(Base);
953    }
954  };
955
956  /// Compare two member pointers, which are assumed to be of the same type.
957  static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
958    if (!LHS.getDecl() || !RHS.getDecl())
959      return !LHS.getDecl() && !RHS.getDecl();
960    if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
961      return false;
962    return LHS.Path == RHS.Path;
963  }
964}
965
966static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
967static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
968                            const LValue &This, const Expr *E,
969                            bool AllowNonLiteralTypes = false);
970static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info);
971static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info);
972static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
973                                  EvalInfo &Info);
974static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
975static bool EvaluateInteger(const Expr *E, APSInt  &Result, EvalInfo &Info);
976static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
977                                    EvalInfo &Info);
978static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
979static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
980static bool EvaluateAtomic(const Expr *E, APValue &Result, EvalInfo &Info);
981
982//===----------------------------------------------------------------------===//
983// Misc utilities
984//===----------------------------------------------------------------------===//
985
986/// Produce a string describing the given constexpr call.
987static void describeCall(CallStackFrame *Frame, raw_ostream &Out) {
988  unsigned ArgIndex = 0;
989  bool IsMemberCall = isa<CXXMethodDecl>(Frame->Callee) &&
990                      !isa<CXXConstructorDecl>(Frame->Callee) &&
991                      cast<CXXMethodDecl>(Frame->Callee)->isInstance();
992
993  if (!IsMemberCall)
994    Out << *Frame->Callee << '(';
995
996  if (Frame->This && IsMemberCall) {
997    APValue Val;
998    Frame->This->moveInto(Val);
999    Val.printPretty(Out, Frame->Info.Ctx,
1000                    Frame->This->Designator.MostDerivedType);
1001    // FIXME: Add parens around Val if needed.
1002    Out << "->" << *Frame->Callee << '(';
1003    IsMemberCall = false;
1004  }
1005
1006  for (FunctionDecl::param_const_iterator I = Frame->Callee->param_begin(),
1007       E = Frame->Callee->param_end(); I != E; ++I, ++ArgIndex) {
1008    if (ArgIndex > (unsigned)IsMemberCall)
1009      Out << ", ";
1010
1011    const ParmVarDecl *Param = *I;
1012    const APValue &Arg = Frame->Arguments[ArgIndex];
1013    Arg.printPretty(Out, Frame->Info.Ctx, Param->getType());
1014
1015    if (ArgIndex == 0 && IsMemberCall)
1016      Out << "->" << *Frame->Callee << '(';
1017  }
1018
1019  Out << ')';
1020}
1021
1022/// Evaluate an expression to see if it had side-effects, and discard its
1023/// result.
1024/// \return \c true if the caller should keep evaluating.
1025static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) {
1026  APValue Scratch;
1027  if (!Evaluate(Scratch, Info, E)) {
1028    Info.EvalStatus.HasSideEffects = true;
1029    return Info.keepEvaluatingAfterFailure();
1030  }
1031  return true;
1032}
1033
1034/// Sign- or zero-extend a value to 64 bits. If it's already 64 bits, just
1035/// return its existing value.
1036static int64_t getExtValue(const APSInt &Value) {
1037  return Value.isSigned() ? Value.getSExtValue()
1038                          : static_cast<int64_t>(Value.getZExtValue());
1039}
1040
1041/// Should this call expression be treated as a string literal?
1042static bool IsStringLiteralCall(const CallExpr *E) {
1043  unsigned Builtin = E->isBuiltinCall();
1044  return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
1045          Builtin == Builtin::BI__builtin___NSStringMakeConstantString);
1046}
1047
1048static bool IsGlobalLValue(APValue::LValueBase B) {
1049  // C++11 [expr.const]p3 An address constant expression is a prvalue core
1050  // constant expression of pointer type that evaluates to...
1051
1052  // ... a null pointer value, or a prvalue core constant expression of type
1053  // std::nullptr_t.
1054  if (!B) return true;
1055
1056  if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
1057    // ... the address of an object with static storage duration,
1058    if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1059      return VD->hasGlobalStorage();
1060    // ... the address of a function,
1061    return isa<FunctionDecl>(D);
1062  }
1063
1064  const Expr *E = B.get<const Expr*>();
1065  switch (E->getStmtClass()) {
1066  default:
1067    return false;
1068  case Expr::CompoundLiteralExprClass: {
1069    const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
1070    return CLE->isFileScope() && CLE->isLValue();
1071  }
1072  case Expr::MaterializeTemporaryExprClass:
1073    // A materialized temporary might have been lifetime-extended to static
1074    // storage duration.
1075    return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static;
1076  // A string literal has static storage duration.
1077  case Expr::StringLiteralClass:
1078  case Expr::PredefinedExprClass:
1079  case Expr::ObjCStringLiteralClass:
1080  case Expr::ObjCEncodeExprClass:
1081  case Expr::CXXTypeidExprClass:
1082  case Expr::CXXUuidofExprClass:
1083    return true;
1084  case Expr::CallExprClass:
1085    return IsStringLiteralCall(cast<CallExpr>(E));
1086  // For GCC compatibility, &&label has static storage duration.
1087  case Expr::AddrLabelExprClass:
1088    return true;
1089  // A Block literal expression may be used as the initialization value for
1090  // Block variables at global or local static scope.
1091  case Expr::BlockExprClass:
1092    return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
1093  case Expr::ImplicitValueInitExprClass:
1094    // FIXME:
1095    // We can never form an lvalue with an implicit value initialization as its
1096    // base through expression evaluation, so these only appear in one case: the
1097    // implicit variable declaration we invent when checking whether a constexpr
1098    // constructor can produce a constant expression. We must assume that such
1099    // an expression might be a global lvalue.
1100    return true;
1101  }
1102}
1103
1104static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
1105  assert(Base && "no location for a null lvalue");
1106  const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1107  if (VD)
1108    Info.Note(VD->getLocation(), diag::note_declared_at);
1109  else
1110    Info.Note(Base.get<const Expr*>()->getExprLoc(),
1111              diag::note_constexpr_temporary_here);
1112}
1113
1114/// Check that this reference or pointer core constant expression is a valid
1115/// value for an address or reference constant expression. Return true if we
1116/// can fold this expression, whether or not it's a constant expression.
1117static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
1118                                          QualType Type, const LValue &LVal) {
1119  bool IsReferenceType = Type->isReferenceType();
1120
1121  APValue::LValueBase Base = LVal.getLValueBase();
1122  const SubobjectDesignator &Designator = LVal.getLValueDesignator();
1123
1124  // Check that the object is a global. Note that the fake 'this' object we
1125  // manufacture when checking potential constant expressions is conservatively
1126  // assumed to be global here.
1127  if (!IsGlobalLValue(Base)) {
1128    if (Info.getLangOpts().CPlusPlus11) {
1129      const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1130      Info.Diag(Loc, diag::note_constexpr_non_global, 1)
1131        << IsReferenceType << !Designator.Entries.empty()
1132        << !!VD << VD;
1133      NoteLValueLocation(Info, Base);
1134    } else {
1135      Info.Diag(Loc);
1136    }
1137    // Don't allow references to temporaries to escape.
1138    return false;
1139  }
1140  assert((Info.CheckingPotentialConstantExpression ||
1141          LVal.getLValueCallIndex() == 0) &&
1142         "have call index for global lvalue");
1143
1144  // Check if this is a thread-local variable.
1145  if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) {
1146    if (const VarDecl *Var = dyn_cast<const VarDecl>(VD)) {
1147      if (Var->getTLSKind())
1148        return false;
1149    }
1150  }
1151
1152  // Allow address constant expressions to be past-the-end pointers. This is
1153  // an extension: the standard requires them to point to an object.
1154  if (!IsReferenceType)
1155    return true;
1156
1157  // A reference constant expression must refer to an object.
1158  if (!Base) {
1159    // FIXME: diagnostic
1160    Info.CCEDiag(Loc);
1161    return true;
1162  }
1163
1164  // Does this refer one past the end of some object?
1165  if (Designator.isOnePastTheEnd()) {
1166    const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1167    Info.Diag(Loc, diag::note_constexpr_past_end, 1)
1168      << !Designator.Entries.empty() << !!VD << VD;
1169    NoteLValueLocation(Info, Base);
1170  }
1171
1172  return true;
1173}
1174
1175/// Check that this core constant expression is of literal type, and if not,
1176/// produce an appropriate diagnostic.
1177static bool CheckLiteralType(EvalInfo &Info, const Expr *E,
1178                             const LValue *This = 0) {
1179  if (!E->isRValue() || E->getType()->isLiteralType(Info.Ctx))
1180    return true;
1181
1182  // C++1y: A constant initializer for an object o [...] may also invoke
1183  // constexpr constructors for o and its subobjects even if those objects
1184  // are of non-literal class types.
1185  if (Info.getLangOpts().CPlusPlus1y && This &&
1186      Info.EvaluatingDecl == This->getLValueBase())
1187    return true;
1188
1189  // Prvalue constant expressions must be of literal types.
1190  if (Info.getLangOpts().CPlusPlus11)
1191    Info.Diag(E, diag::note_constexpr_nonliteral)
1192      << E->getType();
1193  else
1194    Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1195  return false;
1196}
1197
1198/// Check that this core constant expression value is a valid value for a
1199/// constant expression. If not, report an appropriate diagnostic. Does not
1200/// check that the expression is of literal type.
1201static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc,
1202                                    QualType Type, const APValue &Value) {
1203  if (Value.isUninit()) {
1204    Info.Diag(DiagLoc, diag::note_constexpr_uninitialized)
1205      << true << Type;
1206    return false;
1207  }
1208
1209  // Core issue 1454: For a literal constant expression of array or class type,
1210  // each subobject of its value shall have been initialized by a constant
1211  // expression.
1212  if (Value.isArray()) {
1213    QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
1214    for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
1215      if (!CheckConstantExpression(Info, DiagLoc, EltTy,
1216                                   Value.getArrayInitializedElt(I)))
1217        return false;
1218    }
1219    if (!Value.hasArrayFiller())
1220      return true;
1221    return CheckConstantExpression(Info, DiagLoc, EltTy,
1222                                   Value.getArrayFiller());
1223  }
1224  if (Value.isUnion() && Value.getUnionField()) {
1225    return CheckConstantExpression(Info, DiagLoc,
1226                                   Value.getUnionField()->getType(),
1227                                   Value.getUnionValue());
1228  }
1229  if (Value.isStruct()) {
1230    RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
1231    if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
1232      unsigned BaseIndex = 0;
1233      for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
1234             End = CD->bases_end(); I != End; ++I, ++BaseIndex) {
1235        if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
1236                                     Value.getStructBase(BaseIndex)))
1237          return false;
1238      }
1239    }
1240    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
1241         I != E; ++I) {
1242      if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
1243                                   Value.getStructField(I->getFieldIndex())))
1244        return false;
1245    }
1246  }
1247
1248  if (Value.isLValue()) {
1249    LValue LVal;
1250    LVal.setFrom(Info.Ctx, Value);
1251    return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal);
1252  }
1253
1254  // Everything else is fine.
1255  return true;
1256}
1257
1258const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
1259  return LVal.Base.dyn_cast<const ValueDecl*>();
1260}
1261
1262static bool IsLiteralLValue(const LValue &Value) {
1263  if (Value.CallIndex)
1264    return false;
1265  const Expr *E = Value.Base.dyn_cast<const Expr*>();
1266  return E && !isa<MaterializeTemporaryExpr>(E);
1267}
1268
1269static bool IsWeakLValue(const LValue &Value) {
1270  const ValueDecl *Decl = GetLValueBaseDecl(Value);
1271  return Decl && Decl->isWeak();
1272}
1273
1274static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
1275  // A null base expression indicates a null pointer.  These are always
1276  // evaluatable, and they are false unless the offset is zero.
1277  if (!Value.getLValueBase()) {
1278    Result = !Value.getLValueOffset().isZero();
1279    return true;
1280  }
1281
1282  // We have a non-null base.  These are generally known to be true, but if it's
1283  // a weak declaration it can be null at runtime.
1284  Result = true;
1285  const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
1286  return !Decl || !Decl->isWeak();
1287}
1288
1289static bool HandleConversionToBool(const APValue &Val, bool &Result) {
1290  switch (Val.getKind()) {
1291  case APValue::Uninitialized:
1292    return false;
1293  case APValue::Int:
1294    Result = Val.getInt().getBoolValue();
1295    return true;
1296  case APValue::Float:
1297    Result = !Val.getFloat().isZero();
1298    return true;
1299  case APValue::ComplexInt:
1300    Result = Val.getComplexIntReal().getBoolValue() ||
1301             Val.getComplexIntImag().getBoolValue();
1302    return true;
1303  case APValue::ComplexFloat:
1304    Result = !Val.getComplexFloatReal().isZero() ||
1305             !Val.getComplexFloatImag().isZero();
1306    return true;
1307  case APValue::LValue:
1308    return EvalPointerValueAsBool(Val, Result);
1309  case APValue::MemberPointer:
1310    Result = Val.getMemberPointerDecl();
1311    return true;
1312  case APValue::Vector:
1313  case APValue::Array:
1314  case APValue::Struct:
1315  case APValue::Union:
1316  case APValue::AddrLabelDiff:
1317    return false;
1318  }
1319
1320  llvm_unreachable("unknown APValue kind");
1321}
1322
1323static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
1324                                       EvalInfo &Info) {
1325  assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition");
1326  APValue Val;
1327  if (!Evaluate(Val, Info, E))
1328    return false;
1329  return HandleConversionToBool(Val, Result);
1330}
1331
1332template<typename T>
1333static void HandleOverflow(EvalInfo &Info, const Expr *E,
1334                           const T &SrcValue, QualType DestType) {
1335  Info.CCEDiag(E, diag::note_constexpr_overflow)
1336    << SrcValue << DestType;
1337}
1338
1339static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
1340                                 QualType SrcType, const APFloat &Value,
1341                                 QualType DestType, APSInt &Result) {
1342  unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
1343  // Determine whether we are converting to unsigned or signed.
1344  bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
1345
1346  Result = APSInt(DestWidth, !DestSigned);
1347  bool ignored;
1348  if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
1349      & APFloat::opInvalidOp)
1350    HandleOverflow(Info, E, Value, DestType);
1351  return true;
1352}
1353
1354static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
1355                                   QualType SrcType, QualType DestType,
1356                                   APFloat &Result) {
1357  APFloat Value = Result;
1358  bool ignored;
1359  if (Result.convert(Info.Ctx.getFloatTypeSemantics(DestType),
1360                     APFloat::rmNearestTiesToEven, &ignored)
1361      & APFloat::opOverflow)
1362    HandleOverflow(Info, E, Value, DestType);
1363  return true;
1364}
1365
1366static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
1367                                 QualType DestType, QualType SrcType,
1368                                 APSInt &Value) {
1369  unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
1370  APSInt Result = Value;
1371  // Figure out if this is a truncate, extend or noop cast.
1372  // If the input is signed, do a sign extend, noop, or truncate.
1373  Result = Result.extOrTrunc(DestWidth);
1374  Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
1375  return Result;
1376}
1377
1378static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
1379                                 QualType SrcType, const APSInt &Value,
1380                                 QualType DestType, APFloat &Result) {
1381  Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
1382  if (Result.convertFromAPInt(Value, Value.isSigned(),
1383                              APFloat::rmNearestTiesToEven)
1384      & APFloat::opOverflow)
1385    HandleOverflow(Info, E, Value, DestType);
1386  return true;
1387}
1388
1389static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E,
1390                                  APValue &Value, const FieldDecl *FD) {
1391  assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield");
1392
1393  if (!Value.isInt()) {
1394    // Trying to store a pointer-cast-to-integer into a bitfield.
1395    // FIXME: In this case, we should provide the diagnostic for casting
1396    // a pointer to an integer.
1397    assert(Value.isLValue() && "integral value neither int nor lvalue?");
1398    Info.Diag(E);
1399    return false;
1400  }
1401
1402  APSInt &Int = Value.getInt();
1403  unsigned OldBitWidth = Int.getBitWidth();
1404  unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx);
1405  if (NewBitWidth < OldBitWidth)
1406    Int = Int.trunc(NewBitWidth).extend(OldBitWidth);
1407  return true;
1408}
1409
1410static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
1411                                  llvm::APInt &Res) {
1412  APValue SVal;
1413  if (!Evaluate(SVal, Info, E))
1414    return false;
1415  if (SVal.isInt()) {
1416    Res = SVal.getInt();
1417    return true;
1418  }
1419  if (SVal.isFloat()) {
1420    Res = SVal.getFloat().bitcastToAPInt();
1421    return true;
1422  }
1423  if (SVal.isVector()) {
1424    QualType VecTy = E->getType();
1425    unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
1426    QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
1427    unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
1428    bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
1429    Res = llvm::APInt::getNullValue(VecSize);
1430    for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
1431      APValue &Elt = SVal.getVectorElt(i);
1432      llvm::APInt EltAsInt;
1433      if (Elt.isInt()) {
1434        EltAsInt = Elt.getInt();
1435      } else if (Elt.isFloat()) {
1436        EltAsInt = Elt.getFloat().bitcastToAPInt();
1437      } else {
1438        // Don't try to handle vectors of anything other than int or float
1439        // (not sure if it's possible to hit this case).
1440        Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1441        return false;
1442      }
1443      unsigned BaseEltSize = EltAsInt.getBitWidth();
1444      if (BigEndian)
1445        Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
1446      else
1447        Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
1448    }
1449    return true;
1450  }
1451  // Give up if the input isn't an int, float, or vector.  For example, we
1452  // reject "(v4i16)(intptr_t)&a".
1453  Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1454  return false;
1455}
1456
1457/// Perform the given integer operation, which is known to need at most BitWidth
1458/// bits, and check for overflow in the original type (if that type was not an
1459/// unsigned type).
1460template<typename Operation>
1461static APSInt CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
1462                                   const APSInt &LHS, const APSInt &RHS,
1463                                   unsigned BitWidth, Operation Op) {
1464  if (LHS.isUnsigned())
1465    return Op(LHS, RHS);
1466
1467  APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
1468  APSInt Result = Value.trunc(LHS.getBitWidth());
1469  if (Result.extend(BitWidth) != Value) {
1470    if (Info.getIntOverflowCheckMode())
1471      Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
1472        diag::warn_integer_constant_overflow)
1473          << Result.toString(10) << E->getType();
1474    else
1475      HandleOverflow(Info, E, Value, E->getType());
1476  }
1477  return Result;
1478}
1479
1480/// Perform the given binary integer operation.
1481static bool handleIntIntBinOp(EvalInfo &Info, const Expr *E, const APSInt &LHS,
1482                              BinaryOperatorKind Opcode, APSInt RHS,
1483                              APSInt &Result) {
1484  switch (Opcode) {
1485  default:
1486    Info.Diag(E);
1487    return false;
1488  case BO_Mul:
1489    Result = CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2,
1490                                  std::multiplies<APSInt>());
1491    return true;
1492  case BO_Add:
1493    Result = CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
1494                                  std::plus<APSInt>());
1495    return true;
1496  case BO_Sub:
1497    Result = CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
1498                                  std::minus<APSInt>());
1499    return true;
1500  case BO_And: Result = LHS & RHS; return true;
1501  case BO_Xor: Result = LHS ^ RHS; return true;
1502  case BO_Or:  Result = LHS | RHS; return true;
1503  case BO_Div:
1504  case BO_Rem:
1505    if (RHS == 0) {
1506      Info.Diag(E, diag::note_expr_divide_by_zero);
1507      return false;
1508    }
1509    // Check for overflow case: INT_MIN / -1 or INT_MIN % -1.
1510    if (RHS.isNegative() && RHS.isAllOnesValue() &&
1511        LHS.isSigned() && LHS.isMinSignedValue())
1512      HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1), E->getType());
1513    Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS);
1514    return true;
1515  case BO_Shl: {
1516    if (Info.getLangOpts().OpenCL)
1517      // OpenCL 6.3j: shift values are effectively % word size of LHS.
1518      RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
1519                    static_cast<uint64_t>(LHS.getBitWidth() - 1)),
1520                    RHS.isUnsigned());
1521    else if (RHS.isSigned() && RHS.isNegative()) {
1522      // During constant-folding, a negative shift is an opposite shift. Such
1523      // a shift is not a constant expression.
1524      Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
1525      RHS = -RHS;
1526      goto shift_right;
1527    }
1528  shift_left:
1529    // C++11 [expr.shift]p1: Shift width must be less than the bit width of
1530    // the shifted type.
1531    unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
1532    if (SA != RHS) {
1533      Info.CCEDiag(E, diag::note_constexpr_large_shift)
1534        << RHS << E->getType() << LHS.getBitWidth();
1535    } else if (LHS.isSigned()) {
1536      // C++11 [expr.shift]p2: A signed left shift must have a non-negative
1537      // operand, and must not overflow the corresponding unsigned type.
1538      if (LHS.isNegative())
1539        Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
1540      else if (LHS.countLeadingZeros() < SA)
1541        Info.CCEDiag(E, diag::note_constexpr_lshift_discards);
1542    }
1543    Result = LHS << SA;
1544    return true;
1545  }
1546  case BO_Shr: {
1547    if (Info.getLangOpts().OpenCL)
1548      // OpenCL 6.3j: shift values are effectively % word size of LHS.
1549      RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
1550                    static_cast<uint64_t>(LHS.getBitWidth() - 1)),
1551                    RHS.isUnsigned());
1552    else if (RHS.isSigned() && RHS.isNegative()) {
1553      // During constant-folding, a negative shift is an opposite shift. Such a
1554      // shift is not a constant expression.
1555      Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
1556      RHS = -RHS;
1557      goto shift_left;
1558    }
1559  shift_right:
1560    // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
1561    // shifted type.
1562    unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
1563    if (SA != RHS)
1564      Info.CCEDiag(E, diag::note_constexpr_large_shift)
1565        << RHS << E->getType() << LHS.getBitWidth();
1566    Result = LHS >> SA;
1567    return true;
1568  }
1569
1570  case BO_LT: Result = LHS < RHS; return true;
1571  case BO_GT: Result = LHS > RHS; return true;
1572  case BO_LE: Result = LHS <= RHS; return true;
1573  case BO_GE: Result = LHS >= RHS; return true;
1574  case BO_EQ: Result = LHS == RHS; return true;
1575  case BO_NE: Result = LHS != RHS; return true;
1576  }
1577}
1578
1579/// Perform the given binary floating-point operation, in-place, on LHS.
1580static bool handleFloatFloatBinOp(EvalInfo &Info, const Expr *E,
1581                                  APFloat &LHS, BinaryOperatorKind Opcode,
1582                                  const APFloat &RHS) {
1583  switch (Opcode) {
1584  default:
1585    Info.Diag(E);
1586    return false;
1587  case BO_Mul:
1588    LHS.multiply(RHS, APFloat::rmNearestTiesToEven);
1589    break;
1590  case BO_Add:
1591    LHS.add(RHS, APFloat::rmNearestTiesToEven);
1592    break;
1593  case BO_Sub:
1594    LHS.subtract(RHS, APFloat::rmNearestTiesToEven);
1595    break;
1596  case BO_Div:
1597    LHS.divide(RHS, APFloat::rmNearestTiesToEven);
1598    break;
1599  }
1600
1601  if (LHS.isInfinity() || LHS.isNaN())
1602    Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN();
1603  return true;
1604}
1605
1606/// Cast an lvalue referring to a base subobject to a derived class, by
1607/// truncating the lvalue's path to the given length.
1608static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
1609                               const RecordDecl *TruncatedType,
1610                               unsigned TruncatedElements) {
1611  SubobjectDesignator &D = Result.Designator;
1612
1613  // Check we actually point to a derived class object.
1614  if (TruncatedElements == D.Entries.size())
1615    return true;
1616  assert(TruncatedElements >= D.MostDerivedPathLength &&
1617         "not casting to a derived class");
1618  if (!Result.checkSubobject(Info, E, CSK_Derived))
1619    return false;
1620
1621  // Truncate the path to the subobject, and remove any derived-to-base offsets.
1622  const RecordDecl *RD = TruncatedType;
1623  for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
1624    if (RD->isInvalidDecl()) return false;
1625    const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
1626    const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
1627    if (isVirtualBaseClass(D.Entries[I]))
1628      Result.Offset -= Layout.getVBaseClassOffset(Base);
1629    else
1630      Result.Offset -= Layout.getBaseClassOffset(Base);
1631    RD = Base;
1632  }
1633  D.Entries.resize(TruncatedElements);
1634  return true;
1635}
1636
1637static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
1638                                   const CXXRecordDecl *Derived,
1639                                   const CXXRecordDecl *Base,
1640                                   const ASTRecordLayout *RL = 0) {
1641  if (!RL) {
1642    if (Derived->isInvalidDecl()) return false;
1643    RL = &Info.Ctx.getASTRecordLayout(Derived);
1644  }
1645
1646  Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
1647  Obj.addDecl(Info, E, Base, /*Virtual*/ false);
1648  return true;
1649}
1650
1651static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
1652                             const CXXRecordDecl *DerivedDecl,
1653                             const CXXBaseSpecifier *Base) {
1654  const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
1655
1656  if (!Base->isVirtual())
1657    return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
1658
1659  SubobjectDesignator &D = Obj.Designator;
1660  if (D.Invalid)
1661    return false;
1662
1663  // Extract most-derived object and corresponding type.
1664  DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
1665  if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
1666    return false;
1667
1668  // Find the virtual base class.
1669  if (DerivedDecl->isInvalidDecl()) return false;
1670  const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
1671  Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
1672  Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
1673  return true;
1674}
1675
1676static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E,
1677                                 QualType Type, LValue &Result) {
1678  for (CastExpr::path_const_iterator PathI = E->path_begin(),
1679                                     PathE = E->path_end();
1680       PathI != PathE; ++PathI) {
1681    if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
1682                          *PathI))
1683      return false;
1684    Type = (*PathI)->getType();
1685  }
1686  return true;
1687}
1688
1689/// Update LVal to refer to the given field, which must be a member of the type
1690/// currently described by LVal.
1691static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
1692                               const FieldDecl *FD,
1693                               const ASTRecordLayout *RL = 0) {
1694  if (!RL) {
1695    if (FD->getParent()->isInvalidDecl()) return false;
1696    RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
1697  }
1698
1699  unsigned I = FD->getFieldIndex();
1700  LVal.Offset += Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I));
1701  LVal.addDecl(Info, E, FD);
1702  return true;
1703}
1704
1705/// Update LVal to refer to the given indirect field.
1706static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
1707                                       LValue &LVal,
1708                                       const IndirectFieldDecl *IFD) {
1709  for (IndirectFieldDecl::chain_iterator C = IFD->chain_begin(),
1710                                         CE = IFD->chain_end(); C != CE; ++C)
1711    if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(*C)))
1712      return false;
1713  return true;
1714}
1715
1716/// Get the size of the given type in char units.
1717static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
1718                         QualType Type, CharUnits &Size) {
1719  // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
1720  // extension.
1721  if (Type->isVoidType() || Type->isFunctionType()) {
1722    Size = CharUnits::One();
1723    return true;
1724  }
1725
1726  if (!Type->isConstantSizeType()) {
1727    // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
1728    // FIXME: Better diagnostic.
1729    Info.Diag(Loc);
1730    return false;
1731  }
1732
1733  Size = Info.Ctx.getTypeSizeInChars(Type);
1734  return true;
1735}
1736
1737/// Update a pointer value to model pointer arithmetic.
1738/// \param Info - Information about the ongoing evaluation.
1739/// \param E - The expression being evaluated, for diagnostic purposes.
1740/// \param LVal - The pointer value to be updated.
1741/// \param EltTy - The pointee type represented by LVal.
1742/// \param Adjustment - The adjustment, in objects of type EltTy, to add.
1743static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
1744                                        LValue &LVal, QualType EltTy,
1745                                        int64_t Adjustment) {
1746  CharUnits SizeOfPointee;
1747  if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
1748    return false;
1749
1750  // Compute the new offset in the appropriate width.
1751  LVal.Offset += Adjustment * SizeOfPointee;
1752  LVal.adjustIndex(Info, E, Adjustment);
1753  return true;
1754}
1755
1756/// Update an lvalue to refer to a component of a complex number.
1757/// \param Info - Information about the ongoing evaluation.
1758/// \param LVal - The lvalue to be updated.
1759/// \param EltTy - The complex number's component type.
1760/// \param Imag - False for the real component, true for the imaginary.
1761static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
1762                                       LValue &LVal, QualType EltTy,
1763                                       bool Imag) {
1764  if (Imag) {
1765    CharUnits SizeOfComponent;
1766    if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
1767      return false;
1768    LVal.Offset += SizeOfComponent;
1769  }
1770  LVal.addComplex(Info, E, EltTy, Imag);
1771  return true;
1772}
1773
1774/// Try to evaluate the initializer for a variable declaration.
1775///
1776/// \param Info   Information about the ongoing evaluation.
1777/// \param E      An expression to be used when printing diagnostics.
1778/// \param VD     The variable whose initializer should be obtained.
1779/// \param Frame  The frame in which the variable was created. Must be null
1780///               if this variable is not local to the evaluation.
1781/// \param Result Filled in with a pointer to the value of the variable.
1782static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
1783                                const VarDecl *VD, CallStackFrame *Frame,
1784                                APValue *&Result) {
1785  // If this is a parameter to an active constexpr function call, perform
1786  // argument substitution.
1787  if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) {
1788    // Assume arguments of a potential constant expression are unknown
1789    // constant expressions.
1790    if (Info.CheckingPotentialConstantExpression)
1791      return false;
1792    if (!Frame || !Frame->Arguments) {
1793      Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1794      return false;
1795    }
1796    Result = &Frame->Arguments[PVD->getFunctionScopeIndex()];
1797    return true;
1798  }
1799
1800  // If this is a local variable, dig out its value.
1801  if (Frame) {
1802    Result = Frame->getTemporary(VD);
1803    assert(Result && "missing value for local variable");
1804    return true;
1805  }
1806
1807  // Dig out the initializer, and use the declaration which it's attached to.
1808  const Expr *Init = VD->getAnyInitializer(VD);
1809  if (!Init || Init->isValueDependent()) {
1810    // If we're checking a potential constant expression, the variable could be
1811    // initialized later.
1812    if (!Info.CheckingPotentialConstantExpression)
1813      Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1814    return false;
1815  }
1816
1817  // If we're currently evaluating the initializer of this declaration, use that
1818  // in-flight value.
1819  if (Info.EvaluatingDecl.dyn_cast<const ValueDecl*>() == VD) {
1820    Result = Info.EvaluatingDeclValue;
1821    return true;
1822  }
1823
1824  // Never evaluate the initializer of a weak variable. We can't be sure that
1825  // this is the definition which will be used.
1826  if (VD->isWeak()) {
1827    Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1828    return false;
1829  }
1830
1831  // Check that we can fold the initializer. In C++, we will have already done
1832  // this in the cases where it matters for conformance.
1833  SmallVector<PartialDiagnosticAt, 8> Notes;
1834  if (!VD->evaluateValue(Notes)) {
1835    Info.Diag(E, diag::note_constexpr_var_init_non_constant,
1836              Notes.size() + 1) << VD;
1837    Info.Note(VD->getLocation(), diag::note_declared_at);
1838    Info.addNotes(Notes);
1839    return false;
1840  } else if (!VD->checkInitIsICE()) {
1841    Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant,
1842                 Notes.size() + 1) << VD;
1843    Info.Note(VD->getLocation(), diag::note_declared_at);
1844    Info.addNotes(Notes);
1845  }
1846
1847  Result = VD->getEvaluatedValue();
1848  return true;
1849}
1850
1851static bool IsConstNonVolatile(QualType T) {
1852  Qualifiers Quals = T.getQualifiers();
1853  return Quals.hasConst() && !Quals.hasVolatile();
1854}
1855
1856/// Get the base index of the given base class within an APValue representing
1857/// the given derived class.
1858static unsigned getBaseIndex(const CXXRecordDecl *Derived,
1859                             const CXXRecordDecl *Base) {
1860  Base = Base->getCanonicalDecl();
1861  unsigned Index = 0;
1862  for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
1863         E = Derived->bases_end(); I != E; ++I, ++Index) {
1864    if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
1865      return Index;
1866  }
1867
1868  llvm_unreachable("base class missing from derived class's bases list");
1869}
1870
1871/// Extract the value of a character from a string literal.
1872static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
1873                                            uint64_t Index) {
1874  // FIXME: Support PredefinedExpr, ObjCEncodeExpr, MakeStringConstant
1875  const StringLiteral *S = cast<StringLiteral>(Lit);
1876  const ConstantArrayType *CAT =
1877      Info.Ctx.getAsConstantArrayType(S->getType());
1878  assert(CAT && "string literal isn't an array");
1879  QualType CharType = CAT->getElementType();
1880  assert(CharType->isIntegerType() && "unexpected character type");
1881
1882  APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
1883               CharType->isUnsignedIntegerType());
1884  if (Index < S->getLength())
1885    Value = S->getCodeUnit(Index);
1886  return Value;
1887}
1888
1889// Expand a string literal into an array of characters.
1890static void expandStringLiteral(EvalInfo &Info, const Expr *Lit,
1891                                APValue &Result) {
1892  const StringLiteral *S = cast<StringLiteral>(Lit);
1893  const ConstantArrayType *CAT =
1894      Info.Ctx.getAsConstantArrayType(S->getType());
1895  assert(CAT && "string literal isn't an array");
1896  QualType CharType = CAT->getElementType();
1897  assert(CharType->isIntegerType() && "unexpected character type");
1898
1899  unsigned Elts = CAT->getSize().getZExtValue();
1900  Result = APValue(APValue::UninitArray(),
1901                   std::min(S->getLength(), Elts), Elts);
1902  APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
1903               CharType->isUnsignedIntegerType());
1904  if (Result.hasArrayFiller())
1905    Result.getArrayFiller() = APValue(Value);
1906  for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) {
1907    Value = S->getCodeUnit(I);
1908    Result.getArrayInitializedElt(I) = APValue(Value);
1909  }
1910}
1911
1912// Expand an array so that it has more than Index filled elements.
