1//===--- LiteralSupport.cpp - Code to parse and process literals ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the NumericLiteralParser, CharLiteralParser, and
11// StringLiteralParser interfaces.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Lex/LiteralSupport.h"
16#include "clang/Basic/CharInfo.h"
17#include "clang/Basic/TargetInfo.h"
18#include "clang/Lex/LexDiagnostic.h"
19#include "clang/Lex/Preprocessor.h"
20#include "llvm/ADT/StringExtras.h"
21#include "llvm/Support/ConvertUTF.h"
22#include "llvm/Support/ErrorHandling.h"
23
24using namespace clang;
25
26static unsigned getCharWidth(tok::TokenKind kind, const TargetInfo &Target) {
27  switch (kind) {
28  default: llvm_unreachable("Unknown token type!");
29  case tok::char_constant:
30  case tok::string_literal:
31  case tok::utf8_string_literal:
32    return Target.getCharWidth();
33  case tok::wide_char_constant:
34  case tok::wide_string_literal:
35    return Target.getWCharWidth();
36  case tok::utf16_char_constant:
37  case tok::utf16_string_literal:
38    return Target.getChar16Width();
39  case tok::utf32_char_constant:
40  case tok::utf32_string_literal:
41    return Target.getChar32Width();
42  }
43}
44
45static CharSourceRange MakeCharSourceRange(const LangOptions &Features,
46                                           FullSourceLoc TokLoc,
47                                           const char *TokBegin,
48                                           const char *TokRangeBegin,
49                                           const char *TokRangeEnd) {
50  SourceLocation Begin =
51    Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
52                                   TokLoc.getManager(), Features);
53  SourceLocation End =
54    Lexer::AdvanceToTokenCharacter(Begin, TokRangeEnd - TokRangeBegin,
55                                   TokLoc.getManager(), Features);
56  return CharSourceRange::getCharRange(Begin, End);
57}
58
59/// \brief Produce a diagnostic highlighting some portion of a literal.
60///
61/// Emits the diagnostic \p DiagID, highlighting the range of characters from
62/// \p TokRangeBegin (inclusive) to \p TokRangeEnd (exclusive), which must be
63/// a substring of a spelling buffer for the token beginning at \p TokBegin.
64static DiagnosticBuilder Diag(DiagnosticsEngine *Diags,
65                              const LangOptions &Features, FullSourceLoc TokLoc,
66                              const char *TokBegin, const char *TokRangeBegin,
67                              const char *TokRangeEnd, unsigned DiagID) {
68  SourceLocation Begin =
69    Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
70                                   TokLoc.getManager(), Features);
71  return Diags->Report(Begin, DiagID) <<
72    MakeCharSourceRange(Features, TokLoc, TokBegin, TokRangeBegin, TokRangeEnd);
73}
74
75/// ProcessCharEscape - Parse a standard C escape sequence, which can occur in
76/// either a character or a string literal.
77static unsigned ProcessCharEscape(const char *ThisTokBegin,
78                                  const char *&ThisTokBuf,
79                                  const char *ThisTokEnd, bool &HadError,
80                                  FullSourceLoc Loc, unsigned CharWidth,
81                                  DiagnosticsEngine *Diags,
82                                  const LangOptions &Features) {
83  const char *EscapeBegin = ThisTokBuf;
84
85  // Skip the '\' char.
86  ++ThisTokBuf;
87
88  // We know that this character can't be off the end of the buffer, because
89  // that would have been \", which would not have been the end of string.
90  unsigned ResultChar = *ThisTokBuf++;
91  switch (ResultChar) {
92  // These map to themselves.
93  case '\\': case '\'': case '"': case '?': break;
94
95    // These have fixed mappings.
96  case 'a':
97    // TODO: K&R: the meaning of '\\a' is different in traditional C
98    ResultChar = 7;
99    break;
100  case 'b':
101    ResultChar = 8;
102    break;
103  case 'e':
104    if (Diags)
105      Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
106           diag::ext_nonstandard_escape) << "e";
107    ResultChar = 27;
108    break;
109  case 'E':
110    if (Diags)
111      Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
112           diag::ext_nonstandard_escape) << "E";
113    ResultChar = 27;
114    break;
115  case 'f':
116    ResultChar = 12;
117    break;
118  case 'n':
119    ResultChar = 10;
120    break;
121  case 'r':
122    ResultChar = 13;
123    break;
124  case 't':
125    ResultChar = 9;
126    break;
127  case 'v':
128    ResultChar = 11;
129    break;
130  case 'x': { // Hex escape.
131    ResultChar = 0;
132    if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
133      if (Diags)
134        Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
135             diag::err_hex_escape_no_digits) << "x";
136      HadError = 1;
137      break;
138    }
139
140    // Hex escapes are a maximal series of hex digits.
141    bool Overflow = false;
142    for (; ThisTokBuf != ThisTokEnd; ++ThisTokBuf) {
143      int CharVal = llvm::hexDigitValue(ThisTokBuf[0]);
144      if (CharVal == -1) break;
145      // About to shift out a digit?
146      Overflow |= (ResultChar & 0xF0000000) ? true : false;
147      ResultChar <<= 4;
148      ResultChar |= CharVal;
149    }
150
151    // See if any bits will be truncated when evaluated as a character.
152    if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
153      Overflow = true;
154      ResultChar &= ~0U >> (32-CharWidth);
155    }
156
157    // Check for overflow.
158    if (Overflow && Diags)   // Too many digits to fit in
159      Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
160           diag::err_hex_escape_too_large);
161    break;
162  }
163  case '0': case '1': case '2': case '3':
164  case '4': case '5': case '6': case '7': {
165    // Octal escapes.
166    --ThisTokBuf;
167    ResultChar = 0;
168
169    // Octal escapes are a series of octal digits with maximum length 3.
170    // "\0123" is a two digit sequence equal to "\012" "3".
171    unsigned NumDigits = 0;
172    do {
173      ResultChar <<= 3;
174      ResultChar |= *ThisTokBuf++ - '0';
175      ++NumDigits;
176    } while (ThisTokBuf != ThisTokEnd && NumDigits < 3 &&
177             ThisTokBuf[0] >= '0' && ThisTokBuf[0] <= '7');
178
179    // Check for overflow.  Reject '\777', but not L'\777'.
180    if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
181      if (Diags)
182        Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
183             diag::err_octal_escape_too_large);
184      ResultChar &= ~0U >> (32-CharWidth);
185    }
186    break;
187  }
188
189    // Otherwise, these are not valid escapes.
190  case '(': case '{': case '[': case '%':
191    // GCC accepts these as extensions.  We warn about them as such though.
192    if (Diags)
193      Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
194           diag::ext_nonstandard_escape)
195        << std::string(1, ResultChar);
196    break;
197  default:
198    if (Diags == 0)
199      break;
200
201    if (isPrintable(ResultChar))
202      Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
203           diag::ext_unknown_escape)
204        << std::string(1, ResultChar);
205    else
206      Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
207           diag::ext_unknown_escape)
208        << "x" + llvm::utohexstr(ResultChar);
209    break;
210  }
211
212  return ResultChar;
213}
214
215/// ProcessUCNEscape - Read the Universal Character Name, check constraints and
216/// return the UTF32.
217static bool ProcessUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
218                             const char *ThisTokEnd,
219                             uint32_t &UcnVal, unsigned short &UcnLen,
220                             FullSourceLoc Loc, DiagnosticsEngine *Diags,
221                             const LangOptions &Features,
222                             bool in_char_string_literal = false) {
223  const char *UcnBegin = ThisTokBuf;
224
225  // Skip the '\u' char's.
