1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/SemaInternal.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/CharUnits.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/EvaluatedExprVisitor.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExprObjC.h"
24#include "clang/AST/StmtCXX.h"
25#include "clang/AST/StmtObjC.h"
26#include "clang/Analysis/Analyses/FormatString.h"
27#include "clang/Basic/CharInfo.h"
28#include "clang/Basic/TargetBuiltins.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Sema/Initialization.h"
32#include "clang/Sema/Lookup.h"
33#include "clang/Sema/ScopeInfo.h"
34#include "clang/Sema/Sema.h"
35#include "llvm/ADT/SmallBitVector.h"
36#include "llvm/ADT/SmallString.h"
37#include "llvm/ADT/STLExtras.h"
38#include "llvm/Support/ConvertUTF.h"
39#include "llvm/Support/raw_ostream.h"
40#include <limits>
41using namespace clang;
42using namespace sema;
43
44SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
45                                                    unsigned ByteNo) const {
46  return SL->getLocationOfByte(ByteNo, PP.getSourceManager(),
47                               PP.getLangOpts(), PP.getTargetInfo());
48}
49
50/// Checks that a call expression's argument count is the desired number.
51/// This is useful when doing custom type-checking.  Returns true on error.
52static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
53  unsigned argCount = call->getNumArgs();
54  if (argCount == desiredArgCount) return false;
55
56  if (argCount < desiredArgCount)
57    return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
58        << 0 /*function call*/ << desiredArgCount << argCount
59        << call->getSourceRange();
60
61  // Highlight all the excess arguments.
62  SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
63                    call->getArg(argCount - 1)->getLocEnd());
64
65  return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
66    << 0 /*function call*/ << desiredArgCount << argCount
67    << call->getArg(1)->getSourceRange();
68}
69
70/// Check that the first argument to __builtin_annotation is an integer
71/// and the second argument is a non-wide string literal.
72static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
73  if (checkArgCount(S, TheCall, 2))
74    return true;
75
76  // First argument should be an integer.
77  Expr *ValArg = TheCall->getArg(0);
78  QualType Ty = ValArg->getType();
79  if (!Ty->isIntegerType()) {
80    S.Diag(ValArg->getLocStart(), diag::err_builtin_annotation_first_arg)
81      << ValArg->getSourceRange();
82    return true;
83  }
84
85  // Second argument should be a constant string.
86  Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
87  StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
88  if (!Literal || !Literal->isAscii()) {
89    S.Diag(StrArg->getLocStart(), diag::err_builtin_annotation_second_arg)
90      << StrArg->getSourceRange();
91    return true;
92  }
93
94  TheCall->setType(Ty);
95  return false;
96}
97
98/// Check that the argument to __builtin_addressof is a glvalue, and set the
99/// result type to the corresponding pointer type.
100static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) {
101  if (checkArgCount(S, TheCall, 1))
102    return true;
103
104  ExprResult Arg(S.Owned(TheCall->getArg(0)));
105  QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getLocStart());
106  if (ResultType.isNull())
107    return true;
108
109  TheCall->setArg(0, Arg.take());
110  TheCall->setType(ResultType);
111  return false;
112}
113
114ExprResult
115Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
116  ExprResult TheCallResult(Owned(TheCall));
117
118  // Find out if any arguments are required to be integer constant expressions.
119  unsigned ICEArguments = 0;
120  ASTContext::GetBuiltinTypeError Error;
121  Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
122  if (Error != ASTContext::GE_None)
123    ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
124
125  // If any arguments are required to be ICE's, check and diagnose.
126  for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
127    // Skip arguments not required to be ICE's.
128    if ((ICEArguments & (1 << ArgNo)) == 0) continue;
129
130    llvm::APSInt Result;
131    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
132      return true;
133    ICEArguments &= ~(1 << ArgNo);
134  }
135
136  switch (BuiltinID) {
137  case Builtin::BI__builtin___CFStringMakeConstantString:
138    assert(TheCall->getNumArgs() == 1 &&
139           "Wrong # arguments to builtin CFStringMakeConstantString");
140    if (CheckObjCString(TheCall->getArg(0)))
141      return ExprError();
142    break;
143  case Builtin::BI__builtin_stdarg_start:
144  case Builtin::BI__builtin_va_start:
145    if (SemaBuiltinVAStart(TheCall))
146      return ExprError();
147    break;
148  case Builtin::BI__builtin_isgreater:
149  case Builtin::BI__builtin_isgreaterequal:
150  case Builtin::BI__builtin_isless:
151  case Builtin::BI__builtin_islessequal:
152  case Builtin::BI__builtin_islessgreater:
153  case Builtin::BI__builtin_isunordered:
154    if (SemaBuiltinUnorderedCompare(TheCall))
155      return ExprError();
156    break;
157  case Builtin::BI__builtin_fpclassify:
158    if (SemaBuiltinFPClassification(TheCall, 6))
159      return ExprError();
160    break;
161  case Builtin::BI__builtin_isfinite:
162  case Builtin::BI__builtin_isinf:
163  case Builtin::BI__builtin_isinf_sign:
164  case Builtin::BI__builtin_isnan:
165  case Builtin::BI__builtin_isnormal:
166    if (SemaBuiltinFPClassification(TheCall, 1))
167      return ExprError();
168    break;
169  case Builtin::BI__builtin_shufflevector:
170    return SemaBuiltinShuffleVector(TheCall);
171    // TheCall will be freed by the smart pointer here, but that's fine, since
172    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
173  case Builtin::BI__builtin_prefetch:
174    if (SemaBuiltinPrefetch(TheCall))
175      return ExprError();
176    break;
177  case Builtin::BI__builtin_object_size:
178    if (SemaBuiltinObjectSize(TheCall))
179      return ExprError();
180    break;
181  case Builtin::BI__builtin_longjmp:
182    if (SemaBuiltinLongjmp(TheCall))
183      return ExprError();
184    break;
185
186  case Builtin::BI__builtin_classify_type:
187    if (checkArgCount(*this, TheCall, 1)) return true;
188    TheCall->setType(Context.IntTy);
189    break;
190  case Builtin::BI__builtin_constant_p:
191    if (checkArgCount(*this, TheCall, 1)) return true;
192    TheCall->setType(Context.IntTy);
193    break;
194  case Builtin::BI__sync_fetch_and_add:
195  case Builtin::BI__sync_fetch_and_add_1:
196  case Builtin::BI__sync_fetch_and_add_2:
197  case Builtin::BI__sync_fetch_and_add_4:
198  case Builtin::BI__sync_fetch_and_add_8:
199  case Builtin::BI__sync_fetch_and_add_16:
200  case Builtin::BI__sync_fetch_and_sub:
201  case Builtin::BI__sync_fetch_and_sub_1:
202  case Builtin::BI__sync_fetch_and_sub_2:
203  case Builtin::BI__sync_fetch_and_sub_4:
204  case Builtin::BI__sync_fetch_and_sub_8:
205  case Builtin::BI__sync_fetch_and_sub_16:
206  case Builtin::BI__sync_fetch_and_or:
207  case Builtin::BI__sync_fetch_and_or_1:
208  case Builtin::BI__sync_fetch_and_or_2:
209  case Builtin::BI__sync_fetch_and_or_4:
210  case Builtin::BI__sync_fetch_and_or_8:
211  case Builtin::BI__sync_fetch_and_or_16:
212  case Builtin::BI__sync_fetch_and_and:
213  case Builtin::BI__sync_fetch_and_and_1:
214  case Builtin::BI__sync_fetch_and_and_2:
215  case Builtin::BI__sync_fetch_and_and_4:
216  case Builtin::BI__sync_fetch_and_and_8:
217  case Builtin::BI__sync_fetch_and_and_16:
218  case Builtin::BI__sync_fetch_and_xor:
219  case Builtin::BI__sync_fetch_and_xor_1:
220  case Builtin::BI__sync_fetch_and_xor_2:
221  case Builtin::BI__sync_fetch_and_xor_4:
222  case Builtin::BI__sync_fetch_and_xor_8:
223  case Builtin::BI__sync_fetch_and_xor_16:
224  case Builtin::BI__sync_add_and_fetch:
225  case Builtin::BI__sync_add_and_fetch_1:
226  case Builtin::BI__sync_add_and_fetch_2:
227  case Builtin::BI__sync_add_and_fetch_4:
228  case Builtin::BI__sync_add_and_fetch_8:
229  case Builtin::BI__sync_add_and_fetch_16:
230  case Builtin::BI__sync_sub_and_fetch:
231  case Builtin::BI__sync_sub_and_fetch_1:
232  case Builtin::BI__sync_sub_and_fetch_2:
233  case Builtin::BI__sync_sub_and_fetch_4:
234  case Builtin::BI__sync_sub_and_fetch_8:
235  case Builtin::BI__sync_sub_and_fetch_16:
236  case Builtin::BI__sync_and_and_fetch:
237  case Builtin::BI__sync_and_and_fetch_1:
238  case Builtin::BI__sync_and_and_fetch_2:
239  case Builtin::BI__sync_and_and_fetch_4:
240  case Builtin::BI__sync_and_and_fetch_8:
241  case Builtin::BI__sync_and_and_fetch_16:
242  case Builtin::BI__sync_or_and_fetch:
243  case Builtin::BI__sync_or_and_fetch_1:
244  case Builtin::BI__sync_or_and_fetch_2:
245  case Builtin::BI__sync_or_and_fetch_4:
246  case Builtin::BI__sync_or_and_fetch_8:
247  case Builtin::BI__sync_or_and_fetch_16:
248  case Builtin::BI__sync_xor_and_fetch:
249  case Builtin::BI__sync_xor_and_fetch_1:
250  case Builtin::BI__sync_xor_and_fetch_2:
251  case Builtin::BI__sync_xor_and_fetch_4:
252  case Builtin::BI__sync_xor_and_fetch_8:
253  case Builtin::BI__sync_xor_and_fetch_16:
254  case Builtin::BI__sync_val_compare_and_swap:
255  case Builtin::BI__sync_val_compare_and_swap_1:
256  case Builtin::BI__sync_val_compare_and_swap_2:
257  case Builtin::BI__sync_val_compare_and_swap_4:
258  case Builtin::BI__sync_val_compare_and_swap_8:
259  case Builtin::BI__sync_val_compare_and_swap_16:
260  case Builtin::BI__sync_bool_compare_and_swap:
261  case Builtin::BI__sync_bool_compare_and_swap_1:
262  case Builtin::BI__sync_bool_compare_and_swap_2:
263  case Builtin::BI__sync_bool_compare_and_swap_4:
264  case Builtin::BI__sync_bool_compare_and_swap_8:
265  case Builtin::BI__sync_bool_compare_and_swap_16:
266  case Builtin::BI__sync_lock_test_and_set:
267  case Builtin::BI__sync_lock_test_and_set_1:
268  case Builtin::BI__sync_lock_test_and_set_2:
269  case Builtin::BI__sync_lock_test_and_set_4:
270  case Builtin::BI__sync_lock_test_and_set_8:
271  case Builtin::BI__sync_lock_test_and_set_16:
272  case Builtin::BI__sync_lock_release:
273  case Builtin::BI__sync_lock_release_1:
274  case Builtin::BI__sync_lock_release_2:
275  case Builtin::BI__sync_lock_release_4:
276  case Builtin::BI__sync_lock_release_8:
277  case Builtin::BI__sync_lock_release_16:
278  case Builtin::BI__sync_swap:
279  case Builtin::BI__sync_swap_1:
280  case Builtin::BI__sync_swap_2:
281  case Builtin::BI__sync_swap_4:
282  case Builtin::BI__sync_swap_8:
283  case Builtin::BI__sync_swap_16:
284    return SemaBuiltinAtomicOverloaded(TheCallResult);
285#define BUILTIN(ID, TYPE, ATTRS)
286#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
287  case Builtin::BI##ID: \
288    return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
289#include "clang/Basic/Builtins.def"
290  case Builtin::BI__builtin_annotation:
291    if (SemaBuiltinAnnotation(*this, TheCall))
292      return ExprError();
293    break;
294  case Builtin::BI__builtin_addressof:
295    if (SemaBuiltinAddressof(*this, TheCall))
296      return ExprError();
297    break;
298  }
299
300  // Since the target specific builtins for each arch overlap, only check those
301  // of the arch we are compiling for.