1913static void expandArray(APValue &Array, unsigned Index) {
1914  unsigned Size = Array.getArraySize();
1915  assert(Index < Size);
1916
1917  // Always at least double the number of elements for which we store a value.
1918  unsigned OldElts = Array.getArrayInitializedElts();
1919  unsigned NewElts = std::max(Index+1, OldElts * 2);
1920  NewElts = std::min(Size, std::max(NewElts, 8u));
1921
1922  // Copy the data across.
1923  APValue NewValue(APValue::UninitArray(), NewElts, Size);
1924  for (unsigned I = 0; I != OldElts; ++I)
1925    NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I));
1926  for (unsigned I = OldElts; I != NewElts; ++I)
1927    NewValue.getArrayInitializedElt(I) = Array.getArrayFiller();
1928  if (NewValue.hasArrayFiller())
1929    NewValue.getArrayFiller() = Array.getArrayFiller();
1930  Array.swap(NewValue);
1931}
1932
1933/// Kinds of access we can perform on an object, for diagnostics.
1934enum AccessKinds {
1935  AK_Read,
1936  AK_Assign,
1937  AK_Increment,
1938  AK_Decrement
1939};
1940
1941/// A handle to a complete object (an object that is not a subobject of
1942/// another object).
1943struct CompleteObject {
1944  /// The value of the complete object.
1945  APValue *Value;
1946  /// The type of the complete object.
1947  QualType Type;
1948
1949  CompleteObject() : Value(0) {}
1950  CompleteObject(APValue *Value, QualType Type)
1951      : Value(Value), Type(Type) {
1952    assert(Value && "missing value for complete object");
1953  }
1954
1955  LLVM_EXPLICIT operator bool() const { return Value; }
1956};
1957
1958/// Find the designated sub-object of an rvalue.
1959template<typename SubobjectHandler>
1960typename SubobjectHandler::result_type
1961findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj,
1962              const SubobjectDesignator &Sub, SubobjectHandler &handler) {
1963  if (Sub.Invalid)
1964    // A diagnostic will have already been produced.
1965    return handler.failed();
1966  if (Sub.isOnePastTheEnd()) {
1967    if (Info.getLangOpts().CPlusPlus11)
1968      Info.Diag(E, diag::note_constexpr_access_past_end)
1969        << handler.AccessKind;
1970    else
1971      Info.Diag(E);
1972    return handler.failed();
1973  }
1974
1975  APValue *O = Obj.Value;
1976  QualType ObjType = Obj.Type;
1977  const FieldDecl *LastField = 0;
1978
1979  // Walk the designator's path to find the subobject.
1980  for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) {
1981    if (O->isUninit()) {
1982      if (!Info.CheckingPotentialConstantExpression)
1983        Info.Diag(E, diag::note_constexpr_access_uninit) << handler.AccessKind;
1984      return handler.failed();
1985    }
1986
1987    if (I == N) {
1988      if (!handler.found(*O, ObjType))
1989        return false;
1990
1991      // If we modified a bit-field, truncate it to the right width.
1992      if (handler.AccessKind != AK_Read &&
1993          LastField && LastField->isBitField() &&
1994          !truncateBitfieldValue(Info, E, *O, LastField))
1995        return false;
1996
1997      return true;
1998    }
1999
2000    LastField = 0;
2001    if (ObjType->isArrayType()) {
2002      // Next subobject is an array element.
2003      const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
2004      assert(CAT && "vla in literal type?");
2005      uint64_t Index = Sub.Entries[I].ArrayIndex;
2006      if (CAT->getSize().ule(Index)) {
2007        // Note, it should not be possible to form a pointer with a valid
2008        // designator which points more than one past the end of the array.
2009        if (Info.getLangOpts().CPlusPlus11)
2010          Info.Diag(E, diag::note_constexpr_access_past_end)
2011            << handler.AccessKind;
2012        else
2013          Info.Diag(E);
2014        return handler.failed();
2015      }
2016
2017      ObjType = CAT->getElementType();
2018
2019      // An array object is represented as either an Array APValue or as an
2020      // LValue which refers to a string literal.
2021      if (O->isLValue()) {
2022        assert(I == N - 1 && "extracting subobject of character?");
2023        assert(!O->hasLValuePath() || O->getLValuePath().empty());
2024        if (handler.AccessKind != AK_Read)
2025          expandStringLiteral(Info, O->getLValueBase().get<const Expr *>(),
2026                              *O);
2027        else
2028          return handler.foundString(*O, ObjType, Index);
2029      }
2030
2031      if (O->getArrayInitializedElts() > Index)
2032        O = &O->getArrayInitializedElt(Index);
2033      else if (handler.AccessKind != AK_Read) {
2034        expandArray(*O, Index);
2035        O = &O->getArrayInitializedElt(Index);
2036      } else
2037        O = &O->getArrayFiller();
2038    } else if (ObjType->isAnyComplexType()) {
2039      // Next subobject is a complex number.
2040      uint64_t Index = Sub.Entries[I].ArrayIndex;
2041      if (Index > 1) {
2042        if (Info.getLangOpts().CPlusPlus11)
2043          Info.Diag(E, diag::note_constexpr_access_past_end)
2044            << handler.AccessKind;
2045        else
2046          Info.Diag(E);
2047        return handler.failed();
2048      }
2049
2050      bool WasConstQualified = ObjType.isConstQualified();
2051      ObjType = ObjType->castAs<ComplexType>()->getElementType();
2052      if (WasConstQualified)
2053        ObjType.addConst();
2054
2055      assert(I == N - 1 && "extracting subobject of scalar?");
2056      if (O->isComplexInt()) {
2057        return handler.found(Index ? O->getComplexIntImag()
2058                                   : O->getComplexIntReal(), ObjType);
2059      } else {
2060        assert(O->isComplexFloat());
2061        return handler.found(Index ? O->getComplexFloatImag()
2062                                   : O->getComplexFloatReal(), ObjType);
2063      }
2064    } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
2065      if (Field->isMutable() && handler.AccessKind == AK_Read) {
2066        Info.Diag(E, diag::note_constexpr_ltor_mutable, 1)
2067          << Field;
2068        Info.Note(Field->getLocation(), diag::note_declared_at);
2069        return handler.failed();
2070      }
2071
2072      // Next subobject is a class, struct or union field.
2073      RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
2074      if (RD->isUnion()) {
2075        const FieldDecl *UnionField = O->getUnionField();
2076        if (!UnionField ||
2077            UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
2078          Info.Diag(E, diag::note_constexpr_access_inactive_union_member)
2079            << handler.AccessKind << Field << !UnionField << UnionField;
2080          return handler.failed();
2081        }
2082        O = &O->getUnionValue();
2083      } else
2084        O = &O->getStructField(Field->getFieldIndex());
2085
2086      bool WasConstQualified = ObjType.isConstQualified();
2087      ObjType = Field->getType();
2088      if (WasConstQualified && !Field->isMutable())
2089        ObjType.addConst();
2090
2091      if (ObjType.isVolatileQualified()) {
2092        if (Info.getLangOpts().CPlusPlus) {
2093          // FIXME: Include a description of the path to the volatile subobject.
2094          Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
2095            << handler.AccessKind << 2 << Field;
2096          Info.Note(Field->getLocation(), diag::note_declared_at);
2097        } else {
2098          Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
2099        }
2100        return handler.failed();
2101      }
2102
2103      LastField = Field;
2104    } else {
2105      // Next subobject is a base class.
2106      const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
2107      const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
2108      O = &O->getStructBase(getBaseIndex(Derived, Base));
2109
2110      bool WasConstQualified = ObjType.isConstQualified();
2111      ObjType = Info.Ctx.getRecordType(Base);
2112      if (WasConstQualified)
2113        ObjType.addConst();
2114    }
2115  }
2116}
2117
2118namespace {
2119struct ExtractSubobjectHandler {
2120  EvalInfo &Info;
2121  APValue &Result;
2122
2123  static const AccessKinds AccessKind = AK_Read;
2124
2125  typedef bool result_type;
2126  bool failed() { return false; }
2127  bool found(APValue &Subobj, QualType SubobjType) {
2128    Result = Subobj;
2129    return true;
2130  }
2131  bool found(APSInt &Value, QualType SubobjType) {
2132    Result = APValue(Value);
2133    return true;
2134  }
2135  bool found(APFloat &Value, QualType SubobjType) {
2136    Result = APValue(Value);
2137    return true;
2138  }
2139  bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
2140    Result = APValue(extractStringLiteralCharacter(
2141        Info, Subobj.getLValueBase().get<const Expr *>(), Character));
2142    return true;
2143  }
2144};
2145} // end anonymous namespace
2146
2147const AccessKinds ExtractSubobjectHandler::AccessKind;
2148
2149/// Extract the designated sub-object of an rvalue.
2150static bool extractSubobject(EvalInfo &Info, const Expr *E,
2151                             const CompleteObject &Obj,
2152                             const SubobjectDesignator &Sub,
2153                             APValue &Result) {
2154  ExtractSubobjectHandler Handler = { Info, Result };
2155  return findSubobject(Info, E, Obj, Sub, Handler);
2156}
2157
2158namespace {
2159struct ModifySubobjectHandler {
2160  EvalInfo &Info;
2161  APValue &NewVal;
2162  const Expr *E;
2163
2164  typedef bool result_type;
2165  static const AccessKinds AccessKind = AK_Assign;
2166
2167  bool checkConst(QualType QT) {
2168    // Assigning to a const object has undefined behavior.
2169    if (QT.isConstQualified()) {
2170      Info.Diag(E, diag::note_constexpr_modify_const_type) << QT;
2171      return false;
2172    }
2173    return true;
2174  }
2175
2176  bool failed() { return false; }
2177  bool found(APValue &Subobj, QualType SubobjType) {
2178    if (!checkConst(SubobjType))
2179      return false;
2180    // We've been given ownership of NewVal, so just swap it in.
2181    Subobj.swap(NewVal);
2182    return true;
2183  }
2184  bool found(APSInt &Value, QualType SubobjType) {
2185    if (!checkConst(SubobjType))
2186      return false;
2187    if (!NewVal.isInt()) {
2188      // Maybe trying to write a cast pointer value into a complex?
2189      Info.Diag(E);
2190      return false;
2191    }
2192    Value = NewVal.getInt();
2193    return true;
2194  }
2195  bool found(APFloat &Value, QualType SubobjType) {
2196    if (!checkConst(SubobjType))
2197      return false;
2198    Value = NewVal.getFloat();
2199    return true;
2200  }
2201  bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
2202    llvm_unreachable("shouldn't encounter string elements with ExpandArrays");
2203  }
2204};
2205} // end anonymous namespace
2206
2207const AccessKinds ModifySubobjectHandler::AccessKind;
2208
2209/// Update the designated sub-object of an rvalue to the given value.
2210static bool modifySubobject(EvalInfo &Info, const Expr *E,
2211                            const CompleteObject &Obj,
2212                            const SubobjectDesignator &Sub,
2213                            APValue &NewVal) {
2214  ModifySubobjectHandler Handler = { Info, NewVal, E };
2215  return findSubobject(Info, E, Obj, Sub, Handler);
2216}
2217
2218/// Find the position where two subobject designators diverge, or equivalently
2219/// the length of the common initial subsequence.
2220static unsigned FindDesignatorMismatch(QualType ObjType,
2221                                       const SubobjectDesignator &A,
2222                                       const SubobjectDesignator &B,
2223                                       bool &WasArrayIndex) {
2224  unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
2225  for (/**/; I != N; ++I) {
2226    if (!ObjType.isNull() &&
2227        (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
2228      // Next subobject is an array element.
2229      if (A.Entries[I].ArrayIndex != B.Entries[I].ArrayIndex) {
2230        WasArrayIndex = true;
2231        return I;
2232      }
2233      if (ObjType->isAnyComplexType())
2234        ObjType = ObjType->castAs<ComplexType>()->getElementType();
2235      else
2236        ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
2237    } else {
2238      if (A.Entries[I].BaseOrMember != B.Entries[I].BaseOrMember) {
2239        WasArrayIndex = false;
2240        return I;
2241      }
2242      if (const FieldDecl *FD = getAsField(A.Entries[I]))
2243        // Next subobject is a field.
2244        ObjType = FD->getType();
2245      else
2246        // Next subobject is a base class.
2247        ObjType = QualType();
2248    }
2249  }
2250  WasArrayIndex = false;
2251  return I;
2252}
2253
2254/// Determine whether the given subobject designators refer to elements of the
2255/// same array object.
2256static bool AreElementsOfSameArray(QualType ObjType,
2257                                   const SubobjectDesignator &A,
2258                                   const SubobjectDesignator &B) {
2259  if (A.Entries.size() != B.Entries.size())
2260    return false;
2261
2262  bool IsArray = A.MostDerivedArraySize != 0;
2263  if (IsArray && A.MostDerivedPathLength != A.Entries.size())
2264    // A is a subobject of the array element.
2265    return false;
2266
2267  // If A (and B) designates an array element, the last entry will be the array
2268  // index. That doesn't have to match. Otherwise, we're in the 'implicit array
2269  // of length 1' case, and the entire path must match.
2270  bool WasArrayIndex;
2271  unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
2272  return CommonLength >= A.Entries.size() - IsArray;
2273}
2274
2275/// Find the complete object to which an LValue refers.
2276CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E, AccessKinds AK,
2277                                  const LValue &LVal, QualType LValType) {
2278  if (!LVal.Base) {
2279    Info.Diag(E, diag::note_constexpr_access_null) << AK;
2280    return CompleteObject();
2281  }
2282
2283  CallStackFrame *Frame = 0;
2284  if (LVal.CallIndex) {
2285    Frame = Info.getCallFrame(LVal.CallIndex);
2286    if (!Frame) {
2287      Info.Diag(E, diag::note_constexpr_lifetime_ended, 1)
2288        << AK << LVal.Base.is<const ValueDecl*>();
2289      NoteLValueLocation(Info, LVal.Base);
2290      return CompleteObject();
2291    }
2292  }
2293
2294  // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
2295  // is not a constant expression (even if the object is non-volatile). We also
2296  // apply this rule to C++98, in order to conform to the expected 'volatile'
2297  // semantics.
2298  if (LValType.isVolatileQualified()) {
2299    if (Info.getLangOpts().CPlusPlus)
2300      Info.Diag(E, diag::note_constexpr_access_volatile_type)
2301        << AK << LValType;
2302    else
2303      Info.Diag(E);
2304    return CompleteObject();
2305  }
2306
2307  // Compute value storage location and type of base object.
2308  APValue *BaseVal = 0;
2309  QualType BaseType = getType(LVal.Base);
2310
2311  if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl*>()) {
2312    // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
2313    // In C++11, constexpr, non-volatile variables initialized with constant
2314    // expressions are constant expressions too. Inside constexpr functions,
2315    // parameters are constant expressions even if they're non-const.
2316    // In C++1y, objects local to a constant expression (those with a Frame) are
2317    // both readable and writable inside constant expressions.
2318    // In C, such things can also be folded, although they are not ICEs.
2319    const VarDecl *VD = dyn_cast<VarDecl>(D);
2320    if (VD) {
2321      if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
2322        VD = VDef;
2323    }
2324    if (!VD || VD->isInvalidDecl()) {
2325      Info.Diag(E);
2326      return CompleteObject();
2327    }
2328
2329    // Accesses of volatile-qualified objects are not allowed.
2330    if (BaseType.isVolatileQualified()) {
2331      if (Info.getLangOpts().CPlusPlus) {
2332        Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
2333          << AK << 1 << VD;
2334        Info.Note(VD->getLocation(), diag::note_declared_at);
2335      } else {
2336        Info.Diag(E);
2337      }
2338      return CompleteObject();
2339    }
2340
2341    // Unless we're looking at a local variable or argument in a constexpr call,
2342    // the variable we're reading must be const.
2343    if (!Frame) {
2344      if (Info.getLangOpts().CPlusPlus1y &&
2345          VD == Info.EvaluatingDecl.dyn_cast<const ValueDecl *>()) {
2346        // OK, we can read and modify an object if we're in the process of
2347        // evaluating its initializer, because its lifetime began in this
2348        // evaluation.
2349      } else if (AK != AK_Read) {
2350        // All the remaining cases only permit reading.
2351        Info.Diag(E, diag::note_constexpr_modify_global);
2352        return CompleteObject();
2353      } else if (VD->isConstexpr()) {
2354        // OK, we can read this variable.
2355      } else if (BaseType->isIntegralOrEnumerationType()) {
2356        if (!BaseType.isConstQualified()) {
2357          if (Info.getLangOpts().CPlusPlus) {
2358            Info.Diag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD;
2359            Info.Note(VD->getLocation(), diag::note_declared_at);
2360          } else {
2361            Info.Diag(E);
2362          }
2363          return CompleteObject();
2364        }
2365      } else if (BaseType->isFloatingType() && BaseType.isConstQualified()) {
2366        // We support folding of const floating-point types, in order to make
2367        // static const data members of such types (supported as an extension)
2368        // more useful.
2369        if (Info.getLangOpts().CPlusPlus11) {
2370          Info.CCEDiag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
2371          Info.Note(VD->getLocation(), diag::note_declared_at);
2372        } else {
2373          Info.CCEDiag(E);
2374        }
2375      } else {
2376        // FIXME: Allow folding of values of any literal type in all languages.
2377        if (Info.getLangOpts().CPlusPlus11) {
2378          Info.Diag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
2379          Info.Note(VD->getLocation(), diag::note_declared_at);
2380        } else {
2381          Info.Diag(E);
2382        }
2383        return CompleteObject();
2384      }
2385    }
2386
2387    if (!evaluateVarDeclInit(Info, E, VD, Frame, BaseVal))
2388      return CompleteObject();
2389  } else {
2390    const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
2391
2392    if (!Frame) {
2393      if (const MaterializeTemporaryExpr *MTE =
2394              dyn_cast<MaterializeTemporaryExpr>(Base)) {
2395        assert(MTE->getStorageDuration() == SD_Static &&
2396               "should have a frame for a non-global materialized temporary");
2397
2398        // Per C++1y [expr.const]p2:
2399        //  an lvalue-to-rvalue conversion [is not allowed unless it applies to]
2400        //   - a [...] glvalue of integral or enumeration type that refers to
2401        //     a non-volatile const object [...]
2402        //   [...]
2403        //   - a [...] glvalue of literal type that refers to a non-volatile
2404        //     object whose lifetime began within the evaluation of e.
2405        //
2406        // C++11 misses the 'began within the evaluation of e' check and
2407        // instead allows all temporaries, including things like:
2408        //   int &&r = 1;
2409        //   int x = ++r;
2410        //   constexpr int k = r;
2411        // Therefore we use the C++1y rules in C++11 too.
2412        const ValueDecl *VD = Info.EvaluatingDecl.dyn_cast<const ValueDecl*>();
2413        const ValueDecl *ED = MTE->getExtendingDecl();
2414        if (!(BaseType.isConstQualified() &&
2415              BaseType->isIntegralOrEnumerationType()) &&
2416            !(VD && VD->getCanonicalDecl() == ED->getCanonicalDecl())) {
2417          Info.Diag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
2418          Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here);
2419          return CompleteObject();
2420        }
2421
2422        BaseVal = Info.Ctx.getMaterializedTemporaryValue(MTE, false);
2423        assert(BaseVal && "got reference to unevaluated temporary");
2424      } else {
2425        Info.Diag(E);
2426        return CompleteObject();
2427      }
2428    } else {
2429      BaseVal = Frame->getTemporary(Base);
2430      assert(BaseVal && "missing value for temporary");
2431    }
2432
2433    // Volatile temporary objects cannot be accessed in constant expressions.
2434    if (BaseType.isVolatileQualified()) {
2435      if (Info.getLangOpts().CPlusPlus) {
2436        Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
2437          << AK << 0;
2438        Info.Note(Base->getExprLoc(), diag::note_constexpr_temporary_here);
2439      } else {
2440        Info.Diag(E);
2441      }
2442      return CompleteObject();
2443    }
2444  }
2445
2446  // During the construction of an object, it is not yet 'const'.
2447  // FIXME: We don't set up EvaluatingDecl for local variables or temporaries,
2448  // and this doesn't do quite the right thing for const subobjects of the
2449  // object under construction.
2450  if (LVal.getLValueBase() == Info.EvaluatingDecl) {
2451    BaseType = Info.Ctx.getCanonicalType(BaseType);
2452    BaseType.removeLocalConst();
2453  }
2454
2455  // In C++1y, we can't safely access any mutable state when checking a
2456  // potential constant expression.
2457  if (Frame && Info.getLangOpts().CPlusPlus1y &&
2458      Info.CheckingPotentialConstantExpression)
2459    return CompleteObject();
2460
2461  return CompleteObject(BaseVal, BaseType);
2462}
2463
2464/// \brief Perform an lvalue-to-rvalue conversion on the given glvalue. This
2465/// can also be used for 'lvalue-to-lvalue' conversions for looking up the
2466/// glvalue referred to by an entity of reference type.
2467///
2468/// \param Info - Information about the ongoing evaluation.
2469/// \param Conv - The expression for which we are performing the conversion.
2470///               Used for diagnostics.
2471/// \param Type - The type of the glvalue (before stripping cv-qualifiers in the
2472///               case of a non-class type).
2473/// \param LVal - The glvalue on which we are attempting to perform this action.
2474/// \param RVal - The produced value will be placed here.
2475static bool handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv,
2476                                           QualType Type,
2477                                           const LValue &LVal, APValue &RVal) {
2478  if (LVal.Designator.Invalid)
2479    return false;
2480
2481  // Check for special cases where there is no existing APValue to look at.
2482  const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
2483  if (!LVal.Designator.Invalid && Base && !LVal.CallIndex &&
2484      !Type.isVolatileQualified()) {
2485    if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) {
2486      // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
2487      // initializer until now for such expressions. Such an expression can't be
2488      // an ICE in C, so this only matters for fold.
2489      assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
2490      if (Type.isVolatileQualified()) {
2491        Info.Diag(Conv);
2492        return false;
2493      }
2494      APValue Lit;
2495      if (!Evaluate(Lit, Info, CLE->getInitializer()))
2496        return false;
2497      CompleteObject LitObj(&Lit, Base->getType());
2498      return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal);
2499    } else if (isa<StringLiteral>(Base)) {
2500      // We represent a string literal array as an lvalue pointing at the
2501      // corresponding expression, rather than building an array of chars.
2502      // FIXME: Support PredefinedExpr, ObjCEncodeExpr, MakeStringConstant
2503      APValue Str(Base, CharUnits::Zero(), APValue::NoLValuePath(), 0);
2504      CompleteObject StrObj(&Str, Base->getType());
2505      return extractSubobject(Info, Conv, StrObj, LVal.Designator, RVal);
2506    }
2507  }
2508
2509  CompleteObject Obj = findCompleteObject(Info, Conv, AK_Read, LVal, Type);
2510  return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal);
2511}
2512
2513/// Perform an assignment of Val to LVal. Takes ownership of Val.
2514static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal,
2515                             QualType LValType, APValue &Val) {
2516  if (LVal.Designator.Invalid)
2517    return false;
2518
2519  if (!Info.getLangOpts().CPlusPlus1y) {
2520    Info.Diag(E);
2521    return false;
2522  }
2523
2524  CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
2525  return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val);
2526}
2527
2528static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
2529  return T->isSignedIntegerType() &&
2530         Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
2531}
2532
2533namespace {
2534struct CompoundAssignSubobjectHandler {
2535  EvalInfo &Info;
2536  const Expr *E;
2537  QualType PromotedLHSType;
2538  BinaryOperatorKind Opcode;
2539  const APValue &RHS;
2540
2541  static const AccessKinds AccessKind = AK_Assign;
2542
2543  typedef bool result_type;
2544
2545  bool checkConst(QualType QT) {
2546    // Assigning to a const object has undefined behavior.
2547    if (QT.isConstQualified()) {
2548      Info.Diag(E, diag::note_constexpr_modify_const_type) << QT;
2549      return false;
2550    }
2551    return true;
2552  }
2553
2554  bool failed() { return false; }
2555  bool found(APValue &Subobj, QualType SubobjType) {
2556    switch (Subobj.getKind()) {
2557    case APValue::Int:
2558      return found(Subobj.getInt(), SubobjType);
2559    case APValue::Float:
2560      return found(Subobj.getFloat(), SubobjType);
2561    case APValue::ComplexInt:
2562    case APValue::ComplexFloat:
2563      // FIXME: Implement complex compound assignment.
2564      Info.Diag(E);
2565      return false;
2566    case APValue::LValue:
2567      return foundPointer(Subobj, SubobjType);
2568    default:
2569      // FIXME: can this happen?
2570      Info.Diag(E);
2571      return false;
2572    }
2573  }
2574  bool found(APSInt &Value, QualType SubobjType) {
2575    if (!checkConst(SubobjType))
2576      return false;
2577
2578    if (!SubobjType->isIntegerType() || !RHS.isInt()) {
2579      // We don't support compound assignment on integer-cast-to-pointer
2580      // values.
2581      Info.Diag(E);
2582      return false;
2583    }
2584
2585    APSInt LHS = HandleIntToIntCast(Info, E, PromotedLHSType,
2586                                    SubobjType, Value);
2587    if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS))
2588      return false;
2589    Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS);
2590    return true;
2591  }
2592  bool found(APFloat &Value, QualType SubobjType) {
2593    return checkConst(SubobjType) &&
2594           HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType,
2595                                  Value) &&
2596           handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) &&
2597           HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value);
2598  }
2599  bool foundPointer(APValue &Subobj, QualType SubobjType) {
2600    if (!checkConst(SubobjType))
2601      return false;
2602
2603    QualType PointeeType;
2604    if (const PointerType *PT = SubobjType->getAs<PointerType>())
2605      PointeeType = PT->getPointeeType();
2606
2607    if (PointeeType.isNull() || !RHS.isInt() ||
2608        (Opcode != BO_Add && Opcode != BO_Sub)) {
2609      Info.Diag(E);
2610      return false;
2611    }
2612
2613    int64_t Offset = getExtValue(RHS.getInt());
2614    if (Opcode == BO_Sub)
2615      Offset = -Offset;
2616
2617    LValue LVal;
2618    LVal.setFrom(Info.Ctx, Subobj);
2619    if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset))
2620      return false;
2621    LVal.moveInto(Subobj);
2622    return true;
2623  }
2624  bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
2625    llvm_unreachable("shouldn't encounter string elements here");
2626  }
2627};
2628} // end anonymous namespace
2629
2630const AccessKinds CompoundAssignSubobjectHandler::AccessKind;
2631
2632/// Perform a compound assignment of LVal <op>= RVal.
2633static bool handleCompoundAssignment(
2634    EvalInfo &Info, const Expr *E,
2635    const LValue &LVal, QualType LValType, QualType PromotedLValType,
2636    BinaryOperatorKind Opcode, const APValue &RVal) {
2637  if (LVal.Designator.Invalid)
2638    return false;
2639
2640  if (!Info.getLangOpts().CPlusPlus1y) {
2641    Info.Diag(E);
2642    return false;
2643  }
2644
2645  CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
2646  CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode,
2647                                             RVal };
2648  return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
2649}
2650
2651namespace {
2652struct IncDecSubobjectHandler {
2653  EvalInfo &Info;
2654  const Expr *E;
2655  AccessKinds AccessKind;
2656  APValue *Old;
2657
2658  typedef bool result_type;
2659
2660  bool checkConst(QualType QT) {
2661    // Assigning to a const object has undefined behavior.
2662    if (QT.isConstQualified()) {
2663      Info.Diag(E, diag::note_constexpr_modify_const_type) << QT;
2664      return false;
2665    }
2666    return true;
2667  }
2668
2669  bool failed() { return false; }
2670  bool found(APValue &Subobj, QualType SubobjType) {
2671    // Stash the old value. Also clear Old, so we don't clobber it later
2672    // if we're post-incrementing a complex.
2673    if (Old) {
2674      *Old = Subobj;
2675      Old = 0;
2676    }
2677
2678    switch (Subobj.getKind()) {
2679    case APValue::Int:
2680      return found(Subobj.getInt(), SubobjType);
2681    case APValue::Float:
2682      return found(Subobj.getFloat(), SubobjType);
2683    case APValue::ComplexInt:
2684      return found(Subobj.getComplexIntReal(),
2685                   SubobjType->castAs<ComplexType>()->getElementType()
2686                     .withCVRQualifiers(SubobjType.getCVRQualifiers()));
2687    case APValue::ComplexFloat:
2688      return found(Subobj.getComplexFloatReal(),
2689                   SubobjType->castAs<ComplexType>()->getElementType()
2690                     .withCVRQualifiers(SubobjType.getCVRQualifiers()));
2691    case APValue::LValue:
2692      return foundPointer(Subobj, SubobjType);
2693    default:
2694      // FIXME: can this happen?
2695      Info.Diag(E);
2696      return false;
2697    }
2698  }
2699  bool found(APSInt &Value, QualType SubobjType) {
2700    if (!checkConst(SubobjType))
2701      return false;
2702
2703    if (!SubobjType->isIntegerType()) {
2704      // We don't support increment / decrement on integer-cast-to-pointer
2705      // values.
2706      Info.Diag(E);
2707      return false;
2708    }
2709
2710    if (Old) *Old = APValue(Value);
2711
2712    // bool arithmetic promotes to int, and the conversion back to bool
2713    // doesn't reduce mod 2^n, so special-case it.
2714    if (SubobjType->isBooleanType()) {
2715      if (AccessKind == AK_Increment)
2716        Value = 1;
2717      else
2718        Value = !Value;
2719      return true;
2720    }
2721
2722    bool WasNegative = Value.isNegative();
2723    if (AccessKind == AK_Increment) {
2724      ++Value;
2725
2726      if (!WasNegative && Value.isNegative() &&
2727          isOverflowingIntegerType(Info.Ctx, SubobjType)) {
2728        APSInt ActualValue(Value, /*IsUnsigned*/true);
2729        HandleOverflow(Info, E, ActualValue, SubobjType);
2730      }
2731    } else {
2732      --Value;
2733
2734      if (WasNegative && !Value.isNegative() &&
2735          isOverflowingIntegerType(Info.Ctx, SubobjType)) {
2736        unsigned BitWidth = Value.getBitWidth();
2737        APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false);
2738        ActualValue.setBit(BitWidth);
2739        HandleOverflow(Info, E, ActualValue, SubobjType);
2740      }
2741    }
2742    return true;
2743  }
2744  bool found(APFloat &Value, QualType SubobjType) {
2745    if (!checkConst(SubobjType))
2746      return false;
2747
2748    if (Old) *Old = APValue(Value);
2749
2750    APFloat One(Value.getSemantics(), 1);
2751    if (AccessKind == AK_Increment)
2752      Value.add(One, APFloat::rmNearestTiesToEven);
2753    else
2754      Value.subtract(One, APFloat::rmNearestTiesToEven);
2755    return true;
2756  }
2757  bool foundPointer(APValue &Subobj, QualType SubobjType) {
2758    if (!checkConst(SubobjType))
2759      return false;
2760
2761    QualType PointeeType;
2762    if (const PointerType *PT = SubobjType->getAs<PointerType>())
2763      PointeeType = PT->getPointeeType();
2764    else {
2765      Info.Diag(E);
2766      return false;
2767    }
2768
2769    LValue LVal;
2770    LVal.setFrom(Info.Ctx, Subobj);
2771    if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType,
2772                                     AccessKind == AK_Increment ? 1 : -1))
2773      return false;
2774    LVal.moveInto(Subobj);
2775    return true;
2776  }
2777  bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
2778    llvm_unreachable("shouldn't encounter string elements here");
2779  }
2780};
2781} // end anonymous namespace
2782
2783/// Perform an increment or decrement on LVal.
2784static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal,
2785                         QualType LValType, bool IsIncrement, APValue *Old) {
2786  if (LVal.Designator.Invalid)
2787    return false;
2788
2789  if (!Info.getLangOpts().CPlusPlus1y) {
2790    Info.Diag(E);
2791    return false;
2792  }
2793
2794  AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement;
2795  CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType);
2796  IncDecSubobjectHandler Handler = { Info, E, AK, Old };
2797  return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
2798}
2799
2800/// Build an lvalue for the object argument of a member function call.
2801static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
2802                                   LValue &This) {
2803  if (Object->getType()->isPointerType())
2804    return EvaluatePointer(Object, This, Info);
2805
2806  if (Object->isGLValue())
2807    return EvaluateLValue(Object, This, Info);
2808
2809  if (Object->getType()->isLiteralType(Info.Ctx))
2810    return EvaluateTemporary(Object, This, Info);
2811
2812  return false;
2813}
2814
2815/// HandleMemberPointerAccess - Evaluate a member access operation and build an
2816/// lvalue referring to the result.
2817///
2818/// \param Info - Information about the ongoing evaluation.
2819/// \param LV - An lvalue referring to the base of the member pointer.
2820/// \param RHS - The member pointer expression.
2821/// \param IncludeMember - Specifies whether the member itself is included in
2822///        the resulting LValue subobject designator. This is not possible when
2823///        creating a bound member function.
2824/// \return The field or method declaration to which the member pointer refers,
2825///         or 0 if evaluation fails.
