1//===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Implements C++ name mangling according to the Itanium C++ ABI,
11// which is used in GCC 3.2 and newer (and many compilers that are
12// ABI-compatible with GCC):
13//
14//   http://www.codesourcery.com/public/cxx-abi/abi.html
15//
16//===----------------------------------------------------------------------===//
17#include "clang/AST/Mangle.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Attr.h"
20#include "clang/AST/Decl.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/ExprObjC.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Basic/ABI.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "llvm/ADT/StringExtras.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/raw_ostream.h"
33
34#define MANGLE_CHECKER 0
35
36#if MANGLE_CHECKER
37#include <cxxabi.h>
38#endif
39
40using namespace clang;
41
42namespace {
43
44/// \brief Retrieve the declaration context that should be used when mangling
45/// the given declaration.
46static const DeclContext *getEffectiveDeclContext(const Decl *D) {
47  // The ABI assumes that lambda closure types that occur within
48  // default arguments live in the context of the function. However, due to
49  // the way in which Clang parses and creates function declarations, this is
50  // not the case: the lambda closure type ends up living in the context
51  // where the function itself resides, because the function declaration itself
52  // had not yet been created. Fix the context here.
53  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
54    if (RD->isLambda())
55      if (ParmVarDecl *ContextParam
56            = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
57        return ContextParam->getDeclContext();
58  }
59
60  // Perform the same check for block literals.
61  if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
62    if (ParmVarDecl *ContextParam
63          = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
64      return ContextParam->getDeclContext();
65  }
66
67  const DeclContext *DC = D->getDeclContext();
68  if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(DC))
69    return getEffectiveDeclContext(CD);
70
71  return DC;
72}
73
74static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
75  return getEffectiveDeclContext(cast<Decl>(DC));
76}
77
78static bool isLocalContainerContext(const DeclContext *DC) {
79  return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC);
80}
81
82static const RecordDecl *GetLocalClassDecl(const Decl *D) {
83  const DeclContext *DC = getEffectiveDeclContext(D);
84  while (!DC->isNamespace() && !DC->isTranslationUnit()) {
85    if (isLocalContainerContext(DC))
86      return dyn_cast<RecordDecl>(D);
87    D = cast<Decl>(DC);
88    DC = getEffectiveDeclContext(D);
89  }
90  return 0;
91}
92
93static const FunctionDecl *getStructor(const FunctionDecl *fn) {
94  if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
95    return ftd->getTemplatedDecl();
96
97  return fn;
98}
99
100static const NamedDecl *getStructor(const NamedDecl *decl) {
101  const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
102  return (fn ? getStructor(fn) : decl);
103}
104
105static const unsigned UnknownArity = ~0U;
106
107class ItaniumMangleContext : public MangleContext {
108  llvm::DenseMap<const TagDecl *, uint64_t> AnonStructIds;
109  typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy;
110  llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
111  llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
112
113public:
114  explicit ItaniumMangleContext(ASTContext &Context,
115                                DiagnosticsEngine &Diags)
116    : MangleContext(Context, Diags) { }
117
118  uint64_t getAnonymousStructId(const TagDecl *TD) {
119    std::pair<llvm::DenseMap<const TagDecl *,
120      uint64_t>::iterator, bool> Result =
121      AnonStructIds.insert(std::make_pair(TD, AnonStructIds.size()));
122    return Result.first->second;
123  }
124
125  /// @name Mangler Entry Points
126  /// @{
127
128  bool shouldMangleDeclName(const NamedDecl *D);
129  void mangleName(const NamedDecl *D, raw_ostream &);
130  void mangleThunk(const CXXMethodDecl *MD,
131                   const ThunkInfo &Thunk,
132                   raw_ostream &);
133  void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
134                          const ThisAdjustment &ThisAdjustment,
135                          raw_ostream &);
136  void mangleReferenceTemporary(const VarDecl *D,
137                                raw_ostream &);
138  void mangleCXXVTable(const CXXRecordDecl *RD,
139                       raw_ostream &);
140  void mangleCXXVTT(const CXXRecordDecl *RD,
141                    raw_ostream &);
142  void mangleCXXVBTable(const CXXRecordDecl *Derived,
143                        ArrayRef<const CXXRecordDecl *> BasePath,
144                        raw_ostream &Out);
145  void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
146                           const CXXRecordDecl *Type,
147                           raw_ostream &);
148  void mangleCXXRTTI(QualType T, raw_ostream &);
149  void mangleCXXRTTIName(QualType T, raw_ostream &);
150  void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
151                     raw_ostream &);
152  void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
153                     raw_ostream &);
154
155  void mangleItaniumGuardVariable(const VarDecl *D, raw_ostream &);
156  void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &);
157  void mangleItaniumThreadLocalWrapper(const VarDecl *D, raw_ostream &);
158
159  bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
160    // Lambda closure types are already numbered.
161    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(ND))
162      if (RD->isLambda())
163        return false;
164
165    // Anonymous tags are already numbered.
166    if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
167      if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
168        return false;
169    }
170
171    // Use the canonical number for externally visible decls.
172    if (ND->isExternallyVisible()) {
173      unsigned discriminator = getASTContext().getManglingNumber(ND);
174      if (discriminator == 1)
175        return false;
176      disc = discriminator - 2;
177      return true;
178    }
179
180    // Make up a reasonable number for internal decls.
181    unsigned &discriminator = Uniquifier[ND];
182    if (!discriminator) {
183      const DeclContext *DC = getEffectiveDeclContext(ND);
184      discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
185    }
186    if (discriminator == 1)
187      return false;
188    disc = discriminator-2;
189    return true;
190  }
191  /// @}
192};
193
194/// CXXNameMangler - Manage the mangling of a single name.
195class CXXNameMangler {
196  ItaniumMangleContext &Context;
197  raw_ostream &Out;
198
199  /// The "structor" is the top-level declaration being mangled, if
200  /// that's not a template specialization; otherwise it's the pattern
201  /// for that specialization.
202  const NamedDecl *Structor;
203  unsigned StructorType;
204
205  /// SeqID - The next subsitution sequence number.
206  unsigned SeqID;
207
208  class FunctionTypeDepthState {
209    unsigned Bits;
210
211    enum { InResultTypeMask = 1 };
212
213  public:
214    FunctionTypeDepthState() : Bits(0) {}
215
216    /// The number of function types we're inside.
217    unsigned getDepth() const {
218      return Bits >> 1;
219    }
220
221    /// True if we're in the return type of the innermost function type.
222    bool isInResultType() const {
223      return Bits & InResultTypeMask;
224    }
225
226    FunctionTypeDepthState push() {
227      FunctionTypeDepthState tmp = *this;
228      Bits = (Bits & ~InResultTypeMask) + 2;
229      return tmp;
230    }
231
232    void enterResultType() {
233      Bits |= InResultTypeMask;
234    }
235
236    void leaveResultType() {
237      Bits &= ~InResultTypeMask;
238    }
239
240    void pop(FunctionTypeDepthState saved) {
241      assert(getDepth() == saved.getDepth() + 1);
242      Bits = saved.Bits;
243    }
244
245  } FunctionTypeDepth;
246
247  llvm::DenseMap<uintptr_t, unsigned> Substitutions;
248
249  ASTContext &getASTContext() const { return Context.getASTContext(); }
250
251public:
252  CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
253                 const NamedDecl *D = 0)
254    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(0),
255      SeqID(0) {
256    // These can't be mangled without a ctor type or dtor type.
257    assert(!D || (!isa<CXXDestructorDecl>(D) &&
258                  !isa<CXXConstructorDecl>(D)));
259  }
260  CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
261                 const CXXConstructorDecl *D, CXXCtorType Type)
262    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
263      SeqID(0) { }
264  CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
265                 const CXXDestructorDecl *D, CXXDtorType Type)
266    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
267      SeqID(0) { }
268
269#if MANGLE_CHECKER
270  ~CXXNameMangler() {
271    if (Out.str()[0] == '\01')
272      return;
273
274    int status = 0;
275    char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
276    assert(status == 0 && "Could not demangle mangled name!");
277    free(result);
278  }
279#endif
280  raw_ostream &getStream() { return Out; }
281
282  void mangle(const NamedDecl *D, StringRef Prefix = "_Z");
283  void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
284  void mangleNumber(const llvm::APSInt &I);
285  void mangleNumber(int64_t Number);
286  void mangleFloat(const llvm::APFloat &F);
287  void mangleFunctionEncoding(const FunctionDecl *FD);
288  void mangleName(const NamedDecl *ND);
289  void mangleType(QualType T);
290  void mangleNameOrStandardSubstitution(const NamedDecl *ND);
291
292private:
293  bool mangleSubstitution(const NamedDecl *ND);
294  bool mangleSubstitution(QualType T);
295  bool mangleSubstitution(TemplateName Template);
296  bool mangleSubstitution(uintptr_t Ptr);
297
298  void mangleExistingSubstitution(QualType type);
299  void mangleExistingSubstitution(TemplateName name);
300
301  bool mangleStandardSubstitution(const NamedDecl *ND);
302
303  void addSubstitution(const NamedDecl *ND) {
304    ND = cast<NamedDecl>(ND->getCanonicalDecl());
305
306    addSubstitution(reinterpret_cast<uintptr_t>(ND));
307  }
308  void addSubstitution(QualType T);
309  void addSubstitution(TemplateName Template);
310  void addSubstitution(uintptr_t Ptr);
311
312  void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
313                              NamedDecl *firstQualifierLookup,
314                              bool recursive = false);
315  void mangleUnresolvedName(NestedNameSpecifier *qualifier,
316                            NamedDecl *firstQualifierLookup,
317                            DeclarationName name,
318                            unsigned KnownArity = UnknownArity);
319
320  void mangleName(const TemplateDecl *TD,
321                  const TemplateArgument *TemplateArgs,
322                  unsigned NumTemplateArgs);
323  void mangleUnqualifiedName(const NamedDecl *ND) {
324    mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
325  }
326  void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
327                             unsigned KnownArity);
328  void mangleUnscopedName(const NamedDecl *ND);
329  void mangleUnscopedTemplateName(const TemplateDecl *ND);
330  void mangleUnscopedTemplateName(TemplateName);
331  void mangleSourceName(const IdentifierInfo *II);
332  void mangleLocalName(const Decl *D);
333  void mangleBlockForPrefix(const BlockDecl *Block);
334  void mangleUnqualifiedBlock(const BlockDecl *Block);
335  void mangleLambda(const CXXRecordDecl *Lambda);
336  void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
337                        bool NoFunction=false);
338  void mangleNestedName(const TemplateDecl *TD,
339                        const TemplateArgument *TemplateArgs,
340                        unsigned NumTemplateArgs);
341  void manglePrefix(NestedNameSpecifier *qualifier);
342  void manglePrefix(const DeclContext *DC, bool NoFunction=false);
343  void manglePrefix(QualType type);
344  void mangleTemplatePrefix(const TemplateDecl *ND, bool NoFunction=false);
345  void mangleTemplatePrefix(TemplateName Template);
346  void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
347  void mangleQualifiers(Qualifiers Quals);
348  void mangleRefQualifier(RefQualifierKind RefQualifier);
349
350  void mangleObjCMethodName(const ObjCMethodDecl *MD);
351
352  // Declare manglers for every type class.
353#define ABSTRACT_TYPE(CLASS, PARENT)
354#define NON_CANONICAL_TYPE(CLASS, PARENT)
355#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
356#include "clang/AST/TypeNodes.def"
357
358  void mangleType(const TagType*);
359  void mangleType(TemplateName);
360  void mangleBareFunctionType(const FunctionType *T,
361                              bool MangleReturnType);
362  void mangleNeonVectorType(const VectorType *T);
363  void mangleAArch64NeonVectorType(const VectorType *T);
364
365  void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
366  void mangleMemberExpr(const Expr *base, bool isArrow,
367                        NestedNameSpecifier *qualifier,
368                        NamedDecl *firstQualifierLookup,
369                        DeclarationName name,
370                        unsigned knownArity);
371  void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
372  void mangleCXXCtorType(CXXCtorType T);
373  void mangleCXXDtorType(CXXDtorType T);
374
375  void mangleTemplateArgs(const ASTTemplateArgumentListInfo &TemplateArgs);
376  void mangleTemplateArgs(const TemplateArgument *TemplateArgs,
377                          unsigned NumTemplateArgs);
378  void mangleTemplateArgs(const TemplateArgumentList &AL);
379  void mangleTemplateArg(TemplateArgument A);
380
381  void mangleTemplateParameter(unsigned Index);
382
383  void mangleFunctionParam(const ParmVarDecl *parm);
384};
385
386}
387
388bool ItaniumMangleContext::shouldMangleDeclName(const NamedDecl *D) {
389  // In C, functions with no attributes never need to be mangled. Fastpath them.
390  if (!getASTContext().getLangOpts().CPlusPlus && !D->hasAttrs())
391    return false;
392
393  // Any decl can be declared with __asm("foo") on it, and this takes precedence
394  // over all other naming in the .o file.
395  if (D->hasAttr<AsmLabelAttr>())
396    return true;
397
398  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
399  if (FD) {
400    LanguageLinkage L = FD->getLanguageLinkage();
401    // Overloadable functions need mangling.
402    if (FD->hasAttr<OverloadableAttr>())
403      return true;
404
405    // "main" is not mangled.
406    if (FD->isMain())
407      return false;
408
409    // C++ functions and those whose names are not a simple identifier need
410    // mangling.
411    if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
412      return true;
413
414    // C functions are not mangled.
415    if (L == CLanguageLinkage)
416      return false;
417  }
418
419  // Otherwise, no mangling is done outside C++ mode.
420  if (!getASTContext().getLangOpts().CPlusPlus)
421    return false;
422
423  const VarDecl *VD = dyn_cast<VarDecl>(D);
424  if (VD) {
425    // C variables are not mangled.
426    if (VD->isExternC())
427      return false;
428
429    // Variables at global scope with non-internal linkage are not mangled
430    const DeclContext *DC = getEffectiveDeclContext(D);
431    // Check for extern variable declared locally.
432    if (DC->isFunctionOrMethod() && D->hasLinkage())
433      while (!DC->isNamespace() && !DC->isTranslationUnit())
434        DC = getEffectiveParentContext(DC);
435    if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage &&
436        !isa<VarTemplateSpecializationDecl>(D))
437      return false;
438  }
439
440  return true;
441}
442
443void CXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
444  // Any decl can be declared with __asm("foo") on it, and this takes precedence
445  // over all other naming in the .o file.
446  if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
447    // If we have an asm name, then we use it as the mangling.
448
449    // Adding the prefix can cause problems when one file has a "foo" and
450    // another has a "\01foo". That is known to happen on ELF with the
451    // tricks normally used for producing aliases (PR9177). Fortunately the
452    // llvm mangler on ELF is a nop, so we can just avoid adding the \01
453    // marker.  We also avoid adding the marker if this is an alias for an
454    // LLVM intrinsic.
455    StringRef UserLabelPrefix =
456      getASTContext().getTargetInfo().getUserLabelPrefix();
457    if (!UserLabelPrefix.empty() && !ALA->getLabel().startswith("llvm."))
458      Out << '\01';  // LLVM IR Marker for __asm("foo")
459
460    Out << ALA->getLabel();
461    return;
462  }
463
464  // <mangled-name> ::= _Z <encoding>
465  //            ::= <data name>
466  //            ::= <special-name>
467  Out << Prefix;
468  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
469    mangleFunctionEncoding(FD);
470  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
471    mangleName(VD);
472  else
473    mangleName(cast<FieldDecl>(D));
474}
475
476void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
477  // <encoding> ::= <function name> <bare-function-type>
478  mangleName(FD);
479
480  // Don't mangle in the type if this isn't a decl we should typically mangle.
481  if (!Context.shouldMangleDeclName(FD))
482    return;
483
484  // Whether the mangling of a function type includes the return type depends on
485  // the context and the nature of the function. The rules for deciding whether
486  // the return type is included are:
487  //
488  //   1. Template functions (names or types) have return types encoded, with
489  //   the exceptions listed below.
490  //   2. Function types not appearing as part of a function name mangling,
491  //   e.g. parameters, pointer types, etc., have return type encoded, with the
492  //   exceptions listed below.
493  //   3. Non-template function names do not have return types encoded.
494  //
495  // The exceptions mentioned in (1) and (2) above, for which the return type is
496  // never included, are
497  //   1. Constructors.
498  //   2. Destructors.
499  //   3. Conversion operator functions, e.g. operator int.
500  bool MangleReturnType = false;
501  if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
502    if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
503          isa<CXXConversionDecl>(FD)))
504      MangleReturnType = true;
505
506    // Mangle the type of the primary template.
507    FD = PrimaryTemplate->getTemplatedDecl();
508  }
509
510  mangleBareFunctionType(FD->getType()->getAs<FunctionType>(),
511                         MangleReturnType);
512}
513
514static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
515  while (isa<LinkageSpecDecl>(DC)) {
516    DC = getEffectiveParentContext(DC);
517  }
518
519  return DC;
520}
521
522/// isStd - Return whether a given namespace is the 'std' namespace.