226  ThisTokBuf += 2;
227
228  if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
229    if (Diags)
230      Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
231           diag::err_hex_escape_no_digits) << StringRef(&ThisTokBuf[-1], 1);
232    return false;
233  }
234  UcnLen = (ThisTokBuf[-1] == 'u' ? 4 : 8);
235  unsigned short UcnLenSave = UcnLen;
236  for (; ThisTokBuf != ThisTokEnd && UcnLenSave; ++ThisTokBuf, UcnLenSave--) {
237    int CharVal = llvm::hexDigitValue(ThisTokBuf[0]);
238    if (CharVal == -1) break;
239    UcnVal <<= 4;
240    UcnVal |= CharVal;
241  }
242  // If we didn't consume the proper number of digits, there is a problem.
243  if (UcnLenSave) {
244    if (Diags)
245      Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
246           diag::err_ucn_escape_incomplete);
247    return false;
248  }
249
250  // Check UCN constraints (C99 6.4.3p2) [C++11 lex.charset p2]
251  if ((0xD800 <= UcnVal && UcnVal <= 0xDFFF) || // surrogate codepoints
252      UcnVal > 0x10FFFF) {                      // maximum legal UTF32 value
253    if (Diags)
254      Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
255           diag::err_ucn_escape_invalid);
256    return false;
257  }
258
259  // C++11 allows UCNs that refer to control characters and basic source
260  // characters inside character and string literals
261  if (UcnVal < 0xa0 &&
262      (UcnVal != 0x24 && UcnVal != 0x40 && UcnVal != 0x60)) {  // $, @, `
263    bool IsError = (!Features.CPlusPlus11 || !in_char_string_literal);
264    if (Diags) {
265      char BasicSCSChar = UcnVal;
266      if (UcnVal >= 0x20 && UcnVal < 0x7f)
267        Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
268             IsError ? diag::err_ucn_escape_basic_scs :
269                       diag::warn_cxx98_compat_literal_ucn_escape_basic_scs)
270            << StringRef(&BasicSCSChar, 1);
271      else
272        Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
273             IsError ? diag::err_ucn_control_character :
274                       diag::warn_cxx98_compat_literal_ucn_control_character);
275    }
276    if (IsError)
277      return false;
278  }
279
280  if (!Features.CPlusPlus && !Features.C99 && Diags)
281    Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
282         diag::warn_ucn_not_valid_in_c89_literal);
283
284  return true;
285}
286
287/// MeasureUCNEscape - Determine the number of bytes within the resulting string
288/// which this UCN will occupy.
289static int MeasureUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
290                            const char *ThisTokEnd, unsigned CharByteWidth,
291                            const LangOptions &Features, bool &HadError) {
292  // UTF-32: 4 bytes per escape.
293  if (CharByteWidth == 4)
294    return 4;
295
296  uint32_t UcnVal = 0;
297  unsigned short UcnLen = 0;
298  FullSourceLoc Loc;
299
300  if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal,
301                        UcnLen, Loc, 0, Features, true)) {
302    HadError = true;
303    return 0;
304  }
305
306  // UTF-16: 2 bytes for BMP, 4 bytes otherwise.
307  if (CharByteWidth == 2)
308    return UcnVal <= 0xFFFF ? 2 : 4;
309
310  // UTF-8.
311  if (UcnVal < 0x80)
312    return 1;
313  if (UcnVal < 0x800)
314    return 2;
315  if (UcnVal < 0x10000)
316    return 3;
317  return 4;
318}
319
320/// EncodeUCNEscape - Read the Universal Character Name, check constraints and
321/// convert the UTF32 to UTF8 or UTF16. This is a subroutine of
322/// StringLiteralParser. When we decide to implement UCN's for identifiers,
323/// we will likely rework our support for UCN's.
324static void EncodeUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
325                            const char *ThisTokEnd,
326                            char *&ResultBuf, bool &HadError,
327                            FullSourceLoc Loc, unsigned CharByteWidth,
328                            DiagnosticsEngine *Diags,
329                            const LangOptions &Features) {
330  typedef uint32_t UTF32;
331  UTF32 UcnVal = 0;
332  unsigned short UcnLen = 0;
333  if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, UcnLen,
334                        Loc, Diags, Features, true)) {
335    HadError = true;
336    return;
337  }
338
339  assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth) &&
340         "only character widths of 1, 2, or 4 bytes supported");
341
342  (void)UcnLen;
343  assert((UcnLen== 4 || UcnLen== 8) && "only ucn length of 4 or 8 supported");
344
345  if (CharByteWidth == 4) {
346    // FIXME: Make the type of the result buffer correct instead of
347    // using reinterpret_cast.
348    UTF32 *ResultPtr = reinterpret_cast<UTF32*>(ResultBuf);
349    *ResultPtr = UcnVal;
350    ResultBuf += 4;
351    return;
352  }
353
354  if (CharByteWidth == 2) {
355    // FIXME: Make the type of the result buffer correct instead of
356    // using reinterpret_cast.
357    UTF16 *ResultPtr = reinterpret_cast<UTF16*>(ResultBuf);
358
359    if (UcnVal <= (UTF32)0xFFFF) {
360      *ResultPtr = UcnVal;
361      ResultBuf += 2;
362      return;
363    }
364
365    // Convert to UTF16.
366    UcnVal -= 0x10000;
367    *ResultPtr     = 0xD800 + (UcnVal >> 10);
368    *(ResultPtr+1) = 0xDC00 + (UcnVal & 0x3FF);
369    ResultBuf += 4;
370    return;
371  }
372
373  assert(CharByteWidth == 1 && "UTF-8 encoding is only for 1 byte characters");
374
375  // Now that we've parsed/checked the UCN, we convert from UTF32->UTF8.
376  // The conversion below was inspired by:
377  //   http://www.unicode.org/Public/PROGRAMS/CVTUTF/ConvertUTF.c
378  // First, we determine how many bytes the result will require.
379  typedef uint8_t UTF8;
380
381  unsigned short bytesToWrite = 0;
382  if (UcnVal < (UTF32)0x80)
383    bytesToWrite = 1;
384  else if (UcnVal < (UTF32)0x800)
385    bytesToWrite = 2;
386  else if (UcnVal < (UTF32)0x10000)
387    bytesToWrite = 3;
388  else
389    bytesToWrite = 4;
390
391  const unsigned byteMask = 0xBF;
392  const unsigned byteMark = 0x80;
393
394  // Once the bits are split out into bytes of UTF8, this is a mask OR-ed
395  // into the first byte, depending on how many bytes follow.
396  static const UTF8 firstByteMark[5] = {
397    0x00, 0x00, 0xC0, 0xE0, 0xF0
398  };
399  // Finally, we write the bytes into ResultBuf.
400  ResultBuf += bytesToWrite;
401  switch (bytesToWrite) { // note: everything falls through.
402  case 4: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
403  case 3: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
404  case 2: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
405  case 1: *--ResultBuf = (UTF8) (UcnVal | firstByteMark[bytesToWrite]);
406  }
407  // Update the buffer.