2826static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
2827                                                  QualType LVType,
2828                                                  LValue &LV,
2829                                                  const Expr *RHS,
2830                                                  bool IncludeMember = true) {
2831  MemberPtr MemPtr;
2832  if (!EvaluateMemberPointer(RHS, MemPtr, Info))
2833    return 0;
2834
2835  // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
2836  // member value, the behavior is undefined.
2837  if (!MemPtr.getDecl()) {
2838    // FIXME: Specific diagnostic.
2839    Info.Diag(RHS);
2840    return 0;
2841  }
2842
2843  if (MemPtr.isDerivedMember()) {
2844    // This is a member of some derived class. Truncate LV appropriately.
2845    // The end of the derived-to-base path for the base object must match the
2846    // derived-to-base path for the member pointer.
2847    if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
2848        LV.Designator.Entries.size()) {
2849      Info.Diag(RHS);
2850      return 0;
2851    }
2852    unsigned PathLengthToMember =
2853        LV.Designator.Entries.size() - MemPtr.Path.size();
2854    for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
2855      const CXXRecordDecl *LVDecl = getAsBaseClass(
2856          LV.Designator.Entries[PathLengthToMember + I]);
2857      const CXXRecordDecl *MPDecl = MemPtr.Path[I];
2858      if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) {
2859        Info.Diag(RHS);
2860        return 0;
2861      }
2862    }
2863
2864    // Truncate the lvalue to the appropriate derived class.
2865    if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(),
2866                            PathLengthToMember))
2867      return 0;
2868  } else if (!MemPtr.Path.empty()) {
2869    // Extend the LValue path with the member pointer's path.
2870    LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
2871                                  MemPtr.Path.size() + IncludeMember);
2872
2873    // Walk down to the appropriate base class.
2874    if (const PointerType *PT = LVType->getAs<PointerType>())
2875      LVType = PT->getPointeeType();
2876    const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
2877    assert(RD && "member pointer access on non-class-type expression");
2878    // The first class in the path is that of the lvalue.
2879    for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
2880      const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
2881      if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base))
2882        return 0;
2883      RD = Base;
2884    }
2885    // Finally cast to the class containing the member.
2886    if (!HandleLValueDirectBase(Info, RHS, LV, RD,
2887                                MemPtr.getContainingRecord()))
2888      return 0;
2889  }
2890
2891  // Add the member. Note that we cannot build bound member functions here.
2892  if (IncludeMember) {
2893    if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
2894      if (!HandleLValueMember(Info, RHS, LV, FD))
2895        return 0;
2896    } else if (const IndirectFieldDecl *IFD =
2897                 dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
2898      if (!HandleLValueIndirectMember(Info, RHS, LV, IFD))
2899        return 0;
2900    } else {
2901      llvm_unreachable("can't construct reference to bound member function");
2902    }
2903  }
2904
2905  return MemPtr.getDecl();
2906}
2907
2908static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
2909                                                  const BinaryOperator *BO,
2910                                                  LValue &LV,
2911                                                  bool IncludeMember = true) {
2912  assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
2913
2914  if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) {
2915    if (Info.keepEvaluatingAfterFailure()) {
2916      MemberPtr MemPtr;
2917      EvaluateMemberPointer(BO->getRHS(), MemPtr, Info);
2918    }
2919    return 0;
2920  }
2921
2922  return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV,
2923                                   BO->getRHS(), IncludeMember);
2924}
2925
2926/// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
2927/// the provided lvalue, which currently refers to the base object.
2928static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
2929                                    LValue &Result) {
2930  SubobjectDesignator &D = Result.Designator;
2931  if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
2932    return false;
2933
2934  QualType TargetQT = E->getType();
2935  if (const PointerType *PT = TargetQT->getAs<PointerType>())
2936    TargetQT = PT->getPointeeType();
2937
2938  // Check this cast lands within the final derived-to-base subobject path.
2939  if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
2940    Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
2941      << D.MostDerivedType << TargetQT;
2942    return false;
2943  }
2944
2945  // Check the type of the final cast. We don't need to check the path,
2946  // since a cast can only be formed if the path is unique.
2947  unsigned NewEntriesSize = D.Entries.size() - E->path_size();
2948  const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
2949  const CXXRecordDecl *FinalType;
2950  if (NewEntriesSize == D.MostDerivedPathLength)
2951    FinalType = D.MostDerivedType->getAsCXXRecordDecl();
2952  else
2953    FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
2954  if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
2955    Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
2956      << D.MostDerivedType << TargetQT;
2957    return false;
2958  }
2959
2960  // Truncate the lvalue to the appropriate derived class.
2961  return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
2962}
2963
2964namespace {
2965enum EvalStmtResult {
2966  /// Evaluation failed.
2967  ESR_Failed,
2968  /// Hit a 'return' statement.
2969  ESR_Returned,
2970  /// Evaluation succeeded.
2971  ESR_Succeeded,
2972  /// Hit a 'continue' statement.
2973  ESR_Continue,
2974  /// Hit a 'break' statement.
2975  ESR_Break,
2976  /// Still scanning for 'case' or 'default' statement.
2977  ESR_CaseNotFound
2978};
2979}
2980
2981static bool EvaluateDecl(EvalInfo &Info, const Decl *D) {
2982  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2983    // We don't need to evaluate the initializer for a static local.
2984    if (!VD->hasLocalStorage())
2985      return true;
2986
2987    LValue Result;
2988    Result.set(VD, Info.CurrentCall->Index);
2989    APValue &Val = Info.CurrentCall->createTemporary(VD, true);
2990
2991    if (!VD->getInit()) {
2992      Info.Diag(D->getLocStart(), diag::note_constexpr_uninitialized)
2993        << false << VD->getType();
2994      Val = APValue();
2995      return false;
2996    }
2997
2998    if (!EvaluateInPlace(Val, Info, Result, VD->getInit())) {
2999      // Wipe out any partially-computed value, to allow tracking that this
3000      // evaluation failed.
3001      Val = APValue();
3002      return false;
3003    }
3004  }
3005
3006  return true;
3007}
3008
3009/// Evaluate a condition (either a variable declaration or an expression).
3010static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl,
3011                         const Expr *Cond, bool &Result) {
3012  FullExpressionRAII Scope(Info);
3013  if (CondDecl && !EvaluateDecl(Info, CondDecl))
3014    return false;
3015  return EvaluateAsBooleanCondition(Cond, Result, Info);
3016}
3017
3018static EvalStmtResult EvaluateStmt(APValue &Result, EvalInfo &Info,
3019                                   const Stmt *S, const SwitchCase *SC = 0);
3020
3021/// Evaluate the body of a loop, and translate the result as appropriate.
3022static EvalStmtResult EvaluateLoopBody(APValue &Result, EvalInfo &Info,
3023                                       const Stmt *Body,
3024                                       const SwitchCase *Case = 0) {
3025  BlockScopeRAII Scope(Info);
3026  switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case)) {
3027  case ESR_Break:
3028    return ESR_Succeeded;
3029  case ESR_Succeeded:
3030  case ESR_Continue:
3031    return ESR_Continue;
3032  case ESR_Failed:
3033  case ESR_Returned:
3034  case ESR_CaseNotFound:
3035    return ESR;
3036  }
3037  llvm_unreachable("Invalid EvalStmtResult!");
3038}
3039
3040/// Evaluate a switch statement.
3041static EvalStmtResult EvaluateSwitch(APValue &Result, EvalInfo &Info,
3042                                     const SwitchStmt *SS) {
3043  BlockScopeRAII Scope(Info);
3044
3045  // Evaluate the switch condition.
3046  APSInt Value;
3047  {
3048    FullExpressionRAII Scope(Info);
3049    if (SS->getConditionVariable() &&
3050        !EvaluateDecl(Info, SS->getConditionVariable()))
3051      return ESR_Failed;
3052    if (!EvaluateInteger(SS->getCond(), Value, Info))
3053      return ESR_Failed;
3054  }
3055
3056  // Find the switch case corresponding to the value of the condition.
3057  // FIXME: Cache this lookup.
3058  const SwitchCase *Found = 0;
3059  for (const SwitchCase *SC = SS->getSwitchCaseList(); SC;
3060       SC = SC->getNextSwitchCase()) {
3061    if (isa<DefaultStmt>(SC)) {
3062      Found = SC;
3063      continue;
3064    }
3065
3066    const CaseStmt *CS = cast<CaseStmt>(SC);
3067    APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx);
3068    APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx)
3069                              : LHS;
3070    if (LHS <= Value && Value <= RHS) {
3071      Found = SC;
3072      break;
3073    }
3074  }
3075
3076  if (!Found)
3077    return ESR_Succeeded;
3078
3079  // Search the switch body for the switch case and evaluate it from there.
3080  switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found)) {
3081  case ESR_Break:
3082    return ESR_Succeeded;
3083  case ESR_Succeeded:
3084  case ESR_Continue:
3085  case ESR_Failed:
3086  case ESR_Returned:
3087    return ESR;
3088  case ESR_CaseNotFound:
3089    // This can only happen if the switch case is nested within a statement
3090    // expression. We have no intention of supporting that.
3091    Info.Diag(Found->getLocStart(), diag::note_constexpr_stmt_expr_unsupported);
3092    return ESR_Failed;
3093  }
3094  llvm_unreachable("Invalid EvalStmtResult!");
3095}
3096
3097// Evaluate a statement.
3098static EvalStmtResult EvaluateStmt(APValue &Result, EvalInfo &Info,
3099                                   const Stmt *S, const SwitchCase *Case) {
3100  if (!Info.nextStep(S))
3101    return ESR_Failed;
3102
3103  // If we're hunting down a 'case' or 'default' label, recurse through
3104  // substatements until we hit the label.
3105  if (Case) {
3106    // FIXME: We don't start the lifetime of objects whose initialization we
3107    // jump over. However, such objects must be of class type with a trivial
3108    // default constructor that initialize all subobjects, so must be empty,
3109    // so this almost never matters.
3110    switch (S->getStmtClass()) {
3111    case Stmt::CompoundStmtClass:
3112      // FIXME: Precompute which substatement of a compound statement we
3113      // would jump to, and go straight there rather than performing a
3114      // linear scan each time.
3115    case Stmt::LabelStmtClass:
3116    case Stmt::AttributedStmtClass:
3117    case Stmt::DoStmtClass:
3118      break;
3119
3120    case Stmt::CaseStmtClass:
3121    case Stmt::DefaultStmtClass:
3122      if (Case == S)
3123        Case = 0;
3124      break;
3125
3126    case Stmt::IfStmtClass: {
3127      // FIXME: Precompute which side of an 'if' we would jump to, and go
3128      // straight there rather than scanning both sides.
3129      const IfStmt *IS = cast<IfStmt>(S);
3130
3131      // Wrap the evaluation in a block scope, in case it's a DeclStmt
3132      // preceded by our switch label.
3133      BlockScopeRAII Scope(Info);
3134
3135      EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case);
3136      if (ESR != ESR_CaseNotFound || !IS->getElse())
3137        return ESR;
3138      return EvaluateStmt(Result, Info, IS->getElse(), Case);
3139    }
3140
3141    case Stmt::WhileStmtClass: {
3142      EvalStmtResult ESR =
3143          EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case);
3144      if (ESR != ESR_Continue)
3145        return ESR;
3146      break;
3147    }
3148
3149    case Stmt::ForStmtClass: {
3150      const ForStmt *FS = cast<ForStmt>(S);
3151      EvalStmtResult ESR =
3152          EvaluateLoopBody(Result, Info, FS->getBody(), Case);
3153      if (ESR != ESR_Continue)
3154        return ESR;
3155      if (FS->getInc()) {
3156        FullExpressionRAII IncScope(Info);
3157        if (!EvaluateIgnoredValue(Info, FS->getInc()))
3158          return ESR_Failed;
3159      }
3160      break;
3161    }
3162
3163    case Stmt::DeclStmtClass:
3164      // FIXME: If the variable has initialization that can't be jumped over,
3165      // bail out of any immediately-surrounding compound-statement too.
3166    default:
3167      return ESR_CaseNotFound;
3168    }
3169  }
3170
3171  switch (S->getStmtClass()) {
3172  default:
3173    if (const Expr *E = dyn_cast<Expr>(S)) {
3174      // Don't bother evaluating beyond an expression-statement which couldn't
3175      // be evaluated.
3176      FullExpressionRAII Scope(Info);
3177      if (!EvaluateIgnoredValue(Info, E))
3178        return ESR_Failed;
3179      return ESR_Succeeded;
3180    }
3181
3182    Info.Diag(S->getLocStart());
3183    return ESR_Failed;
3184
3185  case Stmt::NullStmtClass:
3186    return ESR_Succeeded;
3187
3188  case Stmt::DeclStmtClass: {
3189    const DeclStmt *DS = cast<DeclStmt>(S);
3190    for (DeclStmt::const_decl_iterator DclIt = DS->decl_begin(),
3191           DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
3192      // Each declaration initialization is its own full-expression.
3193      // FIXME: This isn't quite right; if we're performing aggregate
3194      // initialization, each braced subexpression is its own full-expression.
3195      FullExpressionRAII Scope(Info);
3196      if (!EvaluateDecl(Info, *DclIt) && !Info.keepEvaluatingAfterFailure())
3197        return ESR_Failed;
3198    }
3199    return ESR_Succeeded;
3200  }
3201
3202  case Stmt::ReturnStmtClass: {
3203    const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
3204    FullExpressionRAII Scope(Info);
3205    if (RetExpr && !Evaluate(Result, Info, RetExpr))
3206      return ESR_Failed;
3207    return ESR_Returned;
3208  }
3209
3210  case Stmt::CompoundStmtClass: {
3211    BlockScopeRAII Scope(Info);
3212
3213    const CompoundStmt *CS = cast<CompoundStmt>(S);
3214    for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
3215           BE = CS->body_end(); BI != BE; ++BI) {
3216      EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI, Case);
3217      if (ESR == ESR_Succeeded)
3218        Case = 0;
3219      else if (ESR != ESR_CaseNotFound)
3220        return ESR;
3221    }
3222    return Case ? ESR_CaseNotFound : ESR_Succeeded;
3223  }
3224
3225  case Stmt::IfStmtClass: {
3226    const IfStmt *IS = cast<IfStmt>(S);
3227
3228    // Evaluate the condition, as either a var decl or as an expression.
3229    BlockScopeRAII Scope(Info);
3230    bool Cond;
3231    if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(), Cond))
3232      return ESR_Failed;
3233
3234    if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) {
3235      EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt);
3236      if (ESR != ESR_Succeeded)
3237        return ESR;
3238    }
3239    return ESR_Succeeded;
3240  }
3241
3242  case Stmt::WhileStmtClass: {
3243    const WhileStmt *WS = cast<WhileStmt>(S);
3244    while (true) {
3245      BlockScopeRAII Scope(Info);
3246      bool Continue;
3247      if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(),
3248                        Continue))
3249        return ESR_Failed;
3250      if (!Continue)
3251        break;
3252
3253      EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody());
3254      if (ESR != ESR_Continue)
3255        return ESR;
3256    }
3257    return ESR_Succeeded;
3258  }
3259
3260  case Stmt::DoStmtClass: {
3261    const DoStmt *DS = cast<DoStmt>(S);
3262    bool Continue;
3263    do {
3264      EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case);
3265      if (ESR != ESR_Continue)
3266        return ESR;
3267      Case = 0;
3268
3269      FullExpressionRAII CondScope(Info);
3270      if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info))
3271        return ESR_Failed;
3272    } while (Continue);
3273    return ESR_Succeeded;
3274  }
3275
3276  case Stmt::ForStmtClass: {
3277    const ForStmt *FS = cast<ForStmt>(S);
3278    BlockScopeRAII Scope(Info);
3279    if (FS->getInit()) {
3280      EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
3281      if (ESR != ESR_Succeeded)
3282        return ESR;
3283    }
3284    while (true) {
3285      BlockScopeRAII Scope(Info);
3286      bool Continue = true;
3287      if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(),
3288                                         FS->getCond(), Continue))
3289        return ESR_Failed;
3290      if (!Continue)
3291        break;
3292
3293      EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody());
3294      if (ESR != ESR_Continue)
3295        return ESR;
3296
3297      if (FS->getInc()) {
3298        FullExpressionRAII IncScope(Info);
3299        if (!EvaluateIgnoredValue(Info, FS->getInc()))
3300          return ESR_Failed;
3301      }
3302    }
3303    return ESR_Succeeded;
3304  }
3305
3306  case Stmt::CXXForRangeStmtClass: {
3307    const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S);
3308    BlockScopeRAII Scope(Info);
3309
3310    // Initialize the __range variable.
3311    EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt());
3312    if (ESR != ESR_Succeeded)
3313      return ESR;
3314
3315    // Create the __begin and __end iterators.
3316    ESR = EvaluateStmt(Result, Info, FS->getBeginEndStmt());
3317    if (ESR != ESR_Succeeded)
3318      return ESR;
3319
3320    while (true) {
3321      // Condition: __begin != __end.
3322      {
3323        bool Continue = true;
3324        FullExpressionRAII CondExpr(Info);
3325        if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info))
3326          return ESR_Failed;
3327        if (!Continue)
3328          break;
3329      }
3330
3331      // User's variable declaration, initialized by *__begin.
3332      BlockScopeRAII InnerScope(Info);
3333      ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt());
3334      if (ESR != ESR_Succeeded)
3335        return ESR;
3336
3337      // Loop body.
3338      ESR = EvaluateLoopBody(Result, Info, FS->getBody());
3339      if (ESR != ESR_Continue)
3340        return ESR;
3341
3342      // Increment: ++__begin
3343      if (!EvaluateIgnoredValue(Info, FS->getInc()))
3344        return ESR_Failed;
3345    }
3346
3347    return ESR_Succeeded;
3348  }
3349
3350  case Stmt::SwitchStmtClass:
3351    return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S));
3352
3353  case Stmt::ContinueStmtClass:
3354    return ESR_Continue;
3355
3356  case Stmt::BreakStmtClass:
3357    return ESR_Break;
3358
3359  case Stmt::LabelStmtClass:
3360    return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case);
3361
3362  case Stmt::AttributedStmtClass:
3363    // As a general principle, C++11 attributes can be ignored without
3364    // any semantic impact.
3365    return EvaluateStmt(Result, Info, cast<AttributedStmt>(S)->getSubStmt(),
3366                        Case);
3367
3368  case Stmt::CaseStmtClass:
3369  case Stmt::DefaultStmtClass:
3370    return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case);
3371  }
3372}
3373
3374/// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
3375/// default constructor. If so, we'll fold it whether or not it's marked as
3376/// constexpr. If it is marked as constexpr, we will never implicitly define it,
3377/// so we need special handling.
3378static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
3379                                           const CXXConstructorDecl *CD,
3380                                           bool IsValueInitialization) {
3381  if (!CD->isTrivial() || !CD->isDefaultConstructor())
3382    return false;
3383
3384  // Value-initialization does not call a trivial default constructor, so such a
3385  // call is a core constant expression whether or not the constructor is
3386  // constexpr.
3387  if (!CD->isConstexpr() && !IsValueInitialization) {
3388    if (Info.getLangOpts().CPlusPlus11) {
3389      // FIXME: If DiagDecl is an implicitly-declared special member function,
3390      // we should be much more explicit about why it's not constexpr.
3391      Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
3392        << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
3393      Info.Note(CD->getLocation(), diag::note_declared_at);
3394    } else {
3395      Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
3396    }
3397  }
3398  return true;
3399}
3400
3401/// CheckConstexprFunction - Check that a function can be called in a constant
3402/// expression.
3403static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
3404                                   const FunctionDecl *Declaration,
3405                                   const FunctionDecl *Definition) {
3406  // Potential constant expressions can contain calls to declared, but not yet
3407  // defined, constexpr functions.
3408  if (Info.CheckingPotentialConstantExpression && !Definition &&
3409      Declaration->isConstexpr())
3410    return false;
3411
3412  // Bail out with no diagnostic if the function declaration itself is invalid.
3413  // We will have produced a relevant diagnostic while parsing it.
3414  if (Declaration->isInvalidDecl())
3415    return false;
3416
3417  // Can we evaluate this function call?
3418  if (Definition && Definition->isConstexpr() && !Definition->isInvalidDecl())
3419    return true;
3420
3421  if (Info.getLangOpts().CPlusPlus11) {
3422    const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
3423    // FIXME: If DiagDecl is an implicitly-declared special member function, we
3424    // should be much more explicit about why it's not constexpr.
3425    Info.Diag(CallLoc, diag::note_constexpr_invalid_function, 1)
3426      << DiagDecl->isConstexpr() << isa<CXXConstructorDecl>(DiagDecl)
3427      << DiagDecl;
3428    Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
3429  } else {
3430    Info.Diag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
3431  }
3432  return false;
3433}
3434
3435namespace {
3436typedef SmallVector<APValue, 8> ArgVector;
3437}
3438
3439/// EvaluateArgs - Evaluate the arguments to a function call.
3440static bool EvaluateArgs(ArrayRef<const Expr*> Args, ArgVector &ArgValues,
3441                         EvalInfo &Info) {
3442  bool Success = true;
3443  for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
3444       I != E; ++I) {
3445    if (!Evaluate(ArgValues[I - Args.begin()], Info, *I)) {
3446      // If we're checking for a potential constant expression, evaluate all
3447      // initializers even if some of them fail.
3448      if (!Info.keepEvaluatingAfterFailure())
3449        return false;
3450      Success = false;
3451    }
3452  }
3453  return Success;
3454}
3455
3456/// Evaluate a function call.
3457static bool HandleFunctionCall(SourceLocation CallLoc,
3458                               const FunctionDecl *Callee, const LValue *This,
3459                               ArrayRef<const Expr*> Args, const Stmt *Body,
3460                               EvalInfo &Info, APValue &Result) {
3461  ArgVector ArgValues(Args.size());
3462  if (!EvaluateArgs(Args, ArgValues, Info))
3463    return false;
3464
3465  if (!Info.CheckCallLimit(CallLoc))
3466    return false;
3467
3468  CallStackFrame Frame(Info, CallLoc, Callee, This, ArgValues.data());
3469
3470  // For a trivial copy or move assignment, perform an APValue copy. This is
3471  // essential for unions, where the operations performed by the assignment
3472  // operator cannot be represented as statements.
3473  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee);
3474  if (MD && MD->isDefaulted() && MD->isTrivial()) {
3475    assert(This &&
3476           (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()));
3477    LValue RHS;
3478    RHS.setFrom(Info.Ctx, ArgValues[0]);
3479    APValue RHSValue;
3480    if (!handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
3481                                        RHS, RHSValue))
3482      return false;
3483    if (!handleAssignment(Info, Args[0], *This, MD->getThisType(Info.Ctx),
3484                          RHSValue))
3485      return false;
3486    This->moveInto(Result);
3487    return true;
3488  }
3489
3490  EvalStmtResult ESR = EvaluateStmt(Result, Info, Body);
3491  if (ESR == ESR_Succeeded) {
3492    if (Callee->getResultType()->isVoidType())
3493      return true;
3494    Info.Diag(Callee->getLocEnd(), diag::note_constexpr_no_return);
3495  }
3496  return ESR == ESR_Returned;
3497}
3498
3499/// Evaluate a constructor call.
3500static bool HandleConstructorCall(SourceLocation CallLoc, const LValue &This,
3501                                  ArrayRef<const Expr*> Args,
3502                                  const CXXConstructorDecl *Definition,
3503                                  EvalInfo &Info, APValue &Result) {
3504  ArgVector ArgValues(Args.size());
3505  if (!EvaluateArgs(Args, ArgValues, Info))
3506    return false;
3507
3508  if (!Info.CheckCallLimit(CallLoc))
3509    return false;
3510
3511  const CXXRecordDecl *RD = Definition->getParent();
3512  if (RD->getNumVBases()) {
3513    Info.Diag(CallLoc, diag::note_constexpr_virtual_base) << RD;
3514    return false;
3515  }
3516
3517  CallStackFrame Frame(Info, CallLoc, Definition, &This, ArgValues.data());
3518
3519  // If it's a delegating constructor, just delegate.
3520  if (Definition->isDelegatingConstructor()) {
3521    CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
3522    if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()))
3523      return false;
3524    return EvaluateStmt(Result, Info, Definition->getBody()) != ESR_Failed;
3525  }
3526
3527  // For a trivial copy or move constructor, perform an APValue copy. This is
3528  // essential for unions, where the operations performed by the constructor
3529  // cannot be represented by ctor-initializers.
3530  if (Definition->isDefaulted() &&
3531      ((Definition->isCopyConstructor() && Definition->isTrivial()) ||
3532       (Definition->isMoveConstructor() && Definition->isTrivial()))) {
3533    LValue RHS;
3534    RHS.setFrom(Info.Ctx, ArgValues[0]);
3535    return handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
3536                                          RHS, Result);
3537  }
3538
3539  // Reserve space for the struct members.
3540  if (!RD->isUnion() && Result.isUninit())
3541    Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
3542                     std::distance(RD->field_begin(), RD->field_end()));
3543
3544  if (RD->isInvalidDecl()) return false;
3545  const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
3546
3547  // A scope for temporaries lifetime-extended by reference members.
3548  BlockScopeRAII LifetimeExtendedScope(Info);
3549
3550  bool Success = true;
3551  unsigned BasesSeen = 0;
3552#ifndef NDEBUG
3553  CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
3554#endif
3555  for (CXXConstructorDecl::init_const_iterator I = Definition->init_begin(),
3556       E = Definition->init_end(); I != E; ++I) {
3557    LValue Subobject = This;
3558    APValue *Value = &Result;
3559
3560    // Determine the subobject to initialize.
3561    FieldDecl *FD = 0;
3562    if ((*I)->isBaseInitializer()) {
3563      QualType BaseType((*I)->getBaseClass(), 0);
3564#ifndef NDEBUG
3565      // Non-virtual base classes are initialized in the order in the class
3566      // definition. We have already checked for virtual base classes.
3567      assert(!BaseIt->isVirtual() && "virtual base for literal type");
3568      assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
3569             "base class initializers not in expected order");
3570      ++BaseIt;
3571#endif
3572      if (!HandleLValueDirectBase(Info, (*I)->getInit(), Subobject, RD,
3573                                  BaseType->getAsCXXRecordDecl(), &Layout))
3574        return false;
3575      Value = &Result.getStructBase(BasesSeen++);
3576    } else if ((FD = (*I)->getMember())) {
3577      if (!HandleLValueMember(Info, (*I)->getInit(), Subobject, FD, &Layout))
3578        return false;
3579      if (RD->isUnion()) {
3580        Result = APValue(FD);
3581        Value = &Result.getUnionValue();
3582      } else {
3583        Value = &Result.getStructField(FD->getFieldIndex());
3584      }
3585    } else if (IndirectFieldDecl *IFD = (*I)->getIndirectMember()) {
3586      // Walk the indirect field decl's chain to find the object to initialize,
3587      // and make sure we've initialized every step along it.
3588      for (IndirectFieldDecl::chain_iterator C = IFD->chain_begin(),
3589                                             CE = IFD->chain_end();
3590           C != CE; ++C) {
3591        FD = cast<FieldDecl>(*C);
3592        CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
3593        // Switch the union field if it differs. This happens if we had
3594        // preceding zero-initialization, and we're now initializing a union
3595        // subobject other than the first.
3596        // FIXME: In this case, the values of the other subobjects are
3597        // specified, since zero-initialization sets all padding bits to zero.
3598        if (Value->isUninit() ||
3599            (Value->isUnion() && Value->getUnionField() != FD)) {
3600          if (CD->isUnion())
3601            *Value = APValue(FD);
3602          else
3603            *Value = APValue(APValue::UninitStruct(), CD->getNumBases(),
3604                             std::distance(CD->field_begin(), CD->field_end()));
3605        }
3606        if (!HandleLValueMember(Info, (*I)->getInit(), Subobject, FD))
3607          return false;
3608        if (CD->isUnion())
3609          Value = &Value->getUnionValue();
3610        else
3611          Value = &Value->getStructField(FD->getFieldIndex());
3612      }
3613    } else {
3614      llvm_unreachable("unknown base initializer kind");
3615    }
3616
3617    FullExpressionRAII InitScope(Info);
3618    if (!EvaluateInPlace(*Value, Info, Subobject, (*I)->getInit()) ||
3619        (FD && FD->isBitField() && !truncateBitfieldValue(Info, (*I)->getInit(),
3620                                                          *Value, FD))) {
3621      // If we're checking for a potential constant expression, evaluate all
3622      // initializers even if some of them fail.
3623      if (!Info.keepEvaluatingAfterFailure())
3624        return false;
3625      Success = false;
3626    }
3627  }
3628
3629  return Success &&
3630         EvaluateStmt(Result, Info, Definition->getBody()) != ESR_Failed;
3631}
3632
3633//===----------------------------------------------------------------------===//
3634// Generic Evaluation
3635//===----------------------------------------------------------------------===//
3636namespace {
3637
3638// FIXME: RetTy is always bool. Remove it.
3639template <class Derived, typename RetTy=bool>
3640class ExprEvaluatorBase
3641  : public ConstStmtVisitor<Derived, RetTy> {
3642private:
3643  RetTy DerivedSuccess(const APValue &V, const Expr *E) {
3644    return static_cast<Derived*>(this)->Success(V, E);
3645  }
3646  RetTy DerivedZeroInitialization(const Expr *E) {
3647    return static_cast<Derived*>(this)->ZeroInitialization(E);
3648  }
3649
3650  // Check whether a conditional operator with a non-constant condition is a
3651  // potential constant expression. If neither arm is a potential constant
3652  // expression, then the conditional operator is not either.
3653  template<typename ConditionalOperator>
3654  void CheckPotentialConstantConditional(const ConditionalOperator *E) {
3655    assert(Info.CheckingPotentialConstantExpression);
3656
3657    // Speculatively evaluate both arms.
3658    {
3659      SmallVector<PartialDiagnosticAt, 8> Diag;
3660      SpeculativeEvaluationRAII Speculate(Info, &Diag);
3661
3662      StmtVisitorTy::Visit(E->getFalseExpr());
3663      if (Diag.empty())
3664        return;
3665
3666      Diag.clear();
3667      StmtVisitorTy::Visit(E->getTrueExpr());
3668      if (Diag.empty())
3669        return;
3670    }
3671
3672    Error(E, diag::note_constexpr_conditional_never_const);
3673  }
3674
3675
3676  template<typename ConditionalOperator>
3677  bool HandleConditionalOperator(const ConditionalOperator *E) {
3678    bool BoolResult;
3679    if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
3680      if (Info.CheckingPotentialConstantExpression)
3681        CheckPotentialConstantConditional(E);
3682      return false;
3683    }
3684
3685    Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
3686    return StmtVisitorTy::Visit(EvalExpr);
3687  }
3688
3689protected:
3690  EvalInfo &Info;
3691  typedef ConstStmtVisitor<Derived, RetTy> StmtVisitorTy;
3692  typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
3693
3694  OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
3695    return Info.CCEDiag(E, D);
3696  }
3697
3698  RetTy ZeroInitialization(const Expr *E) { return Error(E); }
3699
3700public:
3701  ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
3702
3703  EvalInfo &getEvalInfo() { return Info; }
3704
3705  /// Report an evaluation error. This should only be called when an error is
3706  /// first discovered. When propagating an error, just return false.
3707  bool Error(const Expr *E, diag::kind D) {
3708    Info.Diag(E, D);
3709    return false;
3710  }
3711  bool Error(const Expr *E) {
3712    return Error(E, diag::note_invalid_subexpr_in_const_expr);
3713  }
3714
3715  RetTy VisitStmt(const Stmt *) {
3716    llvm_unreachable("Expression evaluator should not be called on stmts");
3717  }
3718  RetTy VisitExpr(const Expr *E) {
3719    return Error(E);
3720  }
3721
3722  RetTy VisitParenExpr(const ParenExpr *E)
3723    { return StmtVisitorTy::Visit(E->getSubExpr()); }
3724  RetTy VisitUnaryExtension(const UnaryOperator *E)
3725    { return StmtVisitorTy::Visit(E->getSubExpr()); }
3726  RetTy VisitUnaryPlus(const UnaryOperator *E)
3727    { return StmtVisitorTy::Visit(E->getSubExpr()); }
3728  RetTy VisitChooseExpr(const ChooseExpr *E)
3729    { return StmtVisitorTy::Visit(E->getChosenSubExpr()); }
3730  RetTy VisitGenericSelectionExpr(const GenericSelectionExpr *E)
3731    { return StmtVisitorTy::Visit(E->getResultExpr()); }
3732  RetTy VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
3733    { return StmtVisitorTy::Visit(E->getReplacement()); }
3734  RetTy VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E)
3735    { return StmtVisitorTy::Visit(E->getExpr()); }
3736  RetTy VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E)
3737    { return StmtVisitorTy::Visit(E->getExpr()); }
3738  // We cannot create any objects for which cleanups are required, so there is
3739  // nothing to do here; all cleanups must come from unevaluated subexpressions.
3740  RetTy VisitExprWithCleanups(const ExprWithCleanups *E)
3741    { return StmtVisitorTy::Visit(E->getSubExpr()); }
3742
3743  RetTy VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
3744    CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
3745    return static_cast<Derived*>(this)->VisitCastExpr(E);
3746  }
3747  RetTy VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
3748    CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
3749    return static_cast<Derived*>(this)->VisitCastExpr(E);
3750  }
3751
3752  RetTy VisitBinaryOperator(const BinaryOperator *E) {
3753    switch (E->getOpcode()) {
3754    default:
3755      return Error(E);
3756
3757    case BO_Comma:
3758      VisitIgnoredValue(E->getLHS());
3759      return StmtVisitorTy::Visit(E->getRHS());
3760
3761    case BO_PtrMemD:
3762    case BO_PtrMemI: {
3763      LValue Obj;
3764      if (!HandleMemberPointerAccess(Info, E, Obj))
3765        return false;
3766      APValue Result;
3767      if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
3768        return false;
3769      return DerivedSuccess(Result, E);
3770    }
3771    }
3772  }
3773
3774  RetTy VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
3775    // Evaluate and cache the common expression. We treat it as a temporary,
3776    // even though it's not quite the same thing.