523static bool isStd(const NamespaceDecl *NS) {
524  if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
525                                ->isTranslationUnit())
526    return false;
527
528  const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
529  return II && II->isStr("std");
530}
531
532// isStdNamespace - Return whether a given decl context is a toplevel 'std'
533// namespace.
534static bool isStdNamespace(const DeclContext *DC) {
535  if (!DC->isNamespace())
536    return false;
537
538  return isStd(cast<NamespaceDecl>(DC));
539}
540
541static const TemplateDecl *
542isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
543  // Check if we have a function template.
544  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
545    if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
546      TemplateArgs = FD->getTemplateSpecializationArgs();
547      return TD;
548    }
549  }
550
551  // Check if we have a class template.
552  if (const ClassTemplateSpecializationDecl *Spec =
553        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
554    TemplateArgs = &Spec->getTemplateArgs();
555    return Spec->getSpecializedTemplate();
556  }
557
558  // Check if we have a variable template.
559  if (const VarTemplateSpecializationDecl *Spec =
560          dyn_cast<VarTemplateSpecializationDecl>(ND)) {
561    TemplateArgs = &Spec->getTemplateArgs();
562    return Spec->getSpecializedTemplate();
563  }
564
565  return 0;
566}
567
568static bool isLambda(const NamedDecl *ND) {
569  const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
570  if (!Record)
571    return false;
572
573  return Record->isLambda();
574}
575
576void CXXNameMangler::mangleName(const NamedDecl *ND) {
577  //  <name> ::= <nested-name>
578  //         ::= <unscoped-name>
579  //         ::= <unscoped-template-name> <template-args>
580  //         ::= <local-name>
581  //
582  const DeclContext *DC = getEffectiveDeclContext(ND);
583
584  // If this is an extern variable declared locally, the relevant DeclContext
585  // is that of the containing namespace, or the translation unit.
586  // FIXME: This is a hack; extern variables declared locally should have
587  // a proper semantic declaration context!
588  if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND))
589    while (!DC->isNamespace() && !DC->isTranslationUnit())
590      DC = getEffectiveParentContext(DC);
591  else if (GetLocalClassDecl(ND)) {
592    mangleLocalName(ND);
593    return;
594  }
595
596  DC = IgnoreLinkageSpecDecls(DC);
597
598  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
599    // Check if we have a template.
600    const TemplateArgumentList *TemplateArgs = 0;
601    if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
602      mangleUnscopedTemplateName(TD);
603      mangleTemplateArgs(*TemplateArgs);
604      return;
605    }
606
607    mangleUnscopedName(ND);
608    return;
609  }
610
611  if (isLocalContainerContext(DC)) {
612    mangleLocalName(ND);
613    return;
614  }
615
616  mangleNestedName(ND, DC);
617}
618void CXXNameMangler::mangleName(const TemplateDecl *TD,
619                                const TemplateArgument *TemplateArgs,
620                                unsigned NumTemplateArgs) {
621  const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
622
623  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
624    mangleUnscopedTemplateName(TD);
625    mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
626  } else {
627    mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
628  }
629}
630
631void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
632  //  <unscoped-name> ::= <unqualified-name>
633  //                  ::= St <unqualified-name>   # ::std::
634
635  if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
636    Out << "St";
637
638  mangleUnqualifiedName(ND);
639}
640
641void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
642  //     <unscoped-template-name> ::= <unscoped-name>
643  //                              ::= <substitution>
644  if (mangleSubstitution(ND))
645    return;
646
647  // <template-template-param> ::= <template-param>
648  if (const TemplateTemplateParmDecl *TTP
649                                     = dyn_cast<TemplateTemplateParmDecl>(ND)) {
650    mangleTemplateParameter(TTP->getIndex());
651    return;
652  }
653
654  mangleUnscopedName(ND->getTemplatedDecl());
655  addSubstitution(ND);
656}
657
658void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {
659  //     <unscoped-template-name> ::= <unscoped-name>
660  //                              ::= <substitution>
661  if (TemplateDecl *TD = Template.getAsTemplateDecl())
662    return mangleUnscopedTemplateName(TD);
663
664  if (mangleSubstitution(Template))
665    return;
666
667  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
668  assert(Dependent && "Not a dependent template name?");
669  if (const IdentifierInfo *Id = Dependent->getIdentifier())
670    mangleSourceName(Id);
671  else
672    mangleOperatorName(Dependent->getOperator(), UnknownArity);
673
674  addSubstitution(Template);
675}
676
677void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
678  // ABI:
679  //   Floating-point literals are encoded using a fixed-length
680  //   lowercase hexadecimal string corresponding to the internal
681  //   representation (IEEE on Itanium), high-order bytes first,
682  //   without leading zeroes. For example: "Lf bf800000 E" is -1.0f
683  //   on Itanium.
684  // The 'without leading zeroes' thing seems to be an editorial
685  // mistake; see the discussion on cxx-abi-dev beginning on
686  // 2012-01-16.
687
688  // Our requirements here are just barely weird enough to justify
689  // using a custom algorithm instead of post-processing APInt::toString().
690
691  llvm::APInt valueBits = f.bitcastToAPInt();
692  unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
693  assert(numCharacters != 0);
694
695  // Allocate a buffer of the right number of characters.
696  SmallVector<char, 20> buffer;
697  buffer.set_size(numCharacters);
698
699  // Fill the buffer left-to-right.
700  for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
701    // The bit-index of the next hex digit.
702    unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
703
704    // Project out 4 bits starting at 'digitIndex'.
705    llvm::integerPart hexDigit
706      = valueBits.getRawData()[digitBitIndex / llvm::integerPartWidth];
707    hexDigit >>= (digitBitIndex % llvm::integerPartWidth);
708    hexDigit &= 0xF;
709
710    // Map that over to a lowercase hex digit.
711    static const char charForHex[16] = {
712      '0', '1', '2', '3', '4', '5', '6', '7',
713      '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
714    };
715    buffer[stringIndex] = charForHex[hexDigit];
716  }
717
718  Out.write(buffer.data(), numCharacters);
719}
720
721void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
722  if (Value.isSigned() && Value.isNegative()) {
723    Out << 'n';
724    Value.abs().print(Out, /*signed*/ false);
725  } else {
726    Value.print(Out, /*signed*/ false);
727  }
728}
729
730void CXXNameMangler::mangleNumber(int64_t Number) {
731  //  <number> ::= [n] <non-negative decimal integer>
732  if (Number < 0) {
733    Out << 'n';
734    Number = -Number;
735  }
736
737  Out << Number;
738}
739
740void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
741  //  <call-offset>  ::= h <nv-offset> _
742  //                 ::= v <v-offset> _
743  //  <nv-offset>    ::= <offset number>        # non-virtual base override
744  //  <v-offset>     ::= <offset number> _ <virtual offset number>
745  //                      # virtual base override, with vcall offset
746  if (!Virtual) {
747    Out << 'h';
748    mangleNumber(NonVirtual);
749    Out << '_';
750    return;
751  }
752
753  Out << 'v';
754  mangleNumber(NonVirtual);
755  Out << '_';
756  mangleNumber(Virtual);
757  Out << '_';
758}
759
760void CXXNameMangler::manglePrefix(QualType type) {
761  if (const TemplateSpecializationType *TST =
762        type->getAs<TemplateSpecializationType>()) {
763    if (!mangleSubstitution(QualType(TST, 0))) {
764      mangleTemplatePrefix(TST->getTemplateName());
765
766      // FIXME: GCC does not appear to mangle the template arguments when
767      // the template in question is a dependent template name. Should we
768      // emulate that badness?
769      mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
770      addSubstitution(QualType(TST, 0));
771    }
772  } else if (const DependentTemplateSpecializationType *DTST
773               = type->getAs<DependentTemplateSpecializationType>()) {
774    TemplateName Template
775      = getASTContext().getDependentTemplateName(DTST->getQualifier(),
776                                                 DTST->getIdentifier());
777    mangleTemplatePrefix(Template);
778
779    // FIXME: GCC does not appear to mangle the template arguments when
780    // the template in question is a dependent template name. Should we
781    // emulate that badness?
782    mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
783  } else {
784    // We use the QualType mangle type variant here because it handles
785    // substitutions.
786    mangleType(type);
787  }
788}
789
790/// Mangle everything prior to the base-unresolved-name in an unresolved-name.
791///
792/// \param firstQualifierLookup - the entity found by unqualified lookup
793///   for the first name in the qualifier, if this is for a member expression
794/// \param recursive - true if this is being called recursively,
795///   i.e. if there is more prefix "to the right".
796void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
797                                            NamedDecl *firstQualifierLookup,
798                                            bool recursive) {
799
800  // x, ::x
801  // <unresolved-name> ::= [gs] <base-unresolved-name>
802
803  // T::x / decltype(p)::x
804  // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
805
806  // T::N::x /decltype(p)::N::x
807  // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
808  //                       <base-unresolved-name>
809
810  // A::x, N::y, A<T>::z; "gs" means leading "::"
811  // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
812  //                       <base-unresolved-name>
813
814  switch (qualifier->getKind()) {
815  case NestedNameSpecifier::Global:
816    Out << "gs";
817
818    // We want an 'sr' unless this is the entire NNS.
819    if (recursive)
820      Out << "sr";
821
822    // We never want an 'E' here.
823    return;
824
825  case NestedNameSpecifier::Namespace:
826    if (qualifier->getPrefix())
827      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
828                             /*recursive*/ true);
829    else
830      Out << "sr";
831    mangleSourceName(qualifier->getAsNamespace()->getIdentifier());
832    break;
833  case NestedNameSpecifier::NamespaceAlias:
834    if (qualifier->getPrefix())
835      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
836                             /*recursive*/ true);
837    else
838      Out << "sr";
839    mangleSourceName(qualifier->getAsNamespaceAlias()->getIdentifier());
840    break;
841
842  case NestedNameSpecifier::TypeSpec:
843  case NestedNameSpecifier::TypeSpecWithTemplate: {
844    const Type *type = qualifier->getAsType();
845
846    // We only want to use an unresolved-type encoding if this is one of:
847    //   - a decltype
848    //   - a template type parameter
849    //   - a template template parameter with arguments
850    // In all of these cases, we should have no prefix.
851    if (qualifier->getPrefix()) {
852      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
853                             /*recursive*/ true);
854    } else {
855      // Otherwise, all the cases want this.
856      Out << "sr";
857    }
858
859    // Only certain other types are valid as prefixes;  enumerate them.
860    switch (type->getTypeClass()) {
861    case Type::Builtin:
862    case Type::Complex:
863    case Type::Decayed:
864    case Type::Pointer:
865    case Type::BlockPointer:
866    case Type::LValueReference:
867    case Type::RValueReference:
868    case Type::MemberPointer:
869    case Type::ConstantArray:
870    case Type::IncompleteArray:
871    case Type::VariableArray:
872    case Type::DependentSizedArray:
873    case Type::DependentSizedExtVector:
874    case Type::Vector:
875    case Type::ExtVector:
876    case Type::FunctionProto:
877    case Type::FunctionNoProto:
878    case Type::Enum:
879    case Type::Paren:
880    case Type::Elaborated:
881    case Type::Attributed:
882    case Type::Auto:
883    case Type::PackExpansion:
884    case Type::ObjCObject:
885    case Type::ObjCInterface:
886    case Type::ObjCObjectPointer:
887    case Type::Atomic:
888      llvm_unreachable("type is illegal as a nested name specifier");
889
890    case Type::SubstTemplateTypeParmPack:
891      // FIXME: not clear how to mangle this!
892      // template <class T...> class A {
893      //   template <class U...> void foo(decltype(T::foo(U())) x...);
894      // };
895      Out << "_SUBSTPACK_";
896      break;
897
898    // <unresolved-type> ::= <template-param>
899    //                   ::= <decltype>
900    //                   ::= <template-template-param> <template-args>
901    // (this last is not official yet)
902    case Type::TypeOfExpr:
903    case Type::TypeOf:
904    case Type::Decltype:
905    case Type::TemplateTypeParm:
906    case Type::UnaryTransform:
907    case Type::SubstTemplateTypeParm:
908    unresolvedType:
909      assert(!qualifier->getPrefix());
910
911      // We only get here recursively if we're followed by identifiers.
912      if (recursive) Out << 'N';
913
914      // This seems to do everything we want.  It's not really
915      // sanctioned for a substituted template parameter, though.
916      mangleType(QualType(type, 0));
917
918      // We never want to print 'E' directly after an unresolved-type,
919      // so we return directly.
920      return;
921
922    case Type::Typedef:
923      mangleSourceName(cast<TypedefType>(type)->getDecl()->getIdentifier());
924      break;
925
926    case Type::UnresolvedUsing:
927      mangleSourceName(cast<UnresolvedUsingType>(type)->getDecl()
928                         ->getIdentifier());
929      break;
930
931    case Type::Record:
932      mangleSourceName(cast<RecordType>(type)->getDecl()->getIdentifier());
933      break;
934
935    case Type::TemplateSpecialization: {
936      const TemplateSpecializationType *tst
937        = cast<TemplateSpecializationType>(type);
938      TemplateName name = tst->getTemplateName();
939      switch (name.getKind()) {
940      case TemplateName::Template:
941      case TemplateName::QualifiedTemplate: {
942        TemplateDecl *temp = name.getAsTemplateDecl();
943
944        // If the base is a template template parameter, this is an
945        // unresolved type.
946        assert(temp && "no template for template specialization type");
947        if (isa<TemplateTemplateParmDecl>(temp)) goto unresolvedType;
948
949        mangleSourceName(temp->getIdentifier());
950        break;
951      }
952
953      case TemplateName::OverloadedTemplate:
954      case TemplateName::DependentTemplate:
955        llvm_unreachable("invalid base for a template specialization type");
956
957      case TemplateName::SubstTemplateTemplateParm: {
958        SubstTemplateTemplateParmStorage *subst
959          = name.getAsSubstTemplateTemplateParm();
960        mangleExistingSubstitution(subst->getReplacement());
961        break;
962      }
963
964      case TemplateName::SubstTemplateTemplateParmPack: {
965        // FIXME: not clear how to mangle this!
966        // template <template <class U> class T...> class A {
967        //   template <class U...> void foo(decltype(T<U>::foo) x...);
968        // };
969        Out << "_SUBSTPACK_";
970        break;
971      }
972      }
973
974      mangleTemplateArgs(tst->getArgs(), tst->getNumArgs());
975      break;
976    }
977
978    case Type::InjectedClassName:
979      mangleSourceName(cast<InjectedClassNameType>(type)->getDecl()
980                         ->getIdentifier());
981      break;
982
983    case Type::DependentName:
984      mangleSourceName(cast<DependentNameType>(type)->getIdentifier());
985      break;
986
987    case Type::DependentTemplateSpecialization: {
988      const DependentTemplateSpecializationType *tst
989        = cast<DependentTemplateSpecializationType>(type);
990      mangleSourceName(tst->getIdentifier());
991      mangleTemplateArgs(tst->getArgs(), tst->getNumArgs());
992      break;
993    }
994    }
995    break;
996  }
997
998  case NestedNameSpecifier::Identifier:
999    // Member expressions can have these without prefixes.
1000    if (qualifier->getPrefix()) {
1001      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
1002                             /*recursive*/ true);
1003    } else if (firstQualifierLookup) {
1004
1005      // Try to make a proper qualifier out of the lookup result, and
1006      // then just recurse on that.
1007      NestedNameSpecifier *newQualifier;
1008      if (TypeDecl *typeDecl = dyn_cast<TypeDecl>(firstQualifierLookup)) {
1009        QualType type = getASTContext().getTypeDeclType(typeDecl);
1010
1011        // Pretend we had a different nested name specifier.
1012        newQualifier = NestedNameSpecifier::Create(getASTContext(),
1013                                                   /*prefix*/ 0,
1014                                                   /*template*/ false,
1015                                                   type.getTypePtr());
1016      } else if (NamespaceDecl *nspace =
1017                   dyn_cast<NamespaceDecl>(firstQualifierLookup)) {
1018        newQualifier = NestedNameSpecifier::Create(getASTContext(),
1019                                                   /*prefix*/ 0,
1020                                                   nspace);
1021      } else if (NamespaceAliasDecl *alias =
1022                   dyn_cast<NamespaceAliasDecl>(firstQualifierLookup)) {
1023        newQualifier = NestedNameSpecifier::Create(getASTContext(),
1024                                                   /*prefix*/ 0,
1025                                                   alias);
1026      } else {
1027        // No sensible mangling to do here.