408  ResultBuf += bytesToWrite;
409}
410
411
412///       integer-constant: [C99 6.4.4.1]
413///         decimal-constant integer-suffix
414///         octal-constant integer-suffix
415///         hexadecimal-constant integer-suffix
416///         binary-literal integer-suffix [GNU, C++1y]
417///       user-defined-integer-literal: [C++11 lex.ext]
418///         decimal-literal ud-suffix
419///         octal-literal ud-suffix
420///         hexadecimal-literal ud-suffix
421///         binary-literal ud-suffix [GNU, C++1y]
422///       decimal-constant:
423///         nonzero-digit
424///         decimal-constant digit
425///       octal-constant:
426///         0
427///         octal-constant octal-digit
428///       hexadecimal-constant:
429///         hexadecimal-prefix hexadecimal-digit
430///         hexadecimal-constant hexadecimal-digit
431///       hexadecimal-prefix: one of
432///         0x 0X
433///       binary-literal:
434///         0b binary-digit
435///         0B binary-digit
436///         binary-literal binary-digit
437///       integer-suffix:
438///         unsigned-suffix [long-suffix]
439///         unsigned-suffix [long-long-suffix]
440///         long-suffix [unsigned-suffix]
441///         long-long-suffix [unsigned-sufix]
442///       nonzero-digit:
443///         1 2 3 4 5 6 7 8 9
444///       octal-digit:
445///         0 1 2 3 4 5 6 7
446///       hexadecimal-digit:
447///         0 1 2 3 4 5 6 7 8 9
448///         a b c d e f
449///         A B C D E F
450///       binary-digit:
451///         0
452///         1
453///       unsigned-suffix: one of
454///         u U
455///       long-suffix: one of
456///         l L
457///       long-long-suffix: one of
458///         ll LL
459///
460///       floating-constant: [C99 6.4.4.2]
461///         TODO: add rules...
462///
463NumericLiteralParser::NumericLiteralParser(StringRef TokSpelling,
464                                           SourceLocation TokLoc,
465                                           Preprocessor &PP)
466  : PP(PP), ThisTokBegin(TokSpelling.begin()), ThisTokEnd(TokSpelling.end()) {
467
468  // This routine assumes that the range begin/end matches the regex for integer
469  // and FP constants (specifically, the 'pp-number' regex), and assumes that
470  // the byte at "*end" is both valid and not part of the regex.  Because of
471  // this, it doesn't have to check for 'overscan' in various places.
472  assert(!isPreprocessingNumberBody(*ThisTokEnd) && "didn't maximally munch?");
473
474  s = DigitsBegin = ThisTokBegin;
475  saw_exponent = false;
476  saw_period = false;
477  saw_ud_suffix = false;
478  isLong = false;
479  isUnsigned = false;
480  isLongLong = false;
481  isFloat = false;
482  isImaginary = false;
483  isMicrosoftInteger = false;
484  hadError = false;
485
486  if (*s == '0') { // parse radix
487    ParseNumberStartingWithZero(TokLoc);
488    if (hadError)
489      return;
490  } else { // the first digit is non-zero
491    radix = 10;
492    s = SkipDigits(s);
493    if (s == ThisTokEnd) {
494      // Done.
495    } else if (isHexDigit(*s) && !(*s == 'e' || *s == 'E')) {
496      PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin),
497              diag::err_invalid_decimal_digit) << StringRef(s, 1);
498      hadError = true;
499      return;
500    } else if (*s == '.') {
501      s++;
502      saw_period = true;
503      s = SkipDigits(s);
504    }
505    if ((*s == 'e' || *s == 'E')) { // exponent
506      const char *Exponent = s;
507      s++;
508      saw_exponent = true;
509      if (*s == '+' || *s == '-')  s++; // sign
510      const char *first_non_digit = SkipDigits(s);
511      if (first_non_digit != s) {
512        s = first_non_digit;
513      } else {
514        PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent - ThisTokBegin),
515                diag::err_exponent_has_no_digits);
516        hadError = true;
517        return;
518      }
519    }
520  }
521
522  SuffixBegin = s;
523
524  // Parse the suffix.  At this point we can classify whether we have an FP or
525  // integer constant.
526  bool isFPConstant = isFloatingLiteral();
527  const char *ImaginarySuffixLoc = 0;
528
529  // Loop over all of the characters of the suffix.  If we see something bad,
530  // we break out of the loop.
531  for (; s != ThisTokEnd; ++s) {
532    switch (*s) {
533    case 'f':      // FP Suffix for "float"
534    case 'F':
535      if (!isFPConstant) break;  // Error for integer constant.
536      if (isFloat || isLong) break; // FF, LF invalid.
537      isFloat = true;
538      continue;  // Success.
539    case 'u':
540    case 'U':
541      if (isFPConstant) break;  // Error for floating constant.
542      if (isUnsigned) break;    // Cannot be repeated.
543      isUnsigned = true;
544      continue;  // Success.
545    case 'l':
546    case 'L':
547      if (isLong || isLongLong) break;  // Cannot be repeated.
548      if (isFloat) break;               // LF invalid.
549
550      // Check for long long.  The L's need to be adjacent and the same case.
551      if (s+1 != ThisTokEnd && s[1] == s[0]) {
552        if (isFPConstant) break;        // long long invalid for floats.
553        isLongLong = true;
554        ++s;  // Eat both of them.
555      } else {
556        isLong = true;
557      }
558      continue;  // Success.
559    case 'i':
560    case 'I':
561      if (PP.getLangOpts().MicrosoftExt) {
562        if (isFPConstant || isLong || isLongLong) break;
563
564        // Allow i8, i16, i32, i64, and i128.
565        if (s + 1 != ThisTokEnd) {
566          switch (s[1]) {
567            case '8':
568              s += 2; // i8 suffix
569              isMicrosoftInteger = true;
570              break;
571            case '1':
572              if (s + 2 == ThisTokEnd) break;
573              if (s[2] == '6') {
574                s += 3; // i16 suffix
575                isMicrosoftInteger = true;
576              }
577              else if (s[2] == '2') {
578                if (s + 3 == ThisTokEnd) break;
579                if (s[3] == '8') {
580                  s += 4; // i128 suffix
581                  isMicrosoftInteger = true;
582                }
583              }
584              break;
585            case '3':
586              if (s + 2 == ThisTokEnd) break;
587              if (s[2] == '2') {
588                s += 3; // i32 suffix
589                isLong = true;
590                isMicrosoftInteger = true;
591              }
592              break;
593            case '6':
594              if (s + 2 == ThisTokEnd) break;
595              if (s[2] == '4') {
596                s += 3; // i64 suffix
597                isLongLong = true;
598                isMicrosoftInteger = true;
599              }
600              break;
601            default:
602              break;
603          }
604          break;
605        }
606      }
607      // fall through.
608    case 'j':
609    case 'J':
610      if (isImaginary) break;   // Cannot be repeated.
611      isImaginary = true;
612      ImaginarySuffixLoc = s;
613      continue;  // Success.
614    }
615    // If we reached here, there was an error or a ud-suffix.
616    break;
617  }
618
619  if (s != ThisTokEnd) {
620    if (isValidUDSuffix(PP.getLangOpts(),
621                        StringRef(SuffixBegin, ThisTokEnd - SuffixBegin))) {
622      // Any suffix pieces we might have parsed are actually part of the
623      // ud-suffix.
624      isLong = false;
625      isUnsigned = false;
626      isLongLong = false;
627      isFloat = false;
628      isImaginary = false;
629      isMicrosoftInteger = false;
630
631      saw_ud_suffix = true;
632      return;
633    }
634
635    // Report an error if there are any.
636    PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, SuffixBegin - ThisTokBegin),
637            isFPConstant ? diag::err_invalid_suffix_float_constant :
638                           diag::err_invalid_suffix_integer_constant)
639      << StringRef(SuffixBegin, ThisTokEnd-SuffixBegin);
640    hadError = true;
641    return;
642  }
643
644  if (isImaginary) {
645    PP.Diag(PP.AdvanceToTokenCharacter(TokLoc,
646                                       ImaginarySuffixLoc - ThisTokBegin),
647            diag::ext_imaginary_constant);
648  }
649}
650
651/// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved
652/// suffixes as ud-suffixes, because the diagnostic experience is better if we
653/// treat it as an invalid suffix.