3777    if (!Evaluate(Info.CurrentCall->createTemporary(E->getOpaqueValue(), false),
3778                  Info, E->getCommon()))
3779      return false;
3780
3781    return HandleConditionalOperator(E);
3782  }
3783
3784  RetTy VisitConditionalOperator(const ConditionalOperator *E) {
3785    bool IsBcpCall = false;
3786    // If the condition (ignoring parens) is a __builtin_constant_p call,
3787    // the result is a constant expression if it can be folded without
3788    // side-effects. This is an important GNU extension. See GCC PR38377
3789    // for discussion.
3790    if (const CallExpr *CallCE =
3791          dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
3792      if (CallCE->isBuiltinCall() == Builtin::BI__builtin_constant_p)
3793        IsBcpCall = true;
3794
3795    // Always assume __builtin_constant_p(...) ? ... : ... is a potential
3796    // constant expression; we can't check whether it's potentially foldable.
3797    if (Info.CheckingPotentialConstantExpression && IsBcpCall)
3798      return false;
3799
3800    FoldConstant Fold(Info);
3801
3802    if (!HandleConditionalOperator(E))
3803      return false;
3804
3805    if (IsBcpCall)
3806      Fold.Fold(Info);
3807
3808    return true;
3809  }
3810
3811  RetTy VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
3812    if (APValue *Value = Info.CurrentCall->getTemporary(E))
3813      return DerivedSuccess(*Value, E);
3814
3815    const Expr *Source = E->getSourceExpr();
3816    if (!Source)
3817      return Error(E);
3818    if (Source == E) { // sanity checking.
3819      assert(0 && "OpaqueValueExpr recursively refers to itself");
3820      return Error(E);
3821    }
3822    return StmtVisitorTy::Visit(Source);
3823  }
3824
3825  RetTy VisitCallExpr(const CallExpr *E) {
3826    const Expr *Callee = E->getCallee()->IgnoreParens();
3827    QualType CalleeType = Callee->getType();
3828
3829    const FunctionDecl *FD = 0;
3830    LValue *This = 0, ThisVal;
3831    ArrayRef<const Expr *> Args(E->getArgs(), E->getNumArgs());
3832    bool HasQualifier = false;
3833
3834    // Extract function decl and 'this' pointer from the callee.
3835    if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
3836      const ValueDecl *Member = 0;
3837      if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
3838        // Explicit bound member calls, such as x.f() or p->g();
3839        if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
3840          return false;
3841        Member = ME->getMemberDecl();
3842        This = &ThisVal;
3843        HasQualifier = ME->hasQualifier();
3844      } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
3845        // Indirect bound member calls ('.*' or '->*').
3846        Member = HandleMemberPointerAccess(Info, BE, ThisVal, false);
3847        if (!Member) return false;
3848        This = &ThisVal;
3849      } else
3850        return Error(Callee);
3851
3852      FD = dyn_cast<FunctionDecl>(Member);
3853      if (!FD)
3854        return Error(Callee);
3855    } else if (CalleeType->isFunctionPointerType()) {
3856      LValue Call;
3857      if (!EvaluatePointer(Callee, Call, Info))
3858        return false;
3859
3860      if (!Call.getLValueOffset().isZero())
3861        return Error(Callee);
3862      FD = dyn_cast_or_null<FunctionDecl>(
3863                             Call.getLValueBase().dyn_cast<const ValueDecl*>());
3864      if (!FD)
3865        return Error(Callee);
3866
3867      // Overloaded operator calls to member functions are represented as normal
3868      // calls with '*this' as the first argument.
3869      const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
3870      if (MD && !MD->isStatic()) {
3871        // FIXME: When selecting an implicit conversion for an overloaded
3872        // operator delete, we sometimes try to evaluate calls to conversion
3873        // operators without a 'this' parameter!
3874        if (Args.empty())
3875          return Error(E);
3876
3877        if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
3878          return false;
3879        This = &ThisVal;
3880        Args = Args.slice(1);
3881      }
3882
3883      // Don't call function pointers which have been cast to some other type.
3884      if (!Info.Ctx.hasSameType(CalleeType->getPointeeType(), FD->getType()))
3885        return Error(E);
3886    } else
3887      return Error(E);
3888
3889    if (This && !This->checkSubobject(Info, E, CSK_This))
3890      return false;
3891
3892    // DR1358 allows virtual constexpr functions in some cases. Don't allow
3893    // calls to such functions in constant expressions.
3894    if (This && !HasQualifier &&
3895        isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isVirtual())
3896      return Error(E, diag::note_constexpr_virtual_call);
3897
3898    const FunctionDecl *Definition = 0;
3899    Stmt *Body = FD->getBody(Definition);
3900    APValue Result;
3901
3902    if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition) ||
3903        !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Body,
3904                            Info, Result))
3905      return false;
3906
3907    return DerivedSuccess(Result, E);
3908  }
3909
3910  RetTy VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
3911    return StmtVisitorTy::Visit(E->getInitializer());
3912  }
3913  RetTy VisitInitListExpr(const InitListExpr *E) {
3914    if (E->getNumInits() == 0)
3915      return DerivedZeroInitialization(E);
3916    if (E->getNumInits() == 1)
3917      return StmtVisitorTy::Visit(E->getInit(0));
3918    return Error(E);
3919  }
3920  RetTy VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
3921    return DerivedZeroInitialization(E);
3922  }
3923  RetTy VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
3924    return DerivedZeroInitialization(E);
3925  }
3926  RetTy VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
3927    return DerivedZeroInitialization(E);
3928  }
3929
3930  /// A member expression where the object is a prvalue is itself a prvalue.
3931  RetTy VisitMemberExpr(const MemberExpr *E) {
3932    assert(!E->isArrow() && "missing call to bound member function?");
3933
3934    APValue Val;
3935    if (!Evaluate(Val, Info, E->getBase()))
3936      return false;
3937
3938    QualType BaseTy = E->getBase()->getType();
3939
3940    const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
3941    if (!FD) return Error(E);
3942    assert(!FD->getType()->isReferenceType() && "prvalue reference?");
3943    assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
3944           FD->getParent()->getCanonicalDecl() && "record / field mismatch");
3945
3946    CompleteObject Obj(&Val, BaseTy);
3947    SubobjectDesignator Designator(BaseTy);
3948    Designator.addDeclUnchecked(FD);
3949
3950    APValue Result;
3951    return extractSubobject(Info, E, Obj, Designator, Result) &&
3952           DerivedSuccess(Result, E);
3953  }
3954
3955  RetTy VisitCastExpr(const CastExpr *E) {
3956    switch (E->getCastKind()) {
3957    default:
3958      break;
3959
3960    case CK_AtomicToNonAtomic: {
3961      APValue AtomicVal;
3962      if (!EvaluateAtomic(E->getSubExpr(), AtomicVal, Info))
3963        return false;
3964      return DerivedSuccess(AtomicVal, E);
3965    }
3966
3967    case CK_NoOp:
3968    case CK_UserDefinedConversion:
3969      return StmtVisitorTy::Visit(E->getSubExpr());
3970
3971    case CK_LValueToRValue: {
3972      LValue LVal;
3973      if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
3974        return false;
3975      APValue RVal;
3976      // Note, we use the subexpression's type in order to retain cv-qualifiers.
3977      if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
3978                                          LVal, RVal))
3979        return false;
3980      return DerivedSuccess(RVal, E);
3981    }
3982    }
3983
3984    return Error(E);
3985  }
3986
3987  RetTy VisitUnaryPostInc(const UnaryOperator *UO) {
3988    return VisitUnaryPostIncDec(UO);
3989  }
3990  RetTy VisitUnaryPostDec(const UnaryOperator *UO) {
3991    return VisitUnaryPostIncDec(UO);
3992  }
3993  RetTy VisitUnaryPostIncDec(const UnaryOperator *UO) {
3994    if (!Info.getLangOpts().CPlusPlus1y && !Info.keepEvaluatingAfterFailure())
3995      return Error(UO);
3996
3997    LValue LVal;
3998    if (!EvaluateLValue(UO->getSubExpr(), LVal, Info))
3999      return false;
4000    APValue RVal;
4001    if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(),
4002                      UO->isIncrementOp(), &RVal))
4003      return false;
4004    return DerivedSuccess(RVal, UO);
4005  }
4006
4007  RetTy VisitStmtExpr(const StmtExpr *E) {
4008    // We will have checked the full-expressions inside the statement expression
4009    // when they were completed, and don't need to check them again now.
4010    if (Info.getIntOverflowCheckMode())
4011      return Error(E);
4012
4013    BlockScopeRAII Scope(Info);
4014    const CompoundStmt *CS = E->getSubStmt();
4015    for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
4016                                           BE = CS->body_end();
4017         /**/; ++BI) {
4018      if (BI + 1 == BE) {
4019        const Expr *FinalExpr = dyn_cast<Expr>(*BI);
4020        if (!FinalExpr) {
4021          Info.Diag((*BI)->getLocStart(),
4022                    diag::note_constexpr_stmt_expr_unsupported);
4023          return false;
4024        }
4025        return this->Visit(FinalExpr);
4026      }
4027
4028      APValue ReturnValue;
4029      EvalStmtResult ESR = EvaluateStmt(ReturnValue, Info, *BI);
4030      if (ESR != ESR_Succeeded) {
4031        // FIXME: If the statement-expression terminated due to 'return',
4032        // 'break', or 'continue', it would be nice to propagate that to
4033        // the outer statement evaluation rather than bailing out.
4034        if (ESR != ESR_Failed)
4035          Info.Diag((*BI)->getLocStart(),
4036                    diag::note_constexpr_stmt_expr_unsupported);
4037        return false;
4038      }
4039    }
4040  }
4041
4042  /// Visit a value which is evaluated, but whose value is ignored.
4043  void VisitIgnoredValue(const Expr *E) {
4044    EvaluateIgnoredValue(Info, E);
4045  }
4046};
4047
4048}
4049
4050//===----------------------------------------------------------------------===//
4051// Common base class for lvalue and temporary evaluation.
4052//===----------------------------------------------------------------------===//
4053namespace {
4054template<class Derived>
4055class LValueExprEvaluatorBase
4056  : public ExprEvaluatorBase<Derived, bool> {
4057protected:
4058  LValue &Result;
4059  typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
4060  typedef ExprEvaluatorBase<Derived, bool> ExprEvaluatorBaseTy;
4061
4062  bool Success(APValue::LValueBase B) {
4063    Result.set(B);
4064    return true;
4065  }
4066
4067public:
4068  LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result) :
4069    ExprEvaluatorBaseTy(Info), Result(Result) {}
4070
4071  bool Success(const APValue &V, const Expr *E) {
4072    Result.setFrom(this->Info.Ctx, V);
4073    return true;
4074  }
4075
4076  bool VisitMemberExpr(const MemberExpr *E) {
4077    // Handle non-static data members.
4078    QualType BaseTy;
4079    if (E->isArrow()) {
4080      if (!EvaluatePointer(E->getBase(), Result, this->Info))
4081        return false;
4082      BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
4083    } else if (E->getBase()->isRValue()) {
4084      assert(E->getBase()->getType()->isRecordType());
4085      if (!EvaluateTemporary(E->getBase(), Result, this->Info))
4086        return false;
4087      BaseTy = E->getBase()->getType();
4088    } else {
4089      if (!this->Visit(E->getBase()))
4090        return false;
4091      BaseTy = E->getBase()->getType();
4092    }
4093
4094    const ValueDecl *MD = E->getMemberDecl();
4095    if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
4096      assert(BaseTy->getAs<RecordType>()->getDecl()->getCanonicalDecl() ==
4097             FD->getParent()->getCanonicalDecl() && "record / field mismatch");
4098      (void)BaseTy;
4099      if (!HandleLValueMember(this->Info, E, Result, FD))
4100        return false;
4101    } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
4102      if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
4103        return false;
4104    } else
4105      return this->Error(E);
4106
4107    if (MD->getType()->isReferenceType()) {
4108      APValue RefValue;
4109      if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
4110                                          RefValue))
4111        return false;
4112      return Success(RefValue, E);
4113    }
4114    return true;
4115  }
4116
4117  bool VisitBinaryOperator(const BinaryOperator *E) {
4118    switch (E->getOpcode()) {
4119    default:
4120      return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
4121
4122    case BO_PtrMemD:
4123    case BO_PtrMemI:
4124      return HandleMemberPointerAccess(this->Info, E, Result);
4125    }
4126  }
4127
4128  bool VisitCastExpr(const CastExpr *E) {
4129    switch (E->getCastKind()) {
4130    default:
4131      return ExprEvaluatorBaseTy::VisitCastExpr(E);
4132
4133    case CK_DerivedToBase:
4134    case CK_UncheckedDerivedToBase:
4135      if (!this->Visit(E->getSubExpr()))
4136        return false;
4137
4138      // Now figure out the necessary offset to add to the base LV to get from
4139      // the derived class to the base class.
4140      return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(),
4141                                  Result);
4142    }
4143  }
4144};
4145}
4146
4147//===----------------------------------------------------------------------===//
4148// LValue Evaluation
4149//
4150// This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
4151// function designators (in C), decl references to void objects (in C), and
4152// temporaries (if building with -Wno-address-of-temporary).
4153//
4154// LValue evaluation produces values comprising a base expression of one of the
4155// following types:
4156// - Declarations
4157//  * VarDecl
4158//  * FunctionDecl
4159// - Literals
4160//  * CompoundLiteralExpr in C
4161//  * StringLiteral
4162//  * CXXTypeidExpr
4163//  * PredefinedExpr
4164//  * ObjCStringLiteralExpr
4165//  * ObjCEncodeExpr
4166//  * AddrLabelExpr
4167//  * BlockExpr
4168//  * CallExpr for a MakeStringConstant builtin
4169// - Locals and temporaries
4170//  * MaterializeTemporaryExpr
4171//  * Any Expr, with a CallIndex indicating the function in which the temporary
4172//    was evaluated, for cases where the MaterializeTemporaryExpr is missing
4173//    from the AST (FIXME).
4174//  * A MaterializeTemporaryExpr that has static storage duration, with no
4175//    CallIndex, for a lifetime-extended temporary.
4176// plus an offset in bytes.
4177//===----------------------------------------------------------------------===//
4178namespace {
4179class LValueExprEvaluator
4180  : public LValueExprEvaluatorBase<LValueExprEvaluator> {
4181public:
4182  LValueExprEvaluator(EvalInfo &Info, LValue &Result) :
4183    LValueExprEvaluatorBaseTy(Info, Result) {}
4184
4185  bool VisitVarDecl(const Expr *E, const VarDecl *VD);
4186  bool VisitUnaryPreIncDec(const UnaryOperator *UO);
4187
4188  bool VisitDeclRefExpr(const DeclRefExpr *E);
4189  bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
4190  bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
4191  bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
4192  bool VisitMemberExpr(const MemberExpr *E);
4193  bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
4194  bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
4195  bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
4196  bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
4197  bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
4198  bool VisitUnaryDeref(const UnaryOperator *E);
4199  bool VisitUnaryReal(const UnaryOperator *E);
4200  bool VisitUnaryImag(const UnaryOperator *E);
4201  bool VisitUnaryPreInc(const UnaryOperator *UO) {
4202    return VisitUnaryPreIncDec(UO);
4203  }
4204  bool VisitUnaryPreDec(const UnaryOperator *UO) {
4205    return VisitUnaryPreIncDec(UO);
4206  }
4207  bool VisitBinAssign(const BinaryOperator *BO);
4208  bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO);
4209
4210  bool VisitCastExpr(const CastExpr *E) {
4211    switch (E->getCastKind()) {
4212    default:
4213      return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
4214
4215    case CK_LValueBitCast:
4216      this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
4217      if (!Visit(E->getSubExpr()))
4218        return false;
4219      Result.Designator.setInvalid();
4220      return true;
4221
4222    case CK_BaseToDerived:
4223      if (!Visit(E->getSubExpr()))
4224        return false;
4225      return HandleBaseToDerivedCast(Info, E, Result);
4226    }
4227  }
4228};
4229} // end anonymous namespace
4230
4231/// Evaluate an expression as an lvalue. This can be legitimately called on
4232/// expressions which are not glvalues, in two cases:
4233///  * function designators in C, and
4234///  * "extern void" objects
4235static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info) {
4236  assert(E->isGLValue() || E->getType()->isFunctionType() ||
4237         E->getType()->isVoidType());
4238  return LValueExprEvaluator(Info, Result).Visit(E);
4239}
4240
4241bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
4242  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl()))
4243    return Success(FD);
4244  if (const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
4245    return VisitVarDecl(E, VD);
4246  return Error(E);
4247}
4248
4249bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
4250  CallStackFrame *Frame = 0;
4251  if (VD->hasLocalStorage() && Info.CurrentCall->Index > 1)
4252    Frame = Info.CurrentCall;
4253
4254  if (!VD->getType()->isReferenceType()) {
4255    if (Frame) {
4256      Result.set(VD, Frame->Index);
4257      return true;
4258    }
4259    return Success(VD);
4260  }
4261
4262  APValue *V;
4263  if (!evaluateVarDeclInit(Info, E, VD, Frame, V))
4264    return false;
4265  if (V->isUninit()) {
4266    if (!Info.CheckingPotentialConstantExpression)
4267      Info.Diag(E, diag::note_constexpr_use_uninit_reference);
4268    return false;
4269  }
4270  return Success(*V, E);
4271}
4272
4273bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
4274    const MaterializeTemporaryExpr *E) {
4275  // Walk through the expression to find the materialized temporary itself.
4276  SmallVector<const Expr *, 2> CommaLHSs;
4277  SmallVector<SubobjectAdjustment, 2> Adjustments;
4278  const Expr *Inner = E->GetTemporaryExpr()->
4279      skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
4280
4281  // If we passed any comma operators, evaluate their LHSs.
4282  for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
4283    if (!EvaluateIgnoredValue(Info, CommaLHSs[I]))
4284      return false;
4285
4286  // A materialized temporary with static storage duration can appear within the
4287  // result of a constant expression evaluation, so we need to preserve its
4288  // value for use outside this evaluation.
4289  APValue *Value;
4290  if (E->getStorageDuration() == SD_Static) {
4291    Value = Info.Ctx.getMaterializedTemporaryValue(E, true);
4292    *Value = APValue();
4293    Result.set(E);
4294  } else {
4295    Value = &Info.CurrentCall->
4296        createTemporary(E, E->getStorageDuration() == SD_Automatic);
4297    Result.set(E, Info.CurrentCall->Index);
4298  }
4299
4300  QualType Type = Inner->getType();
4301
4302  // Materialize the temporary itself.
4303  if (!EvaluateInPlace(*Value, Info, Result, Inner) ||
4304      (E->getStorageDuration() == SD_Static &&
4305       !CheckConstantExpression(Info, E->getExprLoc(), Type, *Value))) {
4306    *Value = APValue();
4307    return false;
4308  }
4309
4310  // Adjust our lvalue to refer to the desired subobject.
4311  for (unsigned I = Adjustments.size(); I != 0; /**/) {
4312    --I;
4313    switch (Adjustments[I].Kind) {
4314    case SubobjectAdjustment::DerivedToBaseAdjustment:
4315      if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath,
4316                                Type, Result))
4317        return false;
4318      Type = Adjustments[I].DerivedToBase.BasePath->getType();
4319      break;
4320
4321    case SubobjectAdjustment::FieldAdjustment:
4322      if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field))
4323        return false;
4324      Type = Adjustments[I].Field->getType();
4325      break;
4326
4327    case SubobjectAdjustment::MemberPointerAdjustment:
4328      if (!HandleMemberPointerAccess(this->Info, Type, Result,
4329                                     Adjustments[I].Ptr.RHS))
4330        return false;
4331      Type = Adjustments[I].Ptr.MPT->getPointeeType();
4332      break;
4333    }
4334  }
4335
4336  return true;
4337}
4338
4339bool
4340LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
4341  assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
4342  // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
4343  // only see this when folding in C, so there's no standard to follow here.
4344  return Success(E);
4345}
4346
4347bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
4348  if (!E->isPotentiallyEvaluated())
4349    return Success(E);
4350
4351  Info.Diag(E, diag::note_constexpr_typeid_polymorphic)
4352    << E->getExprOperand()->getType()
4353    << E->getExprOperand()->getSourceRange();
4354  return false;
4355}
4356
4357bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
4358  return Success(E);
4359}
4360
4361bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
4362  // Handle static data members.
4363  if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
4364    VisitIgnoredValue(E->getBase());
4365    return VisitVarDecl(E, VD);
4366  }
4367
4368  // Handle static member functions.
4369  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
4370    if (MD->isStatic()) {
4371      VisitIgnoredValue(E->getBase());
4372      return Success(MD);
4373    }
4374  }
4375
4376  // Handle non-static data members.
4377  return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
4378}
4379
4380bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
4381  // FIXME: Deal with vectors as array subscript bases.
4382  if (E->getBase()->getType()->isVectorType())
4383    return Error(E);
4384
4385  if (!EvaluatePointer(E->getBase(), Result, Info))
4386    return false;
4387
4388  APSInt Index;
4389  if (!EvaluateInteger(E->getIdx(), Index, Info))
4390    return false;
4391
4392  return HandleLValueArrayAdjustment(Info, E, Result, E->getType(),
4393                                     getExtValue(Index));
4394}
4395
4396bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
4397  return EvaluatePointer(E->getSubExpr(), Result, Info);
4398}
4399
4400bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
4401  if (!Visit(E->getSubExpr()))
4402    return false;
4403  // __real is a no-op on scalar lvalues.
4404  if (E->getSubExpr()->getType()->isAnyComplexType())
4405    HandleLValueComplexElement(Info, E, Result, E->getType(), false);
4406  return true;
4407}
4408
4409bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
4410  assert(E->getSubExpr()->getType()->isAnyComplexType() &&
4411         "lvalue __imag__ on scalar?");
4412  if (!Visit(E->getSubExpr()))
4413    return false;
4414  HandleLValueComplexElement(Info, E, Result, E->getType(), true);
4415  return true;
4416}
4417
4418bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) {
4419  if (!Info.getLangOpts().CPlusPlus1y && !Info.keepEvaluatingAfterFailure())
4420    return Error(UO);
4421
4422  if (!this->Visit(UO->getSubExpr()))
4423    return false;
4424
4425  return handleIncDec(
4426      this->Info, UO, Result, UO->getSubExpr()->getType(),
4427      UO->isIncrementOp(), 0);
4428}
4429
4430bool LValueExprEvaluator::VisitCompoundAssignOperator(
4431    const CompoundAssignOperator *CAO) {
4432  if (!Info.getLangOpts().CPlusPlus1y && !Info.keepEvaluatingAfterFailure())
4433    return Error(CAO);
4434
4435  APValue RHS;
4436
4437  // The overall lvalue result is the result of evaluating the LHS.
4438  if (!this->Visit(CAO->getLHS())) {
4439    if (Info.keepEvaluatingAfterFailure())
4440      Evaluate(RHS, this->Info, CAO->getRHS());
4441    return false;
4442  }
4443
4444  if (!Evaluate(RHS, this->Info, CAO->getRHS()))
4445    return false;
4446
4447  return handleCompoundAssignment(
4448      this->Info, CAO,
4449      Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(),
4450      CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS);
4451}
4452
4453bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) {
4454  if (!Info.getLangOpts().CPlusPlus1y && !Info.keepEvaluatingAfterFailure())
4455    return Error(E);
4456
4457  APValue NewVal;
4458
4459  if (!this->Visit(E->getLHS())) {
4460    if (Info.keepEvaluatingAfterFailure())
4461      Evaluate(NewVal, this->Info, E->getRHS());
4462    return false;
4463  }
4464
4465  if (!Evaluate(NewVal, this->Info, E->getRHS()))
4466    return false;
4467
4468  return handleAssignment(this->Info, E, Result, E->getLHS()->getType(),
4469                          NewVal);
4470}
4471
4472//===----------------------------------------------------------------------===//
4473// Pointer Evaluation
4474//===----------------------------------------------------------------------===//
4475
4476namespace {
4477class PointerExprEvaluator
4478  : public ExprEvaluatorBase<PointerExprEvaluator, bool> {
4479  LValue &Result;
4480
4481  bool Success(const Expr *E) {
4482    Result.set(E);
4483    return true;
4484  }
4485public:
4486
4487  PointerExprEvaluator(EvalInfo &info, LValue &Result)
4488    : ExprEvaluatorBaseTy(info), Result(Result) {}
4489
4490  bool Success(const APValue &V, const Expr *E) {
4491    Result.setFrom(Info.Ctx, V);
4492    return true;
4493  }
4494  bool ZeroInitialization(const Expr *E) {
4495    return Success((Expr*)0);
4496  }
4497
4498  bool VisitBinaryOperator(const BinaryOperator *E);
4499  bool VisitCastExpr(const CastExpr* E);
4500  bool VisitUnaryAddrOf(const UnaryOperator *E);
4501  bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
4502      { return Success(E); }
4503  bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E)
4504      { return Success(E); }
4505  bool VisitAddrLabelExpr(const AddrLabelExpr *E)
4506      { return Success(E); }
4507  bool VisitCallExpr(const CallExpr *E);
4508  bool VisitBlockExpr(const BlockExpr *E) {
4509    if (!E->getBlockDecl()->hasCaptures())
4510      return Success(E);
4511    return Error(E);
4512  }
4513  bool VisitCXXThisExpr(const CXXThisExpr *E) {
4514    // Can't look at 'this' when checking a potential constant expression.
4515    if (Info.CheckingPotentialConstantExpression)
4516      return false;
4517    if (!Info.CurrentCall->This)
4518      return Error(E);
4519    Result = *Info.CurrentCall->This;
4520    return true;
4521  }
4522
4523  // FIXME: Missing: @protocol, @selector
4524};
4525} // end anonymous namespace
4526
4527static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info) {
4528  assert(E->isRValue() && E->getType()->hasPointerRepresentation());
4529  return PointerExprEvaluator(Info, Result).Visit(E);
4530}
4531
4532bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
4533  if (E->getOpcode() != BO_Add &&
4534      E->getOpcode() != BO_Sub)
4535    return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
4536
4537  const Expr *PExp = E->getLHS();
4538  const Expr *IExp = E->getRHS();
4539  if (IExp->getType()->isPointerType())
4540    std::swap(PExp, IExp);
4541
4542  bool EvalPtrOK = EvaluatePointer(PExp, Result, Info);
4543  if (!EvalPtrOK && !Info.keepEvaluatingAfterFailure())
4544    return false;
4545
4546  llvm::APSInt Offset;
4547  if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
4548    return false;
4549
4550  int64_t AdditionalOffset = getExtValue(Offset);
4551  if (E->getOpcode() == BO_Sub)
4552    AdditionalOffset = -AdditionalOffset;
4553
4554  QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
4555  return HandleLValueArrayAdjustment(Info, E, Result, Pointee,
4556                                     AdditionalOffset);
4557}
4558
4559bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
4560  return EvaluateLValue(E->getSubExpr(), Result, Info);
4561}
4562
4563bool PointerExprEvaluator::VisitCastExpr(const CastExpr* E) {
4564  const Expr* SubExpr = E->getSubExpr();
4565
4566  switch (E->getCastKind()) {
4567  default:
4568    break;
4569
4570  case CK_BitCast:
4571  case CK_CPointerToObjCPointerCast:
4572  case CK_BlockPointerToObjCPointerCast:
4573  case CK_AnyPointerToBlockPointerCast:
4574    if (!Visit(SubExpr))
4575      return false;
4576    // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
4577    // permitted in constant expressions in C++11. Bitcasts from cv void* are
4578    // also static_casts, but we disallow them as a resolution to DR1312.
4579    if (!E->getType()->isVoidPointerType()) {
4580      Result.Designator.setInvalid();
4581      if (SubExpr->getType()->isVoidPointerType())
4582        CCEDiag(E, diag::note_constexpr_invalid_cast)
4583          << 3 << SubExpr->getType();
4584      else
4585        CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
4586    }
4587    return true;
4588
4589  case CK_DerivedToBase:
4590  case CK_UncheckedDerivedToBase:
4591    if (!EvaluatePointer(E->getSubExpr(), Result, Info))
4592      return false;
4593    if (!Result.Base && Result.Offset.isZero())
4594      return true;
4595
4596    // Now figure out the necessary offset to add to the base LV to get from
4597    // the derived class to the base class.
4598    return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()->
4599                                  castAs<PointerType>()->getPointeeType(),
4600                                Result);
4601
4602  case CK_BaseToDerived:
4603    if (!Visit(E->getSubExpr()))
4604      return false;
4605    if (!Result.Base && Result.Offset.isZero())
4606      return true;
4607    return HandleBaseToDerivedCast(Info, E, Result);
4608
4609  case CK_NullToPointer:
4610    VisitIgnoredValue(E->getSubExpr());
4611    return ZeroInitialization(E);
4612
4613  case CK_IntegralToPointer: {
4614    CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
4615
4616    APValue Value;
4617    if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
4618      break;
4619
4620    if (Value.isInt()) {
4621      unsigned Size = Info.Ctx.getTypeSize(E->getType());
4622      uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
4623      Result.Base = (Expr*)0;
4624      Result.Offset = CharUnits::fromQuantity(N);
4625      Result.CallIndex = 0;
4626      Result.Designator.setInvalid();
4627      return true;
4628    } else {
4629      // Cast is of an lvalue, no need to change value.
4630      Result.setFrom(Info.Ctx, Value);
4631      return true;
4632    }
4633  }
4634  case CK_ArrayToPointerDecay:
4635    if (SubExpr->isGLValue()) {
4636      if (!EvaluateLValue(SubExpr, Result, Info))
4637        return false;
4638    } else {
4639      Result.set(SubExpr, Info.CurrentCall->Index);
4640      if (!EvaluateInPlace(Info.CurrentCall->createTemporary(SubExpr, false),
4641                           Info, Result, SubExpr))
4642        return false;
4643    }
4644    // The result is a pointer to the first element of the array.
4645    if (const ConstantArrayType *CAT
4646          = Info.Ctx.getAsConstantArrayType(SubExpr->getType()))
4647      Result.addArray(Info, E, CAT);
4648    else
4649      Result.Designator.setInvalid();
4650    return true;
4651
4652  case CK_FunctionToPointerDecay:
4653    return EvaluateLValue(SubExpr, Result, Info);
4654  }
4655
4656  return ExprEvaluatorBaseTy::VisitCastExpr(E);
4657}
4658
4659bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
4660  if (IsStringLiteralCall(E))
4661    return Success(E);
4662
4663  switch (E->isBuiltinCall()) {
4664  case Builtin::BI__builtin_addressof:
4665    return EvaluateLValue(E->getArg(0), Result, Info);
4666
4667  default:
4668    return ExprEvaluatorBaseTy::VisitCallExpr(E);
4669  }
4670}
4671
4672//===----------------------------------------------------------------------===//
4673// Member Pointer Evaluation
4674//===----------------------------------------------------------------------===//
4675
4676namespace {
4677class MemberPointerExprEvaluator
4678  : public ExprEvaluatorBase<MemberPointerExprEvaluator, bool> {
4679  MemberPtr &Result;
4680
4681  bool Success(const ValueDecl *D) {
4682    Result = MemberPtr(D);
4683    return true;
4684  }
4685public:
4686
4687  MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
4688    : ExprEvaluatorBaseTy(Info), Result(Result) {}
4689
4690  bool Success(const APValue &V, const Expr *E) {
4691    Result.setFrom(V);
4692    return true;
4693  }
4694  bool ZeroInitialization(const Expr *E) {
4695    return Success((const ValueDecl*)0);
4696  }
4697
4698  bool VisitCastExpr(const CastExpr *E);
4699  bool VisitUnaryAddrOf(const UnaryOperator *E);
4700};
4701} // end anonymous namespace
4702
4703static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
4704                                  EvalInfo &Info) {
4705  assert(E->isRValue() && E->getType()->isMemberPointerType());
4706  return MemberPointerExprEvaluator(Info, Result).Visit(E);
4707}
4708
4709bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
4710  switch (E->getCastKind()) {
4711  default:
4712    return ExprEvaluatorBaseTy::VisitCastExpr(E);
4713
4714  case CK_NullToMemberPointer:
4715    VisitIgnoredValue(E->getSubExpr());
4716    return ZeroInitialization(E);
4717
4718  case CK_BaseToDerivedMemberPointer: {
4719    if (!Visit(E->getSubExpr()))
4720      return false;
4721    if (E->path_empty())
4722      return true;
4723    // Base-to-derived member pointer casts store the path in derived-to-base
4724    // order, so iterate backwards. The CXXBaseSpecifier also provides us with
4725    // the wrong end of the derived->base arc, so stagger the path by one class.