302  if (BuiltinID >= Builtin::FirstTSBuiltin) {
303    switch (Context.getTargetInfo().getTriple().getArch()) {
304      case llvm::Triple::arm:
305      case llvm::Triple::thumb:
306        if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
307          return ExprError();
308        break;
309      case llvm::Triple::aarch64:
310        if (CheckAArch64BuiltinFunctionCall(BuiltinID, TheCall))
311          return ExprError();
312        break;
313      case llvm::Triple::mips:
314      case llvm::Triple::mipsel:
315      case llvm::Triple::mips64:
316      case llvm::Triple::mips64el:
317        if (CheckMipsBuiltinFunctionCall(BuiltinID, TheCall))
318          return ExprError();
319        break;
320      default:
321        break;
322    }
323  }
324
325  return TheCallResult;
326}
327
328// Get the valid immediate range for the specified NEON type code.
329static unsigned RFT(unsigned t, bool shift = false) {
330  NeonTypeFlags Type(t);
331  int IsQuad = Type.isQuad();
332  switch (Type.getEltType()) {
333  case NeonTypeFlags::Int8:
334  case NeonTypeFlags::Poly8:
335    return shift ? 7 : (8 << IsQuad) - 1;
336  case NeonTypeFlags::Int16:
337  case NeonTypeFlags::Poly16:
338    return shift ? 15 : (4 << IsQuad) - 1;
339  case NeonTypeFlags::Int32:
340    return shift ? 31 : (2 << IsQuad) - 1;
341  case NeonTypeFlags::Int64:
342    return shift ? 63 : (1 << IsQuad) - 1;
343  case NeonTypeFlags::Float16:
344    assert(!shift && "cannot shift float types!");
345    return (4 << IsQuad) - 1;
346  case NeonTypeFlags::Float32:
347    assert(!shift && "cannot shift float types!");
348    return (2 << IsQuad) - 1;
349  case NeonTypeFlags::Float64:
350    assert(!shift && "cannot shift float types!");
351    return (1 << IsQuad) - 1;
352  }
353  llvm_unreachable("Invalid NeonTypeFlag!");
354}
355
356/// getNeonEltType - Return the QualType corresponding to the elements of
357/// the vector type specified by the NeonTypeFlags.  This is used to check
358/// the pointer arguments for Neon load/store intrinsics.
359static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context) {
360  switch (Flags.getEltType()) {
361  case NeonTypeFlags::Int8:
362    return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
363  case NeonTypeFlags::Int16:
364    return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
365  case NeonTypeFlags::Int32:
366    return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
367  case NeonTypeFlags::Int64:
368    return Flags.isUnsigned() ? Context.UnsignedLongLongTy : Context.LongLongTy;
369  case NeonTypeFlags::Poly8:
370    return Context.SignedCharTy;
371  case NeonTypeFlags::Poly16:
372    return Context.ShortTy;
373  case NeonTypeFlags::Float16:
374    return Context.UnsignedShortTy;
375  case NeonTypeFlags::Float32:
376    return Context.FloatTy;
377  case NeonTypeFlags::Float64:
378    return Context.DoubleTy;
379  }
380  llvm_unreachable("Invalid NeonTypeFlag!");
381}
382
383bool Sema::CheckAArch64BuiltinFunctionCall(unsigned BuiltinID,
384                                           CallExpr *TheCall) {
385
386  llvm::APSInt Result;
387
388  uint64_t mask = 0;
389  unsigned TV = 0;
390  int PtrArgNum = -1;
391  bool HasConstPtr = false;
392  switch (BuiltinID) {
393#define GET_NEON_AARCH64_OVERLOAD_CHECK
394#include "clang/Basic/arm_neon.inc"
395#undef GET_NEON_AARCH64_OVERLOAD_CHECK
396  }
397
398  // For NEON intrinsics which are overloaded on vector element type, validate
399  // the immediate which specifies which variant to emit.
400  unsigned ImmArg = TheCall->getNumArgs() - 1;
401  if (mask) {
402    if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
403      return true;
404
405    TV = Result.getLimitedValue(64);
406    if ((TV > 63) || (mask & (1ULL << TV)) == 0)
407      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
408             << TheCall->getArg(ImmArg)->getSourceRange();
409  }
410
411  if (PtrArgNum >= 0) {
412    // Check that pointer arguments have the specified type.
413    Expr *Arg = TheCall->getArg(PtrArgNum);
414    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
415      Arg = ICE->getSubExpr();
416    ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
417    QualType RHSTy = RHS.get()->getType();
418    QualType EltTy = getNeonEltType(NeonTypeFlags(TV), Context);
419    if (HasConstPtr)
420      EltTy = EltTy.withConst();
421    QualType LHSTy = Context.getPointerType(EltTy);
422    AssignConvertType ConvTy;
423    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
424    if (RHS.isInvalid())
425      return true;
426    if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
427                                 RHS.get(), AA_Assigning))
428      return true;
429  }
430
431  // For NEON intrinsics which take an immediate value as part of the
432  // instruction, range check them here.
433  unsigned i = 0, l = 0, u = 0;
434  switch (BuiltinID) {
435  default:
436    return false;
437#define GET_NEON_AARCH64_IMMEDIATE_CHECK
438#include "clang/Basic/arm_neon.inc"
439#undef GET_NEON_AARCH64_IMMEDIATE_CHECK
440  }
441  ;
442
443  // We can't check the value of a dependent argument.
444  if (TheCall->getArg(i)->isTypeDependent() ||
445      TheCall->getArg(i)->isValueDependent())
446    return false;
447
448  // Check that the immediate argument is actually a constant.
449  if (SemaBuiltinConstantArg(TheCall, i, Result))
450    return true;
451
452  // Range check against the upper/lower values for this isntruction.
453  unsigned Val = Result.getZExtValue();
454  if (Val < l || Val > (u + l))
455    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
456           << l << u + l << TheCall->getArg(i)->getSourceRange();
457
458  return false;
459}
460
461bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall) {
462  assert((BuiltinID == ARM::BI__builtin_arm_ldrex ||
463          BuiltinID == ARM::BI__builtin_arm_strex) &&
464         "unexpected ARM builtin");
465  bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex;
466
467  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
468
469  // Ensure that we have the proper number of arguments.
470  if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2))
471    return true;
472
473  // Inspect the pointer argument of the atomic builtin.  This should always be
474  // a pointer type, whose element is an integral scalar or pointer type.
475  // Because it is a pointer type, we don't have to worry about any implicit
476  // casts here.
477  Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1);
478  ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg);
479  if (PointerArgRes.isInvalid())
480    return true;
481  PointerArg = PointerArgRes.take();
482
483  const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
484  if (!pointerType) {
485    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
486      << PointerArg->getType() << PointerArg->getSourceRange();
487    return true;
488  }
489
490  // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next
491  // task is to insert the appropriate casts into the AST. First work out just
492  // what the appropriate type is.
493  QualType ValType = pointerType->getPointeeType();
494  QualType AddrType = ValType.getUnqualifiedType().withVolatile();
495  if (IsLdrex)
496    AddrType.addConst();
497
498  // Issue a warning if the cast is dodgy.
499  CastKind CastNeeded = CK_NoOp;
500  if (!AddrType.isAtLeastAsQualifiedAs(ValType)) {
501    CastNeeded = CK_BitCast;
502    Diag(DRE->getLocStart(), diag::ext_typecheck_convert_discards_qualifiers)
503      << PointerArg->getType()
504      << Context.getPointerType(AddrType)
505      << AA_Passing << PointerArg->getSourceRange();
506  }
507
508  // Finally, do the cast and replace the argument with the corrected version.
509  AddrType = Context.getPointerType(AddrType);
510  PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded);
511  if (PointerArgRes.isInvalid())
512    return true;
513  PointerArg = PointerArgRes.take();
514
515  TheCall->setArg(IsLdrex ? 0 : 1, PointerArg);
516
517  // In general, we allow ints, floats and pointers to be loaded and stored.
518  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
519      !ValType->isBlockPointerType() && !ValType->isFloatingType()) {
520    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intfltptr)
521      << PointerArg->getType() << PointerArg->getSourceRange();
522    return true;
523  }
524
525  // But ARM doesn't have instructions to deal with 128-bit versions.
526  if (Context.getTypeSize(ValType) > 64) {
527    Diag(DRE->getLocStart(), diag::err_atomic_exclusive_builtin_pointer_size)
528      << PointerArg->getType() << PointerArg->getSourceRange();
529    return true;
530  }
531
532  switch (ValType.getObjCLifetime()) {
533  case Qualifiers::OCL_None:
534  case Qualifiers::OCL_ExplicitNone:
535    // okay
536    break;
537
538  case Qualifiers::OCL_Weak:
539  case Qualifiers::OCL_Strong:
540  case Qualifiers::OCL_Autoreleasing:
541    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
542      << ValType << PointerArg->getSourceRange();
543    return true;
544  }
545
546
547  if (IsLdrex) {
548    TheCall->setType(ValType);
549    return false;
550  }
551
552  // Initialize the argument to be stored.