654bool NumericLiteralParser::isValidUDSuffix(const LangOptions &LangOpts,
655                                           StringRef Suffix) {
656  if (!LangOpts.CPlusPlus11 || Suffix.empty())
657    return false;
658
659  // By C++11 [lex.ext]p10, ud-suffixes starting with an '_' are always valid.
660  if (Suffix[0] == '_')
661    return true;
662
663  // In C++11, there are no library suffixes.
664  if (!LangOpts.CPlusPlus1y)
665    return false;
666
667  // In C++1y, "s", "h", "min", "ms", "us", and "ns" are used in the library.
668  return llvm::StringSwitch<bool>(Suffix)
669      .Cases("h", "min", "s", true)
670      .Cases("ms", "us", "ns", true)
671      .Default(false);
672}
673
674/// ParseNumberStartingWithZero - This method is called when the first character
675/// of the number is found to be a zero.  This means it is either an octal
676/// number (like '04') or a hex number ('0x123a') a binary number ('0b1010') or
677/// a floating point number (01239.123e4).  Eat the prefix, determining the
678/// radix etc.
679void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) {
680  assert(s[0] == '0' && "Invalid method call");
681  s++;
682
683  // Handle a hex number like 0x1234.
684  if ((*s == 'x' || *s == 'X') && (isHexDigit(s[1]) || s[1] == '.')) {
685    s++;
686    radix = 16;
687    DigitsBegin = s;
688    s = SkipHexDigits(s);
689    bool noSignificand = (s == DigitsBegin);
690    if (s == ThisTokEnd) {
691      // Done.
692    } else if (*s == '.') {
693      s++;
694      saw_period = true;
695      const char *floatDigitsBegin = s;
696      s = SkipHexDigits(s);
697      noSignificand &= (floatDigitsBegin == s);
698    }
699
700    if (noSignificand) {
701      PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin),
702        diag::err_hexconstant_requires_digits);
703      hadError = true;
704      return;
705    }
706
707    // A binary exponent can appear with or with a '.'. If dotted, the
708    // binary exponent is required.
709    if (*s == 'p' || *s == 'P') {
710      const char *Exponent = s;
711      s++;
712      saw_exponent = true;
713      if (*s == '+' || *s == '-')  s++; // sign
714      const char *first_non_digit = SkipDigits(s);
715      if (first_non_digit == s) {
716        PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
717                diag::err_exponent_has_no_digits);
718        hadError = true;
719        return;
720      }
721      s = first_non_digit;
722
723      if (!PP.getLangOpts().HexFloats)
724        PP.Diag(TokLoc, diag::ext_hexconstant_invalid);
725    } else if (saw_period) {
726      PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
727              diag::err_hexconstant_requires_exponent);
728      hadError = true;
729    }
730    return;
731  }
732
733  // Handle simple binary numbers 0b01010
734  if (*s == 'b' || *s == 'B') {
735    // 0b101010 is a C++1y / GCC extension.
736    PP.Diag(TokLoc,
737            PP.getLangOpts().CPlusPlus1y
738              ? diag::warn_cxx11_compat_binary_literal
739              : PP.getLangOpts().CPlusPlus
740                ? diag::ext_binary_literal_cxx1y
741                : diag::ext_binary_literal);
742    ++s;
743    radix = 2;
744    DigitsBegin = s;
745    s = SkipBinaryDigits(s);
746    if (s == ThisTokEnd) {
747      // Done.
748    } else if (isHexDigit(*s)) {
749      PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
750              diag::err_invalid_binary_digit) << StringRef(s, 1);
751      hadError = true;
752    }
753    // Other suffixes will be diagnosed by the caller.
754    return;
755  }
756
757  // For now, the radix is set to 8. If we discover that we have a
758  // floating point constant, the radix will change to 10. Octal floating
759  // point constants are not permitted (only decimal and hexadecimal).
760  radix = 8;
761  DigitsBegin = s;
762  s = SkipOctalDigits(s);
763  if (s == ThisTokEnd)
764    return; // Done, simple octal number like 01234
765
766  // If we have some other non-octal digit that *is* a decimal digit, see if
767  // this is part of a floating point number like 094.123 or 09e1.
768  if (isDigit(*s)) {
769    const char *EndDecimal = SkipDigits(s);
770    if (EndDecimal[0] == '.' || EndDecimal[0] == 'e' || EndDecimal[0] == 'E') {
771      s = EndDecimal;
772      radix = 10;
773    }
774  }
775
776  // If we have a hex digit other than 'e' (which denotes a FP exponent) then
777  // the code is using an incorrect base.
778  if (isHexDigit(*s) && *s != 'e' && *s != 'E') {
779    PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
780            diag::err_invalid_octal_digit) << StringRef(s, 1);
781    hadError = true;
782    return;
783  }
784
785  if (*s == '.') {
786    s++;
787    radix = 10;
788    saw_period = true;
789    s = SkipDigits(s); // Skip suffix.
790  }
791  if (*s == 'e' || *s == 'E') { // exponent
792    const char *Exponent = s;
793    s++;
794    radix = 10;
795    saw_exponent = true;
796    if (*s == '+' || *s == '-')  s++; // sign
797    const char *first_non_digit = SkipDigits(s);
798    if (first_non_digit != s) {
799      s = first_non_digit;
800    } else {
801      PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
802              diag::err_exponent_has_no_digits);
803      hadError = true;
804      return;
805    }
806  }
807}
808
809static bool alwaysFitsInto64Bits(unsigned Radix, unsigned NumDigits) {
810  switch (Radix) {
811  case 2:
812    return NumDigits <= 64;
813  case 8:
814    return NumDigits <= 64 / 3; // Digits are groups of 3 bits.
815  case 10:
816    return NumDigits <= 19; // floor(log10(2^64))
817  case 16:
818    return NumDigits <= 64 / 4; // Digits are groups of 4 bits.
819  default:
820    llvm_unreachable("impossible Radix");
821  }
822}
823
824/// GetIntegerValue - Convert this numeric literal value to an APInt that
825/// matches Val's input width.  If there is an overflow, set Val to the low bits
826/// of the result and return true.  Otherwise, return false.
827bool NumericLiteralParser::GetIntegerValue(llvm::APInt &Val) {
828  // Fast path: Compute a conservative bound on the maximum number of
829  // bits per digit in this radix. If we can't possibly overflow a
830  // uint64 based on that bound then do the simple conversion to
831  // integer. This avoids the expensive overflow checking below, and
832  // handles the common cases that matter (small decimal integers and
833  // hex/octal values which don't overflow).
834  const unsigned NumDigits = SuffixBegin - DigitsBegin;
835  if (alwaysFitsInto64Bits(radix, NumDigits)) {
836    uint64_t N = 0;
837    for (const char *Ptr = DigitsBegin; Ptr != SuffixBegin; ++Ptr)
838      N = N * radix + llvm::hexDigitValue(*Ptr);
839
840    // This will truncate the value to Val's input width. Simply check
841    // for overflow by comparing.
842    Val = N;
843    return Val.getZExtValue() != N;
844  }
845
846  Val = 0;
847  const char *Ptr = DigitsBegin;
848
849  llvm::APInt RadixVal(Val.getBitWidth(), radix);
850  llvm::APInt CharVal(Val.getBitWidth(), 0);
851  llvm::APInt OldVal = Val;
852
853  bool OverflowOccurred = false;
854  while (Ptr < SuffixBegin) {
855    unsigned C = llvm::hexDigitValue(*Ptr++);
856
857    // If this letter is out of bound for this radix, reject it.
858    assert(C < radix && "NumericLiteralParser ctor should have rejected this");
859
860    CharVal = C;
861
862    // Add the digit to the value in the appropriate radix.  If adding in digits
863    // made the value smaller, then this overflowed.