1028        newQualifier = 0;
1029      }
1030
1031      if (newQualifier)
1032        return mangleUnresolvedPrefix(newQualifier, /*lookup*/ 0, recursive);
1033
1034    } else {
1035      Out << "sr";
1036    }
1037
1038    mangleSourceName(qualifier->getAsIdentifier());
1039    break;
1040  }
1041
1042  // If this was the innermost part of the NNS, and we fell out to
1043  // here, append an 'E'.
1044  if (!recursive)
1045    Out << 'E';
1046}
1047
1048/// Mangle an unresolved-name, which is generally used for names which
1049/// weren't resolved to specific entities.
1050void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *qualifier,
1051                                          NamedDecl *firstQualifierLookup,
1052                                          DeclarationName name,
1053                                          unsigned knownArity) {
1054  if (qualifier) mangleUnresolvedPrefix(qualifier, firstQualifierLookup);
1055  mangleUnqualifiedName(0, name, knownArity);
1056}
1057
1058static const FieldDecl *FindFirstNamedDataMember(const RecordDecl *RD) {
1059  assert(RD->isAnonymousStructOrUnion() &&
1060         "Expected anonymous struct or union!");
1061
1062  for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
1063       I != E; ++I) {
1064    if (I->getIdentifier())
1065      return *I;
1066
1067    if (const RecordType *RT = I->getType()->getAs<RecordType>())
1068      if (const FieldDecl *NamedDataMember =
1069          FindFirstNamedDataMember(RT->getDecl()))
1070        return NamedDataMember;
1071    }
1072
1073  // We didn't find a named data member.
1074  return 0;
1075}
1076
1077void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
1078                                           DeclarationName Name,
1079                                           unsigned KnownArity) {
1080  //  <unqualified-name> ::= <operator-name>
1081  //                     ::= <ctor-dtor-name>
1082  //                     ::= <source-name>
1083  switch (Name.getNameKind()) {
1084  case DeclarationName::Identifier: {
1085    if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
1086      // We must avoid conflicts between internally- and externally-
1087      // linked variable and function declaration names in the same TU:
1088      //   void test() { extern void foo(); }
1089      //   static void foo();
1090      // This naming convention is the same as that followed by GCC,
1091      // though it shouldn't actually matter.
1092      if (ND && ND->getFormalLinkage() == InternalLinkage &&
1093          getEffectiveDeclContext(ND)->isFileContext())
1094        Out << 'L';
1095
1096      mangleSourceName(II);
1097      break;
1098    }
1099
1100    // Otherwise, an anonymous entity.  We must have a declaration.
1101    assert(ND && "mangling empty name without declaration");
1102
1103    if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
1104      if (NS->isAnonymousNamespace()) {
1105        // This is how gcc mangles these names.
1106        Out << "12_GLOBAL__N_1";
1107        break;
1108      }
1109    }
1110
1111    if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1112      // We must have an anonymous union or struct declaration.
1113      const RecordDecl *RD =
1114        cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
1115
1116      // Itanium C++ ABI 5.1.2:
1117      //
1118      //   For the purposes of mangling, the name of an anonymous union is
1119      //   considered to be the name of the first named data member found by a
1120      //   pre-order, depth-first, declaration-order walk of the data members of
1121      //   the anonymous union. If there is no such data member (i.e., if all of
1122      //   the data members in the union are unnamed), then there is no way for
1123      //   a program to refer to the anonymous union, and there is therefore no
1124      //   need to mangle its name.
1125      const FieldDecl *FD = FindFirstNamedDataMember(RD);
1126
1127      // It's actually possible for various reasons for us to get here
1128      // with an empty anonymous struct / union.  Fortunately, it
1129      // doesn't really matter what name we generate.
1130      if (!FD) break;
1131      assert(FD->getIdentifier() && "Data member name isn't an identifier!");
1132
1133      mangleSourceName(FD->getIdentifier());
1134      break;
1135    }
1136
1137    // Class extensions have no name as a category, and it's possible
1138    // for them to be the semantic parent of certain declarations
1139    // (primarily, tag decls defined within declarations).  Such
1140    // declarations will always have internal linkage, so the name
1141    // doesn't really matter, but we shouldn't crash on them.  For
1142    // safety, just handle all ObjC containers here.
1143    if (isa<ObjCContainerDecl>(ND))
1144      break;
1145
1146    // We must have an anonymous struct.
1147    const TagDecl *TD = cast<TagDecl>(ND);
1148    if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1149      assert(TD->getDeclContext() == D->getDeclContext() &&
1150             "Typedef should not be in another decl context!");
1151      assert(D->getDeclName().getAsIdentifierInfo() &&
1152             "Typedef was not named!");
1153      mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1154      break;
1155    }
1156
1157    // <unnamed-type-name> ::= <closure-type-name>
1158    //
1159    // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1160    // <lambda-sig> ::= <parameter-type>+   # Parameter types or 'v' for 'void'.
1161    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1162      if (Record->isLambda() && Record->getLambdaManglingNumber()) {
1163        mangleLambda(Record);
1164        break;
1165      }
1166    }
1167
1168    if (TD->isExternallyVisible()) {
1169      unsigned UnnamedMangle = getASTContext().getManglingNumber(TD);
1170      Out << "Ut";
1171      if (UnnamedMangle > 1)
1172        Out << llvm::utostr(UnnamedMangle - 2);
1173      Out << '_';
1174      break;
1175    }
1176
1177    // Get a unique id for the anonymous struct.
1178    uint64_t AnonStructId = Context.getAnonymousStructId(TD);
1179
1180    // Mangle it as a source name in the form
1181    // [n] $_<id>
1182    // where n is the length of the string.
1183    SmallString<8> Str;
1184    Str += "$_";
1185    Str += llvm::utostr(AnonStructId);
1186
1187    Out << Str.size();
1188    Out << Str.str();
1189    break;
1190  }
1191
1192  case DeclarationName::ObjCZeroArgSelector:
1193  case DeclarationName::ObjCOneArgSelector:
1194  case DeclarationName::ObjCMultiArgSelector:
1195    llvm_unreachable("Can't mangle Objective-C selector names here!");
1196
1197  case DeclarationName::CXXConstructorName:
1198    if (ND == Structor)
1199      // If the named decl is the C++ constructor we're mangling, use the type
1200      // we were given.
1201      mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
1202    else
1203      // Otherwise, use the complete constructor name. This is relevant if a
1204      // class with a constructor is declared within a constructor.
1205      mangleCXXCtorType(Ctor_Complete);
1206    break;
1207
1208  case DeclarationName::CXXDestructorName:
1209    if (ND == Structor)
1210      // If the named decl is the C++ destructor we're mangling, use the type we
1211      // were given.
1212      mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1213    else
1214      // Otherwise, use the complete destructor name. This is relevant if a
1215      // class with a destructor is declared within a destructor.
1216      mangleCXXDtorType(Dtor_Complete);
1217    break;
1218
1219  case DeclarationName::CXXConversionFunctionName:
1220    // <operator-name> ::= cv <type>    # (cast)
1221    Out << "cv";
1222    mangleType(Name.getCXXNameType());
1223    break;
1224
1225  case DeclarationName::CXXOperatorName: {
1226    unsigned Arity;
1227    if (ND) {
1228      Arity = cast<FunctionDecl>(ND)->getNumParams();
1229
1230      // If we have a C++ member function, we need to include the 'this' pointer.
1231      // FIXME: This does not make sense for operators that are static, but their
1232      // names stay the same regardless of the arity (operator new for instance).
1233      if (isa<CXXMethodDecl>(ND))
1234        Arity++;
1235    } else
1236      Arity = KnownArity;
1237
1238    mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
1239    break;
1240  }
1241
1242  case DeclarationName::CXXLiteralOperatorName:
1243    // FIXME: This mangling is not yet official.
1244    Out << "li";
1245    mangleSourceName(Name.getCXXLiteralIdentifier());
1246    break;
1247
1248  case DeclarationName::CXXUsingDirective:
1249    llvm_unreachable("Can't mangle a using directive name!");
1250  }
1251}
1252
1253void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1254  // <source-name> ::= <positive length number> <identifier>
1255  // <number> ::= [n] <non-negative decimal integer>
1256  // <identifier> ::= <unqualified source code identifier>
1257  Out << II->getLength() << II->getName();
1258}
1259
1260void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
1261                                      const DeclContext *DC,
1262                                      bool NoFunction) {
1263  // <nested-name>
1264  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1265  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1266  //       <template-args> E
1267
1268  Out << 'N';
1269  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1270    mangleQualifiers(Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
1271    mangleRefQualifier(Method->getRefQualifier());
1272  }
1273
1274  // Check if we have a template.
1275  const TemplateArgumentList *TemplateArgs = 0;
1276  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1277    mangleTemplatePrefix(TD, NoFunction);
1278    mangleTemplateArgs(*TemplateArgs);
1279  }
1280  else {
1281    manglePrefix(DC, NoFunction);
1282    mangleUnqualifiedName(ND);
1283  }
1284
1285  Out << 'E';
1286}
1287void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1288                                      const TemplateArgument *TemplateArgs,
1289                                      unsigned NumTemplateArgs) {
1290  // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1291
1292  Out << 'N';
1293
1294  mangleTemplatePrefix(TD);
1295  mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
1296
1297  Out << 'E';
1298}
1299
1300void CXXNameMangler::mangleLocalName(const Decl *D) {
1301  // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1302  //              := Z <function encoding> E s [<discriminator>]
1303  // <local-name> := Z <function encoding> E d [ <parameter number> ]
1304  //                 _ <entity name>
1305  // <discriminator> := _ <non-negative number>
1306  assert(isa<NamedDecl>(D) || isa<BlockDecl>(D));
1307  const RecordDecl *RD = GetLocalClassDecl(D);
1308  const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D);
1309
1310  Out << 'Z';
1311
1312  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC))
1313    mangleObjCMethodName(MD);
1314  else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
1315    mangleBlockForPrefix(BD);
1316  else
1317    mangleFunctionEncoding(cast<FunctionDecl>(DC));
1318
1319  Out << 'E';
1320
1321  if (RD) {
1322    // The parameter number is omitted for the last parameter, 0 for the
1323    // second-to-last parameter, 1 for the third-to-last parameter, etc. The
1324    // <entity name> will of course contain a <closure-type-name>: Its
1325    // numbering will be local to the particular argument in which it appears
1326    // -- other default arguments do not affect its encoding.
1327    const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1328    if (CXXRD->isLambda()) {
1329      if (const ParmVarDecl *Parm
1330              = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) {
1331        if (const FunctionDecl *Func
1332              = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1333          Out << 'd';
1334          unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1335          if (Num > 1)
1336            mangleNumber(Num - 2);
1337          Out << '_';
1338        }
1339      }
1340    }
1341
1342    // Mangle the name relative to the closest enclosing function.
1343    // equality ok because RD derived from ND above
1344    if (D == RD)  {
1345      mangleUnqualifiedName(RD);
1346    } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1347      manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/);
1348      mangleUnqualifiedBlock(BD);
1349    } else {
1350      const NamedDecl *ND = cast<NamedDecl>(D);
1351      mangleNestedName(ND, getEffectiveDeclContext(ND), true /*NoFunction*/);
1352    }
1353  } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1354    // Mangle a block in a default parameter; see above explanation for
1355    // lambdas.
1356    if (const ParmVarDecl *Parm
1357            = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) {
1358      if (const FunctionDecl *Func
1359            = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1360        Out << 'd';
1361        unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1362        if (Num > 1)
1363          mangleNumber(Num - 2);
1364        Out << '_';
1365      }
1366    }
1367
1368    mangleUnqualifiedBlock(BD);
1369  } else {
1370    mangleUnqualifiedName(cast<NamedDecl>(D));
1371  }
1372
1373  if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) {
1374    unsigned disc;
1375    if (Context.getNextDiscriminator(ND, disc)) {
1376      if (disc < 10)
1377        Out << '_' << disc;
1378      else
1379        Out << "__" << disc << '_';
1380    }
1381  }
1382}
1383
1384void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) {
1385  if (GetLocalClassDecl(Block)) {
1386    mangleLocalName(Block);
1387    return;
1388  }
1389  const DeclContext *DC = getEffectiveDeclContext(Block);
1390  if (isLocalContainerContext(DC)) {
1391    mangleLocalName(Block);
1392    return;
1393  }
1394  manglePrefix(getEffectiveDeclContext(Block));
1395  mangleUnqualifiedBlock(Block);
1396}
1397
1398void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) {
1399  if (Decl *Context = Block->getBlockManglingContextDecl()) {
1400    if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1401        Context->getDeclContext()->isRecord()) {
1402      if (const IdentifierInfo *Name
1403            = cast<NamedDecl>(Context)->getIdentifier()) {
1404        mangleSourceName(Name);
1405        Out << 'M';
1406      }
1407    }
1408  }
1409
1410  // If we have a block mangling number, use it.
1411  unsigned Number = Block->getBlockManglingNumber();
1412  // Otherwise, just make up a number. It doesn't matter what it is because
1413  // the symbol in question isn't externally visible.
1414  if (!Number)
1415    Number = Context.getBlockId(Block, false);
1416  Out << "Ub";
1417  if (Number > 1)
1418    Out << Number - 2;
1419  Out << '_';
1420}
1421
1422void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1423  // If the context of a closure type is an initializer for a class member
1424  // (static or nonstatic), it is encoded in a qualified name with a final
1425  // <prefix> of the form:
1426  //
1427  //   <data-member-prefix> := <member source-name> M
1428  //
1429  // Technically, the data-member-prefix is part of the <prefix>. However,
1430  // since a closure type will always be mangled with a prefix, it's easier
1431  // to emit that last part of the prefix here.
1432  if (Decl *Context = Lambda->getLambdaContextDecl()) {
1433    if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1434        Context->getDeclContext()->isRecord()) {
1435      if (const IdentifierInfo *Name
1436            = cast<NamedDecl>(Context)->getIdentifier()) {
1437        mangleSourceName(Name);
1438        Out << 'M';
1439      }
1440    }
1441  }
1442
1443  Out << "Ul";
1444  const FunctionProtoType *Proto = Lambda->getLambdaTypeInfo()->getType()->
1445                                   getAs<FunctionProtoType>();
1446  mangleBareFunctionType(Proto, /*MangleReturnType=*/false);
1447  Out << "E";
1448
1449  // The number is omitted for the first closure type with a given
1450  // <lambda-sig> in a given context; it is n-2 for the nth closure type
1451  // (in lexical order) with that same <lambda-sig> and context.
1452  //
1453  // The AST keeps track of the number for us.
1454  unsigned Number = Lambda->getLambdaManglingNumber();
1455  assert(Number > 0 && "Lambda should be mangled as an unnamed class");
1456  if (Number > 1)
1457    mangleNumber(Number - 2);
1458  Out << '_';
1459}
1460
1461void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
1462  switch (qualifier->getKind()) {
1463  case NestedNameSpecifier::Global:
1464    // nothing
1465    return;
1466
1467  case NestedNameSpecifier::Namespace:
1468    mangleName(qualifier->getAsNamespace());
1469    return;
1470
1471  case NestedNameSpecifier::NamespaceAlias:
1472    mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
1473    return;
1474
1475  case NestedNameSpecifier::TypeSpec:
1476  case NestedNameSpecifier::TypeSpecWithTemplate:
1477    manglePrefix(QualType(qualifier->getAsType(), 0));
1478    return;
1479
1480  case NestedNameSpecifier::Identifier:
1481    // Member expressions can have these without prefixes, but that
1482    // should end up in mangleUnresolvedPrefix instead.
1483    assert(qualifier->getPrefix());
1484    manglePrefix(qualifier->getPrefix());
1485
1486    mangleSourceName(qualifier->getAsIdentifier());
1487    return;
1488  }
1489
1490  llvm_unreachable("unexpected nested name specifier");
1491}
1492
1493void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
1494  //  <prefix> ::= <prefix> <unqualified-name>
1495  //           ::= <template-prefix> <template-args>
1496  //           ::= <template-param>
1497  //           ::= # empty
1498  //           ::= <substitution>
1499
1500  DC = IgnoreLinkageSpecDecls(DC);
1501
1502  if (DC->isTranslationUnit())
1503    return;
1504
1505  if (NoFunction && isLocalContainerContext(DC))
1506    return;
1507
1508  assert(!isLocalContainerContext(DC));
1509
1510  const NamedDecl *ND = cast<NamedDecl>(DC);
1511  if (mangleSubstitution(ND))
1512    return;
1513
1514  // Check if we have a template.