553  ExprResult ValArg = TheCall->getArg(0);
554  InitializedEntity Entity = InitializedEntity::InitializeParameter(
555      Context, ValType, /*consume*/ false);
556  ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
557  if (ValArg.isInvalid())
558    return true;
559
560  TheCall->setArg(0, ValArg.get());
561  return false;
562}
563
564bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
565  llvm::APSInt Result;
566
567  if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
568      BuiltinID == ARM::BI__builtin_arm_strex) {
569    return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall);
570  }
571
572  uint64_t mask = 0;
573  unsigned TV = 0;
574  int PtrArgNum = -1;
575  bool HasConstPtr = false;
576  switch (BuiltinID) {
577#define GET_NEON_OVERLOAD_CHECK
578#include "clang/Basic/arm_neon.inc"
579#undef GET_NEON_OVERLOAD_CHECK
580  }
581
582  // For NEON intrinsics which are overloaded on vector element type, validate
583  // the immediate which specifies which variant to emit.
584  unsigned ImmArg = TheCall->getNumArgs()-1;
585  if (mask) {
586    if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
587      return true;
588
589    TV = Result.getLimitedValue(64);
590    if ((TV > 63) || (mask & (1ULL << TV)) == 0)
591      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
592        << TheCall->getArg(ImmArg)->getSourceRange();
593  }
594
595  if (PtrArgNum >= 0) {
596    // Check that pointer arguments have the specified type.
597    Expr *Arg = TheCall->getArg(PtrArgNum);
598    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
599      Arg = ICE->getSubExpr();
600    ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
601    QualType RHSTy = RHS.get()->getType();
602    QualType EltTy = getNeonEltType(NeonTypeFlags(TV), Context);
603    if (HasConstPtr)
604      EltTy = EltTy.withConst();
605    QualType LHSTy = Context.getPointerType(EltTy);
606    AssignConvertType ConvTy;
607    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
608    if (RHS.isInvalid())
609      return true;
610    if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
611                                 RHS.get(), AA_Assigning))
612      return true;
613  }
614
615  // For NEON intrinsics which take an immediate value as part of the
616  // instruction, range check them here.
617  unsigned i = 0, l = 0, u = 0;
618  switch (BuiltinID) {
619  default: return false;
620  case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
621  case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
622  case ARM::BI__builtin_arm_vcvtr_f:
623  case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
624#define GET_NEON_IMMEDIATE_CHECK
625#include "clang/Basic/arm_neon.inc"
626#undef GET_NEON_IMMEDIATE_CHECK
627  };
628
629  // We can't check the value of a dependent argument.
630  if (TheCall->getArg(i)->isTypeDependent() ||
631      TheCall->getArg(i)->isValueDependent())
632    return false;
633
634  // Check that the immediate argument is actually a constant.
635  if (SemaBuiltinConstantArg(TheCall, i, Result))
636    return true;
637
638  // Range check against the upper/lower values for this isntruction.
639  unsigned Val = Result.getZExtValue();
640  if (Val < l || Val > (u + l))
641    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
642      << l << u+l << TheCall->getArg(i)->getSourceRange();
643
644  // FIXME: VFP Intrinsics should error if VFP not present.
645  return false;
646}
647
648bool Sema::CheckMipsBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
649  unsigned i = 0, l = 0, u = 0;
650  switch (BuiltinID) {
651  default: return false;
652  case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
653  case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
654  case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
655  case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
656  case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
657  case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
658  case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
659  };
660
661  // We can't check the value of a dependent argument.
662  if (TheCall->getArg(i)->isTypeDependent() ||
663      TheCall->getArg(i)->isValueDependent())
664    return false;
665
666  // Check that the immediate argument is actually a constant.
667  llvm::APSInt Result;
668  if (SemaBuiltinConstantArg(TheCall, i, Result))
669    return true;
670
671  // Range check against the upper/lower values for this instruction.
672  unsigned Val = Result.getZExtValue();
673  if (Val < l || Val > u)
674    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
675      << l << u << TheCall->getArg(i)->getSourceRange();
676
677  return false;
678}
679
680/// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
681/// parameter with the FormatAttr's correct format_idx and firstDataArg.
682/// Returns true when the format fits the function and the FormatStringInfo has
683/// been populated.
684bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
685                               FormatStringInfo *FSI) {
686  FSI->HasVAListArg = Format->getFirstArg() == 0;
687  FSI->FormatIdx = Format->getFormatIdx() - 1;
688  FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
689
690  // The way the format attribute works in GCC, the implicit this argument
691  // of member functions is counted. However, it doesn't appear in our own
692  // lists, so decrement format_idx in that case.
693  if (IsCXXMember) {
694    if(FSI->FormatIdx == 0)
695      return false;
696    --FSI->FormatIdx;
697    if (FSI->FirstDataArg != 0)
698      --FSI->FirstDataArg;
699  }
700  return true;
701}
702
703/// Handles the checks for format strings, non-POD arguments to vararg
704/// functions, and NULL arguments passed to non-NULL parameters.
705void Sema::checkCall(NamedDecl *FDecl,
706                     ArrayRef<const Expr *> Args,
707                     unsigned NumProtoArgs,
708                     bool IsMemberFunction,
709                     SourceLocation Loc,
710                     SourceRange Range,
711                     VariadicCallType CallType) {
712  // FIXME: We should check as much as we can in the template definition.
713  if (CurContext->isDependentContext())
714    return;
715
716  // Printf and scanf checking.
717  bool HandledFormatString = false;
718  llvm::SmallBitVector CheckedVarArgs;
719  if (FDecl) {
720    for (specific_attr_iterator<FormatAttr>
721           I = FDecl->specific_attr_begin<FormatAttr>(),
722           E = FDecl->specific_attr_end<FormatAttr>(); I != E ; ++I) {
723      CheckedVarArgs.resize(Args.size());
724      if (CheckFormatArguments(*I, Args, IsMemberFunction, CallType, Loc,
725                               Range, CheckedVarArgs))
726        HandledFormatString = true;
727    }
728  }
729
730  // Refuse POD arguments that weren't caught by the format string
731  // checks above.
732  if (CallType != VariadicDoesNotApply) {
733    for (unsigned ArgIdx = NumProtoArgs; ArgIdx < Args.size(); ++ArgIdx) {
734      // Args[ArgIdx] can be null in malformed code.
735      if (const Expr *Arg = Args[ArgIdx]) {
736        if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx])
737          checkVariadicArgument(Arg, CallType);
738      }
739    }
740  }
741
742  if (FDecl) {
743    for (specific_attr_iterator<NonNullAttr>
744           I = FDecl->specific_attr_begin<NonNullAttr>(),
745           E = FDecl->specific_attr_end<NonNullAttr>(); I != E; ++I)
746      CheckNonNullArguments(*I, Args.data(), Loc);
747
748    // Type safety checking.
749    for (specific_attr_iterator<ArgumentWithTypeTagAttr>
750           i = FDecl->specific_attr_begin<ArgumentWithTypeTagAttr>(),
751           e = FDecl->specific_attr_end<ArgumentWithTypeTagAttr>();
752         i != e; ++i) {
753      CheckArgumentWithTypeTag(*i, Args.data());
754    }
755  }
756}
757
758/// CheckConstructorCall - Check a constructor call for correctness and safety
759/// properties not enforced by the C type system.
760void Sema::CheckConstructorCall(FunctionDecl *FDecl,
761                                ArrayRef<const Expr *> Args,
762                                const FunctionProtoType *Proto,
763                                SourceLocation Loc) {
764  VariadicCallType CallType =
765    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
766  checkCall(FDecl, Args, Proto->getNumArgs(),
767            /*IsMemberFunction=*/true, Loc, SourceRange(), CallType);
768}
769
770/// CheckFunctionCall - Check a direct function call for various correctness
771/// and safety properties not strictly enforced by the C type system.
772bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
773                             const FunctionProtoType *Proto) {
774  bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
775                              isa<CXXMethodDecl>(FDecl);
776  bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
777                          IsMemberOperatorCall;
778  VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
779                                                  TheCall->getCallee());
780  unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
781  Expr** Args = TheCall->getArgs();
782  unsigned NumArgs = TheCall->getNumArgs();
783  if (IsMemberOperatorCall) {
784    // If this is a call to a member operator, hide the first argument
785    // from checkCall.
786    // FIXME: Our choice of AST representation here is less than ideal.
787    ++Args;
788    --NumArgs;
789  }
790  checkCall(FDecl, llvm::makeArrayRef<const Expr *>(Args, NumArgs),
791            NumProtoArgs,
792            IsMemberFunction, TheCall->getRParenLoc(),
793            TheCall->getCallee()->getSourceRange(), CallType);
794
795  IdentifierInfo *FnInfo = FDecl->getIdentifier();
796  // None of the checks below are needed for functions that don't have
797  // simple names (e.g., C++ conversion functions).
798  if (!FnInfo)
799    return false;
800
801  unsigned CMId = FDecl->getMemoryFunctionKind();
802  if (CMId == 0)
803    return false;
804
805  // Handle memory setting and copying functions.
806  if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat)
807    CheckStrlcpycatArguments(TheCall, FnInfo);
808  else if (CMId == Builtin::BIstrncat)
809    CheckStrncatArguments(TheCall, FnInfo);
810  else
811    CheckMemaccessArguments(TheCall, CMId, FnInfo);
812
813  return false;
814}
815
816bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
817                               ArrayRef<const Expr *> Args) {
818  VariadicCallType CallType =
819      Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
820
821  checkCall(Method, Args, Method->param_size(),
822            /*IsMemberFunction=*/false,
823            lbrac, Method->getSourceRange(), CallType);
824
825  return false;
826}
827
828bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
829                            const FunctionProtoType *Proto) {
830  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
831  if (!V)
832    return false;
833
834  QualType Ty = V->getType();
835  if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType())
836    return false;
837
838  VariadicCallType CallType;
839  if (!Proto || !Proto->isVariadic()) {
840    CallType = VariadicDoesNotApply;
841  } else if (Ty->isBlockPointerType()) {
842    CallType = VariadicBlock;
843  } else { // Ty->isFunctionPointerType()
844    CallType = VariadicFunction;
845  }
846  unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
847
848  checkCall(NDecl,
849            llvm::makeArrayRef<const Expr *>(TheCall->getArgs(),
850                                             TheCall->getNumArgs()),
851            NumProtoArgs, /*IsMemberFunction=*/false,
852            TheCall->getRParenLoc(),
853            TheCall->getCallee()->getSourceRange(), CallType);
854
855  return false;
856}
857
858/// Checks function calls when a FunctionDecl or a NamedDecl is not available,
859/// such as function pointers returned from functions.
860bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) {
861  VariadicCallType CallType = getVariadicCallType(/*FDecl=*/0, Proto,
862                                                  TheCall->getCallee());
863  unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
864
865  checkCall(/*FDecl=*/0,
866            llvm::makeArrayRef<const Expr *>(TheCall->getArgs(),
867                                             TheCall->getNumArgs()),
868            NumProtoArgs, /*IsMemberFunction=*/false,
869            TheCall->getRParenLoc(),
870            TheCall->getCallee()->getSourceRange(), CallType);
871
872  return false;
873}
874
875ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
876                                         AtomicExpr::AtomicOp Op) {
877  CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
878  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
879
880  // All these operations take one of the following forms:
881  enum {
882    // C    __c11_atomic_init(A *, C)
883    Init,
884    // C    __c11_atomic_load(A *, int)
885    Load,
886    // void __atomic_load(A *, CP, int)
887    Copy,
888    // C    __c11_atomic_add(A *, M, int)
889    Arithmetic,
890    // C    __atomic_exchange_n(A *, CP, int)
891    Xchg,
892    // void __atomic_exchange(A *, C *, CP, int)
893    GNUXchg,
894    // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
895    C11CmpXchg,
896    // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
897    GNUCmpXchg
898  } Form = Init;
899  const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 4, 5, 6 };
900  const unsigned NumVals[] = { 1, 0, 1, 1, 1, 2, 2, 3 };
901  // where:
902  //   C is an appropriate type,
903  //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
904  //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
905  //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and
906  //   the int parameters are for orderings.
907
908  assert(AtomicExpr::AO__c11_atomic_init == 0 &&
909         AtomicExpr::AO__c11_atomic_fetch_xor + 1 == AtomicExpr::AO__atomic_load
910         && "need to update code for modified C11 atomics");
911  bool IsC11 = Op >= AtomicExpr::AO__c11_atomic_init &&
912               Op <= AtomicExpr::AO__c11_atomic_fetch_xor;
913  bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
914             Op == AtomicExpr::AO__atomic_store_n ||
915             Op == AtomicExpr::AO__atomic_exchange_n ||
916             Op == AtomicExpr::AO__atomic_compare_exchange_n;
917  bool IsAddSub = false;
918
919  switch (Op) {
920  case AtomicExpr::AO__c11_atomic_init:
921    Form = Init;
922    break;
923
924  case AtomicExpr::AO__c11_atomic_load:
925  case AtomicExpr::AO__atomic_load_n:
926    Form = Load;
927    break;
928
929  case AtomicExpr::AO__c11_atomic_store:
930  case AtomicExpr::AO__atomic_load:
931  case AtomicExpr::AO__atomic_store:
932  case AtomicExpr::AO__atomic_store_n:
933    Form = Copy;
934    break;
935
936  case AtomicExpr::AO__c11_atomic_fetch_add:
937  case AtomicExpr::AO__c11_atomic_fetch_sub:
938  case AtomicExpr::AO__atomic_fetch_add:
939  case AtomicExpr::AO__atomic_fetch_sub:
940  case AtomicExpr::AO__atomic_add_fetch:
941  case AtomicExpr::AO__atomic_sub_fetch:
942    IsAddSub = true;
943    // Fall through.
944  case AtomicExpr::AO__c11_atomic_fetch_and:
945  case AtomicExpr::AO__c11_atomic_fetch_or:
946  case AtomicExpr::AO__c11_atomic_fetch_xor:
947  case AtomicExpr::AO__atomic_fetch_and:
948  case AtomicExpr::AO__atomic_fetch_or:
949  case AtomicExpr::AO__atomic_fetch_xor:
950  case AtomicExpr::AO__atomic_fetch_nand:
951  case AtomicExpr::AO__atomic_and_fetch:
952  case AtomicExpr::AO__atomic_or_fetch:
953  case AtomicExpr::AO__atomic_xor_fetch:
954  case AtomicExpr::AO__atomic_nand_fetch:
955    Form = Arithmetic;
956    break;
957
958  case AtomicExpr::AO__c11_atomic_exchange:
959  case AtomicExpr::AO__atomic_exchange_n:
960    Form = Xchg;
961    break;
962
963  case AtomicExpr::AO__atomic_exchange:
964    Form = GNUXchg;
965    break;
966
967  case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
968  case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
969    Form = C11CmpXchg;
970    break;
971
972  case AtomicExpr::AO__atomic_compare_exchange:
973  case AtomicExpr::AO__atomic_compare_exchange_n:
974    Form = GNUCmpXchg;
975    break;
976  }
977
978  // Check we have the right number of arguments.
979  if (TheCall->getNumArgs() < NumArgs[Form]) {
980    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
981      << 0 << NumArgs[Form] << TheCall->getNumArgs()
982      << TheCall->getCallee()->getSourceRange();
983    return ExprError();
984  } else if (TheCall->getNumArgs() > NumArgs[Form]) {
985    Diag(TheCall->getArg(NumArgs[Form])->getLocStart(),
986         diag::err_typecheck_call_too_many_args)
987      << 0 << NumArgs[Form] << TheCall->getNumArgs()
988      << TheCall->getCallee()->getSourceRange();
989    return ExprError();
990  }
991
992  // Inspect the first argument of the atomic operation.
993  Expr *Ptr = TheCall->getArg(0);
994  Ptr = DefaultFunctionArrayLvalueConversion(Ptr).get();
995  const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
996  if (!pointerType) {
997    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
998      << Ptr->getType() << Ptr->getSourceRange();
999    return ExprError();
1000  }
1001
1002  // For a __c11 builtin, this should be a pointer to an _Atomic type.
1003  QualType AtomTy = pointerType->getPointeeType(); // 'A'
1004  QualType ValType = AtomTy; // 'C'
1005  if (IsC11) {
1006    if (!AtomTy->isAtomicType()) {
1007      Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
1008        << Ptr->getType() << Ptr->getSourceRange();
1009      return ExprError();
1010    }
1011    if (AtomTy.isConstQualified()) {
1012      Diag(DRE->getLocStart(), diag::err_atomic_op_needs_non_const_atomic)
1013        << Ptr->getType() << Ptr->getSourceRange();
1014      return ExprError();
1015    }
1016    ValType = AtomTy->getAs<AtomicType>()->getValueType();
1017  }
1018
1019  // For an arithmetic operation, the implied arithmetic must be well-formed.
1020  if (Form == Arithmetic) {
1021    // gcc does not enforce these rules for GNU atomics, but we do so for sanity.
1022    if (IsAddSub && !ValType->isIntegerType() && !ValType->isPointerType()) {
1023      Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
1024        << IsC11 << Ptr->getType() << Ptr->getSourceRange();
1025      return ExprError();
1026    }
1027    if (!IsAddSub && !ValType->isIntegerType()) {
1028      Diag(DRE->getLocStart(), diag::err_atomic_op_bitwise_needs_atomic_int)
1029        << IsC11 << Ptr->getType() << Ptr->getSourceRange();
1030      return ExprError();
1031    }
1032  } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
1033    // For __atomic_*_n operations, the value type must be a scalar integral or
1034    // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
1035    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
1036      << IsC11 << Ptr->getType() << Ptr->getSourceRange();
1037    return ExprError();
1038  }
1039
1040  if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context)) {
1041    // For GNU atomics, require a trivially-copyable type. This is not part of
1042    // the GNU atomics specification, but we enforce it for sanity.
1043    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_trivial_copy)
1044      << Ptr->getType() << Ptr->getSourceRange();
1045    return ExprError();
1046  }
1047
1048  // FIXME: For any builtin other than a load, the ValType must not be
1049  // const-qualified.
1050
1051  switch (ValType.getObjCLifetime()) {
1052  case Qualifiers::OCL_None:
1053  case Qualifiers::OCL_ExplicitNone:
1054    // okay
1055    break;
1056
1057  case Qualifiers::OCL_Weak:
1058  case Qualifiers::OCL_Strong:
1059  case Qualifiers::OCL_Autoreleasing:
1060    // FIXME: Can this happen? By this point, ValType should be known
1061    // to be trivially copyable.
1062    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
1063      << ValType << Ptr->getSourceRange();
1064    return ExprError();
1065  }
1066
1067  QualType ResultType = ValType;
1068  if (Form == Copy || Form == GNUXchg || Form == Init)
1069    ResultType = Context.VoidTy;
1070  else if (Form == C11CmpXchg || Form == GNUCmpXchg)
1071    ResultType = Context.BoolTy;
1072
1073  // The type of a parameter passed 'by value'. In the GNU atomics, such
1074  // arguments are actually passed as pointers.
1075  QualType ByValType = ValType; // 'CP'
1076  if (!IsC11 && !IsN)
1077    ByValType = Ptr->getType();
1078
1079  // The first argument --- the pointer --- has a fixed type; we
1080  // deduce the types of the rest of the arguments accordingly.  Walk
1081  // the remaining arguments, converting them to the deduced value type.
1082  for (unsigned i = 1; i != NumArgs[Form]; ++i) {
1083    QualType Ty;
1084    if (i < NumVals[Form] + 1) {
1085      switch (i) {
1086      case 1:
1087        // The second argument is the non-atomic operand. For arithmetic, this
1088        // is always passed by value, and for a compare_exchange it is always
1089        // passed by address. For the rest, GNU uses by-address and C11 uses
1090        // by-value.
1091        assert(Form != Load);
1092        if (Form == Init || (Form == Arithmetic && ValType->isIntegerType()))
1093          Ty = ValType;
1094        else if (Form == Copy || Form == Xchg)
1095          Ty = ByValType;
1096        else if (Form == Arithmetic)
1097          Ty = Context.getPointerDiffType();
1098        else
1099          Ty = Context.getPointerType(ValType.getUnqualifiedType());
1100        break;
1101      case 2:
1102        // The third argument to compare_exchange / GNU exchange is a
1103        // (pointer to a) desired value.
1104        Ty = ByValType;
1105        break;
1106      case 3:
1107        // The fourth argument to GNU compare_exchange is a 'weak' flag.
1108        Ty = Context.BoolTy;
1109        break;
1110      }
1111    } else {
1112      // The order(s) are always converted to int.
1113      Ty = Context.IntTy;
1114    }
1115
1116    InitializedEntity Entity =
1117        InitializedEntity::InitializeParameter(Context, Ty, false);
1118    ExprResult Arg = TheCall->getArg(i);
1119    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
1120    if (Arg.isInvalid())
1121      return true;
1122    TheCall->setArg(i, Arg.get());
1123  }
1124
1125  // Permute the arguments into a 'consistent' order.