864    OldVal = Val;
865
866    // Multiply by radix, did overflow occur on the multiply?
867    Val *= RadixVal;
868    OverflowOccurred |= Val.udiv(RadixVal) != OldVal;
869
870    // Add value, did overflow occur on the value?
871    //   (a + b) ult b  <=> overflow
872    Val += CharVal;
873    OverflowOccurred |= Val.ult(CharVal);
874  }
875  return OverflowOccurred;
876}
877
878llvm::APFloat::opStatus
879NumericLiteralParser::GetFloatValue(llvm::APFloat &Result) {
880  using llvm::APFloat;
881
882  unsigned n = std::min(SuffixBegin - ThisTokBegin, ThisTokEnd - ThisTokBegin);
883  return Result.convertFromString(StringRef(ThisTokBegin, n),
884                                  APFloat::rmNearestTiesToEven);
885}
886
887
888/// \verbatim
889///       user-defined-character-literal: [C++11 lex.ext]
890///         character-literal ud-suffix
891///       ud-suffix:
892///         identifier
893///       character-literal: [C++11 lex.ccon]
894///         ' c-char-sequence '
895///         u' c-char-sequence '
896///         U' c-char-sequence '
897///         L' c-char-sequence '
898///       c-char-sequence:
899///         c-char
900///         c-char-sequence c-char
901///       c-char:
902///         any member of the source character set except the single-quote ',
903///           backslash \, or new-line character
904///         escape-sequence
905///         universal-character-name
906///       escape-sequence:
907///         simple-escape-sequence
908///         octal-escape-sequence
909///         hexadecimal-escape-sequence
910///       simple-escape-sequence:
911///         one of \' \" \? \\ \a \b \f \n \r \t \v
912///       octal-escape-sequence:
913///         \ octal-digit
914///         \ octal-digit octal-digit
915///         \ octal-digit octal-digit octal-digit
916///       hexadecimal-escape-sequence:
917///         \x hexadecimal-digit
918///         hexadecimal-escape-sequence hexadecimal-digit
919///       universal-character-name: [C++11 lex.charset]
920///         \u hex-quad
921///         \U hex-quad hex-quad
922///       hex-quad:
923///         hex-digit hex-digit hex-digit hex-digit
924/// \endverbatim
925///
926CharLiteralParser::CharLiteralParser(const char *begin, const char *end,
927                                     SourceLocation Loc, Preprocessor &PP,
928                                     tok::TokenKind kind) {
929  // At this point we know that the character matches the regex "(L|u|U)?'.*'".
930  HadError = false;
931
932  Kind = kind;
933
934  const char *TokBegin = begin;
935
936  // Skip over wide character determinant.
937  if (Kind != tok::char_constant) {
938    ++begin;
939  }
940
941  // Skip over the entry quote.
942  assert(begin[0] == '\'' && "Invalid token lexed");
943  ++begin;
944
945  // Remove an optional ud-suffix.
946  if (end[-1] != '\'') {
947    const char *UDSuffixEnd = end;
948    do {
949      --end;
950    } while (end[-1] != '\'');
951    UDSuffixBuf.assign(end, UDSuffixEnd);
952    UDSuffixOffset = end - TokBegin;
953  }
954
955  // Trim the ending quote.
956  assert(end != begin && "Invalid token lexed");
957  --end;
958
959  // FIXME: The "Value" is an uint64_t so we can handle char literals of
960  // up to 64-bits.
961  // FIXME: This extensively assumes that 'char' is 8-bits.
962  assert(PP.getTargetInfo().getCharWidth() == 8 &&
963         "Assumes char is 8 bits");
964  assert(PP.getTargetInfo().getIntWidth() <= 64 &&
965         (PP.getTargetInfo().getIntWidth() & 7) == 0 &&
966         "Assumes sizeof(int) on target is <= 64 and a multiple of char");
967  assert(PP.getTargetInfo().getWCharWidth() <= 64 &&
968         "Assumes sizeof(wchar) on target is <= 64");
969
970  SmallVector<uint32_t,4> codepoint_buffer;
971  codepoint_buffer.resize(end-begin);
972  uint32_t *buffer_begin = &codepoint_buffer.front();
973  uint32_t *buffer_end = buffer_begin + codepoint_buffer.size();
974
975  // Unicode escapes representing characters that cannot be correctly
976  // represented in a single code unit are disallowed in character literals
977  // by this implementation.
978  uint32_t largest_character_for_kind;
979  if (tok::wide_char_constant == Kind) {
980    largest_character_for_kind = 0xFFFFFFFFu >> (32-PP.getTargetInfo().getWCharWidth());
981  } else if (tok::utf16_char_constant == Kind) {
982    largest_character_for_kind = 0xFFFF;
983  } else if (tok::utf32_char_constant == Kind) {
984    largest_character_for_kind = 0x10FFFF;
985  } else {
986    largest_character_for_kind = 0x7Fu;
987  }
988
989  while (begin!=end) {
990    // Is this a span of non-escape characters?
991    if (begin[0] != '\\') {
992      char const *start = begin;
993      do {
994        ++begin;
995      } while (begin != end && *begin != '\\');
996
997      char const *tmp_in_start = start;
998      uint32_t *tmp_out_start = buffer_begin;
999      ConversionResult res =
1000      ConvertUTF8toUTF32(reinterpret_cast<UTF8 const **>(&start),
1001                         reinterpret_cast<UTF8 const *>(begin),
1002                         &buffer_begin,buffer_end,strictConversion);
1003      if (res!=conversionOK) {
1004        // If we see bad encoding for unprefixed character literals, warn and
1005        // simply copy the byte values, for compatibility with gcc and
1006        // older versions of clang.
1007        bool NoErrorOnBadEncoding = isAscii();
1008        unsigned Msg = diag::err_bad_character_encoding;
1009        if (NoErrorOnBadEncoding)
1010          Msg = diag::warn_bad_character_encoding;
1011        PP.Diag(Loc, Msg);
1012        if (NoErrorOnBadEncoding) {
1013          start = tmp_in_start;
1014          buffer_begin = tmp_out_start;
1015          for ( ; start != begin; ++start, ++buffer_begin)
1016            *buffer_begin = static_cast<uint8_t>(*start);
1017        } else {
1018          HadError = true;
1019        }
1020      } else {
1021        for (; tmp_out_start <buffer_begin; ++tmp_out_start) {
1022          if (*tmp_out_start > largest_character_for_kind) {
1023            HadError = true;
1024            PP.Diag(Loc, diag::err_character_too_large);
1025          }
1026        }
1027      }
1028
1029      continue;
1030    }
1031    // Is this a Universal Character Name excape?
1032    if (begin[1] == 'u' || begin[1] == 'U') {
1033      unsigned short UcnLen = 0;
1034      if (!ProcessUCNEscape(TokBegin, begin, end, *buffer_begin, UcnLen,
1035                            FullSourceLoc(Loc, PP.getSourceManager()),
1036                            &PP.getDiagnostics(), PP.getLangOpts(),
1037                            true))
1038      {
1039        HadError = true;
1040      } else if (*buffer_begin > largest_character_for_kind) {
1041        HadError = true;
1042        PP.Diag(Loc, diag::err_character_too_large);
1043      }
1044
1045      ++buffer_begin;
1046      continue;
1047    }
1048    unsigned CharWidth = getCharWidth(Kind, PP.getTargetInfo());
1049    uint64_t result =
1050      ProcessCharEscape(TokBegin, begin, end, HadError,
1051                        FullSourceLoc(Loc,PP.getSourceManager()),
1052                        CharWidth, &PP.getDiagnostics(), PP.getLangOpts());
1053    *buffer_begin++ = result;
1054  }
1055
1056  unsigned NumCharsSoFar = buffer_begin-&codepoint_buffer.front();
1057
1058  if (NumCharsSoFar > 1) {
1059    if (isWide())
1060      PP.Diag(Loc, diag::warn_extraneous_char_constant);
1061    else if (isAscii() && NumCharsSoFar == 4)
1062      PP.Diag(Loc, diag::ext_four_char_character_literal);
1063    else if (isAscii())
1064      PP.Diag(Loc, diag::ext_multichar_character_literal);
1065    else
1066      PP.Diag(Loc, diag::err_multichar_utf_character_literal);
1067    IsMultiChar = true;
1068  } else
1069    IsMultiChar = false;
1070
1071  llvm::APInt LitVal(PP.getTargetInfo().getIntWidth(), 0);
1072
1073  // Narrow character literals act as though their value is concatenated
1074  // in this implementation, but warn on overflow.