1515  const TemplateArgumentList *TemplateArgs = 0;
1516  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1517    mangleTemplatePrefix(TD);
1518    mangleTemplateArgs(*TemplateArgs);
1519  } else {
1520    manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1521    mangleUnqualifiedName(ND);
1522  }
1523
1524  addSubstitution(ND);
1525}
1526
1527void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
1528  // <template-prefix> ::= <prefix> <template unqualified-name>
1529  //                   ::= <template-param>
1530  //                   ::= <substitution>
1531  if (TemplateDecl *TD = Template.getAsTemplateDecl())
1532    return mangleTemplatePrefix(TD);
1533
1534  if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
1535    manglePrefix(Qualified->getQualifier());
1536
1537  if (OverloadedTemplateStorage *Overloaded
1538                                      = Template.getAsOverloadedTemplate()) {
1539    mangleUnqualifiedName(0, (*Overloaded->begin())->getDeclName(),
1540                          UnknownArity);
1541    return;
1542  }
1543
1544  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
1545  assert(Dependent && "Unknown template name kind?");
1546  manglePrefix(Dependent->getQualifier());
1547  mangleUnscopedTemplateName(Template);
1548}
1549
1550void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND,
1551                                          bool NoFunction) {
1552  // <template-prefix> ::= <prefix> <template unqualified-name>
1553  //                   ::= <template-param>
1554  //                   ::= <substitution>
1555  // <template-template-param> ::= <template-param>
1556  //                               <substitution>
1557
1558  if (mangleSubstitution(ND))
1559    return;
1560
1561  // <template-template-param> ::= <template-param>
1562  if (const TemplateTemplateParmDecl *TTP
1563                                     = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1564    mangleTemplateParameter(TTP->getIndex());
1565    return;
1566  }
1567
1568  manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1569  mangleUnqualifiedName(ND->getTemplatedDecl());
1570  addSubstitution(ND);
1571}
1572
1573/// Mangles a template name under the production <type>.  Required for
1574/// template template arguments.
1575///   <type> ::= <class-enum-type>
1576///          ::= <template-param>
1577///          ::= <substitution>
1578void CXXNameMangler::mangleType(TemplateName TN) {
1579  if (mangleSubstitution(TN))
1580    return;
1581
1582  TemplateDecl *TD = 0;
1583
1584  switch (TN.getKind()) {
1585  case TemplateName::QualifiedTemplate:
1586    TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
1587    goto HaveDecl;
1588
1589  case TemplateName::Template:
1590    TD = TN.getAsTemplateDecl();
1591    goto HaveDecl;
1592
1593  HaveDecl:
1594    if (isa<TemplateTemplateParmDecl>(TD))
1595      mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
1596    else
1597      mangleName(TD);
1598    break;
1599
1600  case TemplateName::OverloadedTemplate:
1601    llvm_unreachable("can't mangle an overloaded template name as a <type>");
1602
1603  case TemplateName::DependentTemplate: {
1604    const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
1605    assert(Dependent->isIdentifier());
1606
1607    // <class-enum-type> ::= <name>
1608    // <name> ::= <nested-name>
1609    mangleUnresolvedPrefix(Dependent->getQualifier(), 0);
1610    mangleSourceName(Dependent->getIdentifier());
1611    break;
1612  }
1613
1614  case TemplateName::SubstTemplateTemplateParm: {
1615    // Substituted template parameters are mangled as the substituted
1616    // template.  This will check for the substitution twice, which is
1617    // fine, but we have to return early so that we don't try to *add*
1618    // the substitution twice.
1619    SubstTemplateTemplateParmStorage *subst
1620      = TN.getAsSubstTemplateTemplateParm();
1621    mangleType(subst->getReplacement());
1622    return;
1623  }
1624
1625  case TemplateName::SubstTemplateTemplateParmPack: {
1626    // FIXME: not clear how to mangle this!
1627    // template <template <class> class T...> class A {
1628    //   template <template <class> class U...> void foo(B<T,U> x...);
1629    // };
1630    Out << "_SUBSTPACK_";
1631    break;
1632  }
1633  }
1634
1635  addSubstitution(TN);
1636}
1637
1638void
1639CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
1640  switch (OO) {
1641  // <operator-name> ::= nw     # new
1642  case OO_New: Out << "nw"; break;
1643  //              ::= na        # new[]
1644  case OO_Array_New: Out << "na"; break;
1645  //              ::= dl        # delete
1646  case OO_Delete: Out << "dl"; break;
1647  //              ::= da        # delete[]
1648  case OO_Array_Delete: Out << "da"; break;
1649  //              ::= ps        # + (unary)
1650  //              ::= pl        # + (binary or unknown)
1651  case OO_Plus:
1652    Out << (Arity == 1? "ps" : "pl"); break;
1653  //              ::= ng        # - (unary)
1654  //              ::= mi        # - (binary or unknown)
1655  case OO_Minus:
1656    Out << (Arity == 1? "ng" : "mi"); break;
1657  //              ::= ad        # & (unary)
1658  //              ::= an        # & (binary or unknown)
1659  case OO_Amp:
1660    Out << (Arity == 1? "ad" : "an"); break;
1661  //              ::= de        # * (unary)
1662  //              ::= ml        # * (binary or unknown)
1663  case OO_Star:
1664    // Use binary when unknown.
1665    Out << (Arity == 1? "de" : "ml"); break;
1666  //              ::= co        # ~
1667  case OO_Tilde: Out << "co"; break;
1668  //              ::= dv        # /
1669  case OO_Slash: Out << "dv"; break;
1670  //              ::= rm        # %
1671  case OO_Percent: Out << "rm"; break;
1672  //              ::= or        # |
1673  case OO_Pipe: Out << "or"; break;
1674  //              ::= eo        # ^
1675  case OO_Caret: Out << "eo"; break;
1676  //              ::= aS        # =
1677  case OO_Equal: Out << "aS"; break;
1678  //              ::= pL        # +=
1679  case OO_PlusEqual: Out << "pL"; break;
1680  //              ::= mI        # -=
1681  case OO_MinusEqual: Out << "mI"; break;
1682  //              ::= mL        # *=
1683  case OO_StarEqual: Out << "mL"; break;
1684  //              ::= dV        # /=
1685  case OO_SlashEqual: Out << "dV"; break;
1686  //              ::= rM        # %=
1687  case OO_PercentEqual: Out << "rM"; break;
1688  //              ::= aN        # &=
1689  case OO_AmpEqual: Out << "aN"; break;
1690  //              ::= oR        # |=
1691  case OO_PipeEqual: Out << "oR"; break;
1692  //              ::= eO        # ^=
1693  case OO_CaretEqual: Out << "eO"; break;
1694  //              ::= ls        # <<
1695  case OO_LessLess: Out << "ls"; break;
1696  //              ::= rs        # >>
1697  case OO_GreaterGreater: Out << "rs"; break;
1698  //              ::= lS        # <<=
1699  case OO_LessLessEqual: Out << "lS"; break;
1700  //              ::= rS        # >>=
1701  case OO_GreaterGreaterEqual: Out << "rS"; break;
1702  //              ::= eq        # ==
1703  case OO_EqualEqual: Out << "eq"; break;
1704  //              ::= ne        # !=
1705  case OO_ExclaimEqual: Out << "ne"; break;
1706  //              ::= lt        # <
1707  case OO_Less: Out << "lt"; break;
1708  //              ::= gt        # >
1709  case OO_Greater: Out << "gt"; break;
1710  //              ::= le        # <=
1711  case OO_LessEqual: Out << "le"; break;
1712  //              ::= ge        # >=
1713  case OO_GreaterEqual: Out << "ge"; break;
1714  //              ::= nt        # !
1715  case OO_Exclaim: Out << "nt"; break;
1716  //              ::= aa        # &&
1717  case OO_AmpAmp: Out << "aa"; break;
1718  //              ::= oo        # ||
1719  case OO_PipePipe: Out << "oo"; break;
1720  //              ::= pp        # ++
1721  case OO_PlusPlus: Out << "pp"; break;
1722  //              ::= mm        # --
1723  case OO_MinusMinus: Out << "mm"; break;
1724  //              ::= cm        # ,
1725  case OO_Comma: Out << "cm"; break;
1726  //              ::= pm        # ->*
1727  case OO_ArrowStar: Out << "pm"; break;
1728  //              ::= pt        # ->
1729  case OO_Arrow: Out << "pt"; break;
1730  //              ::= cl        # ()
1731  case OO_Call: Out << "cl"; break;
1732  //              ::= ix        # []
1733  case OO_Subscript: Out << "ix"; break;
1734
1735  //              ::= qu        # ?
1736  // The conditional operator can't be overloaded, but we still handle it when
1737  // mangling expressions.
1738  case OO_Conditional: Out << "qu"; break;
1739
1740  case OO_None:
1741  case NUM_OVERLOADED_OPERATORS:
1742    llvm_unreachable("Not an overloaded operator");
1743  }
1744}
1745
1746void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
1747  // <CV-qualifiers> ::= [r] [V] [K]    # restrict (C99), volatile, const
1748  if (Quals.hasRestrict())
1749    Out << 'r';
1750  if (Quals.hasVolatile())
1751    Out << 'V';
1752  if (Quals.hasConst())
1753    Out << 'K';
1754
1755  if (Quals.hasAddressSpace()) {
1756    // Extension:
1757    //
1758    //   <type> ::= U <address-space-number>
1759    //
1760    // where <address-space-number> is a source name consisting of 'AS'
1761    // followed by the address space <number>.
1762    SmallString<64> ASString;
1763    ASString = "AS" + llvm::utostr_32(
1764        Context.getASTContext().getTargetAddressSpace(Quals.getAddressSpace()));
1765    Out << 'U' << ASString.size() << ASString;
1766  }
1767
1768  StringRef LifetimeName;
1769  switch (Quals.getObjCLifetime()) {
1770  // Objective-C ARC Extension:
1771  //
1772  //   <type> ::= U "__strong"
1773  //   <type> ::= U "__weak"
1774  //   <type> ::= U "__autoreleasing"
1775  case Qualifiers::OCL_None:
1776    break;
1777
1778  case Qualifiers::OCL_Weak:
1779    LifetimeName = "__weak";
1780    break;
1781
1782  case Qualifiers::OCL_Strong:
1783    LifetimeName = "__strong";
1784    break;
1785
1786  case Qualifiers::OCL_Autoreleasing:
1787    LifetimeName = "__autoreleasing";
1788    break;
1789
1790  case Qualifiers::OCL_ExplicitNone:
1791    // The __unsafe_unretained qualifier is *not* mangled, so that
1792    // __unsafe_unretained types in ARC produce the same manglings as the
1793    // equivalent (but, naturally, unqualified) types in non-ARC, providing
1794    // better ABI compatibility.
1795    //
1796    // It's safe to do this because unqualified 'id' won't show up
1797    // in any type signatures that need to be mangled.
1798    break;
1799  }
1800  if (!LifetimeName.empty())
1801    Out << 'U' << LifetimeName.size() << LifetimeName;
1802}
1803
1804void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
1805  // <ref-qualifier> ::= R                # lvalue reference
1806  //                 ::= O                # rvalue-reference
1807  // Proposal to Itanium C++ ABI list on 1/26/11
1808  switch (RefQualifier) {
1809  case RQ_None:
1810    break;
1811
1812  case RQ_LValue:
1813    Out << 'R';
1814    break;
1815
1816  case RQ_RValue:
1817    Out << 'O';
1818    break;
1819  }
1820}
1821
1822void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1823  Context.mangleObjCMethodName(MD, Out);
1824}
1825
1826void CXXNameMangler::mangleType(QualType T) {
1827  // If our type is instantiation-dependent but not dependent, we mangle
1828  // it as it was written in the source, removing any top-level sugar.
1829  // Otherwise, use the canonical type.
1830  //
1831  // FIXME: This is an approximation of the instantiation-dependent name
1832  // mangling rules, since we should really be using the type as written and
1833  // augmented via semantic analysis (i.e., with implicit conversions and
1834  // default template arguments) for any instantiation-dependent type.
1835  // Unfortunately, that requires several changes to our AST:
1836  //   - Instantiation-dependent TemplateSpecializationTypes will need to be
1837  //     uniqued, so that we can handle substitutions properly
1838  //   - Default template arguments will need to be represented in the
1839  //     TemplateSpecializationType, since they need to be mangled even though
1840  //     they aren't written.
1841  //   - Conversions on non-type template arguments need to be expressed, since
1842  //     they can affect the mangling of sizeof/alignof.
1843  if (!T->isInstantiationDependentType() || T->isDependentType())
1844    T = T.getCanonicalType();
1845  else {
1846    // Desugar any types that are purely sugar.
1847    do {
1848      // Don't desugar through template specialization types that aren't
1849      // type aliases. We need to mangle the template arguments as written.
1850      if (const TemplateSpecializationType *TST
1851                                      = dyn_cast<TemplateSpecializationType>(T))
1852        if (!TST->isTypeAlias())
1853          break;
1854
1855      QualType Desugared
1856        = T.getSingleStepDesugaredType(Context.getASTContext());
1857      if (Desugared == T)
1858        break;
1859
1860      T = Desugared;
1861    } while (true);
1862  }
1863  SplitQualType split = T.split();
1864  Qualifiers quals = split.Quals;
1865  const Type *ty = split.Ty;
1866
1867  bool isSubstitutable = quals || !isa<BuiltinType>(T);
1868  if (isSubstitutable && mangleSubstitution(T))
1869    return;
1870
1871  // If we're mangling a qualified array type, push the qualifiers to
1872  // the element type.
1873  if (quals && isa<ArrayType>(T)) {
1874    ty = Context.getASTContext().getAsArrayType(T);
1875    quals = Qualifiers();
1876
1877    // Note that we don't update T: we want to add the
1878    // substitution at the original type.
1879  }
1880
1881  if (quals) {
1882    mangleQualifiers(quals);
1883    // Recurse:  even if the qualified type isn't yet substitutable,
1884    // the unqualified type might be.
1885    mangleType(QualType(ty, 0));
1886  } else {
1887    switch (ty->getTypeClass()) {
1888#define ABSTRACT_TYPE(CLASS, PARENT)
1889#define NON_CANONICAL_TYPE(CLASS, PARENT) \
1890    case Type::CLASS: \
1891      llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1892      return;
1893#define TYPE(CLASS, PARENT) \
1894    case Type::CLASS: \
1895      mangleType(static_cast<const CLASS##Type*>(ty)); \
1896      break;
1897#include "clang/AST/TypeNodes.def"
1898    }
1899  }
1900
1901  // Add the substitution.
1902  if (isSubstitutable)
1903    addSubstitution(T);
1904}
1905
1906void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
1907  if (!mangleStandardSubstitution(ND))
1908    mangleName(ND);
1909}
1910
1911void CXXNameMangler::mangleType(const BuiltinType *T) {
1912  //  <type>         ::= <builtin-type>
1913  //  <builtin-type> ::= v  # void
1914  //                 ::= w  # wchar_t
1915  //                 ::= b  # bool
1916  //                 ::= c  # char
1917  //                 ::= a  # signed char
1918  //                 ::= h  # unsigned char
1919  //                 ::= s  # short
1920  //                 ::= t  # unsigned short
1921  //                 ::= i  # int
1922  //                 ::= j  # unsigned int
1923  //                 ::= l  # long
1924  //                 ::= m  # unsigned long
1925  //                 ::= x  # long long, __int64
1926  //                 ::= y  # unsigned long long, __int64
1927  //                 ::= n  # __int128
1928  // UNSUPPORTED:    ::= o  # unsigned __int128
1929  //                 ::= f  # float
1930  //                 ::= d  # double
1931  //                 ::= e  # long double, __float80
1932  // UNSUPPORTED:    ::= g  # __float128
1933  // UNSUPPORTED:    ::= Dd # IEEE 754r decimal floating point (64 bits)
1934  // UNSUPPORTED:    ::= De # IEEE 754r decimal floating point (128 bits)
1935  // UNSUPPORTED:    ::= Df # IEEE 754r decimal floating point (32 bits)
1936  //                 ::= Dh # IEEE 754r half-precision floating point (16 bits)
1937  //                 ::= Di # char32_t
1938  //                 ::= Ds # char16_t
1939  //                 ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
1940  //                 ::= u <source-name>    # vendor extended type
1941  switch (T->getKind()) {
1942  case BuiltinType::Void: Out << 'v'; break;
1943  case BuiltinType::Bool: Out << 'b'; break;
1944  case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
1945  case BuiltinType::UChar: Out << 'h'; break;
1946  case BuiltinType::UShort: Out << 't'; break;
1947  case BuiltinType::UInt: Out << 'j'; break;
1948  case BuiltinType::ULong: Out << 'm'; break;
1949  case BuiltinType::ULongLong: Out << 'y'; break;
1950  case BuiltinType::UInt128: Out << 'o'; break;
1951  case BuiltinType::SChar: Out << 'a'; break;
1952  case BuiltinType::WChar_S:
1953  case BuiltinType::WChar_U: Out << 'w'; break;
1954  case BuiltinType::Char16: Out << "Ds"; break;
1955  case BuiltinType::Char32: Out << "Di"; break;
1956  case BuiltinType::Short: Out << 's'; break;
1957  case BuiltinType::Int: Out << 'i'; break;
1958  case BuiltinType::Long: Out << 'l'; break;
1959  case BuiltinType::LongLong: Out << 'x'; break;
1960  case BuiltinType::Int128: Out << 'n'; break;
1961  case BuiltinType::Half: Out << "Dh"; break;
1962  case BuiltinType::Float: Out << 'f'; break;
1963  case BuiltinType::Double: Out << 'd'; break;
1964  case BuiltinType::LongDouble: Out << 'e'; break;
1965  case BuiltinType::NullPtr: Out << "Dn"; break;
1966
1967#define BUILTIN_TYPE(Id, SingletonId)
1968#define PLACEHOLDER_TYPE(Id, SingletonId) \
1969  case BuiltinType::Id:
1970#include "clang/AST/BuiltinTypes.def"
1971  case BuiltinType::Dependent:
1972    llvm_unreachable("mangling a placeholder type");
1973  case BuiltinType::ObjCId: Out << "11objc_object"; break;
1974  case BuiltinType::ObjCClass: Out << "10objc_class"; break;
1975  case BuiltinType::ObjCSel: Out << "13objc_selector"; break;
1976  case BuiltinType::OCLImage1d: Out << "11ocl_image1d"; break;
1977  case BuiltinType::OCLImage1dArray: Out << "16ocl_image1darray"; break;
1978  case BuiltinType::OCLImage1dBuffer: Out << "17ocl_image1dbuffer"; break;
1979  case BuiltinType::OCLImage2d: Out << "11ocl_image2d"; break;
1980  case BuiltinType::OCLImage2dArray: Out << "16ocl_image2darray"; break;
1981  case BuiltinType::OCLImage3d: Out << "11ocl_image3d"; break;
1982  case BuiltinType::OCLSampler: Out << "11ocl_sampler"; break;
1983  case BuiltinType::OCLEvent: Out << "9ocl_event"; break;
1984  }
1985}
1986
1987// <type>          ::= <function-type>
1988// <function-type> ::= [<CV-qualifiers>] F [Y]
1989//                      <bare-function-type> [<ref-qualifier>] E
1990// (Proposal to cxx-abi-dev, 2012-05-11)
1991void CXXNameMangler::mangleType(const FunctionProtoType *T) {
1992  // Mangle CV-qualifiers, if present.  These are 'this' qualifiers,
1993  // e.g. "const" in "int (A::*)() const".