4726    typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
4727    for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
4728         PathI != PathE; ++PathI) {
4729      assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
4730      const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
4731      if (!Result.castToDerived(Derived))
4732        return Error(E);
4733    }
4734    const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
4735    if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
4736      return Error(E);
4737    return true;
4738  }
4739
4740  case CK_DerivedToBaseMemberPointer:
4741    if (!Visit(E->getSubExpr()))
4742      return false;
4743    for (CastExpr::path_const_iterator PathI = E->path_begin(),
4744         PathE = E->path_end(); PathI != PathE; ++PathI) {
4745      assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
4746      const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
4747      if (!Result.castToBase(Base))
4748        return Error(E);
4749    }
4750    return true;
4751  }
4752}
4753
4754bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
4755  // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
4756  // member can be formed.
4757  return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
4758}
4759
4760//===----------------------------------------------------------------------===//
4761// Record Evaluation
4762//===----------------------------------------------------------------------===//
4763
4764namespace {
4765  class RecordExprEvaluator
4766  : public ExprEvaluatorBase<RecordExprEvaluator, bool> {
4767    const LValue &This;
4768    APValue &Result;
4769  public:
4770
4771    RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
4772      : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
4773
4774    bool Success(const APValue &V, const Expr *E) {
4775      Result = V;
4776      return true;
4777    }
4778    bool ZeroInitialization(const Expr *E);
4779
4780    bool VisitCastExpr(const CastExpr *E);
4781    bool VisitInitListExpr(const InitListExpr *E);
4782    bool VisitCXXConstructExpr(const CXXConstructExpr *E);
4783    bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E);
4784  };
4785}
4786
4787/// Perform zero-initialization on an object of non-union class type.
4788/// C++11 [dcl.init]p5:
4789///  To zero-initialize an object or reference of type T means:
4790///    [...]
4791///    -- if T is a (possibly cv-qualified) non-union class type,
4792///       each non-static data member and each base-class subobject is
4793///       zero-initialized
4794static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
4795                                          const RecordDecl *RD,
4796                                          const LValue &This, APValue &Result) {
4797  assert(!RD->isUnion() && "Expected non-union class type");
4798  const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
4799  Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
4800                   std::distance(RD->field_begin(), RD->field_end()));
4801
4802  if (RD->isInvalidDecl()) return false;
4803  const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
4804
4805  if (CD) {
4806    unsigned Index = 0;
4807    for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
4808           End = CD->bases_end(); I != End; ++I, ++Index) {
4809      const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
4810      LValue Subobject = This;
4811      if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
4812        return false;
4813      if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
4814                                         Result.getStructBase(Index)))
4815        return false;
4816    }
4817  }
4818
4819  for (RecordDecl::field_iterator I = RD->field_begin(), End = RD->field_end();
4820       I != End; ++I) {
4821    // -- if T is a reference type, no initialization is performed.
4822    if (I->getType()->isReferenceType())
4823      continue;
4824
4825    LValue Subobject = This;
4826    if (!HandleLValueMember(Info, E, Subobject, *I, &Layout))
4827      return false;
4828
4829    ImplicitValueInitExpr VIE(I->getType());
4830    if (!EvaluateInPlace(
4831          Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
4832      return false;
4833  }
4834
4835  return true;
4836}
4837
4838bool RecordExprEvaluator::ZeroInitialization(const Expr *E) {
4839  const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
4840  if (RD->isInvalidDecl()) return false;
4841  if (RD->isUnion()) {
4842    // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
4843    // object's first non-static named data member is zero-initialized
4844    RecordDecl::field_iterator I = RD->field_begin();
4845    if (I == RD->field_end()) {
4846      Result = APValue((const FieldDecl*)0);
4847      return true;
4848    }
4849
4850    LValue Subobject = This;
4851    if (!HandleLValueMember(Info, E, Subobject, *I))
4852      return false;
4853    Result = APValue(*I);
4854    ImplicitValueInitExpr VIE(I->getType());
4855    return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
4856  }
4857
4858  if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
4859    Info.Diag(E, diag::note_constexpr_virtual_base) << RD;
4860    return false;
4861  }
4862
4863  return HandleClassZeroInitialization(Info, E, RD, This, Result);
4864}
4865
4866bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
4867  switch (E->getCastKind()) {
4868  default:
4869    return ExprEvaluatorBaseTy::VisitCastExpr(E);
4870
4871  case CK_ConstructorConversion:
4872    return Visit(E->getSubExpr());
4873
4874  case CK_DerivedToBase:
4875  case CK_UncheckedDerivedToBase: {
4876    APValue DerivedObject;
4877    if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
4878      return false;
4879    if (!DerivedObject.isStruct())
4880      return Error(E->getSubExpr());
4881
4882    // Derived-to-base rvalue conversion: just slice off the derived part.
4883    APValue *Value = &DerivedObject;
4884    const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
4885    for (CastExpr::path_const_iterator PathI = E->path_begin(),
4886         PathE = E->path_end(); PathI != PathE; ++PathI) {
4887      assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
4888      const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
4889      Value = &Value->getStructBase(getBaseIndex(RD, Base));
4890      RD = Base;
4891    }
4892    Result = *Value;
4893    return true;
4894  }
4895  }
4896}
4897
4898bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
4899  const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
4900  if (RD->isInvalidDecl()) return false;
4901  const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
4902
4903  if (RD->isUnion()) {
4904    const FieldDecl *Field = E->getInitializedFieldInUnion();
4905    Result = APValue(Field);
4906    if (!Field)
4907      return true;
4908
4909    // If the initializer list for a union does not contain any elements, the
4910    // first element of the union is value-initialized.
4911    // FIXME: The element should be initialized from an initializer list.
4912    //        Is this difference ever observable for initializer lists which
4913    //        we don't build?
4914    ImplicitValueInitExpr VIE(Field->getType());
4915    const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE;
4916
4917    LValue Subobject = This;
4918    if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
4919      return false;
4920
4921    // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
4922    ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
4923                                  isa<CXXDefaultInitExpr>(InitExpr));
4924
4925    return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr);
4926  }
4927
4928  assert((!isa<CXXRecordDecl>(RD) || !cast<CXXRecordDecl>(RD)->getNumBases()) &&
4929         "initializer list for class with base classes");
4930  Result = APValue(APValue::UninitStruct(), 0,
4931                   std::distance(RD->field_begin(), RD->field_end()));
4932  unsigned ElementNo = 0;
4933  bool Success = true;
4934  for (RecordDecl::field_iterator Field = RD->field_begin(),
4935       FieldEnd = RD->field_end(); Field != FieldEnd; ++Field) {
4936    // Anonymous bit-fields are not considered members of the class for
4937    // purposes of aggregate initialization.
4938    if (Field->isUnnamedBitfield())
4939      continue;
4940
4941    LValue Subobject = This;
4942
4943    bool HaveInit = ElementNo < E->getNumInits();
4944
4945    // FIXME: Diagnostics here should point to the end of the initializer
4946    // list, not the start.
4947    if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E,
4948                            Subobject, *Field, &Layout))
4949      return false;
4950
4951    // Perform an implicit value-initialization for members beyond the end of
4952    // the initializer list.
4953    ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
4954    const Expr *Init = HaveInit ? E->getInit(ElementNo++) : &VIE;
4955
4956    // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
4957    ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
4958                                  isa<CXXDefaultInitExpr>(Init));
4959
4960    APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
4961    if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) ||
4962        (Field->isBitField() && !truncateBitfieldValue(Info, Init,
4963                                                       FieldVal, *Field))) {
4964      if (!Info.keepEvaluatingAfterFailure())
4965        return false;
4966      Success = false;
4967    }
4968  }
4969
4970  return Success;
4971}
4972
4973bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
4974  const CXXConstructorDecl *FD = E->getConstructor();
4975  if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
4976
4977  bool ZeroInit = E->requiresZeroInitialization();
4978  if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
4979    // If we've already performed zero-initialization, we're already done.
4980    if (!Result.isUninit())
4981      return true;
4982
4983    if (ZeroInit)
4984      return ZeroInitialization(E);
4985
4986    const CXXRecordDecl *RD = FD->getParent();
4987    if (RD->isUnion())
4988      Result = APValue((FieldDecl*)0);
4989    else
4990      Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
4991                       std::distance(RD->field_begin(), RD->field_end()));
4992    return true;
4993  }
4994
4995  const FunctionDecl *Definition = 0;
4996  FD->getBody(Definition);
4997
4998  if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
4999    return false;
5000
5001  // Avoid materializing a temporary for an elidable copy/move constructor.
5002  if (E->isElidable() && !ZeroInit)
5003    if (const MaterializeTemporaryExpr *ME
5004          = dyn_cast<MaterializeTemporaryExpr>(E->getArg(0)))
5005      return Visit(ME->GetTemporaryExpr());
5006
5007  if (ZeroInit && !ZeroInitialization(E))
5008    return false;
5009
5010  ArrayRef<const Expr *> Args(E->getArgs(), E->getNumArgs());
5011  return HandleConstructorCall(E->getExprLoc(), This, Args,
5012                               cast<CXXConstructorDecl>(Definition), Info,
5013                               Result);
5014}
5015
5016bool RecordExprEvaluator::VisitCXXStdInitializerListExpr(
5017    const CXXStdInitializerListExpr *E) {
5018  const ConstantArrayType *ArrayType =
5019      Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
5020
5021  LValue Array;
5022  if (!EvaluateLValue(E->getSubExpr(), Array, Info))
5023    return false;
5024
5025  // Get a pointer to the first element of the array.
5026  Array.addArray(Info, E, ArrayType);
5027
5028  // FIXME: Perform the checks on the field types in SemaInit.
5029  RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
5030  RecordDecl::field_iterator Field = Record->field_begin();
5031  if (Field == Record->field_end())
5032    return Error(E);
5033
5034  // Start pointer.
5035  if (!Field->getType()->isPointerType() ||
5036      !Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
5037                            ArrayType->getElementType()))
5038    return Error(E);
5039
5040  // FIXME: What if the initializer_list type has base classes, etc?
5041  Result = APValue(APValue::UninitStruct(), 0, 2);
5042  Array.moveInto(Result.getStructField(0));
5043
5044  if (++Field == Record->field_end())
5045    return Error(E);
5046
5047  if (Field->getType()->isPointerType() &&
5048      Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
5049                           ArrayType->getElementType())) {
5050    // End pointer.
5051    if (!HandleLValueArrayAdjustment(Info, E, Array,
5052                                     ArrayType->getElementType(),
5053                                     ArrayType->getSize().getZExtValue()))
5054      return false;
5055    Array.moveInto(Result.getStructField(1));
5056  } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType()))
5057    // Length.
5058    Result.getStructField(1) = APValue(APSInt(ArrayType->getSize()));
5059  else
5060    return Error(E);
5061
5062  if (++Field != Record->field_end())
5063    return Error(E);
5064
5065  return true;
5066}
5067
5068static bool EvaluateRecord(const Expr *E, const LValue &This,
5069                           APValue &Result, EvalInfo &Info) {
5070  assert(E->isRValue() && E->getType()->isRecordType() &&
5071         "can't evaluate expression as a record rvalue");
5072  return RecordExprEvaluator(Info, This, Result).Visit(E);
5073}
5074
5075//===----------------------------------------------------------------------===//
5076// Temporary Evaluation
5077//
5078// Temporaries are represented in the AST as rvalues, but generally behave like
5079// lvalues. The full-object of which the temporary is a subobject is implicitly
5080// materialized so that a reference can bind to it.
5081//===----------------------------------------------------------------------===//
5082namespace {
5083class TemporaryExprEvaluator
5084  : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
5085public:
5086  TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
5087    LValueExprEvaluatorBaseTy(Info, Result) {}
5088
5089  /// Visit an expression which constructs the value of this temporary.
5090  bool VisitConstructExpr(const Expr *E) {
5091    Result.set(E, Info.CurrentCall->Index);
5092    return EvaluateInPlace(Info.CurrentCall->createTemporary(E, false),
5093                           Info, Result, E);
5094  }
5095
5096  bool VisitCastExpr(const CastExpr *E) {
5097    switch (E->getCastKind()) {
5098    default:
5099      return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
5100
5101    case CK_ConstructorConversion:
5102      return VisitConstructExpr(E->getSubExpr());
5103    }
5104  }
5105  bool VisitInitListExpr(const InitListExpr *E) {
5106    return VisitConstructExpr(E);
5107  }
5108  bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
5109    return VisitConstructExpr(E);
5110  }
5111  bool VisitCallExpr(const CallExpr *E) {
5112    return VisitConstructExpr(E);
5113  }
5114};
5115} // end anonymous namespace
5116
5117/// Evaluate an expression of record type as a temporary.
5118static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
5119  assert(E->isRValue() && E->getType()->isRecordType());
5120  return TemporaryExprEvaluator(Info, Result).Visit(E);
5121}
5122
5123//===----------------------------------------------------------------------===//
5124// Vector Evaluation
5125//===----------------------------------------------------------------------===//
5126
5127namespace {
5128  class VectorExprEvaluator
5129  : public ExprEvaluatorBase<VectorExprEvaluator, bool> {
5130    APValue &Result;
5131  public:
5132
5133    VectorExprEvaluator(EvalInfo &info, APValue &Result)
5134      : ExprEvaluatorBaseTy(info), Result(Result) {}
5135
5136    bool Success(const ArrayRef<APValue> &V, const Expr *E) {
5137      assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
5138      // FIXME: remove this APValue copy.
5139      Result = APValue(V.data(), V.size());
5140      return true;
5141    }
5142    bool Success(const APValue &V, const Expr *E) {
5143      assert(V.isVector());
5144      Result = V;
5145      return true;
5146    }
5147    bool ZeroInitialization(const Expr *E);
5148
5149    bool VisitUnaryReal(const UnaryOperator *E)
5150      { return Visit(E->getSubExpr()); }
5151    bool VisitCastExpr(const CastExpr* E);
5152    bool VisitInitListExpr(const InitListExpr *E);
5153    bool VisitUnaryImag(const UnaryOperator *E);
5154    // FIXME: Missing: unary -, unary ~, binary add/sub/mul/div,
5155    //                 binary comparisons, binary and/or/xor,
5156    //                 shufflevector, ExtVectorElementExpr
5157  };
5158} // end anonymous namespace
5159
5160static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
5161  assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue");
5162  return VectorExprEvaluator(Info, Result).Visit(E);
5163}
5164
5165bool VectorExprEvaluator::VisitCastExpr(const CastExpr* E) {
5166  const VectorType *VTy = E->getType()->castAs<VectorType>();
5167  unsigned NElts = VTy->getNumElements();
5168
5169  const Expr *SE = E->getSubExpr();
5170  QualType SETy = SE->getType();
5171
5172  switch (E->getCastKind()) {
5173  case CK_VectorSplat: {
5174    APValue Val = APValue();
5175    if (SETy->isIntegerType()) {
5176      APSInt IntResult;
5177      if (!EvaluateInteger(SE, IntResult, Info))
5178         return false;
5179      Val = APValue(IntResult);
5180    } else if (SETy->isRealFloatingType()) {
5181       APFloat F(0.0);
5182       if (!EvaluateFloat(SE, F, Info))
5183         return false;
5184       Val = APValue(F);
5185    } else {
5186      return Error(E);
5187    }
5188
5189    // Splat and create vector APValue.
5190    SmallVector<APValue, 4> Elts(NElts, Val);
5191    return Success(Elts, E);
5192  }
5193  case CK_BitCast: {
5194    // Evaluate the operand into an APInt we can extract from.
5195    llvm::APInt SValInt;
5196    if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
5197      return false;
5198    // Extract the elements
5199    QualType EltTy = VTy->getElementType();
5200    unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
5201    bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
5202    SmallVector<APValue, 4> Elts;
5203    if (EltTy->isRealFloatingType()) {
5204      const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
5205      unsigned FloatEltSize = EltSize;
5206      if (&Sem == &APFloat::x87DoubleExtended)
5207        FloatEltSize = 80;
5208      for (unsigned i = 0; i < NElts; i++) {
5209        llvm::APInt Elt;
5210        if (BigEndian)
5211          Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize);
5212        else
5213          Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize);
5214        Elts.push_back(APValue(APFloat(Sem, Elt)));
5215      }
5216    } else if (EltTy->isIntegerType()) {
5217      for (unsigned i = 0; i < NElts; i++) {
5218        llvm::APInt Elt;
5219        if (BigEndian)
5220          Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
5221        else
5222          Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
5223        Elts.push_back(APValue(APSInt(Elt, EltTy->isSignedIntegerType())));
5224      }
5225    } else {
5226      return Error(E);
5227    }
5228    return Success(Elts, E);
5229  }
5230  default:
5231    return ExprEvaluatorBaseTy::VisitCastExpr(E);
5232  }
5233}
5234
5235bool
5236VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
5237  const VectorType *VT = E->getType()->castAs<VectorType>();
5238  unsigned NumInits = E->getNumInits();
5239  unsigned NumElements = VT->getNumElements();
5240
5241  QualType EltTy = VT->getElementType();
5242  SmallVector<APValue, 4> Elements;
5243
5244  // The number of initializers can be less than the number of
5245  // vector elements. For OpenCL, this can be due to nested vector
5246  // initialization. For GCC compatibility, missing trailing elements
5247  // should be initialized with zeroes.
5248  unsigned CountInits = 0, CountElts = 0;
5249  while (CountElts < NumElements) {
5250    // Handle nested vector initialization.
5251    if (CountInits < NumInits
5252        && E->getInit(CountInits)->getType()->isExtVectorType()) {
5253      APValue v;
5254      if (!EvaluateVector(E->getInit(CountInits), v, Info))
5255        return Error(E);
5256      unsigned vlen = v.getVectorLength();
5257      for (unsigned j = 0; j < vlen; j++)
5258        Elements.push_back(v.getVectorElt(j));
5259      CountElts += vlen;
5260    } else if (EltTy->isIntegerType()) {
5261      llvm::APSInt sInt(32);
5262      if (CountInits < NumInits) {
5263        if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
5264          return false;
5265      } else // trailing integer zero.
5266        sInt = Info.Ctx.MakeIntValue(0, EltTy);
5267      Elements.push_back(APValue(sInt));
5268      CountElts++;
5269    } else {
5270      llvm::APFloat f(0.0);
5271      if (CountInits < NumInits) {
5272        if (!EvaluateFloat(E->getInit(CountInits), f, Info))
5273          return false;
5274      } else // trailing float zero.
5275        f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
5276      Elements.push_back(APValue(f));
5277      CountElts++;
5278    }
5279    CountInits++;
5280  }
5281  return Success(Elements, E);
5282}
5283
5284bool
5285VectorExprEvaluator::ZeroInitialization(const Expr *E) {
5286  const VectorType *VT = E->getType()->getAs<VectorType>();
5287  QualType EltTy = VT->getElementType();
5288  APValue ZeroElement;
5289  if (EltTy->isIntegerType())
5290    ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
5291  else
5292    ZeroElement =
5293        APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
5294
5295  SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
5296  return Success(Elements, E);
5297}
5298
5299bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
5300  VisitIgnoredValue(E->getSubExpr());
5301  return ZeroInitialization(E);
5302}
5303
5304//===----------------------------------------------------------------------===//
5305// Array Evaluation
5306//===----------------------------------------------------------------------===//
5307
5308namespace {
5309  class ArrayExprEvaluator
5310  : public ExprEvaluatorBase<ArrayExprEvaluator, bool> {
5311    const LValue &This;
5312    APValue &Result;
5313  public:
5314
5315    ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
5316      : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
5317
5318    bool Success(const APValue &V, const Expr *E) {
5319      assert((V.isArray() || V.isLValue()) &&
5320             "expected array or string literal");
5321      Result = V;
5322      return true;
5323    }
5324
5325    bool ZeroInitialization(const Expr *E) {
5326      const ConstantArrayType *CAT =
5327          Info.Ctx.getAsConstantArrayType(E->getType());
5328      if (!CAT)
5329        return Error(E);
5330
5331      Result = APValue(APValue::UninitArray(), 0,
5332                       CAT->getSize().getZExtValue());
5333      if (!Result.hasArrayFiller()) return true;
5334
5335      // Zero-initialize all elements.
5336      LValue Subobject = This;
5337      Subobject.addArray(Info, E, CAT);
5338      ImplicitValueInitExpr VIE(CAT->getElementType());
5339      return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
5340    }
5341
5342    bool VisitInitListExpr(const InitListExpr *E);
5343    bool VisitCXXConstructExpr(const CXXConstructExpr *E);
5344    bool VisitCXXConstructExpr(const CXXConstructExpr *E,
5345                               const LValue &Subobject,
5346                               APValue *Value, QualType Type);
5347  };
5348} // end anonymous namespace
5349
5350static bool EvaluateArray(const Expr *E, const LValue &This,
5351                          APValue &Result, EvalInfo &Info) {
5352  assert(E->isRValue() && E->getType()->isArrayType() && "not an array rvalue");
5353  return ArrayExprEvaluator(Info, This, Result).Visit(E);
5354}
5355
5356bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
5357  const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(E->getType());
5358  if (!CAT)
5359    return Error(E);
5360
5361  // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
5362  // an appropriately-typed string literal enclosed in braces.
5363  if (E->isStringLiteralInit()) {
5364    LValue LV;
5365    if (!EvaluateLValue(E->getInit(0), LV, Info))
5366      return false;
5367    APValue Val;
5368    LV.moveInto(Val);
5369    return Success(Val, E);
5370  }
5371
5372  bool Success = true;
5373
5374  assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
5375         "zero-initialized array shouldn't have any initialized elts");
5376  APValue Filler;
5377  if (Result.isArray() && Result.hasArrayFiller())
5378    Filler = Result.getArrayFiller();
5379
5380  unsigned NumEltsToInit = E->getNumInits();
5381  unsigned NumElts = CAT->getSize().getZExtValue();
5382  const Expr *FillerExpr = E->hasArrayFiller() ? E->getArrayFiller() : 0;
5383
5384  // If the initializer might depend on the array index, run it for each
5385  // array element. For now, just whitelist non-class value-initialization.
5386  if (NumEltsToInit != NumElts && !isa<ImplicitValueInitExpr>(FillerExpr))
5387    NumEltsToInit = NumElts;
5388
5389  Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts);
5390
5391  // If the array was previously zero-initialized, preserve the
5392  // zero-initialized values.
5393  if (!Filler.isUninit()) {
5394    for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
5395      Result.getArrayInitializedElt(I) = Filler;
5396    if (Result.hasArrayFiller())
5397      Result.getArrayFiller() = Filler;
5398  }
5399
5400  LValue Subobject = This;
5401  Subobject.addArray(Info, E, CAT);
5402  for (unsigned Index = 0; Index != NumEltsToInit; ++Index) {
5403    const Expr *Init =
5404        Index < E->getNumInits() ? E->getInit(Index) : FillerExpr;
5405    if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
5406                         Info, Subobject, Init) ||
5407        !HandleLValueArrayAdjustment(Info, Init, Subobject,
5408                                     CAT->getElementType(), 1)) {
5409      if (!Info.keepEvaluatingAfterFailure())
5410        return false;
5411      Success = false;
5412    }
5413  }
5414
5415  if (!Result.hasArrayFiller())
5416    return Success;
5417
5418  // If we get here, we have a trivial filler, which we can just evaluate
5419  // once and splat over the rest of the array elements.
5420  assert(FillerExpr && "no array filler for incomplete init list");
5421  return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject,
5422                         FillerExpr) && Success;
5423}
5424
5425bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
5426  return VisitCXXConstructExpr(E, This, &Result, E->getType());
5427}
5428
5429bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
5430                                               const LValue &Subobject,
5431                                               APValue *Value,
5432                                               QualType Type) {
5433  bool HadZeroInit = !Value->isUninit();
5434
5435  if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) {
5436    unsigned N = CAT->getSize().getZExtValue();
5437
5438    // Preserve the array filler if we had prior zero-initialization.
5439    APValue Filler =
5440      HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller()
5441                                             : APValue();
5442
5443    *Value = APValue(APValue::UninitArray(), N, N);
5444
5445    if (HadZeroInit)
5446      for (unsigned I = 0; I != N; ++I)
5447        Value->getArrayInitializedElt(I) = Filler;
5448
5449    // Initialize the elements.
5450    LValue ArrayElt = Subobject;
5451    ArrayElt.addArray(Info, E, CAT);
5452    for (unsigned I = 0; I != N; ++I)
5453      if (!VisitCXXConstructExpr(E, ArrayElt, &Value->getArrayInitializedElt(I),
5454                                 CAT->getElementType()) ||
5455          !HandleLValueArrayAdjustment(Info, E, ArrayElt,
5456                                       CAT->getElementType(), 1))
5457        return false;
5458
5459    return true;
5460  }
5461
5462  if (!Type->isRecordType())
5463    return Error(E);
5464
5465  const CXXConstructorDecl *FD = E->getConstructor();
5466
5467  bool ZeroInit = E->requiresZeroInitialization();
5468  if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
5469    if (HadZeroInit)
5470      return true;
5471
5472    if (ZeroInit) {
5473      ImplicitValueInitExpr VIE(Type);
5474      return EvaluateInPlace(*Value, Info, Subobject, &VIE);
5475    }
5476
5477    const CXXRecordDecl *RD = FD->getParent();
5478    if (RD->isUnion())
5479      *Value = APValue((FieldDecl*)0);
5480    else
5481      *Value =
5482          APValue(APValue::UninitStruct(), RD->getNumBases(),
5483                  std::distance(RD->field_begin(), RD->field_end()));
5484    return true;
5485  }
5486
5487  const FunctionDecl *Definition = 0;
5488  FD->getBody(Definition);
5489
5490  if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
5491    return false;
5492
5493  if (ZeroInit && !HadZeroInit) {
5494    ImplicitValueInitExpr VIE(Type);
5495    if (!EvaluateInPlace(*Value, Info, Subobject, &VIE))
5496      return false;
5497  }
5498
5499  ArrayRef<const Expr *> Args(E->getArgs(), E->getNumArgs());
5500  return HandleConstructorCall(E->getExprLoc(), Subobject, Args,
5501                               cast<CXXConstructorDecl>(Definition),
5502                               Info, *Value);
5503}
5504
5505//===----------------------------------------------------------------------===//
5506// Integer Evaluation
5507//
5508// As a GNU extension, we support casting pointers to sufficiently-wide integer
5509// types and back in constant folding. Integer values are thus represented
5510// either as an integer-valued APValue, or as an lvalue-valued APValue.
5511//===----------------------------------------------------------------------===//
5512
5513namespace {
5514class IntExprEvaluator
5515  : public ExprEvaluatorBase<IntExprEvaluator, bool> {
5516  APValue &Result;
5517public:
5518  IntExprEvaluator(EvalInfo &info, APValue &result)
5519    : ExprEvaluatorBaseTy(info), Result(result) {}
5520
5521  bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
5522    assert(E->getType()->isIntegralOrEnumerationType() &&
5523           "Invalid evaluation result.");
5524    assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
5525           "Invalid evaluation result.");
5526    assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
5527           "Invalid evaluation result.");
5528    Result = APValue(SI);
5529    return true;
5530  }
5531  bool Success(const llvm::APSInt &SI, const Expr *E) {
5532    return Success(SI, E, Result);
5533  }
5534
5535  bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
5536    assert(E->getType()->isIntegralOrEnumerationType() &&
5537           "Invalid evaluation result.");
5538    assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
5539           "Invalid evaluation result.");
5540    Result = APValue(APSInt(I));
5541    Result.getInt().setIsUnsigned(
5542                            E->getType()->isUnsignedIntegerOrEnumerationType());
5543    return true;
5544  }
5545  bool Success(const llvm::APInt &I, const Expr *E) {
5546    return Success(I, E, Result);
5547  }
5548
5549  bool Success(uint64_t Value, const Expr *E, APValue &Result) {
5550    assert(E->getType()->isIntegralOrEnumerationType() &&
5551           "Invalid evaluation result.");
5552    Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
5553    return true;
5554  }
5555  bool Success(uint64_t Value, const Expr *E) {
5556    return Success(Value, E, Result);
5557  }
5558
5559  bool Success(CharUnits Size, const Expr *E) {
5560    return Success(Size.getQuantity(), E);
5561  }
5562
5563  bool Success(const APValue &V, const Expr *E) {
5564    if (V.isLValue() || V.isAddrLabelDiff()) {
5565      Result = V;
5566      return true;
5567    }
5568    return Success(V.getInt(), E);
5569  }
5570
5571  bool ZeroInitialization(const Expr *E) { return Success(0, E); }
5572
5573  //===--------------------------------------------------------------------===//
5574  //                            Visitor Methods
5575  //===--------------------------------------------------------------------===//
5576
5577  bool VisitIntegerLiteral(const IntegerLiteral *E) {
5578    return Success(E->getValue(), E);
5579  }
5580  bool VisitCharacterLiteral(const CharacterLiteral *E) {
5581    return Success(E->getValue(), E);
5582  }
5583
5584  bool CheckReferencedDecl(const Expr *E, const Decl *D);
5585  bool VisitDeclRefExpr(const DeclRefExpr *E) {
5586    if (CheckReferencedDecl(E, E->getDecl()))
5587      return true;
5588
5589    return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
5590  }
5591  bool VisitMemberExpr(const MemberExpr *E) {
5592    if (CheckReferencedDecl(E, E->getMemberDecl())) {
5593      VisitIgnoredValue(E->getBase());
5594      return true;
5595    }
5596
5597    return ExprEvaluatorBaseTy::VisitMemberExpr(E);
5598  }
5599
5600  bool VisitCallExpr(const CallExpr *E);
5601  bool VisitBinaryOperator(const BinaryOperator *E);
5602  bool VisitOffsetOfExpr(const OffsetOfExpr *E);
5603  bool VisitUnaryOperator(const UnaryOperator *E);
5604
5605  bool VisitCastExpr(const CastExpr* E);
5606  bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
5607
5608  bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
5609    return Success(E->getValue(), E);
5610  }
5611
5612  bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
5613    return Success(E->getValue(), E);
5614  }
5615
5616  // Note, GNU defines __null as an integer, not a pointer.
5617  bool VisitGNUNullExpr(const GNUNullExpr *E) {
5618    return ZeroInitialization(E);
5619  }
5620
5621  bool VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
5622    return Success(E->getValue(), E);
5623  }
5624
5625  bool VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
5626    return Success(E->getValue(), E);
5627  }
5628
5629  bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
5630    return Success(E->getValue(), E);
5631  }
5632
5633  bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
5634    return Success(E->getValue(), E);
5635  }
5636
5637  bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
5638    return Success(E->getValue(), E);
5639  }
5640
5641  bool VisitUnaryReal(const UnaryOperator *E);
5642  bool VisitUnaryImag(const UnaryOperator *E);
5643
5644  bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
5645  bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
5646
5647private:
5648  CharUnits GetAlignOfExpr(const Expr *E);
5649  CharUnits GetAlignOfType(QualType T);
5650  static QualType GetObjectType(APValue::LValueBase B);
5651  bool TryEvaluateBuiltinObjectSize(const CallExpr *E);
5652  // FIXME: Missing: array subscript of vector, member of vector
5653};
5654} // end anonymous namespace
5655
5656/// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
5657/// produce either the integer value or a pointer.
5658///
5659/// GCC has a heinous extension which folds casts between pointer types and
5660/// pointer-sized integral types. We support this by allowing the evaluation of
5661/// an integer rvalue to produce a pointer (represented as an lvalue) instead.
5662/// Some simple arithmetic on such values is supported (they are treated much
5663/// like char*).
5664static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
5665                                    EvalInfo &Info) {
5666  assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType());
5667  return IntExprEvaluator(Info, Result).Visit(E);
5668}
5669
5670static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
5671  APValue Val;
5672  if (!EvaluateIntegerOrLValue(E, Val, Info))
5673    return false;
5674  if (!Val.isInt()) {
5675    // FIXME: It would be better to produce the diagnostic for casting
5676    //        a pointer to an integer.
5677    Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
5678    return false;
5679  }
5680  Result = Val.getInt();
5681  return true;
5682}
5683
5684/// Check whether the given declaration can be directly converted to an integral
5685/// rvalue. If not, no diagnostic is produced; there are other things we can
5686/// try.
5687bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
5688  // Enums are integer constant exprs.
5689  if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
5690    // Check for signedness/width mismatches between E type and ECD value.
5691    bool SameSign = (ECD->getInitVal().isSigned()
5692                     == E->getType()->isSignedIntegerOrEnumerationType());
5693    bool SameWidth = (ECD->getInitVal().getBitWidth()
5694                      == Info.Ctx.getIntWidth(E->getType()));
5695    if (SameSign && SameWidth)
5696      return Success(ECD->getInitVal(), E);
5697    else {
5698      // Get rid of mismatch (otherwise Success assertions will fail)
5699      // by computing a new value matching the type of E.
5700      llvm::APSInt Val = ECD->getInitVal();
5701      if (!SameSign)
5702        Val.setIsSigned(!ECD->getInitVal().isSigned());
5703      if (!SameWidth)
5704        Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
5705      return Success(Val, E);
5706    }
5707  }
5708  return false;
5709}
5710
5711/// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
5712/// as GCC.
5713static int EvaluateBuiltinClassifyType(const CallExpr *E) {
5714  // The following enum mimics the values returned by GCC.
5715  // FIXME: Does GCC differ between lvalue and rvalue references here?
5716  enum gcc_type_class {
5717    no_type_class = -1,
5718    void_type_class, integer_type_class, char_type_class,
5719    enumeral_type_class, boolean_type_class,
5720    pointer_type_class, reference_type_class, offset_type_class,
5721    real_type_class, complex_type_class,
5722    function_type_class, method_type_class,
5723    record_type_class, union_type_class,
5724    array_type_class, string_type_class,
5725    lang_type_class
5726  };
5727
5728  // If no argument was supplied, default to "no_type_class". This isn't
5729  // ideal, however it is what gcc does.