1075  bool multi_char_too_long = false;
1076  if (isAscii() && isMultiChar()) {
1077    LitVal = 0;
1078    for (size_t i=0;i<NumCharsSoFar;++i) {
1079      // check for enough leading zeros to shift into
1080      multi_char_too_long |= (LitVal.countLeadingZeros() < 8);
1081      LitVal <<= 8;
1082      LitVal = LitVal + (codepoint_buffer[i] & 0xFF);
1083    }
1084  } else if (NumCharsSoFar > 0) {
1085    // otherwise just take the last character
1086    LitVal = buffer_begin[-1];
1087  }
1088
1089  if (!HadError && multi_char_too_long) {
1090    PP.Diag(Loc,diag::warn_char_constant_too_large);
1091  }
1092
1093  // Transfer the value from APInt to uint64_t
1094  Value = LitVal.getZExtValue();
1095
1096  // If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1")
1097  // if 'char' is signed for this target (C99 6.4.4.4p10).  Note that multiple
1098  // character constants are not sign extended in the this implementation:
1099  // '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC.
1100  if (isAscii() && NumCharsSoFar == 1 && (Value & 128) &&
1101      PP.getLangOpts().CharIsSigned)
1102    Value = (signed char)Value;
1103}
1104
1105/// \verbatim
1106///       string-literal: [C++0x lex.string]
1107///         encoding-prefix " [s-char-sequence] "
1108///         encoding-prefix R raw-string
1109///       encoding-prefix:
1110///         u8
1111///         u
1112///         U
1113///         L
1114///       s-char-sequence:
1115///         s-char
1116///         s-char-sequence s-char
1117///       s-char:
1118///         any member of the source character set except the double-quote ",
1119///           backslash \, or new-line character
1120///         escape-sequence
1121///         universal-character-name
1122///       raw-string:
1123///         " d-char-sequence ( r-char-sequence ) d-char-sequence "
1124///       r-char-sequence:
1125///         r-char
1126///         r-char-sequence r-char
1127///       r-char:
1128///         any member of the source character set, except a right parenthesis )
1129///           followed by the initial d-char-sequence (which may be empty)
1130///           followed by a double quote ".
1131///       d-char-sequence:
1132///         d-char
1133///         d-char-sequence d-char
1134///       d-char:
1135///         any member of the basic source character set except:
1136///           space, the left parenthesis (, the right parenthesis ),
1137///           the backslash \, and the control characters representing horizontal
1138///           tab, vertical tab, form feed, and newline.
1139///       escape-sequence: [C++0x lex.ccon]
1140///         simple-escape-sequence
1141///         octal-escape-sequence
1142///         hexadecimal-escape-sequence
1143///       simple-escape-sequence:
1144///         one of \' \" \? \\ \a \b \f \n \r \t \v
1145///       octal-escape-sequence:
1146///         \ octal-digit
1147///         \ octal-digit octal-digit
1148///         \ octal-digit octal-digit octal-digit
1149///       hexadecimal-escape-sequence:
1150///         \x hexadecimal-digit
1151///         hexadecimal-escape-sequence hexadecimal-digit
1152///       universal-character-name:
1153///         \u hex-quad
1154///         \U hex-quad hex-quad
1155///       hex-quad:
1156///         hex-digit hex-digit hex-digit hex-digit
1157/// \endverbatim
1158///
1159StringLiteralParser::
1160StringLiteralParser(const Token *StringToks, unsigned NumStringToks,
1161                    Preprocessor &PP, bool Complain)
1162  : SM(PP.getSourceManager()), Features(PP.getLangOpts()),
1163    Target(PP.getTargetInfo()), Diags(Complain ? &PP.getDiagnostics() : 0),
1164    MaxTokenLength(0), SizeBound(0), CharByteWidth(0), Kind(tok::unknown),
1165    ResultPtr(ResultBuf.data()), hadError(false), Pascal(false) {
1166  init(StringToks, NumStringToks);
1167}
1168
1169void StringLiteralParser::init(const Token *StringToks, unsigned NumStringToks){
1170  // The literal token may have come from an invalid source location (e.g. due
1171  // to a PCH error), in which case the token length will be 0.
1172  if (NumStringToks == 0 || StringToks[0].getLength() < 2)
1173    return DiagnoseLexingError(SourceLocation());
1174
1175  // Scan all of the string portions, remember the max individual token length,
1176  // computing a bound on the concatenated string length, and see whether any
1177  // piece is a wide-string.  If any of the string portions is a wide-string
1178  // literal, the result is a wide-string literal [C99 6.4.5p4].
1179  assert(NumStringToks && "expected at least one token");
1180  MaxTokenLength = StringToks[0].getLength();
1181  assert(StringToks[0].getLength() >= 2 && "literal token is invalid!");
1182  SizeBound = StringToks[0].getLength()-2;  // -2 for "".
1183  Kind = StringToks[0].getKind();
1184
1185  hadError = false;
1186
1187  // Implement Translation Phase #6: concatenation of string literals
1188  /// (C99 5.1.1.2p1).  The common case is only one string fragment.
1189  for (unsigned i = 1; i != NumStringToks; ++i) {
1190    if (StringToks[i].getLength() < 2)
1191      return DiagnoseLexingError(StringToks[i].getLocation());
1192
1193    // The string could be shorter than this if it needs cleaning, but this is a
1194    // reasonable bound, which is all we need.
1195    assert(StringToks[i].getLength() >= 2 && "literal token is invalid!");
1196    SizeBound += StringToks[i].getLength()-2;  // -2 for "".
1197
1198    // Remember maximum string piece length.
1199    if (StringToks[i].getLength() > MaxTokenLength)
1200      MaxTokenLength = StringToks[i].getLength();
1201
1202    // Remember if we see any wide or utf-8/16/32 strings.
1203    // Also check for illegal concatenations.
1204    if (StringToks[i].isNot(Kind) && StringToks[i].isNot(tok::string_literal)) {
1205      if (isAscii()) {
1206        Kind = StringToks[i].getKind();
1207      } else {
1208        if (Diags)
1209          Diags->Report(StringToks[i].getLocation(),
1210                        diag::err_unsupported_string_concat);
1211        hadError = true;
1212      }
1213    }
1214  }
1215
1216  // Include space for the null terminator.
1217  ++SizeBound;
1218
1219  // TODO: K&R warning: "traditional C rejects string constant concatenation"
1220
1221  // Get the width in bytes of char/wchar_t/char16_t/char32_t
1222  CharByteWidth = getCharWidth(Kind, Target);
1223  assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
1224  CharByteWidth /= 8;
1225
1226  // The output buffer size needs to be large enough to hold wide characters.
1227  // This is a worst-case assumption which basically corresponds to L"" "long".
1228  SizeBound *= CharByteWidth;
1229
1230  // Size the temporary buffer to hold the result string data.