1994  mangleQualifiers(Qualifiers::fromCVRMask(T->getTypeQuals()));
1995
1996  Out << 'F';
1997
1998  // FIXME: We don't have enough information in the AST to produce the 'Y'
1999  // encoding for extern "C" function types.
2000  mangleBareFunctionType(T, /*MangleReturnType=*/true);
2001
2002  // Mangle the ref-qualifier, if present.
2003  mangleRefQualifier(T->getRefQualifier());
2004
2005  Out << 'E';
2006}
2007void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
2008  llvm_unreachable("Can't mangle K&R function prototypes");
2009}
2010void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
2011                                            bool MangleReturnType) {
2012  // We should never be mangling something without a prototype.
2013  const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2014
2015  // Record that we're in a function type.  See mangleFunctionParam
2016  // for details on what we're trying to achieve here.
2017  FunctionTypeDepthState saved = FunctionTypeDepth.push();
2018
2019  // <bare-function-type> ::= <signature type>+
2020  if (MangleReturnType) {
2021    FunctionTypeDepth.enterResultType();
2022    mangleType(Proto->getResultType());
2023    FunctionTypeDepth.leaveResultType();
2024  }
2025
2026  if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {
2027    //   <builtin-type> ::= v   # void
2028    Out << 'v';
2029
2030    FunctionTypeDepth.pop(saved);
2031    return;
2032  }
2033
2034  for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
2035                                         ArgEnd = Proto->arg_type_end();
2036       Arg != ArgEnd; ++Arg)
2037    mangleType(Context.getASTContext().getSignatureParameterType(*Arg));
2038
2039  FunctionTypeDepth.pop(saved);
2040
2041  // <builtin-type>      ::= z  # ellipsis
2042  if (Proto->isVariadic())
2043    Out << 'z';
2044}
2045
2046// <type>            ::= <class-enum-type>
2047// <class-enum-type> ::= <name>
2048void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
2049  mangleName(T->getDecl());
2050}
2051
2052// <type>            ::= <class-enum-type>
2053// <class-enum-type> ::= <name>
2054void CXXNameMangler::mangleType(const EnumType *T) {
2055  mangleType(static_cast<const TagType*>(T));
2056}
2057void CXXNameMangler::mangleType(const RecordType *T) {
2058  mangleType(static_cast<const TagType*>(T));
2059}
2060void CXXNameMangler::mangleType(const TagType *T) {
2061  mangleName(T->getDecl());
2062}
2063
2064// <type>       ::= <array-type>
2065// <array-type> ::= A <positive dimension number> _ <element type>
2066//              ::= A [<dimension expression>] _ <element type>
2067void CXXNameMangler::mangleType(const ConstantArrayType *T) {
2068  Out << 'A' << T->getSize() << '_';
2069  mangleType(T->getElementType());
2070}
2071void CXXNameMangler::mangleType(const VariableArrayType *T) {
2072  Out << 'A';
2073  // decayed vla types (size 0) will just be skipped.
2074  if (T->getSizeExpr())
2075    mangleExpression(T->getSizeExpr());
2076  Out << '_';
2077  mangleType(T->getElementType());
2078}
2079void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
2080  Out << 'A';
2081  mangleExpression(T->getSizeExpr());
2082  Out << '_';
2083  mangleType(T->getElementType());
2084}
2085void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
2086  Out << "A_";
2087  mangleType(T->getElementType());
2088}
2089
2090// <type>                   ::= <pointer-to-member-type>
2091// <pointer-to-member-type> ::= M <class type> <member type>
2092void CXXNameMangler::mangleType(const MemberPointerType *T) {
2093  Out << 'M';
2094  mangleType(QualType(T->getClass(), 0));
2095  QualType PointeeType = T->getPointeeType();
2096  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
2097    mangleType(FPT);
2098
2099    // Itanium C++ ABI 5.1.8:
2100    //
2101    //   The type of a non-static member function is considered to be different,
2102    //   for the purposes of substitution, from the type of a namespace-scope or
2103    //   static member function whose type appears similar. The types of two
2104    //   non-static member functions are considered to be different, for the
2105    //   purposes of substitution, if the functions are members of different
2106    //   classes. In other words, for the purposes of substitution, the class of
2107    //   which the function is a member is considered part of the type of
2108    //   function.
2109
2110    // Given that we already substitute member function pointers as a
2111    // whole, the net effect of this rule is just to unconditionally
2112    // suppress substitution on the function type in a member pointer.
2113    // We increment the SeqID here to emulate adding an entry to the
2114    // substitution table.
2115    ++SeqID;
2116  } else
2117    mangleType(PointeeType);
2118}
2119
2120// <type>           ::= <template-param>
2121void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
2122  mangleTemplateParameter(T->getIndex());
2123}
2124
2125// <type>           ::= <template-param>
2126void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
2127  // FIXME: not clear how to mangle this!
2128  // template <class T...> class A {
2129  //   template <class U...> void foo(T(*)(U) x...);
2130  // };
2131  Out << "_SUBSTPACK_";
2132}
2133
2134// <type> ::= P <type>   # pointer-to
2135void CXXNameMangler::mangleType(const PointerType *T) {
2136  Out << 'P';
2137  mangleType(T->getPointeeType());
2138}
2139void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
2140  Out << 'P';
2141  mangleType(T->getPointeeType());
2142}
2143
2144// <type> ::= R <type>   # reference-to
2145void CXXNameMangler::mangleType(const LValueReferenceType *T) {
2146  Out << 'R';
2147  mangleType(T->getPointeeType());
2148}
2149
2150// <type> ::= O <type>   # rvalue reference-to (C++0x)
2151void CXXNameMangler::mangleType(const RValueReferenceType *T) {
2152  Out << 'O';
2153  mangleType(T->getPointeeType());
2154}
2155
2156// <type> ::= C <type>   # complex pair (C 2000)
2157void CXXNameMangler::mangleType(const ComplexType *T) {
2158  Out << 'C';
2159  mangleType(T->getElementType());
2160}
2161
2162// ARM's ABI for Neon vector types specifies that they should be mangled as
2163// if they are structs (to match ARM's initial implementation).  The
2164// vector type must be one of the special types predefined by ARM.
2165void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
2166  QualType EltType = T->getElementType();
2167  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2168  const char *EltName = 0;
2169  if (T->getVectorKind() == VectorType::NeonPolyVector) {
2170    switch (cast<BuiltinType>(EltType)->getKind()) {
2171    case BuiltinType::SChar:     EltName = "poly8_t"; break;
2172    case BuiltinType::Short:     EltName = "poly16_t"; break;
2173    default: llvm_unreachable("unexpected Neon polynomial vector element type");
2174    }
2175  } else {
2176    switch (cast<BuiltinType>(EltType)->getKind()) {
2177    case BuiltinType::SChar:     EltName = "int8_t"; break;
2178    case BuiltinType::UChar:     EltName = "uint8_t"; break;
2179    case BuiltinType::Short:     EltName = "int16_t"; break;
2180    case BuiltinType::UShort:    EltName = "uint16_t"; break;
2181    case BuiltinType::Int:       EltName = "int32_t"; break;
2182    case BuiltinType::UInt:      EltName = "uint32_t"; break;
2183    case BuiltinType::LongLong:  EltName = "int64_t"; break;
2184    case BuiltinType::ULongLong: EltName = "uint64_t"; break;
2185    case BuiltinType::Float:     EltName = "float32_t"; break;
2186    case BuiltinType::Half:      EltName = "float16_t";break;
2187    default:
2188      llvm_unreachable("unexpected Neon vector element type");
2189    }
2190  }
2191  const char *BaseName = 0;
2192  unsigned BitSize = (T->getNumElements() *
2193                      getASTContext().getTypeSize(EltType));
2194  if (BitSize == 64)
2195    BaseName = "__simd64_";
2196  else {
2197    assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
2198    BaseName = "__simd128_";
2199  }
2200  Out << strlen(BaseName) + strlen(EltName);
2201  Out << BaseName << EltName;
2202}
2203
2204static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) {
2205  switch (EltType->getKind()) {
2206  case BuiltinType::SChar:
2207    return "Int8";
2208  case BuiltinType::Short:
2209    return "Int16";
2210  case BuiltinType::Int:
2211    return "Int32";
2212  case BuiltinType::LongLong:
2213    return "Int64";
2214  case BuiltinType::UChar:
2215    return "Uint8";
2216  case BuiltinType::UShort:
2217    return "Uint16";
2218  case BuiltinType::UInt:
2219    return "Uint32";
2220  case BuiltinType::ULongLong:
2221    return "Uint64";
2222  case BuiltinType::Half:
2223    return "Float16";
2224  case BuiltinType::Float:
2225    return "Float32";
2226  case BuiltinType::Double:
2227    return "Float64";
2228  default:
2229    llvm_unreachable("Unexpected vector element base type");
2230  }
2231}
2232
2233// AArch64's ABI for Neon vector types specifies that they should be mangled as
2234// the equivalent internal name. The vector type must be one of the special
2235// types predefined by ARM.
2236void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) {
2237  QualType EltType = T->getElementType();
2238  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2239  unsigned BitSize =
2240      (T->getNumElements() * getASTContext().getTypeSize(EltType));
2241  (void)BitSize; // Silence warning.
2242
2243  assert((BitSize == 64 || BitSize == 128) &&
2244         "Neon vector type not 64 or 128 bits");
2245
2246  assert(getASTContext().getTypeSize(EltType) != BitSize &&
2247         "Vector of 1 element not permitted");
2248
2249  StringRef EltName;
2250  if (T->getVectorKind() == VectorType::NeonPolyVector) {
2251    switch (cast<BuiltinType>(EltType)->getKind()) {
2252    case BuiltinType::UChar:
2253      EltName = "Poly8";
2254      break;
2255    case BuiltinType::UShort:
2256      EltName = "Poly16";
2257      break;
2258    default:
2259      llvm_unreachable("unexpected Neon polynomial vector element type");
2260    }
2261  } else
2262    EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType));
2263
2264  std::string TypeName =
2265      ("__" + EltName + "x" + llvm::utostr(T->getNumElements()) + "_t").str();
2266  Out << TypeName.length() << TypeName;
2267}
2268
2269// GNU extension: vector types
2270// <type>                  ::= <vector-type>
2271// <vector-type>           ::= Dv <positive dimension number> _
2272//                                    <extended element type>
2273//                         ::= Dv [<dimension expression>] _ <element type>
2274// <extended element type> ::= <element type>
2275//                         ::= p # AltiVec vector pixel
2276//                         ::= b # Altivec vector bool
2277void CXXNameMangler::mangleType(const VectorType *T) {
2278  if ((T->getVectorKind() == VectorType::NeonVector ||
2279       T->getVectorKind() == VectorType::NeonPolyVector)) {
2280    if (getASTContext().getTargetInfo().getTriple().getArch() ==
2281        llvm::Triple::aarch64)
2282      mangleAArch64NeonVectorType(T);
2283    else
2284      mangleNeonVectorType(T);
2285    return;
2286  }
2287  Out << "Dv" << T->getNumElements() << '_';
2288  if (T->getVectorKind() == VectorType::AltiVecPixel)
2289    Out << 'p';
2290  else if (T->getVectorKind() == VectorType::AltiVecBool)
2291    Out << 'b';
2292  else
2293    mangleType(T->getElementType());
2294}
2295void CXXNameMangler::mangleType(const ExtVectorType *T) {
2296  mangleType(static_cast<const VectorType*>(T));
2297}
2298void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
2299  Out << "Dv";
2300  mangleExpression(T->getSizeExpr());
2301  Out << '_';
2302  mangleType(T->getElementType());
2303}
2304
2305void CXXNameMangler::mangleType(const PackExpansionType *T) {
2306  // <type>  ::= Dp <type>          # pack expansion (C++0x)
2307  Out << "Dp";
2308  mangleType(T->getPattern());
2309}
2310
2311void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
2312  mangleSourceName(T->getDecl()->getIdentifier());
2313}
2314
2315void CXXNameMangler::mangleType(const ObjCObjectType *T) {
2316  if (!T->qual_empty()) {
2317    // Mangle protocol qualifiers.
2318    SmallString<64> QualStr;
2319    llvm::raw_svector_ostream QualOS(QualStr);
2320    QualOS << "objcproto";
2321    ObjCObjectType::qual_iterator i = T->qual_begin(), e = T->qual_end();
2322    for ( ; i != e; ++i) {
2323      StringRef name = (*i)->getName();
2324      QualOS << name.size() << name;
2325    }
2326    QualOS.flush();
2327    Out << 'U' << QualStr.size() << QualStr;
2328  }
2329  mangleType(T->getBaseType());
2330}
2331
2332void CXXNameMangler::mangleType(const BlockPointerType *T) {
2333  Out << "U13block_pointer";
2334  mangleType(T->getPointeeType());
2335}
2336
2337void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
2338  // Mangle injected class name types as if the user had written the
2339  // specialization out fully.  It may not actually be possible to see
2340  // this mangling, though.
2341  mangleType(T->getInjectedSpecializationType());
2342}
2343
2344void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
2345  if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
2346    mangleName(TD, T->getArgs(), T->getNumArgs());
2347  } else {
2348    if (mangleSubstitution(QualType(T, 0)))
2349      return;
2350
2351    mangleTemplatePrefix(T->getTemplateName());
2352
2353    // FIXME: GCC does not appear to mangle the template arguments when
2354    // the template in question is a dependent template name. Should we
2355    // emulate that badness?
2356    mangleTemplateArgs(T->getArgs(), T->getNumArgs());
2357    addSubstitution(QualType(T, 0));
2358  }
2359}
2360
2361void CXXNameMangler::mangleType(const DependentNameType *T) {
2362  // Typename types are always nested
2363  Out << 'N';
2364  manglePrefix(T->getQualifier());
2365  mangleSourceName(T->getIdentifier());
2366  Out << 'E';
2367}
2368
2369void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
2370  // Dependently-scoped template types are nested if they have a prefix.
2371  Out << 'N';
2372
2373  // TODO: avoid making this TemplateName.
2374  TemplateName Prefix =
2375    getASTContext().getDependentTemplateName(T->getQualifier(),
2376                                             T->getIdentifier());
2377  mangleTemplatePrefix(Prefix);
2378
2379  // FIXME: GCC does not appear to mangle the template arguments when
2380  // the template in question is a dependent template name. Should we
2381  // emulate that badness?
2382  mangleTemplateArgs(T->getArgs(), T->getNumArgs());
2383  Out << 'E';
2384}
2385
2386void CXXNameMangler::mangleType(const TypeOfType *T) {
2387  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2388  // "extension with parameters" mangling.
2389  Out << "u6typeof";
2390}
2391
2392void CXXNameMangler::mangleType(const TypeOfExprType *T) {
2393  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2394  // "extension with parameters" mangling.