1126  SmallVector<Expr*, 5> SubExprs;
1127  SubExprs.push_back(Ptr);
1128  switch (Form) {
1129  case Init:
1130    // Note, AtomicExpr::getVal1() has a special case for this atomic.
1131    SubExprs.push_back(TheCall->getArg(1)); // Val1
1132    break;
1133  case Load:
1134    SubExprs.push_back(TheCall->getArg(1)); // Order
1135    break;
1136  case Copy:
1137  case Arithmetic:
1138  case Xchg:
1139    SubExprs.push_back(TheCall->getArg(2)); // Order
1140    SubExprs.push_back(TheCall->getArg(1)); // Val1
1141    break;
1142  case GNUXchg:
1143    // Note, AtomicExpr::getVal2() has a special case for this atomic.
1144    SubExprs.push_back(TheCall->getArg(3)); // Order
1145    SubExprs.push_back(TheCall->getArg(1)); // Val1
1146    SubExprs.push_back(TheCall->getArg(2)); // Val2
1147    break;
1148  case C11CmpXchg:
1149    SubExprs.push_back(TheCall->getArg(3)); // Order
1150    SubExprs.push_back(TheCall->getArg(1)); // Val1
1151    SubExprs.push_back(TheCall->getArg(4)); // OrderFail
1152    SubExprs.push_back(TheCall->getArg(2)); // Val2
1153    break;
1154  case GNUCmpXchg:
1155    SubExprs.push_back(TheCall->getArg(4)); // Order
1156    SubExprs.push_back(TheCall->getArg(1)); // Val1
1157    SubExprs.push_back(TheCall->getArg(5)); // OrderFail
1158    SubExprs.push_back(TheCall->getArg(2)); // Val2
1159    SubExprs.push_back(TheCall->getArg(3)); // Weak
1160    break;
1161  }
1162
1163  AtomicExpr *AE = new (Context) AtomicExpr(TheCall->getCallee()->getLocStart(),
1164                                            SubExprs, ResultType, Op,
1165                                            TheCall->getRParenLoc());
1166
1167  if ((Op == AtomicExpr::AO__c11_atomic_load ||
1168       (Op == AtomicExpr::AO__c11_atomic_store)) &&
1169      Context.AtomicUsesUnsupportedLibcall(AE))
1170    Diag(AE->getLocStart(), diag::err_atomic_load_store_uses_lib) <<
1171    ((Op == AtomicExpr::AO__c11_atomic_load) ? 0 : 1);
1172
1173  return Owned(AE);
1174}
1175
1176
1177/// checkBuiltinArgument - Given a call to a builtin function, perform
1178/// normal type-checking on the given argument, updating the call in
1179/// place.  This is useful when a builtin function requires custom
1180/// type-checking for some of its arguments but not necessarily all of
1181/// them.
1182///
1183/// Returns true on error.
1184static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
1185  FunctionDecl *Fn = E->getDirectCallee();
1186  assert(Fn && "builtin call without direct callee!");
1187
1188  ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
1189  InitializedEntity Entity =
1190    InitializedEntity::InitializeParameter(S.Context, Param);
1191
1192  ExprResult Arg = E->getArg(0);
1193  Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
1194  if (Arg.isInvalid())
1195    return true;
1196
1197  E->setArg(ArgIndex, Arg.take());
1198  return false;
1199}
1200
1201/// SemaBuiltinAtomicOverloaded - We have a call to a function like
1202/// __sync_fetch_and_add, which is an overloaded function based on the pointer
1203/// type of its first argument.  The main ActOnCallExpr routines have already
1204/// promoted the types of arguments because all of these calls are prototyped as
1205/// void(...).
1206///
1207/// This function goes through and does final semantic checking for these
1208/// builtins,
1209ExprResult
1210Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
1211  CallExpr *TheCall = (CallExpr *)TheCallResult.get();
1212  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1213  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
1214
1215  // Ensure that we have at least one argument to do type inference from.
1216  if (TheCall->getNumArgs() < 1) {
1217    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
1218      << 0 << 1 << TheCall->getNumArgs()
1219      << TheCall->getCallee()->getSourceRange();
1220    return ExprError();
1221  }
1222
1223  // Inspect the first argument of the atomic builtin.  This should always be
1224  // a pointer type, whose element is an integral scalar or pointer type.
1225  // Because it is a pointer type, we don't have to worry about any implicit
1226  // casts here.
1227  // FIXME: We don't allow floating point scalars as input.
1228  Expr *FirstArg = TheCall->getArg(0);
1229  ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
1230  if (FirstArgResult.isInvalid())
1231    return ExprError();
1232  FirstArg = FirstArgResult.take();
1233  TheCall->setArg(0, FirstArg);
1234
1235  const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
1236  if (!pointerType) {
1237    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
1238      << FirstArg->getType() << FirstArg->getSourceRange();
1239    return ExprError();
1240  }
1241
1242  QualType ValType = pointerType->getPointeeType();
1243  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
1244      !ValType->isBlockPointerType()) {
1245    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
1246      << FirstArg->getType() << FirstArg->getSourceRange();
1247    return ExprError();
1248  }
1249
1250  switch (ValType.getObjCLifetime()) {
1251  case Qualifiers::OCL_None:
1252  case Qualifiers::OCL_ExplicitNone:
1253    // okay
1254    break;
1255
1256  case Qualifiers::OCL_Weak:
1257  case Qualifiers::OCL_Strong:
1258  case Qualifiers::OCL_Autoreleasing:
1259    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
1260      << ValType << FirstArg->getSourceRange();
1261    return ExprError();
1262  }
1263
1264  // Strip any qualifiers off ValType.
1265  ValType = ValType.getUnqualifiedType();
1266
1267  // The majority of builtins return a value, but a few have special return
1268  // types, so allow them to override appropriately below.
1269  QualType ResultType = ValType;
1270
1271  // We need to figure out which concrete builtin this maps onto.  For example,
1272  // __sync_fetch_and_add with a 2 byte object turns into
1273  // __sync_fetch_and_add_2.
1274#define BUILTIN_ROW(x) \
1275  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
1276    Builtin::BI##x##_8, Builtin::BI##x##_16 }
1277
1278  static const unsigned BuiltinIndices[][5] = {
1279    BUILTIN_ROW(__sync_fetch_and_add),
1280    BUILTIN_ROW(__sync_fetch_and_sub),
1281    BUILTIN_ROW(__sync_fetch_and_or),
1282    BUILTIN_ROW(__sync_fetch_and_and),
1283    BUILTIN_ROW(__sync_fetch_and_xor),
1284
1285    BUILTIN_ROW(__sync_add_and_fetch),
1286    BUILTIN_ROW(__sync_sub_and_fetch),
1287    BUILTIN_ROW(__sync_and_and_fetch),
1288    BUILTIN_ROW(__sync_or_and_fetch),
1289    BUILTIN_ROW(__sync_xor_and_fetch),
1290
1291    BUILTIN_ROW(__sync_val_compare_and_swap),
1292    BUILTIN_ROW(__sync_bool_compare_and_swap),
1293    BUILTIN_ROW(__sync_lock_test_and_set),
1294    BUILTIN_ROW(__sync_lock_release),
1295    BUILTIN_ROW(__sync_swap)
1296  };
1297#undef BUILTIN_ROW
1298
1299  // Determine the index of the size.
1300  unsigned SizeIndex;
1301  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
1302  case 1: SizeIndex = 0; break;
1303  case 2: SizeIndex = 1; break;
1304  case 4: SizeIndex = 2; break;
1305  case 8: SizeIndex = 3; break;
1306  case 16: SizeIndex = 4; break;
1307  default:
1308    Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
1309      << FirstArg->getType() << FirstArg->getSourceRange();
1310    return ExprError();
1311  }
1312
1313  // Each of these builtins has one pointer argument, followed by some number of
1314  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
1315  // that we ignore.  Find out which row of BuiltinIndices to read from as well
1316  // as the number of fixed args.