1231  ResultBuf.resize(SizeBound);
1232
1233  // Likewise, but for each string piece.
1234  SmallString<512> TokenBuf;
1235  TokenBuf.resize(MaxTokenLength);
1236
1237  // Loop over all the strings, getting their spelling, and expanding them to
1238  // wide strings as appropriate.
1239  ResultPtr = &ResultBuf[0];   // Next byte to fill in.
1240
1241  Pascal = false;
1242
1243  SourceLocation UDSuffixTokLoc;
1244
1245  for (unsigned i = 0, e = NumStringToks; i != e; ++i) {
1246    const char *ThisTokBuf = &TokenBuf[0];
1247    // Get the spelling of the token, which eliminates trigraphs, etc.  We know
1248    // that ThisTokBuf points to a buffer that is big enough for the whole token
1249    // and 'spelled' tokens can only shrink.
1250    bool StringInvalid = false;
1251    unsigned ThisTokLen =
1252      Lexer::getSpelling(StringToks[i], ThisTokBuf, SM, Features,
1253                         &StringInvalid);
1254    if (StringInvalid)
1255      return DiagnoseLexingError(StringToks[i].getLocation());
1256
1257    const char *ThisTokBegin = ThisTokBuf;
1258    const char *ThisTokEnd = ThisTokBuf+ThisTokLen;
1259
1260    // Remove an optional ud-suffix.
1261    if (ThisTokEnd[-1] != '"') {
1262      const char *UDSuffixEnd = ThisTokEnd;
1263      do {
1264        --ThisTokEnd;
1265      } while (ThisTokEnd[-1] != '"');
1266
1267      StringRef UDSuffix(ThisTokEnd, UDSuffixEnd - ThisTokEnd);
1268
1269      if (UDSuffixBuf.empty()) {
1270        UDSuffixBuf.assign(UDSuffix);
1271        UDSuffixToken = i;
1272        UDSuffixOffset = ThisTokEnd - ThisTokBuf;
1273        UDSuffixTokLoc = StringToks[i].getLocation();
1274      } else if (!UDSuffixBuf.equals(UDSuffix)) {
1275        // C++11 [lex.ext]p8: At the end of phase 6, if a string literal is the
1276        // result of a concatenation involving at least one user-defined-string-
1277        // literal, all the participating user-defined-string-literals shall
1278        // have the same ud-suffix.
1279        if (Diags) {
1280          SourceLocation TokLoc = StringToks[i].getLocation();
1281          Diags->Report(TokLoc, diag::err_string_concat_mixed_suffix)
1282            << UDSuffixBuf << UDSuffix
1283            << SourceRange(UDSuffixTokLoc, UDSuffixTokLoc)
1284            << SourceRange(TokLoc, TokLoc);
1285        }
1286        hadError = true;
1287      }
1288    }
1289
1290    // Strip the end quote.
1291    --ThisTokEnd;
1292
1293    // TODO: Input character set mapping support.
1294
1295    // Skip marker for wide or unicode strings.
1296    if (ThisTokBuf[0] == 'L' || ThisTokBuf[0] == 'u' || ThisTokBuf[0] == 'U') {
1297      ++ThisTokBuf;
1298      // Skip 8 of u8 marker for utf8 strings.
1299      if (ThisTokBuf[0] == '8')
1300        ++ThisTokBuf;
1301    }
1302
1303    // Check for raw string
1304    if (ThisTokBuf[0] == 'R') {
1305      ThisTokBuf += 2; // skip R"
1306
1307      const char *Prefix = ThisTokBuf;
1308      while (ThisTokBuf[0] != '(')
1309        ++ThisTokBuf;
1310      ++ThisTokBuf; // skip '('
1311
1312      // Remove same number of characters from the end
1313      ThisTokEnd -= ThisTokBuf - Prefix;
1314      assert(ThisTokEnd >= ThisTokBuf && "malformed raw string literal");
1315
1316      // Copy the string over
1317      if (CopyStringFragment(StringToks[i], ThisTokBegin,
1318                             StringRef(ThisTokBuf, ThisTokEnd - ThisTokBuf)))
1319        hadError = true;
1320    } else {
1321      if (ThisTokBuf[0] != '"') {
1322        // The file may have come from PCH and then changed after loading the
1323        // PCH; Fail gracefully.
1324        return DiagnoseLexingError(StringToks[i].getLocation());
1325      }
1326      ++ThisTokBuf; // skip "
1327
1328      // Check if this is a pascal string
1329      if (Features.PascalStrings && ThisTokBuf + 1 != ThisTokEnd &&
1330          ThisTokBuf[0] == '\\' && ThisTokBuf[1] == 'p') {
1331
1332        // If the \p sequence is found in the first token, we have a pascal string
1333        // Otherwise, if we already have a pascal string, ignore the first \p
1334        if (i == 0) {
1335          ++ThisTokBuf;
1336          Pascal = true;
1337        } else if (Pascal)
1338          ThisTokBuf += 2;
1339      }
1340
1341      while (ThisTokBuf != ThisTokEnd) {
1342        // Is this a span of non-escape characters?
1343        if (ThisTokBuf[0] != '\\') {
1344          const char *InStart = ThisTokBuf;
1345          do {
1346            ++ThisTokBuf;
1347          } while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\');
1348
1349          // Copy the character span over.
1350          if (CopyStringFragment(StringToks[i], ThisTokBegin,
1351                                 StringRef(InStart, ThisTokBuf - InStart)))
1352            hadError = true;
1353          continue;
1354        }
1355        // Is this a Universal Character Name escape?
1356        if (ThisTokBuf[1] == 'u' || ThisTokBuf[1] == 'U') {
1357          EncodeUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd,
1358                          ResultPtr, hadError,
1359                          FullSourceLoc(StringToks[i].getLocation(), SM),
1360                          CharByteWidth, Diags, Features);
1361          continue;
1362        }
1363        // Otherwise, this is a non-UCN escape character.  Process it.
1364        unsigned ResultChar =
1365          ProcessCharEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, hadError,
1366                            FullSourceLoc(StringToks[i].getLocation(), SM),
1367                            CharByteWidth*8, Diags, Features);
1368
1369        if (CharByteWidth == 4) {
1370          // FIXME: Make the type of the result buffer correct instead of
1371          // using reinterpret_cast.
1372          UTF32 *ResultWidePtr = reinterpret_cast<UTF32*>(ResultPtr);
1373          *ResultWidePtr = ResultChar;
1374          ResultPtr += 4;
1375        } else if (CharByteWidth == 2) {
1376          // FIXME: Make the type of the result buffer correct instead of
1377          // using reinterpret_cast.
1378          UTF16 *ResultWidePtr = reinterpret_cast<UTF16*>(ResultPtr);
1379          *ResultWidePtr = ResultChar & 0xFFFF;
1380          ResultPtr += 2;
1381        } else {
1382          assert(CharByteWidth == 1 && "Unexpected char width");
1383          *ResultPtr++ = ResultChar & 0xFF;
1384        }
1385      }
1386    }
1387  }
1388
1389  if (Pascal) {
1390    if (CharByteWidth == 4) {
1391      // FIXME: Make the type of the result buffer correct instead of
1392      // using reinterpret_cast.
1393      UTF32 *ResultWidePtr = reinterpret_cast<UTF32*>(ResultBuf.data());
1394      ResultWidePtr[0] = GetNumStringChars() - 1;
1395    } else if (CharByteWidth == 2) {
1396      // FIXME: Make the type of the result buffer correct instead of
1397      // using reinterpret_cast.