5730  if (E->getNumArgs() == 0)
5731    return no_type_class;
5732
5733  QualType ArgTy = E->getArg(0)->getType();
5734  if (ArgTy->isVoidType())
5735    return void_type_class;
5736  else if (ArgTy->isEnumeralType())
5737    return enumeral_type_class;
5738  else if (ArgTy->isBooleanType())
5739    return boolean_type_class;
5740  else if (ArgTy->isCharType())
5741    return string_type_class; // gcc doesn't appear to use char_type_class
5742  else if (ArgTy->isIntegerType())
5743    return integer_type_class;
5744  else if (ArgTy->isPointerType())
5745    return pointer_type_class;
5746  else if (ArgTy->isReferenceType())
5747    return reference_type_class;
5748  else if (ArgTy->isRealType())
5749    return real_type_class;
5750  else if (ArgTy->isComplexType())
5751    return complex_type_class;
5752  else if (ArgTy->isFunctionType())
5753    return function_type_class;
5754  else if (ArgTy->isStructureOrClassType())
5755    return record_type_class;
5756  else if (ArgTy->isUnionType())
5757    return union_type_class;
5758  else if (ArgTy->isArrayType())
5759    return array_type_class;
5760  else if (ArgTy->isUnionType())
5761    return union_type_class;
5762  else  // FIXME: offset_type_class, method_type_class, & lang_type_class?
5763    llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type");
5764}
5765
5766/// EvaluateBuiltinConstantPForLValue - Determine the result of
5767/// __builtin_constant_p when applied to the given lvalue.
5768///
5769/// An lvalue is only "constant" if it is a pointer or reference to the first
5770/// character of a string literal.
5771template<typename LValue>
5772static bool EvaluateBuiltinConstantPForLValue(const LValue &LV) {
5773  const Expr *E = LV.getLValueBase().template dyn_cast<const Expr*>();
5774  return E && isa<StringLiteral>(E) && LV.getLValueOffset().isZero();
5775}
5776
5777/// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
5778/// GCC as we can manage.
5779static bool EvaluateBuiltinConstantP(ASTContext &Ctx, const Expr *Arg) {
5780  QualType ArgType = Arg->getType();
5781
5782  // __builtin_constant_p always has one operand. The rules which gcc follows
5783  // are not precisely documented, but are as follows:
5784  //
5785  //  - If the operand is of integral, floating, complex or enumeration type,
5786  //    and can be folded to a known value of that type, it returns 1.
5787  //  - If the operand and can be folded to a pointer to the first character
5788  //    of a string literal (or such a pointer cast to an integral type), it
5789  //    returns 1.
5790  //
5791  // Otherwise, it returns 0.
5792  //
5793  // FIXME: GCC also intends to return 1 for literals of aggregate types, but
5794  // its support for this does not currently work.
5795  if (ArgType->isIntegralOrEnumerationType()) {
5796    Expr::EvalResult Result;
5797    if (!Arg->EvaluateAsRValue(Result, Ctx) || Result.HasSideEffects)
5798      return false;
5799
5800    APValue &V = Result.Val;
5801    if (V.getKind() == APValue::Int)
5802      return true;
5803
5804    return EvaluateBuiltinConstantPForLValue(V);
5805  } else if (ArgType->isFloatingType() || ArgType->isAnyComplexType()) {
5806    return Arg->isEvaluatable(Ctx);
5807  } else if (ArgType->isPointerType() || Arg->isGLValue()) {
5808    LValue LV;
5809    Expr::EvalStatus Status;
5810    EvalInfo Info(Ctx, Status);
5811    if ((Arg->isGLValue() ? EvaluateLValue(Arg, LV, Info)
5812                          : EvaluatePointer(Arg, LV, Info)) &&
5813        !Status.HasSideEffects)
5814      return EvaluateBuiltinConstantPForLValue(LV);
5815  }
5816
5817  // Anything else isn't considered to be sufficiently constant.
5818  return false;
5819}
5820
5821/// Retrieves the "underlying object type" of the given expression,
5822/// as used by __builtin_object_size.
5823QualType IntExprEvaluator::GetObjectType(APValue::LValueBase B) {
5824  if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
5825    if (const VarDecl *VD = dyn_cast<VarDecl>(D))
5826      return VD->getType();
5827  } else if (const Expr *E = B.get<const Expr*>()) {
5828    if (isa<CompoundLiteralExpr>(E))
5829      return E->getType();
5830  }
5831
5832  return QualType();
5833}
5834
5835bool IntExprEvaluator::TryEvaluateBuiltinObjectSize(const CallExpr *E) {
5836  LValue Base;
5837
5838  {
5839    // The operand of __builtin_object_size is never evaluated for side-effects.
5840    // If there are any, but we can determine the pointed-to object anyway, then
5841    // ignore the side-effects.
5842    SpeculativeEvaluationRAII SpeculativeEval(Info);
5843    if (!EvaluatePointer(E->getArg(0), Base, Info))
5844      return false;
5845  }
5846
5847  // If we can prove the base is null, lower to zero now.
5848  if (!Base.getLValueBase()) return Success(0, E);
5849
5850  QualType T = GetObjectType(Base.getLValueBase());
5851  if (T.isNull() ||
5852      T->isIncompleteType() ||
5853      T->isFunctionType() ||
5854      T->isVariablyModifiedType() ||
5855      T->isDependentType())
5856    return Error(E);
5857
5858  CharUnits Size = Info.Ctx.getTypeSizeInChars(T);
5859  CharUnits Offset = Base.getLValueOffset();
5860
5861  if (!Offset.isNegative() && Offset <= Size)
5862    Size -= Offset;
5863  else
5864    Size = CharUnits::Zero();
5865  return Success(Size, E);
5866}
5867
5868bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
5869  switch (unsigned BuiltinOp = E->isBuiltinCall()) {
5870  default:
5871    return ExprEvaluatorBaseTy::VisitCallExpr(E);
5872
5873  case Builtin::BI__builtin_object_size: {
5874    if (TryEvaluateBuiltinObjectSize(E))
5875      return true;
5876
5877    // If evaluating the argument has side-effects, we can't determine the size
5878    // of the object, and so we lower it to unknown now. CodeGen relies on us to
5879    // handle all cases where the expression has side-effects.
5880    if (E->getArg(0)->HasSideEffects(Info.Ctx)) {
5881      if (E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue() <= 1)
5882        return Success(-1ULL, E);
5883      return Success(0, E);
5884    }
5885
5886    // Expression had no side effects, but we couldn't statically determine the
5887    // size of the referenced object.
5888    return Error(E);
5889  }
5890
5891  case Builtin::BI__builtin_bswap16:
5892  case Builtin::BI__builtin_bswap32:
5893  case Builtin::BI__builtin_bswap64: {
5894    APSInt Val;
5895    if (!EvaluateInteger(E->getArg(0), Val, Info))
5896      return false;
5897
5898    return Success(Val.byteSwap(), E);
5899  }
5900
5901  case Builtin::BI__builtin_classify_type:
5902    return Success(EvaluateBuiltinClassifyType(E), E);
5903
5904  // FIXME: BI__builtin_clrsb
5905  // FIXME: BI__builtin_clrsbl
5906  // FIXME: BI__builtin_clrsbll
5907
5908  case Builtin::BI__builtin_clz:
5909  case Builtin::BI__builtin_clzl:
5910  case Builtin::BI__builtin_clzll: {
5911    APSInt Val;
5912    if (!EvaluateInteger(E->getArg(0), Val, Info))
5913      return false;
5914    if (!Val)
5915      return Error(E);
5916
5917    return Success(Val.countLeadingZeros(), E);
5918  }
5919
5920  case Builtin::BI__builtin_constant_p:
5921    return Success(EvaluateBuiltinConstantP(Info.Ctx, E->getArg(0)), E);
5922
5923  case Builtin::BI__builtin_ctz:
5924  case Builtin::BI__builtin_ctzl:
5925  case Builtin::BI__builtin_ctzll: {
5926    APSInt Val;
5927    if (!EvaluateInteger(E->getArg(0), Val, Info))
5928      return false;
5929    if (!Val)
5930      return Error(E);
5931
5932    return Success(Val.countTrailingZeros(), E);
5933  }
5934
5935  case Builtin::BI__builtin_eh_return_data_regno: {
5936    int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
5937    Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
5938    return Success(Operand, E);
5939  }
5940
5941  case Builtin::BI__builtin_expect:
5942    return Visit(E->getArg(0));
5943
5944  case Builtin::BI__builtin_ffs:
5945  case Builtin::BI__builtin_ffsl:
5946  case Builtin::BI__builtin_ffsll: {
5947    APSInt Val;
5948    if (!EvaluateInteger(E->getArg(0), Val, Info))
5949      return false;
5950
5951    unsigned N = Val.countTrailingZeros();
5952    return Success(N == Val.getBitWidth() ? 0 : N + 1, E);
5953  }
5954
5955  case Builtin::BI__builtin_fpclassify: {
5956    APFloat Val(0.0);
5957    if (!EvaluateFloat(E->getArg(5), Val, Info))
5958      return false;
5959    unsigned Arg;
5960    switch (Val.getCategory()) {
5961    case APFloat::fcNaN: Arg = 0; break;
5962    case APFloat::fcInfinity: Arg = 1; break;
5963    case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break;
5964    case APFloat::fcZero: Arg = 4; break;
5965    }
5966    return Visit(E->getArg(Arg));
5967  }
5968
5969  case Builtin::BI__builtin_isinf_sign: {
5970    APFloat Val(0.0);
5971    return EvaluateFloat(E->getArg(0), Val, Info) &&
5972           Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E);
5973  }
5974
5975  case Builtin::BI__builtin_parity:
5976  case Builtin::BI__builtin_parityl:
5977  case Builtin::BI__builtin_parityll: {
5978    APSInt Val;
5979    if (!EvaluateInteger(E->getArg(0), Val, Info))
5980      return false;
5981
5982    return Success(Val.countPopulation() % 2, E);
5983  }
5984
5985  case Builtin::BI__builtin_popcount:
5986  case Builtin::BI__builtin_popcountl:
5987  case Builtin::BI__builtin_popcountll: {
5988    APSInt Val;
5989    if (!EvaluateInteger(E->getArg(0), Val, Info))
5990      return false;
5991
5992    return Success(Val.countPopulation(), E);
5993  }
5994
5995  case Builtin::BIstrlen:
5996    // A call to strlen is not a constant expression.
5997    if (Info.getLangOpts().CPlusPlus11)
5998      Info.CCEDiag(E, diag::note_constexpr_invalid_function)
5999        << /*isConstexpr*/0 << /*isConstructor*/0 << "'strlen'";
6000    else
6001      Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
6002    // Fall through.
6003  case Builtin::BI__builtin_strlen:
6004    // As an extension, we support strlen() and __builtin_strlen() as constant
6005    // expressions when the argument is a string literal.
6006    if (const StringLiteral *S
6007               = dyn_cast<StringLiteral>(E->getArg(0)->IgnoreParenImpCasts())) {
6008      // The string literal may have embedded null characters. Find the first
6009      // one and truncate there.
6010      StringRef Str = S->getString();
6011      StringRef::size_type Pos = Str.find(0);
6012      if (Pos != StringRef::npos)
6013        Str = Str.substr(0, Pos);
6014
6015      return Success(Str.size(), E);
6016    }
6017
6018    return Error(E);
6019
6020  case Builtin::BI__atomic_always_lock_free:
6021  case Builtin::BI__atomic_is_lock_free:
6022  case Builtin::BI__c11_atomic_is_lock_free: {
6023    APSInt SizeVal;
6024    if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
6025      return false;
6026
6027    // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
6028    // of two less than the maximum inline atomic width, we know it is
6029    // lock-free.  If the size isn't a power of two, or greater than the
6030    // maximum alignment where we promote atomics, we know it is not lock-free
6031    // (at least not in the sense of atomic_is_lock_free).  Otherwise,
6032    // the answer can only be determined at runtime; for example, 16-byte
6033    // atomics have lock-free implementations on some, but not all,
6034    // x86-64 processors.
6035
6036    // Check power-of-two.
6037    CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
6038    if (Size.isPowerOfTwo()) {
6039      // Check against inlining width.
6040      unsigned InlineWidthBits =
6041          Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
6042      if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
6043        if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
6044            Size == CharUnits::One() ||
6045            E->getArg(1)->isNullPointerConstant(Info.Ctx,
6046                                                Expr::NPC_NeverValueDependent))
6047          // OK, we will inline appropriately-aligned operations of this size,
6048          // and _Atomic(T) is appropriately-aligned.
6049          return Success(1, E);
6050
6051        QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
6052          castAs<PointerType>()->getPointeeType();
6053        if (!PointeeType->isIncompleteType() &&
6054            Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
6055          // OK, we will inline operations on this object.
6056          return Success(1, E);
6057        }
6058      }
6059    }
6060
6061    return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
6062        Success(0, E) : Error(E);
6063  }
6064  }
6065}
6066
6067static bool HasSameBase(const LValue &A, const LValue &B) {
6068  if (!A.getLValueBase())
6069    return !B.getLValueBase();
6070  if (!B.getLValueBase())
6071    return false;
6072
6073  if (A.getLValueBase().getOpaqueValue() !=
6074      B.getLValueBase().getOpaqueValue()) {
6075    const Decl *ADecl = GetLValueBaseDecl(A);
6076    if (!ADecl)
6077      return false;
6078    const Decl *BDecl = GetLValueBaseDecl(B);
6079    if (!BDecl || ADecl->getCanonicalDecl() != BDecl->getCanonicalDecl())
6080      return false;
6081  }
6082
6083  return IsGlobalLValue(A.getLValueBase()) ||
6084         A.getLValueCallIndex() == B.getLValueCallIndex();
6085}
6086
6087namespace {
6088
6089/// \brief Data recursive integer evaluator of certain binary operators.
6090///
6091/// We use a data recursive algorithm for binary operators so that we are able
6092/// to handle extreme cases of chained binary operators without causing stack
6093/// overflow.
6094class DataRecursiveIntBinOpEvaluator {
6095  struct EvalResult {
6096    APValue Val;
6097    bool Failed;
6098
6099    EvalResult() : Failed(false) { }
6100
6101    void swap(EvalResult &RHS) {
6102      Val.swap(RHS.Val);
6103      Failed = RHS.Failed;
6104      RHS.Failed = false;
6105    }
6106  };
6107
6108  struct Job {
6109    const Expr *E;
6110    EvalResult LHSResult; // meaningful only for binary operator expression.
6111    enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
6112
6113    Job() : StoredInfo(0) { }
6114    void startSpeculativeEval(EvalInfo &Info) {
6115      OldEvalStatus = Info.EvalStatus;
6116      Info.EvalStatus.Diag = 0;
6117      StoredInfo = &Info;
6118    }
6119    ~Job() {
6120      if (StoredInfo) {
6121        StoredInfo->EvalStatus = OldEvalStatus;
6122      }
6123    }
6124  private:
6125    EvalInfo *StoredInfo; // non-null if status changed.
6126    Expr::EvalStatus OldEvalStatus;
6127  };
6128
6129  SmallVector<Job, 16> Queue;
6130
6131  IntExprEvaluator &IntEval;
6132  EvalInfo &Info;
6133  APValue &FinalResult;
6134
6135public:
6136  DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
6137    : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
6138
6139  /// \brief True if \param E is a binary operator that we are going to handle
6140  /// data recursively.
6141  /// We handle binary operators that are comma, logical, or that have operands
6142  /// with integral or enumeration type.
6143  static bool shouldEnqueue(const BinaryOperator *E) {
6144    return E->getOpcode() == BO_Comma ||
6145           E->isLogicalOp() ||
6146           (E->getLHS()->getType()->isIntegralOrEnumerationType() &&
6147            E->getRHS()->getType()->isIntegralOrEnumerationType());
6148  }
6149
6150  bool Traverse(const BinaryOperator *E) {
6151    enqueue(E);
6152    EvalResult PrevResult;
6153    while (!Queue.empty())
6154      process(PrevResult);
6155
6156    if (PrevResult.Failed) return false;
6157
6158    FinalResult.swap(PrevResult.Val);
6159    return true;
6160  }
6161
6162private:
6163  bool Success(uint64_t Value, const Expr *E, APValue &Result) {
6164    return IntEval.Success(Value, E, Result);
6165  }
6166  bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
6167    return IntEval.Success(Value, E, Result);
6168  }
6169  bool Error(const Expr *E) {
6170    return IntEval.Error(E);
6171  }
6172  bool Error(const Expr *E, diag::kind D) {
6173    return IntEval.Error(E, D);
6174  }
6175
6176  OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
6177    return Info.CCEDiag(E, D);
6178  }
6179
6180  // \brief Returns true if visiting the RHS is necessary, false otherwise.
6181  bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
6182                         bool &SuppressRHSDiags);
6183
6184  bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
6185                  const BinaryOperator *E, APValue &Result);
6186
6187  void EvaluateExpr(const Expr *E, EvalResult &Result) {
6188    Result.Failed = !Evaluate(Result.Val, Info, E);
6189    if (Result.Failed)
6190      Result.Val = APValue();
6191  }
6192
6193  void process(EvalResult &Result);
6194
6195  void enqueue(const Expr *E) {
6196    E = E->IgnoreParens();
6197    Queue.resize(Queue.size()+1);
6198    Queue.back().E = E;
6199    Queue.back().Kind = Job::AnyExprKind;
6200  }
6201};
6202
6203}
6204
6205bool DataRecursiveIntBinOpEvaluator::
6206       VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
6207                         bool &SuppressRHSDiags) {
6208  if (E->getOpcode() == BO_Comma) {
6209    // Ignore LHS but note if we could not evaluate it.
6210    if (LHSResult.Failed)
6211      Info.EvalStatus.HasSideEffects = true;
6212    return true;
6213  }
6214
6215  if (E->isLogicalOp()) {
6216    bool lhsResult;
6217    if (HandleConversionToBool(LHSResult.Val, lhsResult)) {
6218      // We were able to evaluate the LHS, see if we can get away with not
6219      // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
6220      if (lhsResult == (E->getOpcode() == BO_LOr)) {
6221        Success(lhsResult, E, LHSResult.Val);
6222        return false; // Ignore RHS
6223      }
6224    } else {
6225      // Since we weren't able to evaluate the left hand side, it
6226      // must have had side effects.
6227      Info.EvalStatus.HasSideEffects = true;
6228
6229      // We can't evaluate the LHS; however, sometimes the result
6230      // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
6231      // Don't ignore RHS and suppress diagnostics from this arm.
6232      SuppressRHSDiags = true;
6233    }
6234
6235    return true;
6236  }
6237
6238  assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
6239         E->getRHS()->getType()->isIntegralOrEnumerationType());
6240
6241  if (LHSResult.Failed && !Info.keepEvaluatingAfterFailure())
6242    return false; // Ignore RHS;
6243
6244  return true;
6245}
6246
6247bool DataRecursiveIntBinOpEvaluator::
6248       VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
6249                  const BinaryOperator *E, APValue &Result) {
6250  if (E->getOpcode() == BO_Comma) {
6251    if (RHSResult.Failed)
6252      return false;
6253    Result = RHSResult.Val;
6254    return true;
6255  }
6256
6257  if (E->isLogicalOp()) {
6258    bool lhsResult, rhsResult;
6259    bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
6260    bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
6261
6262    if (LHSIsOK) {
6263      if (RHSIsOK) {
6264        if (E->getOpcode() == BO_LOr)
6265          return Success(lhsResult || rhsResult, E, Result);
6266        else
6267          return Success(lhsResult && rhsResult, E, Result);
6268      }
6269    } else {
6270      if (RHSIsOK) {
6271        // We can't evaluate the LHS; however, sometimes the result
6272        // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
6273        if (rhsResult == (E->getOpcode() == BO_LOr))
6274          return Success(rhsResult, E, Result);
6275      }
6276    }
6277
6278    return false;
6279  }
6280
6281  assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
6282         E->getRHS()->getType()->isIntegralOrEnumerationType());
6283
6284  if (LHSResult.Failed || RHSResult.Failed)
6285    return false;
6286
6287  const APValue &LHSVal = LHSResult.Val;
6288  const APValue &RHSVal = RHSResult.Val;
6289
6290  // Handle cases like (unsigned long)&a + 4.
6291  if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
6292    Result = LHSVal;
6293    CharUnits AdditionalOffset = CharUnits::fromQuantity(
6294                                                         RHSVal.getInt().getZExtValue());
6295    if (E->getOpcode() == BO_Add)
6296      Result.getLValueOffset() += AdditionalOffset;
6297    else
6298      Result.getLValueOffset() -= AdditionalOffset;
6299    return true;
6300  }
6301
6302  // Handle cases like 4 + (unsigned long)&a
6303  if (E->getOpcode() == BO_Add &&
6304      RHSVal.isLValue() && LHSVal.isInt()) {
6305    Result = RHSVal;
6306    Result.getLValueOffset() += CharUnits::fromQuantity(
6307                                                        LHSVal.getInt().getZExtValue());
6308    return true;
6309  }
6310
6311  if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
6312    // Handle (intptr_t)&&A - (intptr_t)&&B.
6313    if (!LHSVal.getLValueOffset().isZero() ||
6314        !RHSVal.getLValueOffset().isZero())
6315      return false;
6316    const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
6317    const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
6318    if (!LHSExpr || !RHSExpr)
6319      return false;
6320    const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
6321    const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
6322    if (!LHSAddrExpr || !RHSAddrExpr)
6323      return false;
6324    // Make sure both labels come from the same function.
6325    if (LHSAddrExpr->getLabel()->getDeclContext() !=
6326        RHSAddrExpr->getLabel()->getDeclContext())
6327      return false;
6328    Result = APValue(LHSAddrExpr, RHSAddrExpr);
6329    return true;
6330  }
6331
6332  // All the remaining cases expect both operands to be an integer
6333  if (!LHSVal.isInt() || !RHSVal.isInt())
6334    return Error(E);
6335
6336  // Set up the width and signedness manually, in case it can't be deduced
6337  // from the operation we're performing.
6338  // FIXME: Don't do this in the cases where we can deduce it.
6339  APSInt Value(Info.Ctx.getIntWidth(E->getType()),
6340               E->getType()->isUnsignedIntegerOrEnumerationType());
6341  if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(),
6342                         RHSVal.getInt(), Value))
6343    return false;
6344  return Success(Value, E, Result);
6345}
6346
6347void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
6348  Job &job = Queue.back();
6349
6350  switch (job.Kind) {
6351    case Job::AnyExprKind: {
6352      if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
6353        if (shouldEnqueue(Bop)) {
6354          job.Kind = Job::BinOpKind;
6355          enqueue(Bop->getLHS());
6356          return;
6357        }
6358      }
6359
6360      EvaluateExpr(job.E, Result);
6361      Queue.pop_back();
6362      return;
6363    }
6364
6365    case Job::BinOpKind: {
6366      const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
6367      bool SuppressRHSDiags = false;
6368      if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
6369        Queue.pop_back();
6370        return;
6371      }
6372      if (SuppressRHSDiags)
6373        job.startSpeculativeEval(Info);
6374      job.LHSResult.swap(Result);
6375      job.Kind = Job::BinOpVisitedLHSKind;
6376      enqueue(Bop->getRHS());
6377      return;
6378    }
6379
6380    case Job::BinOpVisitedLHSKind: {
6381      const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
6382      EvalResult RHS;
6383      RHS.swap(Result);
6384      Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
6385      Queue.pop_back();
6386      return;
6387    }
6388  }
6389
6390  llvm_unreachable("Invalid Job::Kind!");
6391}
6392
6393bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
6394  if (E->isAssignmentOp())
6395    return Error(E);
6396
6397  if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
6398    return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
6399
6400  QualType LHSTy = E->getLHS()->getType();
6401  QualType RHSTy = E->getRHS()->getType();
6402
6403  if (LHSTy->isAnyComplexType()) {
6404    assert(RHSTy->isAnyComplexType() && "Invalid comparison");
6405    ComplexValue LHS, RHS;
6406
6407    bool LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
6408    if (!LHSOK && !Info.keepEvaluatingAfterFailure())
6409      return false;
6410
6411    if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
6412      return false;
6413
6414    if (LHS.isComplexFloat()) {
6415      APFloat::cmpResult CR_r =
6416        LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
6417      APFloat::cmpResult CR_i =
6418        LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
6419
6420      if (E->getOpcode() == BO_EQ)
6421        return Success((CR_r == APFloat::cmpEqual &&
6422                        CR_i == APFloat::cmpEqual), E);
6423      else {
6424        assert(E->getOpcode() == BO_NE &&
6425               "Invalid complex comparison.");
6426        return Success(((CR_r == APFloat::cmpGreaterThan ||
6427                         CR_r == APFloat::cmpLessThan ||
6428                         CR_r == APFloat::cmpUnordered) ||
6429                        (CR_i == APFloat::cmpGreaterThan ||
6430                         CR_i == APFloat::cmpLessThan ||
6431                         CR_i == APFloat::cmpUnordered)), E);
6432      }
6433    } else {
6434      if (E->getOpcode() == BO_EQ)
6435        return Success((LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
6436                        LHS.getComplexIntImag() == RHS.getComplexIntImag()), E);
6437      else {
6438        assert(E->getOpcode() == BO_NE &&
6439               "Invalid compex comparison.");
6440        return Success((LHS.getComplexIntReal() != RHS.getComplexIntReal() ||
6441                        LHS.getComplexIntImag() != RHS.getComplexIntImag()), E);
6442      }
6443    }
6444  }
6445
6446  if (LHSTy->isRealFloatingType() &&
6447      RHSTy->isRealFloatingType()) {
6448    APFloat RHS(0.0), LHS(0.0);
6449
6450    bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
6451    if (!LHSOK && !Info.keepEvaluatingAfterFailure())
6452      return false;
6453
6454    if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
6455      return false;
6456
6457    APFloat::cmpResult CR = LHS.compare(RHS);
6458
6459    switch (E->getOpcode()) {
6460    default:
6461      llvm_unreachable("Invalid binary operator!");
6462    case BO_LT:
6463      return Success(CR == APFloat::cmpLessThan, E);
6464    case BO_GT:
6465      return Success(CR == APFloat::cmpGreaterThan, E);
6466    case BO_LE:
6467      return Success(CR == APFloat::cmpLessThan || CR == APFloat::cmpEqual, E);
6468    case BO_GE:
6469      return Success(CR == APFloat::cmpGreaterThan || CR == APFloat::cmpEqual,
6470                     E);
6471    case BO_EQ:
6472      return Success(CR == APFloat::cmpEqual, E);
6473    case BO_NE:
6474      return Success(CR == APFloat::cmpGreaterThan
6475                     || CR == APFloat::cmpLessThan
6476                     || CR == APFloat::cmpUnordered, E);
6477    }
6478  }
6479
6480  if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
6481    if (E->getOpcode() == BO_Sub || E->isComparisonOp()) {
6482      LValue LHSValue, RHSValue;
6483
6484      bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
6485      if (!LHSOK && Info.keepEvaluatingAfterFailure())
6486        return false;
6487
6488      if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
6489        return false;
6490
6491      // Reject differing bases from the normal codepath; we special-case
6492      // comparisons to null.
6493      if (!HasSameBase(LHSValue, RHSValue)) {
6494        if (E->getOpcode() == BO_Sub) {
6495          // Handle &&A - &&B.
6496          if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
6497            return false;
6498          const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr*>();
6499          const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr*>();
6500          if (!LHSExpr || !RHSExpr)
6501            return false;
6502          const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
6503          const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
6504          if (!LHSAddrExpr || !RHSAddrExpr)
6505            return false;
6506          // Make sure both labels come from the same function.
6507          if (LHSAddrExpr->getLabel()->getDeclContext() !=
6508              RHSAddrExpr->getLabel()->getDeclContext())
6509            return false;
6510          Result = APValue(LHSAddrExpr, RHSAddrExpr);
6511          return true;
6512        }
6513        // Inequalities and subtractions between unrelated pointers have
6514        // unspecified or undefined behavior.
6515        if (!E->isEqualityOp())
6516          return Error(E);
6517        // A constant address may compare equal to the address of a symbol.
6518        // The one exception is that address of an object cannot compare equal
6519        // to a null pointer constant.
6520        if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
6521            (!RHSValue.Base && !RHSValue.Offset.isZero()))
6522          return Error(E);
6523        // It's implementation-defined whether distinct literals will have
6524        // distinct addresses. In clang, the result of such a comparison is
6525        // unspecified, so it is not a constant expression. However, we do know
6526        // that the address of a literal will be non-null.
6527        if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
6528            LHSValue.Base && RHSValue.Base)
6529          return Error(E);
6530        // We can't tell whether weak symbols will end up pointing to the same
6531        // object.
6532        if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
6533          return Error(E);
6534        // Pointers with different bases cannot represent the same object.
6535        // (Note that clang defaults to -fmerge-all-constants, which can
6536        // lead to inconsistent results for comparisons involving the address
6537        // of a constant; this generally doesn't matter in practice.)
6538        return Success(E->getOpcode() == BO_NE, E);
6539      }
6540
6541      const CharUnits &LHSOffset = LHSValue.getLValueOffset();
6542      const CharUnits &RHSOffset = RHSValue.getLValueOffset();
6543
6544      SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
6545      SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
6546
6547      if (E->getOpcode() == BO_Sub) {
6548        // C++11 [expr.add]p6:
6549        //   Unless both pointers point to elements of the same array object, or
6550        //   one past the last element of the array object, the behavior is
6551        //   undefined.
6552        if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
6553            !AreElementsOfSameArray(getType(LHSValue.Base),
6554                                    LHSDesignator, RHSDesignator))
6555          CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
6556
6557        QualType Type = E->getLHS()->getType();
6558        QualType ElementType = Type->getAs<PointerType>()->getPointeeType();
6559
6560        CharUnits ElementSize;
6561        if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
6562          return false;
6563
6564        // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
6565        // and produce incorrect results when it overflows. Such behavior
6566        // appears to be non-conforming, but is common, so perhaps we should
6567        // assume the standard intended for such cases to be undefined behavior
6568        // and check for them.
6569
6570        // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
6571        // overflow in the final conversion to ptrdiff_t.
6572        APSInt LHS(
6573          llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
6574        APSInt RHS(
6575          llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
6576        APSInt ElemSize(
6577          llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true), false);
6578        APSInt TrueResult = (LHS - RHS) / ElemSize;
6579        APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
6580
6581        if (Result.extend(65) != TrueResult)
6582          HandleOverflow(Info, E, TrueResult, E->getType());
6583        return Success(Result, E);
6584      }
6585
6586      // C++11 [expr.rel]p3:
6587      //   Pointers to void (after pointer conversions) can be compared, with a
6588      //   result defined as follows: If both pointers represent the same
6589      //   address or are both the null pointer value, the result is true if the
6590      //   operator is <= or >= and false otherwise; otherwise the result is
6591      //   unspecified.
6592      // We interpret this as applying to pointers to *cv* void.
6593      if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset &&
6594          E->isRelationalOp())
6595        CCEDiag(E, diag::note_constexpr_void_comparison);
6596
6597      // C++11 [expr.rel]p2:
6598      // - If two pointers point to non-static data members of the same object,
6599      //   or to subobjects or array elements fo such members, recursively, the
6600      //   pointer to the later declared member compares greater provided the
6601      //   two members have the same access control and provided their class is
6602      //   not a union.
6603      //   [...]
6604      // - Otherwise pointer comparisons are unspecified.
6605      if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
6606          E->isRelationalOp()) {
6607        bool WasArrayIndex;
6608        unsigned Mismatch =
6609          FindDesignatorMismatch(getType(LHSValue.Base), LHSDesignator,
6610                                 RHSDesignator, WasArrayIndex);
6611        // At the point where the designators diverge, the comparison has a
6612        // specified value if:
6613        //  - we are comparing array indices
6614        //  - we are comparing fields of a union, or fields with the same access
6615        // Otherwise, the result is unspecified and thus the comparison is not a
6616        // constant expression.
6617        if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
6618            Mismatch < RHSDesignator.Entries.size()) {
6619          const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
6620          const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
6621          if (!LF && !RF)
6622            CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
6623          else if (!LF)
6624            CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
6625              << getAsBaseClass(LHSDesignator.Entries[Mismatch])
6626              << RF->getParent() << RF;
6627          else if (!RF)
6628            CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
6629              << getAsBaseClass(RHSDesignator.Entries[Mismatch])
6630              << LF->getParent() << LF;
6631          else if (!LF->getParent()->isUnion() &&
6632                   LF->getAccess() != RF->getAccess())
6633            CCEDiag(E, diag::note_constexpr_pointer_comparison_differing_access)
6634              << LF << LF->getAccess() << RF << RF->getAccess()
6635              << LF->getParent();
6636        }
6637      }
6638
6639      // The comparison here must be unsigned, and performed with the same
6640      // width as the pointer.
6641      unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
6642      uint64_t CompareLHS = LHSOffset.getQuantity();
6643      uint64_t CompareRHS = RHSOffset.getQuantity();
6644      assert(PtrSize <= 64 && "Unexpected pointer width");
6645      uint64_t Mask = ~0ULL >> (64 - PtrSize);
6646      CompareLHS &= Mask;
6647      CompareRHS &= Mask;
6648
6649      // If there is a base and this is a relational operator, we can only
6650      // compare pointers within the object in question; otherwise, the result
6651      // depends on where the object is located in memory.