1317  unsigned BuiltinID = FDecl->getBuiltinID();
1318  unsigned BuiltinIndex, NumFixed = 1;
1319  switch (BuiltinID) {
1320  default: llvm_unreachable("Unknown overloaded atomic builtin!");
1321  case Builtin::BI__sync_fetch_and_add:
1322  case Builtin::BI__sync_fetch_and_add_1:
1323  case Builtin::BI__sync_fetch_and_add_2:
1324  case Builtin::BI__sync_fetch_and_add_4:
1325  case Builtin::BI__sync_fetch_and_add_8:
1326  case Builtin::BI__sync_fetch_and_add_16:
1327    BuiltinIndex = 0;
1328    break;
1329
1330  case Builtin::BI__sync_fetch_and_sub:
1331  case Builtin::BI__sync_fetch_and_sub_1:
1332  case Builtin::BI__sync_fetch_and_sub_2:
1333  case Builtin::BI__sync_fetch_and_sub_4:
1334  case Builtin::BI__sync_fetch_and_sub_8:
1335  case Builtin::BI__sync_fetch_and_sub_16:
1336    BuiltinIndex = 1;
1337    break;
1338
1339  case Builtin::BI__sync_fetch_and_or:
1340  case Builtin::BI__sync_fetch_and_or_1:
1341  case Builtin::BI__sync_fetch_and_or_2:
1342  case Builtin::BI__sync_fetch_and_or_4:
1343  case Builtin::BI__sync_fetch_and_or_8:
1344  case Builtin::BI__sync_fetch_and_or_16:
1345    BuiltinIndex = 2;
1346    break;
1347
1348  case Builtin::BI__sync_fetch_and_and:
1349  case Builtin::BI__sync_fetch_and_and_1:
1350  case Builtin::BI__sync_fetch_and_and_2:
1351  case Builtin::BI__sync_fetch_and_and_4:
1352  case Builtin::BI__sync_fetch_and_and_8:
1353  case Builtin::BI__sync_fetch_and_and_16:
1354    BuiltinIndex = 3;
1355    break;
1356
1357  case Builtin::BI__sync_fetch_and_xor:
1358  case Builtin::BI__sync_fetch_and_xor_1:
1359  case Builtin::BI__sync_fetch_and_xor_2:
1360  case Builtin::BI__sync_fetch_and_xor_4:
1361  case Builtin::BI__sync_fetch_and_xor_8:
1362  case Builtin::BI__sync_fetch_and_xor_16:
1363    BuiltinIndex = 4;
1364    break;
1365
1366  case Builtin::BI__sync_add_and_fetch:
1367  case Builtin::BI__sync_add_and_fetch_1:
1368  case Builtin::BI__sync_add_and_fetch_2:
1369  case Builtin::BI__sync_add_and_fetch_4:
1370  case Builtin::BI__sync_add_and_fetch_8:
1371  case Builtin::BI__sync_add_and_fetch_16:
1372    BuiltinIndex = 5;
1373    break;
1374
1375  case Builtin::BI__sync_sub_and_fetch:
1376  case Builtin::BI__sync_sub_and_fetch_1:
1377  case Builtin::BI__sync_sub_and_fetch_2:
1378  case Builtin::BI__sync_sub_and_fetch_4:
1379  case Builtin::BI__sync_sub_and_fetch_8:
1380  case Builtin::BI__sync_sub_and_fetch_16:
1381    BuiltinIndex = 6;
1382    break;
1383
1384  case Builtin::BI__sync_and_and_fetch:
1385  case Builtin::BI__sync_and_and_fetch_1:
1386  case Builtin::BI__sync_and_and_fetch_2:
1387  case Builtin::BI__sync_and_and_fetch_4:
1388  case Builtin::BI__sync_and_and_fetch_8:
1389  case Builtin::BI__sync_and_and_fetch_16:
1390    BuiltinIndex = 7;
1391    break;
1392
1393  case Builtin::BI__sync_or_and_fetch:
1394  case Builtin::BI__sync_or_and_fetch_1:
1395  case Builtin::BI__sync_or_and_fetch_2:
1396  case Builtin::BI__sync_or_and_fetch_4:
1397  case Builtin::BI__sync_or_and_fetch_8:
1398  case Builtin::BI__sync_or_and_fetch_16:
1399    BuiltinIndex = 8;
1400    break;
1401
1402  case Builtin::BI__sync_xor_and_fetch:
1403  case Builtin::BI__sync_xor_and_fetch_1:
1404  case Builtin::BI__sync_xor_and_fetch_2:
1405  case Builtin::BI__sync_xor_and_fetch_4:
1406  case Builtin::BI__sync_xor_and_fetch_8:
1407  case Builtin::BI__sync_xor_and_fetch_16:
1408    BuiltinIndex = 9;
1409    break;
1410
1411  case Builtin::BI__sync_val_compare_and_swap:
1412  case Builtin::BI__sync_val_compare_and_swap_1:
1413  case Builtin::BI__sync_val_compare_and_swap_2:
1414  case Builtin::BI__sync_val_compare_and_swap_4:
1415  case Builtin::BI__sync_val_compare_and_swap_8:
1416  case Builtin::BI__sync_val_compare_and_swap_16:
1417    BuiltinIndex = 10;
1418    NumFixed = 2;
1419    break;
1420
1421  case Builtin::BI__sync_bool_compare_and_swap:
1422  case Builtin::BI__sync_bool_compare_and_swap_1:
1423  case Builtin::BI__sync_bool_compare_and_swap_2:
1424  case Builtin::BI__sync_bool_compare_and_swap_4:
1425  case Builtin::BI__sync_bool_compare_and_swap_8:
1426  case Builtin::BI__sync_bool_compare_and_swap_16:
1427    BuiltinIndex = 11;
1428    NumFixed = 2;
1429    ResultType = Context.BoolTy;
1430    break;
1431
1432  case Builtin::BI__sync_lock_test_and_set:
1433  case Builtin::BI__sync_lock_test_and_set_1:
1434  case Builtin::BI__sync_lock_test_and_set_2:
1435  case Builtin::BI__sync_lock_test_and_set_4:
1436  case Builtin::BI__sync_lock_test_and_set_8:
1437  case Builtin::BI__sync_lock_test_and_set_16:
1438    BuiltinIndex = 12;
1439    break;
1440
1441  case Builtin::BI__sync_lock_release:
1442  case Builtin::BI__sync_lock_release_1:
1443  case Builtin::BI__sync_lock_release_2:
1444  case Builtin::BI__sync_lock_release_4:
1445  case Builtin::BI__sync_lock_release_8:
1446  case Builtin::BI__sync_lock_release_16:
1447    BuiltinIndex = 13;
1448    NumFixed = 0;
1449    ResultType = Context.VoidTy;
1450    break;
1451
1452  case Builtin::BI__sync_swap:
1453  case Builtin::BI__sync_swap_1:
1454  case Builtin::BI__sync_swap_2:
1455  case Builtin::BI__sync_swap_4:
1456  case Builtin::BI__sync_swap_8:
1457  case Builtin::BI__sync_swap_16:
1458    BuiltinIndex = 14;
1459    break;
1460  }
1461
1462  // Now that we know how many fixed arguments we expect, first check that we
1463  // have at least that many.
1464  if (TheCall->getNumArgs() < 1+NumFixed) {
1465    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
1466      << 0 << 1+NumFixed << TheCall->getNumArgs()
1467      << TheCall->getCallee()->getSourceRange();
1468    return ExprError();
1469  }
1470
1471  // Get the decl for the concrete builtin from this, we can tell what the
1472  // concrete integer type we should convert to is.
1473  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
1474  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
1475  FunctionDecl *NewBuiltinDecl;
1476  if (NewBuiltinID == BuiltinID)
1477    NewBuiltinDecl = FDecl;
1478  else {
1479    // Perform builtin lookup to avoid redeclaring it.
1480    DeclarationName DN(&Context.Idents.get(NewBuiltinName));
1481    LookupResult Res(*this, DN, DRE->getLocStart(), LookupOrdinaryName);
1482    LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
1483    assert(Res.getFoundDecl());
1484    NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
1485    if (NewBuiltinDecl == 0)
1486      return ExprError();
1487  }
1488
1489  // The first argument --- the pointer --- has a fixed type; we
1490  // deduce the types of the rest of the arguments accordingly.  Walk
1491  // the remaining arguments, converting them to the deduced value type.
1492  for (unsigned i = 0; i != NumFixed; ++i) {
1493    ExprResult Arg = TheCall->getArg(i+1);
1494
1495    // GCC does an implicit conversion to the pointer or integer ValType.  This
1496    // can fail in some cases (1i -> int**), check for this error case now.
1497    // Initialize the argument.
1498    InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
1499                                                   ValType, /*consume*/ false);
1500    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
1501    if (Arg.isInvalid())
1502      return ExprError();
1503
1504    // Okay, we have something that *can* be converted to the right type.  Check
1505    // to see if there is a potentially weird extension going on here.  This can
1506    // happen when you do an atomic operation on something like an char* and
1507    // pass in 42.  The 42 gets converted to char.  This is even more strange
1508    // for things like 45.123 -> char, etc.
1509    // FIXME: Do this check.
1510    TheCall->setArg(i+1, Arg.take());
1511  }
1512
1513  ASTContext& Context = this->getASTContext();
1514
1515  // Create a new DeclRefExpr to refer to the new decl.
1516  DeclRefExpr* NewDRE = DeclRefExpr::Create(
1517      Context,
1518      DRE->getQualifierLoc(),
1519      SourceLocation(),
1520      NewBuiltinDecl,
1521      /*enclosing*/ false,
1522      DRE->getLocation(),
1523      Context.BuiltinFnTy,
1524      DRE->getValueKind());
1525
1526  // Set the callee in the CallExpr.
1527  // FIXME: This loses syntactic information.
1528  QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
1529  ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
1530                                              CK_BuiltinFnToFnPtr);
1531  TheCall->setCallee(PromotedCall.take());
1532
1533  // Change the result type of the call to match the original value type. This
1534  // is arbitrary, but the codegen for these builtins ins design to handle it
1535  // gracefully.
1536  TheCall->setType(ResultType);
1537
1538  return TheCallResult;
1539}
1540
1541/// CheckObjCString - Checks that the argument to the builtin
1542/// CFString constructor is correct
1543/// Note: It might also make sense to do the UTF-16 conversion here (would
1544/// simplify the backend).
1545bool Sema::CheckObjCString(Expr *Arg) {
1546  Arg = Arg->IgnoreParenCasts();
1547  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
1548
1549  if (!Literal || !Literal->isAscii()) {
1550    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
1551      << Arg->getSourceRange();
1552    return true;
1553  }
1554
1555  if (Literal->containsNonAsciiOrNull()) {
1556    StringRef String = Literal->getString();
1557    unsigned NumBytes = String.size();
1558    SmallVector<UTF16, 128> ToBuf(NumBytes);
1559    const UTF8 *FromPtr = (const UTF8 *)String.data();
1560    UTF16 *ToPtr = &ToBuf[0];
1561
1562    ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1563                                                 &ToPtr, ToPtr + NumBytes,
1564                                                 strictConversion);
1565    // Check for conversion failure.
1566    if (Result != conversionOK)
1567      Diag(Arg->getLocStart(),
1568           diag::warn_cfstring_truncated) << Arg->getSourceRange();
1569  }
1570  return false;
1571}
1572
1573/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
1574/// Emit an error and return true on failure, return false on success.
1575bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
1576  Expr *Fn = TheCall->getCallee();
1577  if (TheCall->getNumArgs() > 2) {
1578    Diag(TheCall->getArg(2)->getLocStart(),
1579         diag::err_typecheck_call_too_many_args)
1580      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1581      << Fn->getSourceRange()
1582      << SourceRange(TheCall->getArg(2)->getLocStart(),
1583                     (*(TheCall->arg_end()-1))->getLocEnd());
1584    return true;
1585  }
1586
1587  if (TheCall->getNumArgs() < 2) {
1588    return Diag(TheCall->getLocEnd(),
1589      diag::err_typecheck_call_too_few_args_at_least)
1590      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
1591  }
1592
1593  // Type-check the first argument normally.
1594  if (checkBuiltinArgument(*this, TheCall, 0))
1595    return true;
1596
1597  // Determine whether the current function is variadic or not.
1598  BlockScopeInfo *CurBlock = getCurBlock();
1599  bool isVariadic;
1600  if (CurBlock)
1601    isVariadic = CurBlock->TheDecl->isVariadic();
1602  else if (FunctionDecl *FD = getCurFunctionDecl())
1603    isVariadic = FD->isVariadic();
1604  else
1605    isVariadic = getCurMethodDecl()->isVariadic();
1606
1607  if (!isVariadic) {
1608    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
1609    return true;
1610  }
1611
1612  // Verify that the second argument to the builtin is the last argument of the
1613  // current function or method.
1614  bool SecondArgIsLastNamedArgument = false;
1615  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
1616
1617  // These are valid if SecondArgIsLastNamedArgument is false after the next
1618  // block.
1619  QualType Type;
1620  SourceLocation ParamLoc;
1621
1622  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
1623    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
1624      // FIXME: This isn't correct for methods (results in bogus warning).