2395  Out << "u6typeof";
2396}
2397
2398void CXXNameMangler::mangleType(const DecltypeType *T) {
2399  Expr *E = T->getUnderlyingExpr();
2400
2401  // type ::= Dt <expression> E  # decltype of an id-expression
2402  //                             #   or class member access
2403  //      ::= DT <expression> E  # decltype of an expression
2404
2405  // This purports to be an exhaustive list of id-expressions and
2406  // class member accesses.  Note that we do not ignore parentheses;
2407  // parentheses change the semantics of decltype for these
2408  // expressions (and cause the mangler to use the other form).
2409  if (isa<DeclRefExpr>(E) ||
2410      isa<MemberExpr>(E) ||
2411      isa<UnresolvedLookupExpr>(E) ||
2412      isa<DependentScopeDeclRefExpr>(E) ||
2413      isa<CXXDependentScopeMemberExpr>(E) ||
2414      isa<UnresolvedMemberExpr>(E))
2415    Out << "Dt";
2416  else
2417    Out << "DT";
2418  mangleExpression(E);
2419  Out << 'E';
2420}
2421
2422void CXXNameMangler::mangleType(const UnaryTransformType *T) {
2423  // If this is dependent, we need to record that. If not, we simply
2424  // mangle it as the underlying type since they are equivalent.
2425  if (T->isDependentType()) {
2426    Out << 'U';
2427
2428    switch (T->getUTTKind()) {
2429      case UnaryTransformType::EnumUnderlyingType:
2430        Out << "3eut";
2431        break;
2432    }
2433  }
2434
2435  mangleType(T->getUnderlyingType());
2436}
2437
2438void CXXNameMangler::mangleType(const AutoType *T) {
2439  QualType D = T->getDeducedType();
2440  // <builtin-type> ::= Da  # dependent auto
2441  if (D.isNull())
2442    Out << (T->isDecltypeAuto() ? "Dc" : "Da");
2443  else
2444    mangleType(D);
2445}
2446
2447void CXXNameMangler::mangleType(const AtomicType *T) {
2448  // <type> ::= U <source-name> <type>	# vendor extended type qualifier
2449  // (Until there's a standardized mangling...)
2450  Out << "U7_Atomic";
2451  mangleType(T->getValueType());
2452}
2453
2454void CXXNameMangler::mangleIntegerLiteral(QualType T,
2455                                          const llvm::APSInt &Value) {
2456  //  <expr-primary> ::= L <type> <value number> E # integer literal
2457  Out << 'L';
2458
2459  mangleType(T);
2460  if (T->isBooleanType()) {
2461    // Boolean values are encoded as 0/1.
2462    Out << (Value.getBoolValue() ? '1' : '0');
2463  } else {
2464    mangleNumber(Value);
2465  }
2466  Out << 'E';
2467
2468}
2469
2470/// Mangles a member expression.
2471void CXXNameMangler::mangleMemberExpr(const Expr *base,
2472                                      bool isArrow,
2473                                      NestedNameSpecifier *qualifier,
2474                                      NamedDecl *firstQualifierLookup,
2475                                      DeclarationName member,
2476                                      unsigned arity) {
2477  // <expression> ::= dt <expression> <unresolved-name>
2478  //              ::= pt <expression> <unresolved-name>
2479  if (base) {
2480    if (base->isImplicitCXXThis()) {
2481      // Note: GCC mangles member expressions to the implicit 'this' as
2482      // *this., whereas we represent them as this->. The Itanium C++ ABI
2483      // does not specify anything here, so we follow GCC.
2484      Out << "dtdefpT";
2485    } else {
2486      Out << (isArrow ? "pt" : "dt");
2487      mangleExpression(base);
2488    }
2489  }
2490  mangleUnresolvedName(qualifier, firstQualifierLookup, member, arity);
2491}
2492
2493/// Look at the callee of the given call expression and determine if
2494/// it's a parenthesized id-expression which would have triggered ADL
2495/// otherwise.
2496static bool isParenthesizedADLCallee(const CallExpr *call) {
2497  const Expr *callee = call->getCallee();
2498  const Expr *fn = callee->IgnoreParens();
2499
2500  // Must be parenthesized.  IgnoreParens() skips __extension__ nodes,
2501  // too, but for those to appear in the callee, it would have to be
2502  // parenthesized.
2503  if (callee == fn) return false;
2504
2505  // Must be an unresolved lookup.
2506  const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
2507  if (!lookup) return false;
2508
2509  assert(!lookup->requiresADL());
2510
2511  // Must be an unqualified lookup.
2512  if (lookup->getQualifier()) return false;
2513
2514  // Must not have found a class member.  Note that if one is a class
2515  // member, they're all class members.
2516  if (lookup->getNumDecls() > 0 &&
2517      (*lookup->decls_begin())->isCXXClassMember())
2518    return false;
2519
2520  // Otherwise, ADL would have been triggered.
2521  return true;
2522}
2523
2524void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
2525  // <expression> ::= <unary operator-name> <expression>
2526  //              ::= <binary operator-name> <expression> <expression>
2527  //              ::= <trinary operator-name> <expression> <expression> <expression>
2528  //              ::= cv <type> expression           # conversion with one argument
2529  //              ::= cv <type> _ <expression>* E # conversion with a different number of arguments
2530  //              ::= st <type>                      # sizeof (a type)
2531  //              ::= at <type>                      # alignof (a type)
2532  //              ::= <template-param>
2533  //              ::= <function-param>
2534  //              ::= sr <type> <unqualified-name>                   # dependent name
2535  //              ::= sr <type> <unqualified-name> <template-args>   # dependent template-id
2536  //              ::= ds <expression> <expression>                   # expr.*expr
2537  //              ::= sZ <template-param>                            # size of a parameter pack
2538  //              ::= sZ <function-param>    # size of a function parameter pack
2539  //              ::= <expr-primary>
2540  // <expr-primary> ::= L <type> <value number> E    # integer literal
2541  //                ::= L <type <value float> E      # floating literal
2542  //                ::= L <mangled-name> E           # external name
2543  //                ::= fpT                          # 'this' expression
2544  QualType ImplicitlyConvertedToType;
2545
2546recurse:
2547  switch (E->getStmtClass()) {
2548  case Expr::NoStmtClass:
2549#define ABSTRACT_STMT(Type)
2550#define EXPR(Type, Base)
2551#define STMT(Type, Base) \
2552  case Expr::Type##Class:
2553#include "clang/AST/StmtNodes.inc"
2554    // fallthrough
2555
2556  // These all can only appear in local or variable-initialization
2557  // contexts and so should never appear in a mangling.
2558  case Expr::AddrLabelExprClass:
2559  case Expr::DesignatedInitExprClass:
2560  case Expr::ImplicitValueInitExprClass:
2561  case Expr::ParenListExprClass:
2562  case Expr::LambdaExprClass:
2563  case Expr::MSPropertyRefExprClass:
2564    llvm_unreachable("unexpected statement kind");
2565
2566  // FIXME: invent manglings for all these.
2567  case Expr::BlockExprClass:
2568  case Expr::CXXPseudoDestructorExprClass:
2569  case Expr::ChooseExprClass:
2570  case Expr::CompoundLiteralExprClass:
2571  case Expr::ExtVectorElementExprClass:
2572  case Expr::GenericSelectionExprClass:
2573  case Expr::ObjCEncodeExprClass:
2574  case Expr::ObjCIsaExprClass:
2575  case Expr::ObjCIvarRefExprClass:
2576  case Expr::ObjCMessageExprClass:
2577  case Expr::ObjCPropertyRefExprClass:
2578  case Expr::ObjCProtocolExprClass:
2579  case Expr::ObjCSelectorExprClass:
2580  case Expr::ObjCStringLiteralClass:
2581  case Expr::ObjCBoxedExprClass:
2582  case Expr::ObjCArrayLiteralClass:
2583  case Expr::ObjCDictionaryLiteralClass:
2584  case Expr::ObjCSubscriptRefExprClass:
2585  case Expr::ObjCIndirectCopyRestoreExprClass:
2586  case Expr::OffsetOfExprClass:
2587  case Expr::PredefinedExprClass:
2588  case Expr::ShuffleVectorExprClass:
2589  case Expr::StmtExprClass:
2590  case Expr::UnaryTypeTraitExprClass:
2591  case Expr::BinaryTypeTraitExprClass:
2592  case Expr::TypeTraitExprClass:
2593  case Expr::ArrayTypeTraitExprClass:
2594  case Expr::ExpressionTraitExprClass:
2595  case Expr::VAArgExprClass:
2596  case Expr::CXXUuidofExprClass:
2597  case Expr::CUDAKernelCallExprClass:
2598  case Expr::AsTypeExprClass:
2599  case Expr::PseudoObjectExprClass:
2600  case Expr::AtomicExprClass:
2601  {
2602    // As bad as this diagnostic is, it's better than crashing.
2603    DiagnosticsEngine &Diags = Context.getDiags();
2604    unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2605                                     "cannot yet mangle expression type %0");
2606    Diags.Report(E->getExprLoc(), DiagID)
2607      << E->getStmtClassName() << E->getSourceRange();
2608    break;
2609  }
2610
2611  // Even gcc-4.5 doesn't mangle this.
2612  case Expr::BinaryConditionalOperatorClass: {
2613    DiagnosticsEngine &Diags = Context.getDiags();
2614    unsigned DiagID =
2615      Diags.getCustomDiagID(DiagnosticsEngine::Error,
2616                "?: operator with omitted middle operand cannot be mangled");
2617    Diags.Report(E->getExprLoc(), DiagID)
2618      << E->getStmtClassName() << E->getSourceRange();
2619    break;
2620  }
2621
2622  // These are used for internal purposes and cannot be meaningfully mangled.
2623  case Expr::OpaqueValueExprClass:
2624    llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
2625
2626  case Expr::InitListExprClass: {
2627    // Proposal by Jason Merrill, 2012-01-03
2628    Out << "il";
2629    const InitListExpr *InitList = cast<InitListExpr>(E);
2630    for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2631      mangleExpression(InitList->getInit(i));
2632    Out << "E";
2633    break;
2634  }
2635
2636  case Expr::CXXDefaultArgExprClass:
2637    mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
2638    break;
2639
2640  case Expr::CXXDefaultInitExprClass:
2641    mangleExpression(cast<CXXDefaultInitExpr>(E)->getExpr(), Arity);
2642    break;
2643
2644  case Expr::CXXStdInitializerListExprClass:
2645    mangleExpression(cast<CXXStdInitializerListExpr>(E)->getSubExpr(), Arity);
2646    break;
2647
2648  case Expr::SubstNonTypeTemplateParmExprClass:
2649    mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
2650                     Arity);
2651    break;
2652
2653  case Expr::UserDefinedLiteralClass:
2654    // We follow g++'s approach of mangling a UDL as a call to the literal
2655    // operator.
2656  case Expr::CXXMemberCallExprClass: // fallthrough
2657  case Expr::CallExprClass: {
2658    const CallExpr *CE = cast<CallExpr>(E);
2659
2660    // <expression> ::= cp <simple-id> <expression>* E
2661    // We use this mangling only when the call would use ADL except
2662    // for being parenthesized.  Per discussion with David
2663    // Vandervoorde, 2011.04.25.
2664    if (isParenthesizedADLCallee(CE)) {
2665      Out << "cp";
2666      // The callee here is a parenthesized UnresolvedLookupExpr with
2667      // no qualifier and should always get mangled as a <simple-id>
2668      // anyway.
2669
2670    // <expression> ::= cl <expression>* E
2671    } else {
2672      Out << "cl";
2673    }
2674
2675    mangleExpression(CE->getCallee(), CE->getNumArgs());
2676    for (unsigned I = 0, N = CE->getNumArgs(); I != N; ++I)
2677      mangleExpression(CE->getArg(I));
2678    Out << 'E';
2679    break;
2680  }
2681
2682  case Expr::CXXNewExprClass: {
2683    const CXXNewExpr *New = cast<CXXNewExpr>(E);
2684    if (New->isGlobalNew()) Out << "gs";
2685    Out << (New->isArray() ? "na" : "nw");
2686    for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
2687           E = New->placement_arg_end(); I != E; ++I)
2688      mangleExpression(*I);
2689    Out << '_';
2690    mangleType(New->getAllocatedType());
2691    if (New->hasInitializer()) {
2692      // Proposal by Jason Merrill, 2012-01-03
2693      if (New->getInitializationStyle() == CXXNewExpr::ListInit)
2694        Out << "il";
2695      else
2696        Out << "pi";
2697      const Expr *Init = New->getInitializer();
2698      if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
2699        // Directly inline the initializers.
2700        for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
2701                                                  E = CCE->arg_end();
2702             I != E; ++I)
2703          mangleExpression(*I);
2704      } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
2705        for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
2706          mangleExpression(PLE->getExpr(i));
2707      } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
2708                 isa<InitListExpr>(Init)) {
2709        // Only take InitListExprs apart for list-initialization.
2710        const InitListExpr *InitList = cast<InitListExpr>(Init);
2711        for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2712          mangleExpression(InitList->getInit(i));
2713      } else
2714        mangleExpression(Init);
2715    }
2716    Out << 'E';
2717    break;
2718  }
2719
2720  case Expr::MemberExprClass: {
2721    const MemberExpr *ME = cast<MemberExpr>(E);
2722    mangleMemberExpr(ME->getBase(), ME->isArrow(),
2723                     ME->getQualifier(), 0, ME->getMemberDecl()->getDeclName(),
2724                     Arity);
2725    break;
2726  }
2727
2728  case Expr::UnresolvedMemberExprClass: {
2729    const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
2730    mangleMemberExpr(ME->getBase(), ME->isArrow(),
2731                     ME->getQualifier(), 0, ME->getMemberName(),
2732                     Arity);
2733    if (ME->hasExplicitTemplateArgs())
2734      mangleTemplateArgs(ME->getExplicitTemplateArgs());
2735    break;
2736  }
2737
2738  case Expr::CXXDependentScopeMemberExprClass: {
2739    const CXXDependentScopeMemberExpr *ME
2740      = cast<CXXDependentScopeMemberExpr>(E);
2741    mangleMemberExpr(ME->getBase(), ME->isArrow(),
2742                     ME->getQualifier(), ME->getFirstQualifierFoundInScope(),
2743                     ME->getMember(), Arity);
2744    if (ME->hasExplicitTemplateArgs())
2745      mangleTemplateArgs(ME->getExplicitTemplateArgs());
2746    break;
2747  }
2748
2749  case Expr::UnresolvedLookupExprClass: {
2750    const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
2751    mangleUnresolvedName(ULE->getQualifier(), 0, ULE->getName(), Arity);
2752
2753    // All the <unresolved-name> productions end in a
2754    // base-unresolved-name, where <template-args> are just tacked
2755    // onto the end.
2756    if (ULE->hasExplicitTemplateArgs())
2757      mangleTemplateArgs(ULE->getExplicitTemplateArgs());
2758    break;
2759  }
2760
2761  case Expr::CXXUnresolvedConstructExprClass: {
2762    const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
2763    unsigned N = CE->arg_size();
2764
2765    Out << "cv";
2766    mangleType(CE->getType());
2767    if (N != 1) Out << '_';
2768    for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2769    if (N != 1) Out << 'E';
2770    break;
2771  }
2772
2773  case Expr::CXXTemporaryObjectExprClass:
2774  case Expr::CXXConstructExprClass: {
2775    const CXXConstructExpr *CE = cast<CXXConstructExpr>(E);
2776    unsigned N = CE->getNumArgs();
2777
2778    // Proposal by Jason Merrill, 2012-01-03
2779    if (CE->isListInitialization())
2780      Out << "tl";
2781    else
2782      Out << "cv";
2783    mangleType(CE->getType());
2784    if (N != 1) Out << '_';
2785    for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2786    if (N != 1) Out << 'E';
2787    break;
2788  }
2789
2790  case Expr::CXXScalarValueInitExprClass:
2791    Out <<"cv";
2792    mangleType(E->getType());
2793    Out <<"_E";
2794    break;
2795
2796  case Expr::CXXNoexceptExprClass:
2797    Out << "nx";
2798    mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
2799    break;
2800
2801  case Expr::UnaryExprOrTypeTraitExprClass: {
2802    const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
2803
2804    if (!SAE->isInstantiationDependent()) {
2805      // Itanium C++ ABI:
2806      //   If the operand of a sizeof or alignof operator is not
2807      //   instantiation-dependent it is encoded as an integer literal
2808      //   reflecting the result of the operator.
2809      //
2810      //   If the result of the operator is implicitly converted to a known
2811      //   integer type, that type is used for the literal; otherwise, the type
2812      //   of std::size_t or std::ptrdiff_t is used.