6652      if (!LHSValue.Base.isNull() && E->isRelationalOp()) {
6653        QualType BaseTy = getType(LHSValue.Base);
6654        if (BaseTy->isIncompleteType())
6655          return Error(E);
6656        CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
6657        uint64_t OffsetLimit = Size.getQuantity();
6658        if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
6659          return Error(E);
6660      }
6661
6662      switch (E->getOpcode()) {
6663      default: llvm_unreachable("missing comparison operator");
6664      case BO_LT: return Success(CompareLHS < CompareRHS, E);
6665      case BO_GT: return Success(CompareLHS > CompareRHS, E);
6666      case BO_LE: return Success(CompareLHS <= CompareRHS, E);
6667      case BO_GE: return Success(CompareLHS >= CompareRHS, E);
6668      case BO_EQ: return Success(CompareLHS == CompareRHS, E);
6669      case BO_NE: return Success(CompareLHS != CompareRHS, E);
6670      }
6671    }
6672  }
6673
6674  if (LHSTy->isMemberPointerType()) {
6675    assert(E->isEqualityOp() && "unexpected member pointer operation");
6676    assert(RHSTy->isMemberPointerType() && "invalid comparison");
6677
6678    MemberPtr LHSValue, RHSValue;
6679
6680    bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
6681    if (!LHSOK && Info.keepEvaluatingAfterFailure())
6682      return false;
6683
6684    if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
6685      return false;
6686
6687    // C++11 [expr.eq]p2:
6688    //   If both operands are null, they compare equal. Otherwise if only one is
6689    //   null, they compare unequal.
6690    if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
6691      bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
6692      return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
6693    }
6694
6695    //   Otherwise if either is a pointer to a virtual member function, the
6696    //   result is unspecified.
6697    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
6698      if (MD->isVirtual())
6699        CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
6700    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
6701      if (MD->isVirtual())
6702        CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
6703
6704    //   Otherwise they compare equal if and only if they would refer to the
6705    //   same member of the same most derived object or the same subobject if
6706    //   they were dereferenced with a hypothetical object of the associated
6707    //   class type.
6708    bool Equal = LHSValue == RHSValue;
6709    return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
6710  }
6711
6712  if (LHSTy->isNullPtrType()) {
6713    assert(E->isComparisonOp() && "unexpected nullptr operation");
6714    assert(RHSTy->isNullPtrType() && "missing pointer conversion");
6715    // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
6716    // are compared, the result is true of the operator is <=, >= or ==, and
6717    // false otherwise.
6718    BinaryOperator::Opcode Opcode = E->getOpcode();
6719    return Success(Opcode == BO_EQ || Opcode == BO_LE || Opcode == BO_GE, E);
6720  }
6721
6722  assert((!LHSTy->isIntegralOrEnumerationType() ||
6723          !RHSTy->isIntegralOrEnumerationType()) &&
6724         "DataRecursiveIntBinOpEvaluator should have handled integral types");
6725  // We can't continue from here for non-integral types.
6726  return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
6727}
6728
6729CharUnits IntExprEvaluator::GetAlignOfType(QualType T) {
6730  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
6731  //   result shall be the alignment of the referenced type."
6732  if (const ReferenceType *Ref = T->getAs<ReferenceType>())
6733    T = Ref->getPointeeType();
6734
6735  // __alignof is defined to return the preferred alignment.
6736  return Info.Ctx.toCharUnitsFromBits(
6737    Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
6738}
6739
6740CharUnits IntExprEvaluator::GetAlignOfExpr(const Expr *E) {
6741  E = E->IgnoreParens();
6742
6743  // The kinds of expressions that we have special-case logic here for
6744  // should be kept up to date with the special checks for those
6745  // expressions in Sema.
6746
6747  // alignof decl is always accepted, even if it doesn't make sense: we default
6748  // to 1 in those cases.
6749  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
6750    return Info.Ctx.getDeclAlign(DRE->getDecl(),
6751                                 /*RefAsPointee*/true);
6752
6753  if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
6754    return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
6755                                 /*RefAsPointee*/true);
6756
6757  return GetAlignOfType(E->getType());
6758}
6759
6760
6761/// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
6762/// a result as the expression's type.
6763bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
6764                                    const UnaryExprOrTypeTraitExpr *E) {
6765  switch(E->getKind()) {
6766  case UETT_AlignOf: {
6767    if (E->isArgumentType())
6768      return Success(GetAlignOfType(E->getArgumentType()), E);
6769    else
6770      return Success(GetAlignOfExpr(E->getArgumentExpr()), E);
6771  }
6772
6773  case UETT_VecStep: {
6774    QualType Ty = E->getTypeOfArgument();
6775
6776    if (Ty->isVectorType()) {
6777      unsigned n = Ty->castAs<VectorType>()->getNumElements();
6778
6779      // The vec_step built-in functions that take a 3-component
6780      // vector return 4. (OpenCL 1.1 spec 6.11.12)
6781      if (n == 3)
6782        n = 4;
6783
6784      return Success(n, E);
6785    } else
6786      return Success(1, E);
6787  }
6788
6789  case UETT_SizeOf: {
6790    QualType SrcTy = E->getTypeOfArgument();
6791    // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
6792    //   the result is the size of the referenced type."
6793    if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
6794      SrcTy = Ref->getPointeeType();
6795
6796    CharUnits Sizeof;
6797    if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
6798      return false;
6799    return Success(Sizeof, E);
6800  }
6801  }
6802
6803  llvm_unreachable("unknown expr/type trait");
6804}
6805
6806bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
6807  CharUnits Result;
6808  unsigned n = OOE->getNumComponents();
6809  if (n == 0)
6810    return Error(OOE);
6811  QualType CurrentType = OOE->getTypeSourceInfo()->getType();
6812  for (unsigned i = 0; i != n; ++i) {
6813    OffsetOfExpr::OffsetOfNode ON = OOE->getComponent(i);
6814    switch (ON.getKind()) {
6815    case OffsetOfExpr::OffsetOfNode::Array: {
6816      const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
6817      APSInt IdxResult;
6818      if (!EvaluateInteger(Idx, IdxResult, Info))
6819        return false;
6820      const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
6821      if (!AT)
6822        return Error(OOE);
6823      CurrentType = AT->getElementType();
6824      CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
6825      Result += IdxResult.getSExtValue() * ElementSize;
6826      break;
6827    }
6828
6829    case OffsetOfExpr::OffsetOfNode::Field: {
6830      FieldDecl *MemberDecl = ON.getField();
6831      const RecordType *RT = CurrentType->getAs<RecordType>();
6832      if (!RT)
6833        return Error(OOE);
6834      RecordDecl *RD = RT->getDecl();
6835      if (RD->isInvalidDecl()) return false;
6836      const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
6837      unsigned i = MemberDecl->getFieldIndex();
6838      assert(i < RL.getFieldCount() && "offsetof field in wrong type");
6839      Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
6840      CurrentType = MemberDecl->getType().getNonReferenceType();
6841      break;
6842    }
6843
6844    case OffsetOfExpr::OffsetOfNode::Identifier:
6845      llvm_unreachable("dependent __builtin_offsetof");
6846
6847    case OffsetOfExpr::OffsetOfNode::Base: {
6848      CXXBaseSpecifier *BaseSpec = ON.getBase();
6849      if (BaseSpec->isVirtual())
6850        return Error(OOE);
6851
6852      // Find the layout of the class whose base we are looking into.
6853      const RecordType *RT = CurrentType->getAs<RecordType>();
6854      if (!RT)
6855        return Error(OOE);
6856      RecordDecl *RD = RT->getDecl();
6857      if (RD->isInvalidDecl()) return false;
6858      const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
6859
6860      // Find the base class itself.
6861      CurrentType = BaseSpec->getType();
6862      const RecordType *BaseRT = CurrentType->getAs<RecordType>();
6863      if (!BaseRT)
6864        return Error(OOE);
6865
6866      // Add the offset to the base.
6867      Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
6868      break;
6869    }
6870    }
6871  }
6872  return Success(Result, OOE);
6873}
6874
6875bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
6876  switch (E->getOpcode()) {
6877  default:
6878    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
6879    // See C99 6.6p3.
6880    return Error(E);
6881  case UO_Extension:
6882    // FIXME: Should extension allow i-c-e extension expressions in its scope?
6883    // If so, we could clear the diagnostic ID.
6884    return Visit(E->getSubExpr());
6885  case UO_Plus:
6886    // The result is just the value.
6887    return Visit(E->getSubExpr());
6888  case UO_Minus: {
6889    if (!Visit(E->getSubExpr()))
6890      return false;
6891    if (!Result.isInt()) return Error(E);
6892    const APSInt &Value = Result.getInt();
6893    if (Value.isSigned() && Value.isMinSignedValue())
6894      HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
6895                     E->getType());
6896    return Success(-Value, E);
6897  }
6898  case UO_Not: {
6899    if (!Visit(E->getSubExpr()))
6900      return false;
6901    if (!Result.isInt()) return Error(E);
6902    return Success(~Result.getInt(), E);
6903  }
6904  case UO_LNot: {
6905    bool bres;
6906    if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
6907      return false;
6908    return Success(!bres, E);
6909  }
6910  }
6911}
6912
6913/// HandleCast - This is used to evaluate implicit or explicit casts where the
6914/// result type is integer.
6915bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
6916  const Expr *SubExpr = E->getSubExpr();
6917  QualType DestType = E->getType();
6918  QualType SrcType = SubExpr->getType();
6919
6920  switch (E->getCastKind()) {
6921  case CK_BaseToDerived:
6922  case CK_DerivedToBase:
6923  case CK_UncheckedDerivedToBase:
6924  case CK_Dynamic:
6925  case CK_ToUnion:
6926  case CK_ArrayToPointerDecay:
6927  case CK_FunctionToPointerDecay:
6928  case CK_NullToPointer:
6929  case CK_NullToMemberPointer:
6930  case CK_BaseToDerivedMemberPointer:
6931  case CK_DerivedToBaseMemberPointer:
6932  case CK_ReinterpretMemberPointer:
6933  case CK_ConstructorConversion:
6934  case CK_IntegralToPointer:
6935  case CK_ToVoid:
6936  case CK_VectorSplat:
6937  case CK_IntegralToFloating:
6938  case CK_FloatingCast:
6939  case CK_CPointerToObjCPointerCast:
6940  case CK_BlockPointerToObjCPointerCast:
6941  case CK_AnyPointerToBlockPointerCast:
6942  case CK_ObjCObjectLValueCast:
6943  case CK_FloatingRealToComplex:
6944  case CK_FloatingComplexToReal:
6945  case CK_FloatingComplexCast:
6946  case CK_FloatingComplexToIntegralComplex:
6947  case CK_IntegralRealToComplex:
6948  case CK_IntegralComplexCast:
6949  case CK_IntegralComplexToFloatingComplex:
6950  case CK_BuiltinFnToFnPtr:
6951  case CK_ZeroToOCLEvent:
6952  case CK_NonAtomicToAtomic:
6953    llvm_unreachable("invalid cast kind for integral value");
6954
6955  case CK_BitCast:
6956  case CK_Dependent:
6957  case CK_LValueBitCast:
6958  case CK_ARCProduceObject:
6959  case CK_ARCConsumeObject:
6960  case CK_ARCReclaimReturnedObject:
6961  case CK_ARCExtendBlockObject:
6962  case CK_CopyAndAutoreleaseBlockObject:
6963    return Error(E);
6964
6965  case CK_UserDefinedConversion:
6966  case CK_LValueToRValue:
6967  case CK_AtomicToNonAtomic:
6968  case CK_NoOp:
6969    return ExprEvaluatorBaseTy::VisitCastExpr(E);
6970
6971  case CK_MemberPointerToBoolean:
6972  case CK_PointerToBoolean:
6973  case CK_IntegralToBoolean:
6974  case CK_FloatingToBoolean:
6975  case CK_FloatingComplexToBoolean:
6976  case CK_IntegralComplexToBoolean: {
6977    bool BoolResult;
6978    if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
6979      return false;
6980    return Success(BoolResult, E);
6981  }
6982
6983  case CK_IntegralCast: {
6984    if (!Visit(SubExpr))
6985      return false;
6986
6987    if (!Result.isInt()) {
6988      // Allow casts of address-of-label differences if they are no-ops
6989      // or narrowing.  (The narrowing case isn't actually guaranteed to
6990      // be constant-evaluatable except in some narrow cases which are hard
6991      // to detect here.  We let it through on the assumption the user knows
6992      // what they are doing.)
6993      if (Result.isAddrLabelDiff())
6994        return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
6995      // Only allow casts of lvalues if they are lossless.
6996      return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
6997    }
6998
6999    return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
7000                                      Result.getInt()), E);
7001  }
7002
7003  case CK_PointerToIntegral: {
7004    CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
7005
7006    LValue LV;
7007    if (!EvaluatePointer(SubExpr, LV, Info))
7008      return false;
7009
7010    if (LV.getLValueBase()) {
7011      // Only allow based lvalue casts if they are lossless.
7012      // FIXME: Allow a larger integer size than the pointer size, and allow
7013      // narrowing back down to pointer width in subsequent integral casts.
7014      // FIXME: Check integer type's active bits, not its type size.
7015      if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
7016        return Error(E);
7017
7018      LV.Designator.setInvalid();
7019      LV.moveInto(Result);
7020      return true;
7021    }
7022
7023    APSInt AsInt = Info.Ctx.MakeIntValue(LV.getLValueOffset().getQuantity(),
7024                                         SrcType);
7025    return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
7026  }
7027
7028  case CK_IntegralComplexToReal: {
7029    ComplexValue C;
7030    if (!EvaluateComplex(SubExpr, C, Info))
7031      return false;
7032    return Success(C.getComplexIntReal(), E);
7033  }
7034
7035  case CK_FloatingToIntegral: {
7036    APFloat F(0.0);
7037    if (!EvaluateFloat(SubExpr, F, Info))
7038      return false;
7039
7040    APSInt Value;
7041    if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
7042      return false;
7043    return Success(Value, E);
7044  }
7045  }
7046
7047  llvm_unreachable("unknown cast resulting in integral value");
7048}
7049
7050bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
7051  if (E->getSubExpr()->getType()->isAnyComplexType()) {
7052    ComplexValue LV;
7053    if (!EvaluateComplex(E->getSubExpr(), LV, Info))
7054      return false;
7055    if (!LV.isComplexInt())
7056      return Error(E);
7057    return Success(LV.getComplexIntReal(), E);
7058  }
7059
7060  return Visit(E->getSubExpr());
7061}
7062
7063bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
7064  if (E->getSubExpr()->getType()->isComplexIntegerType()) {
7065    ComplexValue LV;
7066    if (!EvaluateComplex(E->getSubExpr(), LV, Info))
7067      return false;
7068    if (!LV.isComplexInt())
7069      return Error(E);
7070    return Success(LV.getComplexIntImag(), E);
7071  }
7072
7073  VisitIgnoredValue(E->getSubExpr());
7074  return Success(0, E);
7075}
7076
7077bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
7078  return Success(E->getPackLength(), E);
7079}
7080
7081bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
7082  return Success(E->getValue(), E);
7083}
7084
7085//===----------------------------------------------------------------------===//
7086// Float Evaluation
7087//===----------------------------------------------------------------------===//
7088
7089namespace {
7090class FloatExprEvaluator
7091  : public ExprEvaluatorBase<FloatExprEvaluator, bool> {
7092  APFloat &Result;
7093public:
7094  FloatExprEvaluator(EvalInfo &info, APFloat &result)
7095    : ExprEvaluatorBaseTy(info), Result(result) {}
7096
7097  bool Success(const APValue &V, const Expr *e) {
7098    Result = V.getFloat();
7099    return true;
7100  }
7101
7102  bool ZeroInitialization(const Expr *E) {
7103    Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
7104    return true;
7105  }
7106
7107  bool VisitCallExpr(const CallExpr *E);
7108
7109  bool VisitUnaryOperator(const UnaryOperator *E);
7110  bool VisitBinaryOperator(const BinaryOperator *E);
7111  bool VisitFloatingLiteral(const FloatingLiteral *E);
7112  bool VisitCastExpr(const CastExpr *E);
7113
7114  bool VisitUnaryReal(const UnaryOperator *E);
7115  bool VisitUnaryImag(const UnaryOperator *E);
7116
7117  // FIXME: Missing: array subscript of vector, member of vector
7118};
7119} // end anonymous namespace
7120
7121static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
7122  assert(E->isRValue() && E->getType()->isRealFloatingType());
7123  return FloatExprEvaluator(Info, Result).Visit(E);
7124}
7125
7126static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
7127                                  QualType ResultTy,
7128                                  const Expr *Arg,
7129                                  bool SNaN,
7130                                  llvm::APFloat &Result) {
7131  const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
7132  if (!S) return false;
7133
7134  const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
7135
7136  llvm::APInt fill;
7137
7138  // Treat empty strings as if they were zero.
7139  if (S->getString().empty())
7140    fill = llvm::APInt(32, 0);
7141  else if (S->getString().getAsInteger(0, fill))
7142    return false;
7143
7144  if (SNaN)
7145    Result = llvm::APFloat::getSNaN(Sem, false, &fill);
7146  else
7147    Result = llvm::APFloat::getQNaN(Sem, false, &fill);
7148  return true;
7149}
7150
7151bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
7152  switch (E->isBuiltinCall()) {
7153  default:
7154    return ExprEvaluatorBaseTy::VisitCallExpr(E);
7155
7156  case Builtin::BI__builtin_huge_val:
7157  case Builtin::BI__builtin_huge_valf:
7158  case Builtin::BI__builtin_huge_vall:
7159  case Builtin::BI__builtin_inf:
7160  case Builtin::BI__builtin_inff:
7161  case Builtin::BI__builtin_infl: {
7162    const llvm::fltSemantics &Sem =
7163      Info.Ctx.getFloatTypeSemantics(E->getType());
7164    Result = llvm::APFloat::getInf(Sem);
7165    return true;
7166  }
7167
7168  case Builtin::BI__builtin_nans:
7169  case Builtin::BI__builtin_nansf:
7170  case Builtin::BI__builtin_nansl:
7171    if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
7172                               true, Result))
7173      return Error(E);
7174    return true;
7175
7176  case Builtin::BI__builtin_nan:
7177  case Builtin::BI__builtin_nanf:
7178  case Builtin::BI__builtin_nanl:
7179    // If this is __builtin_nan() turn this into a nan, otherwise we
7180    // can't constant fold it.
7181    if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
7182                               false, Result))
7183      return Error(E);
7184    return true;
7185
7186  case Builtin::BI__builtin_fabs:
7187  case Builtin::BI__builtin_fabsf:
7188  case Builtin::BI__builtin_fabsl:
7189    if (!EvaluateFloat(E->getArg(0), Result, Info))
7190      return false;
7191
7192    if (Result.isNegative())
7193      Result.changeSign();
7194    return true;
7195
7196  // FIXME: Builtin::BI__builtin_powi
7197  // FIXME: Builtin::BI__builtin_powif
7198  // FIXME: Builtin::BI__builtin_powil
7199
7200  case Builtin::BI__builtin_copysign:
7201  case Builtin::BI__builtin_copysignf:
7202  case Builtin::BI__builtin_copysignl: {
7203    APFloat RHS(0.);
7204    if (!EvaluateFloat(E->getArg(0), Result, Info) ||
7205        !EvaluateFloat(E->getArg(1), RHS, Info))
7206      return false;
7207    Result.copySign(RHS);
7208    return true;
7209  }
7210  }
7211}
7212
7213bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
7214  if (E->getSubExpr()->getType()->isAnyComplexType()) {
7215    ComplexValue CV;
7216    if (!EvaluateComplex(E->getSubExpr(), CV, Info))
7217      return false;
7218    Result = CV.FloatReal;
7219    return true;
7220  }
7221
7222  return Visit(E->getSubExpr());
7223}
7224
7225bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
7226  if (E->getSubExpr()->getType()->isAnyComplexType()) {
7227    ComplexValue CV;
7228    if (!EvaluateComplex(E->getSubExpr(), CV, Info))
7229      return false;
7230    Result = CV.FloatImag;
7231    return true;
7232  }
7233
7234  VisitIgnoredValue(E->getSubExpr());
7235  const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
7236  Result = llvm::APFloat::getZero(Sem);
7237  return true;
7238}
7239
7240bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
7241  switch (E->getOpcode()) {
7242  default: return Error(E);
7243  case UO_Plus:
7244    return EvaluateFloat(E->getSubExpr(), Result, Info);
7245  case UO_Minus:
7246    if (!EvaluateFloat(E->getSubExpr(), Result, Info))
7247      return false;
7248    Result.changeSign();
7249    return true;
7250  }
7251}
7252
7253bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
7254  if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
7255    return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
7256
7257  APFloat RHS(0.0);
7258  bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
7259  if (!LHSOK && !Info.keepEvaluatingAfterFailure())
7260    return false;
7261  return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK &&
7262         handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS);
7263}
7264
7265bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
7266  Result = E->getValue();
7267  return true;
7268}
7269
7270bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
7271  const Expr* SubExpr = E->getSubExpr();
7272
7273  switch (E->getCastKind()) {
7274  default:
7275    return ExprEvaluatorBaseTy::VisitCastExpr(E);
7276
7277  case CK_IntegralToFloating: {
7278    APSInt IntResult;
7279    return EvaluateInteger(SubExpr, IntResult, Info) &&
7280           HandleIntToFloatCast(Info, E, SubExpr->getType(), IntResult,
7281                                E->getType(), Result);
7282  }
7283
7284  case CK_FloatingCast: {
7285    if (!Visit(SubExpr))
7286      return false;
7287    return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
7288                                  Result);
7289  }
7290
7291  case CK_FloatingComplexToReal: {
7292    ComplexValue V;
7293    if (!EvaluateComplex(SubExpr, V, Info))
7294      return false;
7295    Result = V.getComplexFloatReal();
7296    return true;
7297  }
7298  }
7299}
7300
7301//===----------------------------------------------------------------------===//
7302// Complex Evaluation (for float and integer)
7303//===----------------------------------------------------------------------===//
7304
7305namespace {
7306class ComplexExprEvaluator
7307  : public ExprEvaluatorBase<ComplexExprEvaluator, bool> {
7308  ComplexValue &Result;
7309
7310public:
7311  ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
7312    : ExprEvaluatorBaseTy(info), Result(Result) {}
7313
7314  bool Success(const APValue &V, const Expr *e) {
7315    Result.setFrom(V);
7316    return true;
7317  }
7318
7319  bool ZeroInitialization(const Expr *E);
7320
7321  //===--------------------------------------------------------------------===//
7322  //                            Visitor Methods
7323  //===--------------------------------------------------------------------===//
7324
7325  bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
7326  bool VisitCastExpr(const CastExpr *E);
7327  bool VisitBinaryOperator(const BinaryOperator *E);
7328  bool VisitUnaryOperator(const UnaryOperator *E);
7329  bool VisitInitListExpr(const InitListExpr *E);
7330};
7331} // end anonymous namespace
7332
7333static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
7334                            EvalInfo &Info) {
7335  assert(E->isRValue() && E->getType()->isAnyComplexType());
7336  return ComplexExprEvaluator(Info, Result).Visit(E);
7337}
7338
7339bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
7340  QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
7341  if (ElemTy->isRealFloatingType()) {
7342    Result.makeComplexFloat();
7343    APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
7344    Result.FloatReal = Zero;
7345    Result.FloatImag = Zero;
7346  } else {
7347    Result.makeComplexInt();
7348    APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
7349    Result.IntReal = Zero;
7350    Result.IntImag = Zero;
7351  }
7352  return true;
7353}
7354
7355bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
7356  const Expr* SubExpr = E->getSubExpr();
7357
7358  if (SubExpr->getType()->isRealFloatingType()) {
7359    Result.makeComplexFloat();
7360    APFloat &Imag = Result.FloatImag;
7361    if (!EvaluateFloat(SubExpr, Imag, Info))
7362      return false;
7363
7364    Result.FloatReal = APFloat(Imag.getSemantics());
7365    return true;
7366  } else {
7367    assert(SubExpr->getType()->isIntegerType() &&
7368           "Unexpected imaginary literal.");
7369
7370    Result.makeComplexInt();
7371    APSInt &Imag = Result.IntImag;
7372    if (!EvaluateInteger(SubExpr, Imag, Info))
7373      return false;
7374
7375    Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
7376    return true;
7377  }
7378}
7379
7380bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
7381
7382  switch (E->getCastKind()) {
7383  case CK_BitCast:
7384  case CK_BaseToDerived:
7385  case CK_DerivedToBase:
7386  case CK_UncheckedDerivedToBase:
7387  case CK_Dynamic:
7388  case CK_ToUnion:
7389  case CK_ArrayToPointerDecay:
7390  case CK_FunctionToPointerDecay:
7391  case CK_NullToPointer:
7392  case CK_NullToMemberPointer:
7393  case CK_BaseToDerivedMemberPointer:
7394  case CK_DerivedToBaseMemberPointer:
7395  case CK_MemberPointerToBoolean:
7396  case CK_ReinterpretMemberPointer:
7397  case CK_ConstructorConversion:
7398  case CK_IntegralToPointer:
7399  case CK_PointerToIntegral:
7400  case CK_PointerToBoolean:
7401  case CK_ToVoid:
7402  case CK_VectorSplat:
7403  case CK_IntegralCast:
7404  case CK_IntegralToBoolean:
7405  case CK_IntegralToFloating:
7406  case CK_FloatingToIntegral:
7407  case CK_FloatingToBoolean:
7408  case CK_FloatingCast:
7409  case CK_CPointerToObjCPointerCast:
7410  case CK_BlockPointerToObjCPointerCast:
7411  case CK_AnyPointerToBlockPointerCast:
7412  case CK_ObjCObjectLValueCast:
7413  case CK_FloatingComplexToReal:
7414  case CK_FloatingComplexToBoolean:
7415  case CK_IntegralComplexToReal:
7416  case CK_IntegralComplexToBoolean:
7417  case CK_ARCProduceObject:
7418  case CK_ARCConsumeObject:
7419  case CK_ARCReclaimReturnedObject:
7420  case CK_ARCExtendBlockObject:
7421  case CK_CopyAndAutoreleaseBlockObject:
7422  case CK_BuiltinFnToFnPtr:
7423  case CK_ZeroToOCLEvent:
7424  case CK_NonAtomicToAtomic:
7425    llvm_unreachable("invalid cast kind for complex value");
7426
7427  case CK_LValueToRValue:
7428  case CK_AtomicToNonAtomic:
7429  case CK_NoOp:
7430    return ExprEvaluatorBaseTy::VisitCastExpr(E);
7431
7432  case CK_Dependent:
7433  case CK_LValueBitCast:
7434  case CK_UserDefinedConversion:
7435    return Error(E);
7436
7437  case CK_FloatingRealToComplex: {
7438    APFloat &Real = Result.FloatReal;
7439    if (!EvaluateFloat(E->getSubExpr(), Real, Info))
7440      return false;
7441
7442    Result.makeComplexFloat();
7443    Result.FloatImag = APFloat(Real.getSemantics());
7444    return true;
7445  }
7446
7447  case CK_FloatingComplexCast: {
7448    if (!Visit(E->getSubExpr()))
7449      return false;
7450
7451    QualType To = E->getType()->getAs<ComplexType>()->getElementType();
7452    QualType From
7453      = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
7454
7455    return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
7456           HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
7457  }
7458
7459  case CK_FloatingComplexToIntegralComplex: {
7460    if (!Visit(E->getSubExpr()))
7461      return false;
7462
7463    QualType To = E->getType()->getAs<ComplexType>()->getElementType();
7464    QualType From
7465      = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
7466    Result.makeComplexInt();
7467    return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
7468                                To, Result.IntReal) &&
7469           HandleFloatToIntCast(Info, E, From, Result.FloatImag,
7470                                To, Result.IntImag);
7471  }
7472
7473  case CK_IntegralRealToComplex: {
7474    APSInt &Real = Result.IntReal;
7475    if (!EvaluateInteger(E->getSubExpr(), Real, Info))
7476      return false;
7477
7478    Result.makeComplexInt();
7479    Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
7480    return true;
7481  }
7482
7483  case CK_IntegralComplexCast: {
7484    if (!Visit(E->getSubExpr()))
7485      return false;
7486
7487    QualType To = E->getType()->getAs<ComplexType>()->getElementType();
7488    QualType From
7489      = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
7490
7491    Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
7492    Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
7493    return true;
7494  }
7495
7496  case CK_IntegralComplexToFloatingComplex: {
7497    if (!Visit(E->getSubExpr()))
7498      return false;
7499
7500    QualType To = E->getType()->castAs<ComplexType>()->getElementType();
7501    QualType From
7502      = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
7503    Result.makeComplexFloat();
7504    return HandleIntToFloatCast(Info, E, From, Result.IntReal,
7505                                To, Result.FloatReal) &&
7506           HandleIntToFloatCast(Info, E, From, Result.IntImag,
7507                                To, Result.FloatImag);
7508  }
7509  }
7510
7511  llvm_unreachable("unknown cast resulting in complex value");
7512}
7513
7514bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
7515  if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
7516    return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
7517
7518  bool LHSOK = Visit(E->getLHS());
7519  if (!LHSOK && !Info.keepEvaluatingAfterFailure())
7520    return false;
7521
7522  ComplexValue RHS;
7523  if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
7524    return false;
7525
7526  assert(Result.isComplexFloat() == RHS.isComplexFloat() &&
7527         "Invalid operands to binary operator.");
7528  switch (E->getOpcode()) {
7529  default: return Error(E);
7530  case BO_Add:
7531    if (Result.isComplexFloat()) {
7532      Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
7533                                       APFloat::rmNearestTiesToEven);
7534      Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
7535                                       APFloat::rmNearestTiesToEven);
7536    } else {
7537      Result.getComplexIntReal() += RHS.getComplexIntReal();
7538      Result.getComplexIntImag() += RHS.getComplexIntImag();
7539    }
7540    break;
7541  case BO_Sub:
7542    if (Result.isComplexFloat()) {
7543      Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
7544                                            APFloat::rmNearestTiesToEven);
7545      Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
7546                                            APFloat::rmNearestTiesToEven);
7547    } else {
7548      Result.getComplexIntReal() -= RHS.getComplexIntReal();
7549      Result.getComplexIntImag() -= RHS.getComplexIntImag();
7550    }
7551    break;
7552  case BO_Mul:
7553    if (Result.isComplexFloat()) {
7554      ComplexValue LHS = Result;
7555      APFloat &LHS_r = LHS.getComplexFloatReal();
7556      APFloat &LHS_i = LHS.getComplexFloatImag();
7557      APFloat &RHS_r = RHS.getComplexFloatReal();
7558      APFloat &RHS_i = RHS.getComplexFloatImag();
7559
7560      APFloat Tmp = LHS_r;
7561      Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven);
7562      Result.getComplexFloatReal() = Tmp;
7563      Tmp = LHS_i;
7564      Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
7565      Result.getComplexFloatReal().subtract(Tmp, APFloat::rmNearestTiesToEven);
7566
7567      Tmp = LHS_r;
7568      Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
7569      Result.getComplexFloatImag() = Tmp;
7570      Tmp = LHS_i;
7571      Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven);
7572      Result.getComplexFloatImag().add(Tmp, APFloat::rmNearestTiesToEven);
7573    } else {
7574      ComplexValue LHS = Result;
7575      Result.getComplexIntReal() =
7576        (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
7577         LHS.getComplexIntImag() * RHS.getComplexIntImag());
7578      Result.getComplexIntImag() =
7579        (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
7580         LHS.getComplexIntImag() * RHS.getComplexIntReal());
7581    }
7582    break;
7583  case BO_Div:
7584    if (Result.isComplexFloat()) {
7585      ComplexValue LHS = Result;
7586      APFloat &LHS_r = LHS.getComplexFloatReal();
7587      APFloat &LHS_i = LHS.getComplexFloatImag();
7588      APFloat &RHS_r = RHS.getComplexFloatReal();
7589      APFloat &RHS_i = RHS.getComplexFloatImag();
7590      APFloat &Res_r = Result.getComplexFloatReal();
7591      APFloat &Res_i = Result.getComplexFloatImag();
7592
7593      APFloat Den = RHS_r;
7594      Den.multiply(RHS_r, APFloat::rmNearestTiesToEven);
7595      APFloat Tmp = RHS_i;
7596      Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
7597      Den.add(Tmp, APFloat::rmNearestTiesToEven);
7598
7599      Res_r = LHS_r;
7600      Res_r.multiply(RHS_r, APFloat::rmNearestTiesToEven);
7601      Tmp = LHS_i;
7602      Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
7603      Res_r.add(Tmp, APFloat::rmNearestTiesToEven);
7604      Res_r.divide(Den, APFloat::rmNearestTiesToEven);
7605
7606      Res_i = LHS_i;
7607      Res_i.multiply(RHS_r, APFloat::rmNearestTiesToEven);
7608      Tmp = LHS_r;
7609      Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
7610      Res_i.subtract(Tmp, APFloat::rmNearestTiesToEven);
7611      Res_i.divide(Den, APFloat::rmNearestTiesToEven);
7612    } else {
7613      if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
7614        return Error(E, diag::note_expr_divide_by_zero);
7615
7616      ComplexValue LHS = Result;
7617      APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
7618        RHS.getComplexIntImag() * RHS.getComplexIntImag();
7619      Result.getComplexIntReal() =
7620        (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
7621         LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
7622      Result.getComplexIntImag() =
7623        (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
7624         LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
7625    }
7626    break;
7627  }
7628
7629  return true;
7630}
7631
7632bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
7633  // Get the operand value into 'Result'.
7634  if (!Visit(E->getSubExpr()))
7635    return false;
7636
7637  switch (E->getOpcode()) {
7638  default:
7639    return Error(E);
7640  case UO_Extension:
7641    return true;
7642  case UO_Plus:
7643    // The result is always just the subexpr.