1625      // Get the last formal in the current function.
1626      const ParmVarDecl *LastArg;
1627      if (CurBlock)
1628        LastArg = *(CurBlock->TheDecl->param_end()-1);
1629      else if (FunctionDecl *FD = getCurFunctionDecl())
1630        LastArg = *(FD->param_end()-1);
1631      else
1632        LastArg = *(getCurMethodDecl()->param_end()-1);
1633      SecondArgIsLastNamedArgument = PV == LastArg;
1634
1635      Type = PV->getType();
1636      ParamLoc = PV->getLocation();
1637    }
1638  }
1639
1640  if (!SecondArgIsLastNamedArgument)
1641    Diag(TheCall->getArg(1)->getLocStart(),
1642         diag::warn_second_parameter_of_va_start_not_last_named_argument);
1643  else if (Type->isReferenceType()) {
1644    Diag(Arg->getLocStart(),
1645         diag::warn_va_start_of_reference_type_is_undefined);
1646    Diag(ParamLoc, diag::note_parameter_type) << Type;
1647  }
1648
1649  return false;
1650}
1651
1652/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
1653/// friends.  This is declared to take (...), so we have to check everything.
1654bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
1655  if (TheCall->getNumArgs() < 2)
1656    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1657      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
1658  if (TheCall->getNumArgs() > 2)
1659    return Diag(TheCall->getArg(2)->getLocStart(),
1660                diag::err_typecheck_call_too_many_args)
1661      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1662      << SourceRange(TheCall->getArg(2)->getLocStart(),
1663                     (*(TheCall->arg_end()-1))->getLocEnd());
1664
1665  ExprResult OrigArg0 = TheCall->getArg(0);
1666  ExprResult OrigArg1 = TheCall->getArg(1);
1667
1668  // Do standard promotions between the two arguments, returning their common
1669  // type.
1670  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
1671  if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
1672    return true;
1673
1674  // Make sure any conversions are pushed back into the call; this is
1675  // type safe since unordered compare builtins are declared as "_Bool
1676  // foo(...)".
1677  TheCall->setArg(0, OrigArg0.get());
1678  TheCall->setArg(1, OrigArg1.get());
1679
1680  if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
1681    return false;
1682
1683  // If the common type isn't a real floating type, then the arguments were
1684  // invalid for this operation.
1685  if (Res.isNull() || !Res->isRealFloatingType())
1686    return Diag(OrigArg0.get()->getLocStart(),
1687                diag::err_typecheck_call_invalid_ordered_compare)
1688      << OrigArg0.get()->getType() << OrigArg1.get()->getType()
1689      << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
1690
1691  return false;
1692}
1693
1694/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
1695/// __builtin_isnan and friends.  This is declared to take (...), so we have
1696/// to check everything. We expect the last argument to be a floating point
1697/// value.
1698bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
1699  if (TheCall->getNumArgs() < NumArgs)
1700    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1701      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
1702  if (TheCall->getNumArgs() > NumArgs)
1703    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
1704                diag::err_typecheck_call_too_many_args)
1705      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
1706      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
1707                     (*(TheCall->arg_end()-1))->getLocEnd());
1708
1709  Expr *OrigArg = TheCall->getArg(NumArgs-1);
1710
1711  if (OrigArg->isTypeDependent())
1712    return false;
1713
1714  // This operation requires a non-_Complex floating-point number.
1715  if (!OrigArg->getType()->isRealFloatingType())
1716    return Diag(OrigArg->getLocStart(),
1717                diag::err_typecheck_call_invalid_unary_fp)
1718      << OrigArg->getType() << OrigArg->getSourceRange();
1719
1720  // If this is an implicit conversion from float -> double, remove it.
1721  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
1722    Expr *CastArg = Cast->getSubExpr();
1723    if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
1724      assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
1725             "promotion from float to double is the only expected cast here");
1726      Cast->setSubExpr(0);
1727      TheCall->setArg(NumArgs-1, CastArg);
1728    }
1729  }
1730
1731  return false;
1732}
1733
1734/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
1735// This is declared to take (...), so we have to check everything.
1736ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
1737  if (TheCall->getNumArgs() < 2)
1738    return ExprError(Diag(TheCall->getLocEnd(),
1739                          diag::err_typecheck_call_too_few_args_at_least)
1740                     << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1741                     << TheCall->getSourceRange());
1742
1743  // Determine which of the following types of shufflevector we're checking:
1744  // 1) unary, vector mask: (lhs, mask)
1745  // 2) binary, vector mask: (lhs, rhs, mask)
1746  // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
1747  QualType resType = TheCall->getArg(0)->getType();
1748  unsigned numElements = 0;
1749
1750  if (!TheCall->getArg(0)->isTypeDependent() &&
1751      !TheCall->getArg(1)->isTypeDependent()) {
1752    QualType LHSType = TheCall->getArg(0)->getType();
1753    QualType RHSType = TheCall->getArg(1)->getType();
1754
1755    if (!LHSType->isVectorType() || !RHSType->isVectorType())
1756      return ExprError(Diag(TheCall->getLocStart(),
1757                            diag::err_shufflevector_non_vector)
1758                       << SourceRange(TheCall->getArg(0)->getLocStart(),
1759                                      TheCall->getArg(1)->getLocEnd()));
1760
1761    numElements = LHSType->getAs<VectorType>()->getNumElements();
1762    unsigned numResElements = TheCall->getNumArgs() - 2;
1763
1764    // Check to see if we have a call with 2 vector arguments, the unary shuffle
1765    // with mask.  If so, verify that RHS is an integer vector type with the
1766    // same number of elts as lhs.
1767    if (TheCall->getNumArgs() == 2) {
1768      if (!RHSType->hasIntegerRepresentation() ||
1769          RHSType->getAs<VectorType>()->getNumElements() != numElements)
1770        return ExprError(Diag(TheCall->getLocStart(),
1771                              diag::err_shufflevector_incompatible_vector)
1772                         << SourceRange(TheCall->getArg(1)->getLocStart(),
1773                                        TheCall->getArg(1)->getLocEnd()));
1774    } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
1775      return ExprError(Diag(TheCall->getLocStart(),
1776                            diag::err_shufflevector_incompatible_vector)
1777                       << SourceRange(TheCall->getArg(0)->getLocStart(),
1778                                      TheCall->getArg(1)->getLocEnd()));
1779    } else if (numElements != numResElements) {
1780      QualType eltType = LHSType->getAs<VectorType>()->getElementType();
1781      resType = Context.getVectorType(eltType, numResElements,
1782                                      VectorType::GenericVector);
1783    }
1784  }
1785
1786  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
1787    if (TheCall->getArg(i)->isTypeDependent() ||
1788        TheCall->getArg(i)->isValueDependent())
1789      continue;
1790
1791    llvm::APSInt Result(32);
1792    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
1793      return ExprError(Diag(TheCall->getLocStart(),
1794                            diag::err_shufflevector_nonconstant_argument)
1795                       << TheCall->getArg(i)->getSourceRange());
1796
1797    // Allow -1 which will be translated to undef in the IR.
1798    if (Result.isSigned() && Result.isAllOnesValue())
1799      continue;
1800
1801    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
1802      return ExprError(Diag(TheCall->getLocStart(),
1803                            diag::err_shufflevector_argument_too_large)
1804                       << TheCall->getArg(i)->getSourceRange());
1805  }
1806
1807  SmallVector<Expr*, 32> exprs;
1808
1809  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
1810    exprs.push_back(TheCall->getArg(i));
1811    TheCall->setArg(i, 0);
1812  }
1813
1814  return Owned(new (Context) ShuffleVectorExpr(Context, exprs, resType,
1815                                            TheCall->getCallee()->getLocStart(),
1816                                            TheCall->getRParenLoc()));
1817}
1818
1819/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
1820// This is declared to take (const void*, ...) and can take two
1821// optional constant int args.
1822bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
1823  unsigned NumArgs = TheCall->getNumArgs();
1824
1825  if (NumArgs > 3)
1826    return Diag(TheCall->getLocEnd(),
1827             diag::err_typecheck_call_too_many_args_at_most)
1828             << 0 /*function call*/ << 3 << NumArgs
1829             << TheCall->getSourceRange();
1830
1831  // Argument 0 is checked for us and the remaining arguments must be
1832  // constant integers.
1833  for (unsigned i = 1; i != NumArgs; ++i) {
1834    Expr *Arg = TheCall->getArg(i);
1835
1836    // We can't check the value of a dependent argument.
1837    if (Arg->isTypeDependent() || Arg->isValueDependent())
1838      continue;
1839
1840    llvm::APSInt Result;
1841    if (SemaBuiltinConstantArg(TheCall, i, Result))
1842      return true;
1843
1844    // FIXME: gcc issues a warning and rewrites these to 0. These
1845    // seems especially odd for the third argument since the default
1846    // is 3.
1847    if (i == 1) {
1848      if (Result.getLimitedValue() > 1)
1849        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1850             << "0" << "1" << Arg->getSourceRange();
1851    } else {
1852      if (Result.getLimitedValue() > 3)
1853        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1854            << "0" << "3" << Arg->getSourceRange();
1855    }
1856  }
1857
1858  return false;
1859}
1860
1861/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
1862/// TheCall is a constant expression.
1863bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
1864                                  llvm::APSInt &Result) {
1865  Expr *Arg = TheCall->getArg(ArgNum);
1866  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1867  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
1868
1869  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
1870
1871  if (!Arg->isIntegerConstantExpr(Result, Context))
1872    return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
1873                << FDecl->getDeclName() <<  Arg->getSourceRange();
1874
1875  return false;
1876}
1877
1878/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
1879/// int type). This simply type checks that type is one of the defined
1880/// constants (0-3).
1881// For compatibility check 0-3, llvm only handles 0 and 2.
1882bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
1883  llvm::APSInt Result;
1884
1885  // We can't check the value of a dependent argument.
1886  if (TheCall->getArg(1)->isTypeDependent() ||
1887      TheCall->getArg(1)->isValueDependent())
1888    return false;
1889
1890  // Check constant-ness first.
1891  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1892    return true;
1893
1894  Expr *Arg = TheCall->getArg(1);
1895  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
1896    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1897             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1898  }
1899
1900  return false;
1901}
1902
1903/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
1904/// This checks that val is a constant 1.
1905bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
1906  Expr *Arg = TheCall->getArg(1);
1907  llvm::APSInt Result;
1908
1909  // TODO: This is less than ideal. Overload this to take a value.