2813      QualType T = (ImplicitlyConvertedToType.isNull() ||
2814                    !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
2815                                                    : ImplicitlyConvertedToType;
2816      llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
2817      mangleIntegerLiteral(T, V);
2818      break;
2819    }
2820
2821    switch(SAE->getKind()) {
2822    case UETT_SizeOf:
2823      Out << 's';
2824      break;
2825    case UETT_AlignOf:
2826      Out << 'a';
2827      break;
2828    case UETT_VecStep:
2829      DiagnosticsEngine &Diags = Context.getDiags();
2830      unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2831                                     "cannot yet mangle vec_step expression");
2832      Diags.Report(DiagID);
2833      return;
2834    }
2835    if (SAE->isArgumentType()) {
2836      Out << 't';
2837      mangleType(SAE->getArgumentType());
2838    } else {
2839      Out << 'z';
2840      mangleExpression(SAE->getArgumentExpr());
2841    }
2842    break;
2843  }
2844
2845  case Expr::CXXThrowExprClass: {
2846    const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
2847
2848    // Proposal from David Vandervoorde, 2010.06.30
2849    if (TE->getSubExpr()) {
2850      Out << "tw";
2851      mangleExpression(TE->getSubExpr());
2852    } else {
2853      Out << "tr";
2854    }
2855    break;
2856  }
2857
2858  case Expr::CXXTypeidExprClass: {
2859    const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
2860
2861    // Proposal from David Vandervoorde, 2010.06.30
2862    if (TIE->isTypeOperand()) {
2863      Out << "ti";
2864      mangleType(TIE->getTypeOperand());
2865    } else {
2866      Out << "te";
2867      mangleExpression(TIE->getExprOperand());
2868    }
2869    break;
2870  }
2871
2872  case Expr::CXXDeleteExprClass: {
2873    const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
2874
2875    // Proposal from David Vandervoorde, 2010.06.30
2876    if (DE->isGlobalDelete()) Out << "gs";
2877    Out << (DE->isArrayForm() ? "da" : "dl");
2878    mangleExpression(DE->getArgument());
2879    break;
2880  }
2881
2882  case Expr::UnaryOperatorClass: {
2883    const UnaryOperator *UO = cast<UnaryOperator>(E);
2884    mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
2885                       /*Arity=*/1);
2886    mangleExpression(UO->getSubExpr());
2887    break;
2888  }
2889
2890  case Expr::ArraySubscriptExprClass: {
2891    const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
2892
2893    // Array subscript is treated as a syntactically weird form of
2894    // binary operator.
2895    Out << "ix";
2896    mangleExpression(AE->getLHS());
2897    mangleExpression(AE->getRHS());
2898    break;
2899  }
2900
2901  case Expr::CompoundAssignOperatorClass: // fallthrough
2902  case Expr::BinaryOperatorClass: {
2903    const BinaryOperator *BO = cast<BinaryOperator>(E);
2904    if (BO->getOpcode() == BO_PtrMemD)
2905      Out << "ds";
2906    else
2907      mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
2908                         /*Arity=*/2);
2909    mangleExpression(BO->getLHS());
2910    mangleExpression(BO->getRHS());
2911    break;
2912  }
2913
2914  case Expr::ConditionalOperatorClass: {
2915    const ConditionalOperator *CO = cast<ConditionalOperator>(E);
2916    mangleOperatorName(OO_Conditional, /*Arity=*/3);
2917    mangleExpression(CO->getCond());
2918    mangleExpression(CO->getLHS(), Arity);
2919    mangleExpression(CO->getRHS(), Arity);
2920    break;
2921  }
2922
2923  case Expr::ImplicitCastExprClass: {
2924    ImplicitlyConvertedToType = E->getType();
2925    E = cast<ImplicitCastExpr>(E)->getSubExpr();
2926    goto recurse;
2927  }
2928
2929  case Expr::ObjCBridgedCastExprClass: {
2930    // Mangle ownership casts as a vendor extended operator __bridge,
2931    // __bridge_transfer, or __bridge_retain.
2932    StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
2933    Out << "v1U" << Kind.size() << Kind;
2934  }
2935  // Fall through to mangle the cast itself.
2936
2937  case Expr::CStyleCastExprClass:
2938  case Expr::CXXStaticCastExprClass:
2939  case Expr::CXXDynamicCastExprClass:
2940  case Expr::CXXReinterpretCastExprClass:
2941  case Expr::CXXConstCastExprClass:
2942  case Expr::CXXFunctionalCastExprClass: {
2943    const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
2944    Out << "cv";
2945    mangleType(ECE->getType());
2946    mangleExpression(ECE->getSubExpr());
2947    break;
2948  }
2949
2950  case Expr::CXXOperatorCallExprClass: {
2951    const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
2952    unsigned NumArgs = CE->getNumArgs();
2953    mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
2954    // Mangle the arguments.
2955    for (unsigned i = 0; i != NumArgs; ++i)
2956      mangleExpression(CE->getArg(i));
2957    break;
2958  }
2959
2960  case Expr::ParenExprClass:
2961    mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
2962    break;
2963
2964  case Expr::DeclRefExprClass: {
2965    const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
2966
2967    switch (D->getKind()) {
2968    default:
2969      //  <expr-primary> ::= L <mangled-name> E # external name
2970      Out << 'L';
2971      mangle(D, "_Z");
2972      Out << 'E';
2973      break;
2974
2975    case Decl::ParmVar:
2976      mangleFunctionParam(cast<ParmVarDecl>(D));
2977      break;
2978
2979    case Decl::EnumConstant: {
2980      const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
2981      mangleIntegerLiteral(ED->getType(), ED->getInitVal());
2982      break;
2983    }
2984
2985    case Decl::NonTypeTemplateParm: {
2986      const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
2987      mangleTemplateParameter(PD->getIndex());
2988      break;
2989    }
2990
2991    }
2992
2993    break;
2994  }
2995
2996  case Expr::SubstNonTypeTemplateParmPackExprClass:
2997    // FIXME: not clear how to mangle this!
2998    // template <unsigned N...> class A {
2999    //   template <class U...> void foo(U (&x)[N]...);
3000    // };
3001    Out << "_SUBSTPACK_";
3002    break;
3003
3004  case Expr::FunctionParmPackExprClass: {
3005    // FIXME: not clear how to mangle this!
3006    const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
3007    Out << "v110_SUBSTPACK";
3008    mangleFunctionParam(FPPE->getParameterPack());
3009    break;
3010  }
3011
3012  case Expr::DependentScopeDeclRefExprClass: {
3013    const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
3014    mangleUnresolvedName(DRE->getQualifier(), 0, DRE->getDeclName(), Arity);
3015
3016    // All the <unresolved-name> productions end in a
3017    // base-unresolved-name, where <template-args> are just tacked
3018    // onto the end.
3019    if (DRE->hasExplicitTemplateArgs())
3020      mangleTemplateArgs(DRE->getExplicitTemplateArgs());
3021    break;
3022  }
3023
3024  case Expr::CXXBindTemporaryExprClass:
3025    mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
3026    break;
3027
3028  case Expr::ExprWithCleanupsClass:
3029    mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
3030    break;
3031
3032  case Expr::FloatingLiteralClass: {
3033    const FloatingLiteral *FL = cast<FloatingLiteral>(E);
3034    Out << 'L';
3035    mangleType(FL->getType());
3036    mangleFloat(FL->getValue());
3037    Out << 'E';
3038    break;
3039  }
3040
3041  case Expr::CharacterLiteralClass:
3042    Out << 'L';
3043    mangleType(E->getType());
3044    Out << cast<CharacterLiteral>(E)->getValue();
3045    Out << 'E';
3046    break;
3047
3048  // FIXME. __objc_yes/__objc_no are mangled same as true/false
3049  case Expr::ObjCBoolLiteralExprClass:
3050    Out << "Lb";
3051    Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
3052    Out << 'E';
3053    break;
3054
3055  case Expr::CXXBoolLiteralExprClass:
3056    Out << "Lb";
3057    Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
3058    Out << 'E';
3059    break;
3060
3061  case Expr::IntegerLiteralClass: {
3062    llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
3063    if (E->getType()->isSignedIntegerType())
3064      Value.setIsSigned(true);
3065    mangleIntegerLiteral(E->getType(), Value);
3066    break;
3067  }
3068
3069  case Expr::ImaginaryLiteralClass: {
3070    const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
3071    // Mangle as if a complex literal.
3072    // Proposal from David Vandevoorde, 2010.06.30.
3073    Out << 'L';
3074    mangleType(E->getType());
3075    if (const FloatingLiteral *Imag =
3076          dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
3077      // Mangle a floating-point zero of the appropriate type.
3078      mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
3079      Out << '_';
3080      mangleFloat(Imag->getValue());
3081    } else {
3082      Out << "0_";
3083      llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
3084      if (IE->getSubExpr()->getType()->isSignedIntegerType())
3085        Value.setIsSigned(true);
3086      mangleNumber(Value);
3087    }
3088    Out << 'E';
3089    break;
3090  }
3091
3092  case Expr::StringLiteralClass: {
3093    // Revised proposal from David Vandervoorde, 2010.07.15.
3094    Out << 'L';
3095    assert(isa<ConstantArrayType>(E->getType()));
3096    mangleType(E->getType());
3097    Out << 'E';
3098    break;
3099  }
3100
3101  case Expr::GNUNullExprClass:
3102    // FIXME: should this really be mangled the same as nullptr?
3103    // fallthrough
3104
3105  case Expr::CXXNullPtrLiteralExprClass: {
3106    // Proposal from David Vandervoorde, 2010.06.30, as
3107    // modified by ABI list discussion.
3108    Out << "LDnE";
3109    break;
3110  }
3111
3112  case Expr::PackExpansionExprClass:
3113    Out << "sp";
3114    mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
3115    break;
3116
3117  case Expr::SizeOfPackExprClass: {
3118    Out << "sZ";
3119    const NamedDecl *Pack = cast<SizeOfPackExpr>(E)->getPack();
3120    if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
3121      mangleTemplateParameter(TTP->getIndex());
3122    else if (const NonTypeTemplateParmDecl *NTTP
3123                = dyn_cast<NonTypeTemplateParmDecl>(Pack))
3124      mangleTemplateParameter(NTTP->getIndex());
3125    else if (const TemplateTemplateParmDecl *TempTP
3126                                    = dyn_cast<TemplateTemplateParmDecl>(Pack))
3127      mangleTemplateParameter(TempTP->getIndex());
3128    else
3129      mangleFunctionParam(cast<ParmVarDecl>(Pack));
3130    break;
3131  }
3132
3133  case Expr::MaterializeTemporaryExprClass: {
3134    mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr());
3135    break;
3136  }
3137
3138  case Expr::CXXThisExprClass:
3139    Out << "fpT";
3140    break;
3141  }
3142}
3143
3144/// Mangle an expression which refers to a parameter variable.
3145///
3146/// <expression>     ::= <function-param>
3147/// <function-param> ::= fp <top-level CV-qualifiers> _      # L == 0, I == 0
3148/// <function-param> ::= fp <top-level CV-qualifiers>
3149///                      <parameter-2 non-negative number> _ # L == 0, I > 0
3150/// <function-param> ::= fL <L-1 non-negative number>
3151///                      p <top-level CV-qualifiers> _       # L > 0, I == 0
3152/// <function-param> ::= fL <L-1 non-negative number>
3153///                      p <top-level CV-qualifiers>
3154///                      <I-1 non-negative number> _         # L > 0, I > 0
3155///
3156/// L is the nesting depth of the parameter, defined as 1 if the
3157/// parameter comes from the innermost function prototype scope
3158/// enclosing the current context, 2 if from the next enclosing
3159/// function prototype scope, and so on, with one special case: if
3160/// we've processed the full parameter clause for the innermost
3161/// function type, then L is one less.  This definition conveniently
3162/// makes it irrelevant whether a function's result type was written
3163/// trailing or leading, but is otherwise overly complicated; the
3164/// numbering was first designed without considering references to
3165/// parameter in locations other than return types, and then the
3166/// mangling had to be generalized without changing the existing
3167/// manglings.
3168///
3169/// I is the zero-based index of the parameter within its parameter
3170/// declaration clause.  Note that the original ABI document describes
3171/// this using 1-based ordinals.
3172void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
3173  unsigned parmDepth = parm->getFunctionScopeDepth();
3174  unsigned parmIndex = parm->getFunctionScopeIndex();
3175
3176  // Compute 'L'.
3177  // parmDepth does not include the declaring function prototype.
3178  // FunctionTypeDepth does account for that.
3179  assert(parmDepth < FunctionTypeDepth.getDepth());
3180  unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
3181  if (FunctionTypeDepth.isInResultType())
3182    nestingDepth--;
3183
3184  if (nestingDepth == 0) {
3185    Out << "fp";
3186  } else {
3187    Out << "fL" << (nestingDepth - 1) << 'p';
3188  }
3189
3190  // Top-level qualifiers.  We don't have to worry about arrays here,
3191  // because parameters declared as arrays should already have been
3192  // transformed to have pointer type. FIXME: apparently these don't
3193  // get mangled if used as an rvalue of a known non-class type?
3194  assert(!parm->getType()->isArrayType()
3195         && "parameter's type is still an array type?");
3196  mangleQualifiers(parm->getType().getQualifiers());
3197
3198  // Parameter index.
3199  if (parmIndex != 0) {
3200    Out << (parmIndex - 1);
3201  }
3202  Out << '_';
3203}
3204
3205void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
3206  // <ctor-dtor-name> ::= C1  # complete object constructor
3207  //                  ::= C2  # base object constructor
3208  //                  ::= C3  # complete object allocating constructor
3209  //
3210  switch (T) {
3211  case Ctor_Complete:
3212    Out << "C1";
3213    break;
3214  case Ctor_Base:
3215    Out << "C2";
3216    break;
3217  case Ctor_CompleteAllocating:
3218    Out << "C3";
3219    break;
3220  }
3221}
3222
3223void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
3224  // <ctor-dtor-name> ::= D0  # deleting destructor
3225  //                  ::= D1  # complete object destructor
3226  //                  ::= D2  # base object destructor
3227  //
3228  switch (T) {
3229  case Dtor_Deleting:
3230    Out << "D0";
3231    break;
3232  case Dtor_Complete:
3233    Out << "D1";
3234    break;
3235  case Dtor_Base:
3236    Out << "D2";
3237    break;
3238  }
3239}
3240
3241void CXXNameMangler::mangleTemplateArgs(
3242                          const ASTTemplateArgumentListInfo &TemplateArgs) {
3243  // <template-args> ::= I <template-arg>+ E
3244  Out << 'I';
3245  for (unsigned i = 0, e = TemplateArgs.NumTemplateArgs; i != e; ++i)
3246    mangleTemplateArg(TemplateArgs.getTemplateArgs()[i].getArgument());
3247  Out << 'E';
3248}
3249
3250void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &AL) {
3251  // <template-args> ::= I <template-arg>+ E
3252  Out << 'I';
3253  for (unsigned i = 0, e = AL.size(); i != e; ++i)
3254    mangleTemplateArg(AL[i]);
3255  Out << 'E';
3256}
3257
3258void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs,
3259                                        unsigned NumTemplateArgs) {
3260  // <template-args> ::= I <template-arg>+ E
3261  Out << 'I';
3262  for (unsigned i = 0; i != NumTemplateArgs; ++i)
3263    mangleTemplateArg(TemplateArgs[i]);
3264  Out << 'E';
3265}
3266
3267void CXXNameMangler::mangleTemplateArg(TemplateArgument A) {
3268  // <template-arg> ::= <type>              # type or template
3269  //                ::= X <expression> E    # expression
3270  //                ::= <expr-primary>      # simple expressions
3271  //                ::= J <template-arg>* E # argument pack
3272  //                ::= sp <expression>     # pack expansion of (C++0x)
3273  if (!A.isInstantiationDependent() || A.isDependent())
3274    A = Context.getASTContext().getCanonicalTemplateArgument(A);
3275
3276  switch (A.getKind()) {
3277  case TemplateArgument::Null:
3278    llvm_unreachable("Cannot mangle NULL template argument");
3279
3280  case TemplateArgument::Type:
3281    mangleType(A.getAsType());
3282    break;
3283  case TemplateArgument::Template:
3284    // This is mangled as <type>.
3285    mangleType(A.getAsTemplate());
3286    break;
3287  case TemplateArgument::TemplateExpansion:
3288    // <type>  ::= Dp <type>          # pack expansion (C++0x)
3289    Out << "Dp";
3290    mangleType(A.getAsTemplateOrTemplatePattern());
3291    break;
3292  case TemplateArgument::Expression: {
3293    // It's possible to end up with a DeclRefExpr here in certain
3294    // dependent cases, in which case we should mangle as a
3295    // declaration.