7644    return true;
7645  case UO_Minus:
7646    if (Result.isComplexFloat()) {
7647      Result.getComplexFloatReal().changeSign();
7648      Result.getComplexFloatImag().changeSign();
7649    }
7650    else {
7651      Result.getComplexIntReal() = -Result.getComplexIntReal();
7652      Result.getComplexIntImag() = -Result.getComplexIntImag();
7653    }
7654    return true;
7655  case UO_Not:
7656    if (Result.isComplexFloat())
7657      Result.getComplexFloatImag().changeSign();
7658    else
7659      Result.getComplexIntImag() = -Result.getComplexIntImag();
7660    return true;
7661  }
7662}
7663
7664bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
7665  if (E->getNumInits() == 2) {
7666    if (E->getType()->isComplexType()) {
7667      Result.makeComplexFloat();
7668      if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
7669        return false;
7670      if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
7671        return false;
7672    } else {
7673      Result.makeComplexInt();
7674      if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
7675        return false;
7676      if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
7677        return false;
7678    }
7679    return true;
7680  }
7681  return ExprEvaluatorBaseTy::VisitInitListExpr(E);
7682}
7683
7684//===----------------------------------------------------------------------===//
7685// Atomic expression evaluation, essentially just handling the NonAtomicToAtomic
7686// implicit conversion.
7687//===----------------------------------------------------------------------===//
7688
7689namespace {
7690class AtomicExprEvaluator :
7691    public ExprEvaluatorBase<AtomicExprEvaluator, bool> {
7692  APValue &Result;
7693public:
7694  AtomicExprEvaluator(EvalInfo &Info, APValue &Result)
7695      : ExprEvaluatorBaseTy(Info), Result(Result) {}
7696
7697  bool Success(const APValue &V, const Expr *E) {
7698    Result = V;
7699    return true;
7700  }
7701
7702  bool ZeroInitialization(const Expr *E) {
7703    ImplicitValueInitExpr VIE(
7704        E->getType()->castAs<AtomicType>()->getValueType());
7705    return Evaluate(Result, Info, &VIE);
7706  }
7707
7708  bool VisitCastExpr(const CastExpr *E) {
7709    switch (E->getCastKind()) {
7710    default:
7711      return ExprEvaluatorBaseTy::VisitCastExpr(E);
7712    case CK_NonAtomicToAtomic:
7713      return Evaluate(Result, Info, E->getSubExpr());
7714    }
7715  }
7716};
7717} // end anonymous namespace
7718
7719static bool EvaluateAtomic(const Expr *E, APValue &Result, EvalInfo &Info) {
7720  assert(E->isRValue() && E->getType()->isAtomicType());
7721  return AtomicExprEvaluator(Info, Result).Visit(E);
7722}
7723
7724//===----------------------------------------------------------------------===//
7725// Void expression evaluation, primarily for a cast to void on the LHS of a
7726// comma operator
7727//===----------------------------------------------------------------------===//
7728
7729namespace {
7730class VoidExprEvaluator
7731  : public ExprEvaluatorBase<VoidExprEvaluator, bool> {
7732public:
7733  VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
7734
7735  bool Success(const APValue &V, const Expr *e) { return true; }
7736
7737  bool VisitCastExpr(const CastExpr *E) {
7738    switch (E->getCastKind()) {
7739    default:
7740      return ExprEvaluatorBaseTy::VisitCastExpr(E);
7741    case CK_ToVoid:
7742      VisitIgnoredValue(E->getSubExpr());
7743      return true;
7744    }
7745  }
7746};
7747} // end anonymous namespace
7748
7749static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
7750  assert(E->isRValue() && E->getType()->isVoidType());
7751  return VoidExprEvaluator(Info).Visit(E);
7752}
7753
7754//===----------------------------------------------------------------------===//
7755// Top level Expr::EvaluateAsRValue method.
7756//===----------------------------------------------------------------------===//
7757
7758static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
7759  // In C, function designators are not lvalues, but we evaluate them as if they
7760  // are.
7761  QualType T = E->getType();
7762  if (E->isGLValue() || T->isFunctionType()) {
7763    LValue LV;
7764    if (!EvaluateLValue(E, LV, Info))
7765      return false;
7766    LV.moveInto(Result);
7767  } else if (T->isVectorType()) {
7768    if (!EvaluateVector(E, Result, Info))
7769      return false;
7770  } else if (T->isIntegralOrEnumerationType()) {
7771    if (!IntExprEvaluator(Info, Result).Visit(E))
7772      return false;
7773  } else if (T->hasPointerRepresentation()) {
7774    LValue LV;
7775    if (!EvaluatePointer(E, LV, Info))
7776      return false;
7777    LV.moveInto(Result);
7778  } else if (T->isRealFloatingType()) {
7779    llvm::APFloat F(0.0);
7780    if (!EvaluateFloat(E, F, Info))
7781      return false;
7782    Result = APValue(F);
7783  } else if (T->isAnyComplexType()) {
7784    ComplexValue C;
7785    if (!EvaluateComplex(E, C, Info))
7786      return false;
7787    C.moveInto(Result);
7788  } else if (T->isMemberPointerType()) {
7789    MemberPtr P;
7790    if (!EvaluateMemberPointer(E, P, Info))
7791      return false;
7792    P.moveInto(Result);
7793    return true;
7794  } else if (T->isArrayType()) {
7795    LValue LV;
7796    LV.set(E, Info.CurrentCall->Index);
7797    APValue &Value = Info.CurrentCall->createTemporary(E, false);
7798    if (!EvaluateArray(E, LV, Value, Info))
7799      return false;
7800    Result = Value;
7801  } else if (T->isRecordType()) {
7802    LValue LV;
7803    LV.set(E, Info.CurrentCall->Index);
7804    APValue &Value = Info.CurrentCall->createTemporary(E, false);
7805    if (!EvaluateRecord(E, LV, Value, Info))
7806      return false;
7807    Result = Value;
7808  } else if (T->isVoidType()) {
7809    if (!Info.getLangOpts().CPlusPlus11)
7810      Info.CCEDiag(E, diag::note_constexpr_nonliteral)
7811        << E->getType();
7812    if (!EvaluateVoid(E, Info))
7813      return false;
7814  } else if (T->isAtomicType()) {
7815    if (!EvaluateAtomic(E, Result, Info))
7816      return false;
7817  } else if (Info.getLangOpts().CPlusPlus11) {
7818    Info.Diag(E, diag::note_constexpr_nonliteral) << E->getType();
7819    return false;
7820  } else {
7821    Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
7822    return false;
7823  }
7824
7825  return true;
7826}
7827
7828/// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
7829/// cases, the in-place evaluation is essential, since later initializers for
7830/// an object can indirectly refer to subobjects which were initialized earlier.
7831static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
7832                            const Expr *E, bool AllowNonLiteralTypes) {
7833  if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This))
7834    return false;
7835
7836  if (E->isRValue()) {
7837    // Evaluate arrays and record types in-place, so that later initializers can
7838    // refer to earlier-initialized members of the object.
7839    if (E->getType()->isArrayType())
7840      return EvaluateArray(E, This, Result, Info);
7841    else if (E->getType()->isRecordType())
7842      return EvaluateRecord(E, This, Result, Info);
7843  }
7844
7845  // For any other type, in-place evaluation is unimportant.
7846  return Evaluate(Result, Info, E);
7847}
7848
7849/// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
7850/// lvalue-to-rvalue cast if it is an lvalue.
7851static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
7852  if (!CheckLiteralType(Info, E))
7853    return false;
7854
7855  if (!::Evaluate(Result, Info, E))
7856    return false;
7857
7858  if (E->isGLValue()) {
7859    LValue LV;
7860    LV.setFrom(Info.Ctx, Result);
7861    if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
7862      return false;
7863  }
7864
7865  // Check this core constant expression is a constant expression.
7866  return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result);
7867}
7868
7869static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
7870                                 const ASTContext &Ctx, bool &IsConst) {
7871  // Fast-path evaluations of integer literals, since we sometimes see files
7872  // containing vast quantities of these.
7873  if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) {
7874    Result.Val = APValue(APSInt(L->getValue(),
7875                                L->getType()->isUnsignedIntegerType()));
7876    IsConst = true;
7877    return true;
7878  }
7879
7880  // FIXME: Evaluating values of large array and record types can cause
7881  // performance problems. Only do so in C++11 for now.
7882  if (Exp->isRValue() && (Exp->getType()->isArrayType() ||
7883                          Exp->getType()->isRecordType()) &&
7884      !Ctx.getLangOpts().CPlusPlus11) {
7885    IsConst = false;
7886    return true;
7887  }
7888  return false;
7889}
7890
7891
7892/// EvaluateAsRValue - Return true if this is a constant which we can fold using
7893/// any crazy technique (that has nothing to do with language standards) that
7894/// we want to.  If this function returns true, it returns the folded constant
7895/// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
7896/// will be applied to the result.
7897bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const {
7898  bool IsConst;
7899  if (FastEvaluateAsRValue(this, Result, Ctx, IsConst))
7900    return IsConst;
7901
7902  EvalInfo Info(Ctx, Result);
7903  return ::EvaluateAsRValue(Info, this, Result.Val);
7904}
7905
7906bool Expr::EvaluateAsBooleanCondition(bool &Result,
7907                                      const ASTContext &Ctx) const {
7908  EvalResult Scratch;
7909  return EvaluateAsRValue(Scratch, Ctx) &&
7910         HandleConversionToBool(Scratch.Val, Result);
7911}
7912
7913bool Expr::EvaluateAsInt(APSInt &Result, const ASTContext &Ctx,
7914                         SideEffectsKind AllowSideEffects) const {
7915  if (!getType()->isIntegralOrEnumerationType())
7916    return false;
7917
7918  EvalResult ExprResult;
7919  if (!EvaluateAsRValue(ExprResult, Ctx) || !ExprResult.Val.isInt() ||
7920      (!AllowSideEffects && ExprResult.HasSideEffects))
7921    return false;
7922
7923  Result = ExprResult.Val.getInt();
7924  return true;
7925}
7926
7927bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const {
7928  EvalInfo Info(Ctx, Result);
7929
7930  LValue LV;
7931  if (!EvaluateLValue(this, LV, Info) || Result.HasSideEffects ||
7932      !CheckLValueConstantExpression(Info, getExprLoc(),
7933                                     Ctx.getLValueReferenceType(getType()), LV))
7934    return false;
7935
7936  LV.moveInto(Result.Val);
7937  return true;
7938}
7939
7940bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
7941                                 const VarDecl *VD,
7942                            SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
7943  // FIXME: Evaluating initializers for large array and record types can cause
7944  // performance problems. Only do so in C++11 for now.
7945  if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
7946      !Ctx.getLangOpts().CPlusPlus11)
7947    return false;
7948
7949  Expr::EvalStatus EStatus;
7950  EStatus.Diag = &Notes;
7951
7952  EvalInfo InitInfo(Ctx, EStatus);
7953  InitInfo.setEvaluatingDecl(VD, Value);
7954
7955  LValue LVal;
7956  LVal.set(VD);
7957
7958  // C++11 [basic.start.init]p2:
7959  //  Variables with static storage duration or thread storage duration shall be
7960  //  zero-initialized before any other initialization takes place.
7961  // This behavior is not present in C.
7962  if (Ctx.getLangOpts().CPlusPlus && !VD->hasLocalStorage() &&
7963      !VD->getType()->isReferenceType()) {
7964    ImplicitValueInitExpr VIE(VD->getType());
7965    if (!EvaluateInPlace(Value, InitInfo, LVal, &VIE,
7966                         /*AllowNonLiteralTypes=*/true))
7967      return false;
7968  }
7969
7970  if (!EvaluateInPlace(Value, InitInfo, LVal, this,
7971                       /*AllowNonLiteralTypes=*/true) ||
7972      EStatus.HasSideEffects)
7973    return false;
7974
7975  return CheckConstantExpression(InitInfo, VD->getLocation(), VD->getType(),
7976                                 Value);
7977}
7978
7979/// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
7980/// constant folded, but discard the result.
7981bool Expr::isEvaluatable(const ASTContext &Ctx) const {
7982  EvalResult Result;
7983  return EvaluateAsRValue(Result, Ctx) && !Result.HasSideEffects;
7984}
7985
7986APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
7987                    SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
7988  EvalResult EvalResult;
7989  EvalResult.Diag = Diag;
7990  bool Result = EvaluateAsRValue(EvalResult, Ctx);
7991  (void)Result;
7992  assert(Result && "Could not evaluate expression");
7993  assert(EvalResult.Val.isInt() && "Expression did not evaluate to integer");
7994
7995  return EvalResult.Val.getInt();
7996}
7997
7998void Expr::EvaluateForOverflow(const ASTContext &Ctx,
7999                    SmallVectorImpl<PartialDiagnosticAt> *Diags) const {
8000  bool IsConst;
8001  EvalResult EvalResult;
8002  EvalResult.Diag = Diags;
8003  if (!FastEvaluateAsRValue(this, EvalResult, Ctx, IsConst)) {
8004    EvalInfo Info(Ctx, EvalResult, true);
8005    (void)::EvaluateAsRValue(Info, this, EvalResult.Val);
8006  }
8007}
8008
8009bool Expr::EvalResult::isGlobalLValue() const {
8010  assert(Val.isLValue());
8011  return IsGlobalLValue(Val.getLValueBase());
8012}
8013
8014
8015/// isIntegerConstantExpr - this recursive routine will test if an expression is
8016/// an integer constant expression.
8017
8018/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
8019/// comma, etc
8020
8021// CheckICE - This function does the fundamental ICE checking: the returned
8022// ICEDiag contains an ICEKind indicating whether the expression is an ICE,
8023// and a (possibly null) SourceLocation indicating the location of the problem.
8024//
8025// Note that to reduce code duplication, this helper does no evaluation
8026// itself; the caller checks whether the expression is evaluatable, and
8027// in the rare cases where CheckICE actually cares about the evaluated
8028// value, it calls into Evalute.
8029
8030namespace {
8031
8032enum ICEKind {
8033  /// This expression is an ICE.
8034  IK_ICE,
8035  /// This expression is not an ICE, but if it isn't evaluated, it's
8036  /// a legal subexpression for an ICE. This return value is used to handle
8037  /// the comma operator in C99 mode, and non-constant subexpressions.
8038  IK_ICEIfUnevaluated,
8039  /// This expression is not an ICE, and is not a legal subexpression for one.
8040  IK_NotICE
8041};
8042
8043struct ICEDiag {
8044  ICEKind Kind;
8045  SourceLocation Loc;
8046
8047  ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
8048};
8049
8050}
8051
8052static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
8053
8054static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
8055
8056static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) {
8057  Expr::EvalResult EVResult;
8058  if (!E->EvaluateAsRValue(EVResult, Ctx) || EVResult.HasSideEffects ||
8059      !EVResult.Val.isInt())
8060    return ICEDiag(IK_NotICE, E->getLocStart());
8061
8062  return NoDiag();
8063}
8064
8065static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) {
8066  assert(!E->isValueDependent() && "Should not see value dependent exprs!");
8067  if (!E->getType()->isIntegralOrEnumerationType())
8068    return ICEDiag(IK_NotICE, E->getLocStart());
8069
8070  switch (E->getStmtClass()) {
8071#define ABSTRACT_STMT(Node)
8072#define STMT(Node, Base) case Expr::Node##Class:
8073#define EXPR(Node, Base)
8074#include "clang/AST/StmtNodes.inc"
8075  case Expr::PredefinedExprClass:
8076  case Expr::FloatingLiteralClass:
8077  case Expr::ImaginaryLiteralClass:
8078  case Expr::StringLiteralClass:
8079  case Expr::ArraySubscriptExprClass:
8080  case Expr::MemberExprClass:
8081  case Expr::CompoundAssignOperatorClass:
8082  case Expr::CompoundLiteralExprClass:
8083  case Expr::ExtVectorElementExprClass:
8084  case Expr::DesignatedInitExprClass:
8085  case Expr::ImplicitValueInitExprClass:
8086  case Expr::ParenListExprClass:
8087  case Expr::VAArgExprClass:
8088  case Expr::AddrLabelExprClass:
8089  case Expr::StmtExprClass:
8090  case Expr::CXXMemberCallExprClass:
8091  case Expr::CUDAKernelCallExprClass:
8092  case Expr::CXXDynamicCastExprClass:
8093  case Expr::CXXTypeidExprClass:
8094  case Expr::CXXUuidofExprClass:
8095  case Expr::MSPropertyRefExprClass:
8096  case Expr::CXXNullPtrLiteralExprClass:
8097  case Expr::UserDefinedLiteralClass:
8098  case Expr::CXXThisExprClass:
8099  case Expr::CXXThrowExprClass:
8100  case Expr::CXXNewExprClass:
8101  case Expr::CXXDeleteExprClass:
8102  case Expr::CXXPseudoDestructorExprClass:
8103  case Expr::UnresolvedLookupExprClass:
8104  case Expr::DependentScopeDeclRefExprClass:
8105  case Expr::CXXConstructExprClass:
8106  case Expr::CXXStdInitializerListExprClass:
8107  case Expr::CXXBindTemporaryExprClass:
8108  case Expr::ExprWithCleanupsClass:
8109  case Expr::CXXTemporaryObjectExprClass:
8110  case Expr::CXXUnresolvedConstructExprClass:
8111  case Expr::CXXDependentScopeMemberExprClass:
8112  case Expr::UnresolvedMemberExprClass:
8113  case Expr::ObjCStringLiteralClass:
8114  case Expr::ObjCBoxedExprClass:
8115  case Expr::ObjCArrayLiteralClass:
8116  case Expr::ObjCDictionaryLiteralClass:
8117  case Expr::ObjCEncodeExprClass:
8118  case Expr::ObjCMessageExprClass:
8119  case Expr::ObjCSelectorExprClass:
8120  case Expr::ObjCProtocolExprClass:
8121  case Expr::ObjCIvarRefExprClass:
8122  case Expr::ObjCPropertyRefExprClass:
8123  case Expr::ObjCSubscriptRefExprClass:
8124  case Expr::ObjCIsaExprClass:
8125  case Expr::ShuffleVectorExprClass:
8126  case Expr::BlockExprClass:
8127  case Expr::NoStmtClass:
8128  case Expr::OpaqueValueExprClass:
8129  case Expr::PackExpansionExprClass:
8130  case Expr::SubstNonTypeTemplateParmPackExprClass:
8131  case Expr::FunctionParmPackExprClass:
8132  case Expr::AsTypeExprClass:
8133  case Expr::ObjCIndirectCopyRestoreExprClass:
8134  case Expr::MaterializeTemporaryExprClass:
8135  case Expr::PseudoObjectExprClass:
8136  case Expr::AtomicExprClass:
8137  case Expr::InitListExprClass:
8138  case Expr::LambdaExprClass:
8139    return ICEDiag(IK_NotICE, E->getLocStart());
8140
8141  case Expr::SizeOfPackExprClass:
8142  case Expr::GNUNullExprClass:
8143    // GCC considers the GNU __null value to be an integral constant expression.
8144    return NoDiag();
8145
8146  case Expr::SubstNonTypeTemplateParmExprClass:
8147    return
8148      CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
8149
8150  case Expr::ParenExprClass:
8151    return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
8152  case Expr::GenericSelectionExprClass:
8153    return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
8154  case Expr::IntegerLiteralClass:
8155  case Expr::CharacterLiteralClass:
8156  case Expr::ObjCBoolLiteralExprClass:
8157  case Expr::CXXBoolLiteralExprClass:
8158  case Expr::CXXScalarValueInitExprClass:
8159  case Expr::UnaryTypeTraitExprClass:
8160  case Expr::BinaryTypeTraitExprClass:
8161  case Expr::TypeTraitExprClass:
8162  case Expr::ArrayTypeTraitExprClass:
8163  case Expr::ExpressionTraitExprClass:
8164  case Expr::CXXNoexceptExprClass:
8165    return NoDiag();
8166  case Expr::CallExprClass:
8167  case Expr::CXXOperatorCallExprClass: {
8168    // C99 6.6/3 allows function calls within unevaluated subexpressions of
8169    // constant expressions, but they can never be ICEs because an ICE cannot
8170    // contain an operand of (pointer to) function type.
8171    const CallExpr *CE = cast<CallExpr>(E);
8172    if (CE->isBuiltinCall())
8173      return CheckEvalInICE(E, Ctx);
8174    return ICEDiag(IK_NotICE, E->getLocStart());
8175  }
8176  case Expr::DeclRefExprClass: {
8177    if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
8178      return NoDiag();
8179    const ValueDecl *D = dyn_cast<ValueDecl>(cast<DeclRefExpr>(E)->getDecl());
8180    if (Ctx.getLangOpts().CPlusPlus &&
8181        D && IsConstNonVolatile(D->getType())) {
8182      // Parameter variables are never constants.  Without this check,
8183      // getAnyInitializer() can find a default argument, which leads
8184      // to chaos.
8185      if (isa<ParmVarDecl>(D))
8186        return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
8187
8188      // C++ 7.1.5.1p2
8189      //   A variable of non-volatile const-qualified integral or enumeration
8190      //   type initialized by an ICE can be used in ICEs.
8191      if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) {
8192        if (!Dcl->getType()->isIntegralOrEnumerationType())
8193          return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
8194
8195        const VarDecl *VD;
8196        // Look for a declaration of this variable that has an initializer, and
8197        // check whether it is an ICE.
8198        if (Dcl->getAnyInitializer(VD) && VD->checkInitIsICE())
8199          return NoDiag();
8200        else
8201          return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
8202      }
8203    }
8204    return ICEDiag(IK_NotICE, E->getLocStart());
8205  }
8206  case Expr::UnaryOperatorClass: {
8207    const UnaryOperator *Exp = cast<UnaryOperator>(E);
8208    switch (Exp->getOpcode()) {
8209    case UO_PostInc:
8210    case UO_PostDec:
8211    case UO_PreInc:
8212    case UO_PreDec:
8213    case UO_AddrOf:
8214    case UO_Deref:
8215      // C99 6.6/3 allows increment and decrement within unevaluated
8216      // subexpressions of constant expressions, but they can never be ICEs
8217      // because an ICE cannot contain an lvalue operand.
8218      return ICEDiag(IK_NotICE, E->getLocStart());
8219    case UO_Extension:
8220    case UO_LNot:
8221    case UO_Plus:
8222    case UO_Minus:
8223    case UO_Not:
8224    case UO_Real:
8225    case UO_Imag:
8226      return CheckICE(Exp->getSubExpr(), Ctx);
8227    }
8228
8229    // OffsetOf falls through here.
8230  }
8231  case Expr::OffsetOfExprClass: {
8232    // Note that per C99, offsetof must be an ICE. And AFAIK, using
8233    // EvaluateAsRValue matches the proposed gcc behavior for cases like
8234    // "offsetof(struct s{int x[4];}, x[1.0])".  This doesn't affect
8235    // compliance: we should warn earlier for offsetof expressions with
8236    // array subscripts that aren't ICEs, and if the array subscripts
8237    // are ICEs, the value of the offsetof must be an integer constant.
8238    return CheckEvalInICE(E, Ctx);
8239  }
8240  case Expr::UnaryExprOrTypeTraitExprClass: {
8241    const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
8242    if ((Exp->getKind() ==  UETT_SizeOf) &&
8243        Exp->getTypeOfArgument()->isVariableArrayType())
8244      return ICEDiag(IK_NotICE, E->getLocStart());
8245    return NoDiag();
8246  }
8247  case Expr::BinaryOperatorClass: {
8248    const BinaryOperator *Exp = cast<BinaryOperator>(E);
8249    switch (Exp->getOpcode()) {
8250    case BO_PtrMemD:
8251    case BO_PtrMemI:
8252    case BO_Assign:
8253    case BO_MulAssign:
8254    case BO_DivAssign:
8255    case BO_RemAssign:
8256    case BO_AddAssign:
8257    case BO_SubAssign:
8258    case BO_ShlAssign:
8259    case BO_ShrAssign:
8260    case BO_AndAssign:
8261    case BO_XorAssign:
8262    case BO_OrAssign:
8263      // C99 6.6/3 allows assignments within unevaluated subexpressions of
8264      // constant expressions, but they can never be ICEs because an ICE cannot
8265      // contain an lvalue operand.
8266      return ICEDiag(IK_NotICE, E->getLocStart());
8267
8268    case BO_Mul:
8269    case BO_Div:
8270    case BO_Rem:
8271    case BO_Add:
8272    case BO_Sub:
8273    case BO_Shl:
8274    case BO_Shr:
8275    case BO_LT:
8276    case BO_GT:
8277    case BO_LE:
8278    case BO_GE:
8279    case BO_EQ:
8280    case BO_NE:
8281    case BO_And:
8282    case BO_Xor:
8283    case BO_Or:
8284    case BO_Comma: {
8285      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
8286      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
8287      if (Exp->getOpcode() == BO_Div ||
8288          Exp->getOpcode() == BO_Rem) {
8289        // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
8290        // we don't evaluate one.
8291        if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
8292          llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
8293          if (REval == 0)
8294            return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
8295          if (REval.isSigned() && REval.isAllOnesValue()) {
8296            llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
8297            if (LEval.isMinSignedValue())
8298              return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
8299          }
8300        }
8301      }
8302      if (Exp->getOpcode() == BO_Comma) {
8303        if (Ctx.getLangOpts().C99) {
8304          // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
8305          // if it isn't evaluated.
8306          if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
8307            return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
8308        } else {
8309          // In both C89 and C++, commas in ICEs are illegal.
8310          return ICEDiag(IK_NotICE, E->getLocStart());
8311        }
8312      }
8313      return Worst(LHSResult, RHSResult);
8314    }
8315    case BO_LAnd:
8316    case BO_LOr: {
8317      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
8318      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
8319      if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
8320        // Rare case where the RHS has a comma "side-effect"; we need
8321        // to actually check the condition to see whether the side
8322        // with the comma is evaluated.
8323        if ((Exp->getOpcode() == BO_LAnd) !=
8324            (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
8325          return RHSResult;
8326        return NoDiag();
8327      }
8328
8329      return Worst(LHSResult, RHSResult);
8330    }
8331    }
8332  }
8333  case Expr::ImplicitCastExprClass:
8334  case Expr::CStyleCastExprClass:
8335  case Expr::CXXFunctionalCastExprClass:
8336  case Expr::CXXStaticCastExprClass:
8337  case Expr::CXXReinterpretCastExprClass:
8338  case Expr::CXXConstCastExprClass:
8339  case Expr::ObjCBridgedCastExprClass: {
8340    const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
8341    if (isa<ExplicitCastExpr>(E)) {
8342      if (const FloatingLiteral *FL
8343            = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
8344        unsigned DestWidth = Ctx.getIntWidth(E->getType());
8345        bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
8346        APSInt IgnoredVal(DestWidth, !DestSigned);
8347        bool Ignored;
8348        // If the value does not fit in the destination type, the behavior is
8349        // undefined, so we are not required to treat it as a constant
8350        // expression.
8351        if (FL->getValue().convertToInteger(IgnoredVal,
8352                                            llvm::APFloat::rmTowardZero,
8353                                            &Ignored) & APFloat::opInvalidOp)
8354          return ICEDiag(IK_NotICE, E->getLocStart());
8355        return NoDiag();
8356      }
8357    }
8358    switch (cast<CastExpr>(E)->getCastKind()) {
8359    case CK_LValueToRValue:
8360    case CK_AtomicToNonAtomic:
8361    case CK_NonAtomicToAtomic:
8362    case CK_NoOp:
8363    case CK_IntegralToBoolean:
8364    case CK_IntegralCast:
8365      return CheckICE(SubExpr, Ctx);
8366    default:
8367      return ICEDiag(IK_NotICE, E->getLocStart());
8368    }
8369  }
8370  case Expr::BinaryConditionalOperatorClass: {
8371    const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
8372    ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
8373    if (CommonResult.Kind == IK_NotICE) return CommonResult;
8374    ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
8375    if (FalseResult.Kind == IK_NotICE) return FalseResult;
8376    if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
8377    if (FalseResult.Kind == IK_ICEIfUnevaluated &&
8378        Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
8379    return FalseResult;
8380  }
8381  case Expr::ConditionalOperatorClass: {
8382    const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
8383    // If the condition (ignoring parens) is a __builtin_constant_p call,
8384    // then only the true side is actually considered in an integer constant
8385    // expression, and it is fully evaluated.  This is an important GNU
8386    // extension.  See GCC PR38377 for discussion.
8387    if (const CallExpr *CallCE
8388        = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
8389      if (CallCE->isBuiltinCall() == Builtin::BI__builtin_constant_p)
8390        return CheckEvalInICE(E, Ctx);
8391    ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
8392    if (CondResult.Kind == IK_NotICE)
8393      return CondResult;
8394
8395    ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
8396    ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
8397
8398    if (TrueResult.Kind == IK_NotICE)
8399      return TrueResult;
8400    if (FalseResult.Kind == IK_NotICE)
8401      return FalseResult;
8402    if (CondResult.Kind == IK_ICEIfUnevaluated)
8403      return CondResult;
8404    if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
8405      return NoDiag();
8406    // Rare case where the diagnostics depend on which side is evaluated
8407    // Note that if we get here, CondResult is 0, and at least one of
8408    // TrueResult and FalseResult is non-zero.
8409    if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
8410      return FalseResult;
8411    return TrueResult;
8412  }
8413  case Expr::CXXDefaultArgExprClass:
8414    return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
8415  case Expr::CXXDefaultInitExprClass:
8416    return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx);
8417  case Expr::ChooseExprClass: {
8418    return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx);
8419  }
8420  }
8421
8422  llvm_unreachable("Invalid StmtClass!");
8423}
8424
8425/// Evaluate an expression as a C++11 integral constant expression.
8426static bool EvaluateCPlusPlus11IntegralConstantExpr(ASTContext &Ctx,
8427                                                    const Expr *E,
8428                                                    llvm::APSInt *Value,
8429                                                    SourceLocation *Loc) {
8430  if (!E->getType()->isIntegralOrEnumerationType()) {
8431    if (Loc) *Loc = E->getExprLoc();
8432    return false;
8433  }
8434
8435  APValue Result;
8436  if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
8437    return false;
8438
8439  assert(Result.isInt() && "pointer cast to int is not an ICE");
8440  if (Value) *Value = Result.getInt();
8441  return true;
8442}
8443
8444bool Expr::isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc) const {
8445  if (Ctx.getLangOpts().CPlusPlus11)
8446    return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, 0, Loc);
8447
8448  ICEDiag D = CheckICE(this, Ctx);
8449  if (D.Kind != IK_ICE) {
8450    if (Loc) *Loc = D.Loc;
8451    return false;
8452  }
8453  return true;
8454}
8455
8456bool Expr::isIntegerConstantExpr(llvm::APSInt &Value, ASTContext &Ctx,
8457                                 SourceLocation *Loc, bool isEvaluated) const {
8458  if (Ctx.getLangOpts().CPlusPlus11)
8459    return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc);
8460
8461  if (!isIntegerConstantExpr(Ctx, Loc))
8462    return false;
8463  if (!EvaluateAsInt(Value, Ctx))
8464    llvm_unreachable("ICE cannot be evaluated!");
8465  return true;
8466}
8467
8468bool Expr::isCXX98IntegralConstantExpr(ASTContext &Ctx) const {
8469  return CheckICE(this, Ctx).Kind == IK_ICE;
8470}
8471
8472bool Expr::isCXX11ConstantExpr(ASTContext &Ctx, APValue *Result,
8473                               SourceLocation *Loc) const {
8474  // We support this checking in C++98 mode in order to diagnose compatibility
8475  // issues.
8476  assert(Ctx.getLangOpts().CPlusPlus);
8477
8478  // Build evaluation settings.
8479  Expr::EvalStatus Status;
8480  SmallVector<PartialDiagnosticAt, 8> Diags;
8481  Status.Diag = &Diags;
8482  EvalInfo Info(Ctx, Status);
8483
8484  APValue Scratch;
8485  bool IsConstExpr = ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch);
8486
8487  if (!Diags.empty()) {
8488    IsConstExpr = false;
8489    if (Loc) *Loc = Diags[0].first;
8490  } else if (!IsConstExpr) {
8491    // FIXME: This shouldn't happen.
8492    if (Loc) *Loc = getExprLoc();
8493  }
8494
8495  return IsConstExpr;
8496}
8497
8498bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
8499                                   SmallVectorImpl<
8500                                     PartialDiagnosticAt> &Diags) {
8501  // FIXME: It would be useful to check constexpr function templates, but at the
8502  // moment the constant expression evaluator cannot cope with the non-rigorous
8503  // ASTs which we build for dependent expressions.
8504  if (FD->isDependentContext())
8505    return true;
8506
8507  Expr::EvalStatus Status;
8508  Status.Diag = &Diags;
8509
8510  EvalInfo Info(FD->getASTContext(), Status);
8511  Info.CheckingPotentialConstantExpression = true;
8512
8513  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
8514  const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : 0;
8515
8516  // Fabricate an arbitrary expression on the stack and pretend that it
8517  // is a temporary being used as the 'this' pointer.
8518  LValue This;
8519  ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
8520  This.set(&VIE, Info.CurrentCall->Index);
8521
8522  ArrayRef<const Expr*> Args;
8523
8524  SourceLocation Loc = FD->getLocation();
8525
8526  APValue Scratch;
8527  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
8528    // Evaluate the call as a constant initializer, to allow the construction
8529    // of objects of non-literal types.
8530    Info.setEvaluatingDecl(This.getLValueBase(), Scratch);
8531    HandleConstructorCall(Loc, This, Args, CD, Info, Scratch);
8532  } else
8533    HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : 0,
8534                       Args, FD->getBody(), Info, Scratch);
8535
8536  return Diags.empty();
8537}
8538