1398      UTF16 *ResultWidePtr = reinterpret_cast<UTF16*>(ResultBuf.data());
1399      ResultWidePtr[0] = GetNumStringChars() - 1;
1400    } else {
1401      assert(CharByteWidth == 1 && "Unexpected char width");
1402      ResultBuf[0] = GetNumStringChars() - 1;
1403    }
1404
1405    // Verify that pascal strings aren't too large.
1406    if (GetStringLength() > 256) {
1407      if (Diags)
1408        Diags->Report(StringToks[0].getLocation(),
1409                      diag::err_pascal_string_too_long)
1410          << SourceRange(StringToks[0].getLocation(),
1411                         StringToks[NumStringToks-1].getLocation());
1412      hadError = true;
1413      return;
1414    }
1415  } else if (Diags) {
1416    // Complain if this string literal has too many characters.
1417    unsigned MaxChars = Features.CPlusPlus? 65536 : Features.C99 ? 4095 : 509;
1418
1419    if (GetNumStringChars() > MaxChars)
1420      Diags->Report(StringToks[0].getLocation(),
1421                    diag::ext_string_too_long)
1422        << GetNumStringChars() << MaxChars
1423        << (Features.CPlusPlus ? 2 : Features.C99 ? 1 : 0)
1424        << SourceRange(StringToks[0].getLocation(),
1425                       StringToks[NumStringToks-1].getLocation());
1426  }
1427}
1428
1429static const char *resyncUTF8(const char *Err, const char *End) {
1430  if (Err == End)
1431    return End;
1432  End = Err + std::min<unsigned>(getNumBytesForUTF8(*Err), End-Err);
1433  while (++Err != End && (*Err & 0xC0) == 0x80)
1434    ;
1435  return Err;
1436}
1437
1438/// \brief This function copies from Fragment, which is a sequence of bytes
1439/// within Tok's contents (which begin at TokBegin) into ResultPtr.
1440/// Performs widening for multi-byte characters.
1441bool StringLiteralParser::CopyStringFragment(const Token &Tok,
1442                                             const char *TokBegin,
1443                                             StringRef Fragment) {
1444  const UTF8 *ErrorPtrTmp;
1445  if (ConvertUTF8toWide(CharByteWidth, Fragment, ResultPtr, ErrorPtrTmp))
1446    return false;
1447
1448  // If we see bad encoding for unprefixed string literals, warn and
1449  // simply copy the byte values, for compatibility with gcc and older
1450  // versions of clang.
1451  bool NoErrorOnBadEncoding = isAscii();
1452  if (NoErrorOnBadEncoding) {
1453    memcpy(ResultPtr, Fragment.data(), Fragment.size());
1454    ResultPtr += Fragment.size();
1455  }
1456
1457  if (Diags) {
1458    const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
1459
1460    FullSourceLoc SourceLoc(Tok.getLocation(), SM);
1461    const DiagnosticBuilder &Builder =
1462      Diag(Diags, Features, SourceLoc, TokBegin,
1463           ErrorPtr, resyncUTF8(ErrorPtr, Fragment.end()),
1464           NoErrorOnBadEncoding ? diag::warn_bad_string_encoding
1465                                : diag::err_bad_string_encoding);
1466
1467    const char *NextStart = resyncUTF8(ErrorPtr, Fragment.end());
1468    StringRef NextFragment(NextStart, Fragment.end()-NextStart);
1469
1470    // Decode into a dummy buffer.
1471    SmallString<512> Dummy;
1472    Dummy.reserve(Fragment.size() * CharByteWidth);
1473    char *Ptr = Dummy.data();
1474
1475    while (!Builder.hasMaxRanges() &&
1476           !ConvertUTF8toWide(CharByteWidth, NextFragment, Ptr, ErrorPtrTmp)) {
1477      const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
1478      NextStart = resyncUTF8(ErrorPtr, Fragment.end());
1479      Builder << MakeCharSourceRange(Features, SourceLoc, TokBegin,
1480                                     ErrorPtr, NextStart);
1481      NextFragment = StringRef(NextStart, Fragment.end()-NextStart);
1482    }
1483  }
1484  return !NoErrorOnBadEncoding;
1485}
1486
1487void StringLiteralParser::DiagnoseLexingError(SourceLocation Loc) {
1488  hadError = true;
1489  if (Diags)
1490    Diags->Report(Loc, diag::err_lexing_string);
1491}
1492
1493/// getOffsetOfStringByte - This function returns the offset of the
1494/// specified byte of the string data represented by Token.  This handles
1495/// advancing over escape sequences in the string.
1496unsigned StringLiteralParser::getOffsetOfStringByte(const Token &Tok,
1497                                                    unsigned ByteNo) const {
1498  // Get the spelling of the token.
1499  SmallString<32> SpellingBuffer;
1500  SpellingBuffer.resize(Tok.getLength());
1501
1502  bool StringInvalid = false;
1503  const char *SpellingPtr = &SpellingBuffer[0];
1504  unsigned TokLen = Lexer::getSpelling(Tok, SpellingPtr, SM, Features,
1505                                       &StringInvalid);
1506  if (StringInvalid)
1507    return 0;
1508
1509  const char *SpellingStart = SpellingPtr;
1510  const char *SpellingEnd = SpellingPtr+TokLen;
1511
1512  // Handle UTF-8 strings just like narrow strings.
1513  if (SpellingPtr[0] == 'u' && SpellingPtr[1] == '8')
1514    SpellingPtr += 2;
1515
1516  assert(SpellingPtr[0] != 'L' && SpellingPtr[0] != 'u' &&
1517         SpellingPtr[0] != 'U' && "Doesn't handle wide or utf strings yet");
1518
1519  // For raw string literals, this is easy.
1520  if (SpellingPtr[0] == 'R') {
1521    assert(SpellingPtr[1] == '"' && "Should be a raw string literal!");
1522    // Skip 'R"'.
1523    SpellingPtr += 2;
1524    while (*SpellingPtr != '(') {
1525      ++SpellingPtr;
1526      assert(SpellingPtr < SpellingEnd && "Missing ( for raw string literal");
1527    }
1528    // Skip '('.
1529    ++SpellingPtr;
1530    return SpellingPtr - SpellingStart + ByteNo;
1531  }
1532
1533  // Skip over the leading quote
1534  assert(SpellingPtr[0] == '"' && "Should be a string literal!");
1535  ++SpellingPtr;
1536
1537  // Skip over bytes until we find the offset we're looking for.
1538  while (ByteNo) {
1539    assert(SpellingPtr < SpellingEnd && "Didn't find byte offset!");
1540
1541    // Step over non-escapes simply.
1542    if (*SpellingPtr != '\\') {
1543      ++SpellingPtr;
1544      --ByteNo;
1545      continue;
1546    }
1547
1548    // Otherwise, this is an escape character.  Advance over it.
1549    bool HadError = false;
1550    if (SpellingPtr[1] == 'u' || SpellingPtr[1] == 'U') {
1551      const char *EscapePtr = SpellingPtr;
1552      unsigned Len = MeasureUCNEscape(SpellingStart, SpellingPtr, SpellingEnd,
1553                                      1, Features, HadError);
1554      if (Len > ByteNo) {
1555        // ByteNo is somewhere within the escape sequence.
1556        SpellingPtr = EscapePtr;
1557        break;
1558      }
1559      ByteNo -= Len;
1560    } else {
1561      ProcessCharEscape(SpellingStart, SpellingPtr, SpellingEnd, HadError,
1562                        FullSourceLoc(Tok.getLocation(), SM),
1563                        CharByteWidth*8, Diags, Features);
1564      --ByteNo;
1565    }
1566    assert(!HadError && "This method isn't valid on erroneous strings");
1567  }
1568
1569  return SpellingPtr-SpellingStart;
1570}
1571