3296    const Expr *E = A.getAsExpr()->IgnoreParens();
3297    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
3298      const ValueDecl *D = DRE->getDecl();
3299      if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
3300        Out << "L";
3301        mangle(D, "_Z");
3302        Out << 'E';
3303        break;
3304      }
3305    }
3306
3307    Out << 'X';
3308    mangleExpression(E);
3309    Out << 'E';
3310    break;
3311  }
3312  case TemplateArgument::Integral:
3313    mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
3314    break;
3315  case TemplateArgument::Declaration: {
3316    //  <expr-primary> ::= L <mangled-name> E # external name
3317    // Clang produces AST's where pointer-to-member-function expressions
3318    // and pointer-to-function expressions are represented as a declaration not
3319    // an expression. We compensate for it here to produce the correct mangling.
3320    ValueDecl *D = A.getAsDecl();
3321    bool compensateMangling = !A.isDeclForReferenceParam();
3322    if (compensateMangling) {
3323      Out << 'X';
3324      mangleOperatorName(OO_Amp, 1);
3325    }
3326
3327    Out << 'L';
3328    // References to external entities use the mangled name; if the name would
3329    // not normally be manged then mangle it as unqualified.
3330    //
3331    // FIXME: The ABI specifies that external names here should have _Z, but
3332    // gcc leaves this off.
3333    if (compensateMangling)
3334      mangle(D, "_Z");
3335    else
3336      mangle(D, "Z");
3337    Out << 'E';
3338
3339    if (compensateMangling)
3340      Out << 'E';
3341
3342    break;
3343  }
3344  case TemplateArgument::NullPtr: {
3345    //  <expr-primary> ::= L <type> 0 E
3346    Out << 'L';
3347    mangleType(A.getNullPtrType());
3348    Out << "0E";
3349    break;
3350  }
3351  case TemplateArgument::Pack: {
3352    // Note: proposal by Mike Herrick on 12/20/10
3353    Out << 'J';
3354    for (TemplateArgument::pack_iterator PA = A.pack_begin(),
3355                                      PAEnd = A.pack_end();
3356         PA != PAEnd; ++PA)
3357      mangleTemplateArg(*PA);
3358    Out << 'E';
3359  }
3360  }
3361}
3362
3363void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
3364  // <template-param> ::= T_    # first template parameter
3365  //                  ::= T <parameter-2 non-negative number> _
3366  if (Index == 0)
3367    Out << "T_";
3368  else
3369    Out << 'T' << (Index - 1) << '_';
3370}
3371
3372void CXXNameMangler::mangleExistingSubstitution(QualType type) {
3373  bool result = mangleSubstitution(type);
3374  assert(result && "no existing substitution for type");
3375  (void) result;
3376}
3377
3378void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
3379  bool result = mangleSubstitution(tname);
3380  assert(result && "no existing substitution for template name");
3381  (void) result;
3382}
3383
3384// <substitution> ::= S <seq-id> _
3385//                ::= S_
3386bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
3387  // Try one of the standard substitutions first.
3388  if (mangleStandardSubstitution(ND))
3389    return true;
3390
3391  ND = cast<NamedDecl>(ND->getCanonicalDecl());
3392  return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
3393}
3394
3395/// \brief Determine whether the given type has any qualifiers that are
3396/// relevant for substitutions.
3397static bool hasMangledSubstitutionQualifiers(QualType T) {
3398  Qualifiers Qs = T.getQualifiers();
3399  return Qs.getCVRQualifiers() || Qs.hasAddressSpace();
3400}
3401
3402bool CXXNameMangler::mangleSubstitution(QualType T) {
3403  if (!hasMangledSubstitutionQualifiers(T)) {
3404    if (const RecordType *RT = T->getAs<RecordType>())
3405      return mangleSubstitution(RT->getDecl());
3406  }
3407
3408  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3409
3410  return mangleSubstitution(TypePtr);
3411}
3412
3413bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
3414  if (TemplateDecl *TD = Template.getAsTemplateDecl())
3415    return mangleSubstitution(TD);
3416
3417  Template = Context.getASTContext().getCanonicalTemplateName(Template);
3418  return mangleSubstitution(
3419                      reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3420}
3421
3422bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
3423  llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
3424  if (I == Substitutions.end())
3425    return false;
3426
3427  unsigned SeqID = I->second;
3428  if (SeqID == 0)
3429    Out << "S_";
3430  else {
3431    SeqID--;
3432
3433    // <seq-id> is encoded in base-36, using digits and upper case letters.
3434    char Buffer[10];
3435    char *BufferPtr = llvm::array_endof(Buffer);
3436
3437    if (SeqID == 0) *--BufferPtr = '0';
3438
3439    while (SeqID) {
3440      assert(BufferPtr > Buffer && "Buffer overflow!");
3441
3442      char c = static_cast<char>(SeqID % 36);
3443
3444      *--BufferPtr =  (c < 10 ? '0' + c : 'A' + c - 10);
3445      SeqID /= 36;
3446    }
3447
3448    Out << 'S'
3449        << StringRef(BufferPtr, llvm::array_endof(Buffer)-BufferPtr)
3450        << '_';
3451  }
3452
3453  return true;
3454}
3455
3456static bool isCharType(QualType T) {
3457  if (T.isNull())
3458    return false;
3459
3460  return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
3461    T->isSpecificBuiltinType(BuiltinType::Char_U);
3462}
3463
3464/// isCharSpecialization - Returns whether a given type is a template
3465/// specialization of a given name with a single argument of type char.
3466static bool isCharSpecialization(QualType T, const char *Name) {
3467  if (T.isNull())
3468    return false;
3469
3470  const RecordType *RT = T->getAs<RecordType>();
3471  if (!RT)
3472    return false;
3473
3474  const ClassTemplateSpecializationDecl *SD =
3475    dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
3476  if (!SD)
3477    return false;
3478
3479  if (!isStdNamespace(getEffectiveDeclContext(SD)))
3480    return false;
3481
3482  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3483  if (TemplateArgs.size() != 1)
3484    return false;
3485
3486  if (!isCharType(TemplateArgs[0].getAsType()))
3487    return false;
3488
3489  return SD->getIdentifier()->getName() == Name;
3490}
3491
3492template <std::size_t StrLen>
3493static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
3494                                       const char (&Str)[StrLen]) {
3495  if (!SD->getIdentifier()->isStr(Str))
3496    return false;
3497
3498  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3499  if (TemplateArgs.size() != 2)
3500    return false;
3501
3502  if (!isCharType(TemplateArgs[0].getAsType()))
3503    return false;
3504
3505  if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3506    return false;
3507
3508  return true;
3509}
3510
3511bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
3512  // <substitution> ::= St # ::std::
3513  if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
3514    if (isStd(NS)) {
3515      Out << "St";
3516      return true;
3517    }
3518  }
3519
3520  if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
3521    if (!isStdNamespace(getEffectiveDeclContext(TD)))
3522      return false;
3523
3524    // <substitution> ::= Sa # ::std::allocator
3525    if (TD->getIdentifier()->isStr("allocator")) {
3526      Out << "Sa";
3527      return true;
3528    }
3529
3530    // <<substitution> ::= Sb # ::std::basic_string
3531    if (TD->getIdentifier()->isStr("basic_string")) {
3532      Out << "Sb";
3533      return true;
3534    }
3535  }
3536
3537  if (const ClassTemplateSpecializationDecl *SD =
3538        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
3539    if (!isStdNamespace(getEffectiveDeclContext(SD)))
3540      return false;
3541
3542    //    <substitution> ::= Ss # ::std::basic_string<char,
3543    //                            ::std::char_traits<char>,
3544    //                            ::std::allocator<char> >
3545    if (SD->getIdentifier()->isStr("basic_string")) {
3546      const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3547
3548      if (TemplateArgs.size() != 3)
3549        return false;
3550
3551      if (!isCharType(TemplateArgs[0].getAsType()))
3552        return false;
3553
3554      if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3555        return false;
3556
3557      if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
3558        return false;
3559
3560      Out << "Ss";
3561      return true;
3562    }
3563
3564    //    <substitution> ::= Si # ::std::basic_istream<char,
3565    //                            ::std::char_traits<char> >
3566    if (isStreamCharSpecialization(SD, "basic_istream")) {
3567      Out << "Si";
3568      return true;
3569    }
3570
3571    //    <substitution> ::= So # ::std::basic_ostream<char,
3572    //                            ::std::char_traits<char> >
3573    if (isStreamCharSpecialization(SD, "basic_ostream")) {
3574      Out << "So";
3575      return true;
3576    }
3577
3578    //    <substitution> ::= Sd # ::std::basic_iostream<char,
3579    //                            ::std::char_traits<char> >
3580    if (isStreamCharSpecialization(SD, "basic_iostream")) {
3581      Out << "Sd";
3582      return true;
3583    }
3584  }
3585  return false;
3586}
3587
3588void CXXNameMangler::addSubstitution(QualType T) {
3589  if (!hasMangledSubstitutionQualifiers(T)) {
3590    if (const RecordType *RT = T->getAs<RecordType>()) {
3591      addSubstitution(RT->getDecl());
3592      return;
3593    }
3594  }
3595
3596  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3597  addSubstitution(TypePtr);
3598}
3599
3600void CXXNameMangler::addSubstitution(TemplateName Template) {
3601  if (TemplateDecl *TD = Template.getAsTemplateDecl())
3602    return addSubstitution(TD);
3603
3604  Template = Context.getASTContext().getCanonicalTemplateName(Template);
3605  addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3606}
3607
3608void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
3609  assert(!Substitutions.count(Ptr) && "Substitution already exists!");
3610  Substitutions[Ptr] = SeqID++;
3611}
3612
3613//
3614
3615/// \brief Mangles the name of the declaration D and emits that name to the
3616/// given output stream.
3617///
3618/// If the declaration D requires a mangled name, this routine will emit that
3619/// mangled name to \p os and return true. Otherwise, \p os will be unchanged
3620/// and this routine will return false. In this case, the caller should just
3621/// emit the identifier of the declaration (\c D->getIdentifier()) as its
3622/// name.
3623void ItaniumMangleContext::mangleName(const NamedDecl *D,
3624                                      raw_ostream &Out) {
3625  assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
3626          "Invalid mangleName() call, argument is not a variable or function!");
3627  assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
3628         "Invalid mangleName() call on 'structor decl!");
3629
3630  PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
3631                                 getASTContext().getSourceManager(),
3632                                 "Mangling declaration");
3633
3634  CXXNameMangler Mangler(*this, Out, D);
3635  return Mangler.mangle(D);
3636}
3637
3638void ItaniumMangleContext::mangleCXXCtor(const CXXConstructorDecl *D,
3639                                         CXXCtorType Type,
3640                                         raw_ostream &Out) {
3641  CXXNameMangler Mangler(*this, Out, D, Type);
3642  Mangler.mangle(D);
3643}
3644
3645void ItaniumMangleContext::mangleCXXDtor(const CXXDestructorDecl *D,
3646                                         CXXDtorType Type,
3647                                         raw_ostream &Out) {
3648  CXXNameMangler Mangler(*this, Out, D, Type);
3649  Mangler.mangle(D);
3650}
3651
3652void ItaniumMangleContext::mangleThunk(const CXXMethodDecl *MD,
3653                                       const ThunkInfo &Thunk,
3654                                       raw_ostream &Out) {
3655  //  <special-name> ::= T <call-offset> <base encoding>
3656  //                      # base is the nominal target function of thunk
3657  //  <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
3658  //                      # base is the nominal target function of thunk
3659  //                      # first call-offset is 'this' adjustment
3660  //                      # second call-offset is result adjustment
3661
3662  assert(!isa<CXXDestructorDecl>(MD) &&
3663         "Use mangleCXXDtor for destructor decls!");
3664  CXXNameMangler Mangler(*this, Out);
3665  Mangler.getStream() << "_ZT";
3666  if (!Thunk.Return.isEmpty())
3667    Mangler.getStream() << 'c';
3668
3669  // Mangle the 'this' pointer adjustment.
3670  Mangler.mangleCallOffset(Thunk.This.NonVirtual, Thunk.This.VCallOffsetOffset);
3671
3672  // Mangle the return pointer adjustment if there is one.
3673  if (!Thunk.Return.isEmpty())
3674    Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
3675                             Thunk.Return.VBaseOffsetOffset);
3676
3677  Mangler.mangleFunctionEncoding(MD);
3678}
3679
3680void
3681ItaniumMangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD,
3682                                         CXXDtorType Type,
3683                                         const ThisAdjustment &ThisAdjustment,
3684                                         raw_ostream &Out) {
3685  //  <special-name> ::= T <call-offset> <base encoding>
3686  //                      # base is the nominal target function of thunk
3687  CXXNameMangler Mangler(*this, Out, DD, Type);
3688  Mangler.getStream() << "_ZT";
3689
3690  // Mangle the 'this' pointer adjustment.
3691  Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
3692                           ThisAdjustment.VCallOffsetOffset);
3693
3694  Mangler.mangleFunctionEncoding(DD);
3695}
3696
3697/// mangleGuardVariable - Returns the mangled name for a guard variable
3698/// for the passed in VarDecl.
3699void ItaniumMangleContext::mangleItaniumGuardVariable(const VarDecl *D,
3700                                                      raw_ostream &Out) {
3701  //  <special-name> ::= GV <object name>       # Guard variable for one-time
3702  //                                            # initialization
3703  CXXNameMangler Mangler(*this, Out);
3704  Mangler.getStream() << "_ZGV";
3705  Mangler.mangleName(D);
3706}
3707
3708void ItaniumMangleContext::mangleItaniumThreadLocalInit(const VarDecl *D,
3709                                                        raw_ostream &Out) {
3710  //  <special-name> ::= TH <object name>
3711  CXXNameMangler Mangler(*this, Out);
3712  Mangler.getStream() << "_ZTH";
3713  Mangler.mangleName(D);
3714}
3715
3716void ItaniumMangleContext::mangleItaniumThreadLocalWrapper(const VarDecl *D,
3717                                                           raw_ostream &Out) {
3718  //  <special-name> ::= TW <object name>
3719  CXXNameMangler Mangler(*this, Out);
3720  Mangler.getStream() << "_ZTW";
3721  Mangler.mangleName(D);
3722}
3723
3724void ItaniumMangleContext::mangleReferenceTemporary(const VarDecl *D,
3725                                                    raw_ostream &Out) {
3726  // We match the GCC mangling here.
3727  //  <special-name> ::= GR <object name>
3728  CXXNameMangler Mangler(*this, Out);
3729  Mangler.getStream() << "_ZGR";
3730  Mangler.mangleName(D);
3731}
3732
3733void ItaniumMangleContext::mangleCXXVTable(const CXXRecordDecl *RD,
3734                                           raw_ostream &Out) {
3735  // <special-name> ::= TV <type>  # virtual table
3736  CXXNameMangler Mangler(*this, Out);
3737  Mangler.getStream() << "_ZTV";
3738  Mangler.mangleNameOrStandardSubstitution(RD);
3739}
3740
3741void ItaniumMangleContext::mangleCXXVTT(const CXXRecordDecl *RD,
3742                                        raw_ostream &Out) {
3743  // <special-name> ::= TT <type>  # VTT structure
3744  CXXNameMangler Mangler(*this, Out);
3745  Mangler.getStream() << "_ZTT";
3746  Mangler.mangleNameOrStandardSubstitution(RD);
3747}
3748
3749void
3750ItaniumMangleContext::mangleCXXVBTable(const CXXRecordDecl *Derived,
3751                                       ArrayRef<const CXXRecordDecl *> BasePath,
3752                                       raw_ostream &Out) {
3753  llvm_unreachable("The Itanium C++ ABI does not have virtual base tables!");
3754}
3755
3756void ItaniumMangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD,
3757                                               int64_t Offset,
3758                                               const CXXRecordDecl *Type,
3759                                               raw_ostream &Out) {
3760  // <special-name> ::= TC <type> <offset number> _ <base type>
3761  CXXNameMangler Mangler(*this, Out);
3762  Mangler.getStream() << "_ZTC";
3763  Mangler.mangleNameOrStandardSubstitution(RD);
3764  Mangler.getStream() << Offset;
3765  Mangler.getStream() << '_';
3766  Mangler.mangleNameOrStandardSubstitution(Type);
3767}
3768
3769void ItaniumMangleContext::mangleCXXRTTI(QualType Ty,
3770                                         raw_ostream &Out) {
3771  // <special-name> ::= TI <type>  # typeinfo structure
3772  assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
3773  CXXNameMangler Mangler(*this, Out);
3774  Mangler.getStream() << "_ZTI";
3775  Mangler.mangleType(Ty);
3776}
3777
3778void ItaniumMangleContext::mangleCXXRTTIName(QualType Ty,
3779                                             raw_ostream &Out) {
3780  // <special-name> ::= TS <type>  # typeinfo name (null terminated byte string)
3781  CXXNameMangler Mangler(*this, Out);
3782  Mangler.getStream() << "_ZTS";
3783  Mangler.mangleType(Ty);
3784}
3785
3786MangleContext *clang::createItaniumMangleContext(ASTContext &Context,
3787                                                 DiagnosticsEngine &Diags) {
3788  return new ItaniumMangleContext(Context, Diags);
3789}
3790