1910  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1911    return true;
1912
1913  if (Result != 1)
1914    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
1915             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1916
1917  return false;
1918}
1919
1920namespace {
1921enum StringLiteralCheckType {
1922  SLCT_NotALiteral,
1923  SLCT_UncheckedLiteral,
1924  SLCT_CheckedLiteral
1925};
1926}
1927
1928// Determine if an expression is a string literal or constant string.
1929// If this function returns false on the arguments to a function expecting a
1930// format string, we will usually need to emit a warning.
1931// True string literals are then checked by CheckFormatString.
1932static StringLiteralCheckType
1933checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args,
1934                      bool HasVAListArg, unsigned format_idx,
1935                      unsigned firstDataArg, Sema::FormatStringType Type,
1936                      Sema::VariadicCallType CallType, bool InFunctionCall,
1937                      llvm::SmallBitVector &CheckedVarArgs) {
1938 tryAgain:
1939  if (E->isTypeDependent() || E->isValueDependent())
1940    return SLCT_NotALiteral;
1941
1942  E = E->IgnoreParenCasts();
1943
1944  if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull))
1945    // Technically -Wformat-nonliteral does not warn about this case.
1946    // The behavior of printf and friends in this case is implementation
1947    // dependent.  Ideally if the format string cannot be null then
1948    // it should have a 'nonnull' attribute in the function prototype.
1949    return SLCT_UncheckedLiteral;
1950
1951  switch (E->getStmtClass()) {
1952  case Stmt::BinaryConditionalOperatorClass:
1953  case Stmt::ConditionalOperatorClass: {
1954    // The expression is a literal if both sub-expressions were, and it was
1955    // completely checked only if both sub-expressions were checked.
1956    const AbstractConditionalOperator *C =
1957        cast<AbstractConditionalOperator>(E);
1958    StringLiteralCheckType Left =
1959        checkFormatStringExpr(S, C->getTrueExpr(), Args,
1960                              HasVAListArg, format_idx, firstDataArg,
1961                              Type, CallType, InFunctionCall, CheckedVarArgs);
1962    if (Left == SLCT_NotALiteral)
1963      return SLCT_NotALiteral;
1964    StringLiteralCheckType Right =
1965        checkFormatStringExpr(S, C->getFalseExpr(), Args,
1966                              HasVAListArg, format_idx, firstDataArg,
1967                              Type, CallType, InFunctionCall, CheckedVarArgs);
1968    return Left < Right ? Left : Right;
1969  }
1970
1971  case Stmt::ImplicitCastExprClass: {
1972    E = cast<ImplicitCastExpr>(E)->getSubExpr();
1973    goto tryAgain;
1974  }
1975
1976  case Stmt::OpaqueValueExprClass:
1977    if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
1978      E = src;
1979      goto tryAgain;
1980    }
1981    return SLCT_NotALiteral;
1982
1983  case Stmt::PredefinedExprClass:
1984    // While __func__, etc., are technically not string literals, they
1985    // cannot contain format specifiers and thus are not a security
1986    // liability.
1987    return SLCT_UncheckedLiteral;
1988
1989  case Stmt::DeclRefExprClass: {
1990    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
1991
1992    // As an exception, do not flag errors for variables binding to
1993    // const string literals.
1994    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
1995      bool isConstant = false;
1996      QualType T = DR->getType();
1997
1998      if (const ArrayType *AT = S.Context.getAsArrayType(T)) {
1999        isConstant = AT->getElementType().isConstant(S.Context);
2000      } else if (const PointerType *PT = T->getAs<PointerType>()) {
2001        isConstant = T.isConstant(S.Context) &&
2002                     PT->getPointeeType().isConstant(S.Context);
2003      } else if (T->isObjCObjectPointerType()) {
2004        // In ObjC, there is usually no "const ObjectPointer" type,
2005        // so don't check if the pointee type is constant.
2006        isConstant = T.isConstant(S.Context);
2007      }
2008
2009      if (isConstant) {
2010        if (const Expr *Init = VD->getAnyInitializer()) {
2011          // Look through initializers like const char c[] = { "foo" }
2012          if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
2013            if (InitList->isStringLiteralInit())
2014              Init = InitList->getInit(0)->IgnoreParenImpCasts();
2015          }
2016          return checkFormatStringExpr(S, Init, Args,
2017                                       HasVAListArg, format_idx,
2018                                       firstDataArg, Type, CallType,
2019                                       /*InFunctionCall*/false, CheckedVarArgs);
2020        }
2021      }
2022
2023      // For vprintf* functions (i.e., HasVAListArg==true), we add a
2024      // special check to see if the format string is a function parameter
2025      // of the function calling the printf function.  If the function
2026      // has an attribute indicating it is a printf-like function, then we
2027      // should suppress warnings concerning non-literals being used in a call
2028      // to a vprintf function.  For example:
2029      //
2030      // void
2031      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
2032      //      va_list ap;
2033      //      va_start(ap, fmt);
2034      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
2035      //      ...
2036      // }
2037      if (HasVAListArg) {
2038        if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
2039          if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
2040            int PVIndex = PV->getFunctionScopeIndex() + 1;
2041            for (specific_attr_iterator<FormatAttr>
2042                 i = ND->specific_attr_begin<FormatAttr>(),
2043                 e = ND->specific_attr_end<FormatAttr>(); i != e ; ++i) {
2044              FormatAttr *PVFormat = *i;
2045              // adjust for implicit parameter
2046              if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
2047                if (MD->isInstance())
2048                  ++PVIndex;
2049              // We also check if the formats are compatible.
2050              // We can't pass a 'scanf' string to a 'printf' function.
2051              if (PVIndex == PVFormat->getFormatIdx() &&
2052                  Type == S.GetFormatStringType(PVFormat))
2053                return SLCT_UncheckedLiteral;
2054            }
2055          }
2056        }
2057      }
2058    }
2059
2060    return SLCT_NotALiteral;
2061  }
2062
2063  case Stmt::CallExprClass:
2064  case Stmt::CXXMemberCallExprClass: {
2065    const CallExpr *CE = cast<CallExpr>(E);
2066    if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
2067      if (const FormatArgAttr *FA = ND->getAttr<FormatArgAttr>()) {
2068        unsigned ArgIndex = FA->getFormatIdx();
2069        if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
2070          if (MD->isInstance())
2071            --ArgIndex;
2072        const Expr *Arg = CE->getArg(ArgIndex - 1);
2073
2074        return checkFormatStringExpr(S, Arg, Args,
2075                                     HasVAListArg, format_idx, firstDataArg,
2076                                     Type, CallType, InFunctionCall,
2077                                     CheckedVarArgs);
2078      } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
2079        unsigned BuiltinID = FD->getBuiltinID();
2080        if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
2081            BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
2082          const Expr *Arg = CE->getArg(0);
2083          return checkFormatStringExpr(S, Arg, Args,
2084                                       HasVAListArg, format_idx,
2085                                       firstDataArg, Type, CallType,
2086                                       InFunctionCall, CheckedVarArgs);
2087        }
2088      }
2089    }
2090
2091    return SLCT_NotALiteral;
2092  }
2093  case Stmt::ObjCStringLiteralClass:
2094  case Stmt::StringLiteralClass: {
2095    const StringLiteral *StrE = NULL;
2096
2097    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
2098      StrE = ObjCFExpr->getString();
2099    else
2100      StrE = cast<StringLiteral>(E);
2101
2102    if (StrE) {
2103      S.CheckFormatString(StrE, E, Args, HasVAListArg, format_idx, firstDataArg,
2104                          Type, InFunctionCall, CallType, CheckedVarArgs);
2105      return SLCT_CheckedLiteral;
2106    }
2107
2108    return SLCT_NotALiteral;
2109  }
2110
2111  default:
2112    return SLCT_NotALiteral;
2113  }
2114}
2115
2116void
2117Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
2118                            const Expr * const *ExprArgs,
2119                            SourceLocation CallSiteLoc) {
2120  for (NonNullAttr::args_iterator i = NonNull->args_begin(),
2121                                  e = NonNull->args_end();
2122       i != e; ++i) {
2123    const Expr *ArgExpr = ExprArgs[*i];
2124
2125    // As a special case, transparent unions initialized with zero are
2126    // considered null for the purposes of the nonnull attribute.
2127    if (const RecordType *UT = ArgExpr->getType()->getAsUnionType()) {
2128      if (UT->getDecl()->hasAttr<TransparentUnionAttr>())
2129        if (const CompoundLiteralExpr *CLE =
2130            dyn_cast<CompoundLiteralExpr>(ArgExpr))
2131          if (const InitListExpr *ILE =
2132              dyn_cast<InitListExpr>(CLE->getInitializer()))
2133            ArgExpr = ILE->getInit(0);
2134    }
2135
2136    bool Result;
2137    if (ArgExpr->EvaluateAsBooleanCondition(Result, Context) && !Result)
2138      Diag(CallSiteLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
2139  }
2140}
2141
2142Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
2143  return llvm::StringSwitch<FormatStringType>(Format->getType())
2144  .Case("scanf", FST_Scanf)
2145  .Cases("printf", "printf0", FST_Printf)
2146  .Cases("NSString", "CFString", FST_NSString)
2147  .Case("strftime", FST_Strftime)
2148  .Case("strfmon", FST_Strfmon)
2149  .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
2150  .Default(FST_Unknown);
2151}
2152
2153/// CheckFormatArguments - Check calls to printf and scanf (and similar
2154/// functions) for correct use of format strings.
2155/// Returns true if a format string has been fully checked.
2156bool Sema::CheckFormatArguments(const FormatAttr *Format,
2157                                ArrayRef<const Expr *> Args,
2158                                bool IsCXXMember,
2159                                VariadicCallType CallType,
2160                                SourceLocation Loc, SourceRange Range,
2161                                llvm::SmallBitVector &CheckedVarArgs) {
2162  FormatStringInfo FSI;
2163  if (getFormatStringInfo(Format, IsCXXMember, &FSI))
2164    return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx,
2165                                FSI.FirstDataArg, GetFormatStringType(Format),
2166                                CallType, Loc, Range, CheckedVarArgs);
2167  return false;
2168}
2169
2170bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
2171                                bool HasVAListArg, unsigned format_idx,
2172                                unsigned firstDataArg, FormatStringType Type,
2173                                VariadicCallType CallType,
2174                                SourceLocation Loc, SourceRange Range,
2175                                llvm::SmallBitVector &CheckedVarArgs) {
2176  // CHECK: printf/scanf-like function is called with no format string.
2177  if (format_idx >= Args.size()) {
2178    Diag(Loc, diag::warn_missing_format_string) << Range;
2179    return false;
2180  }
2181
2182  const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
2183
2184  // CHECK: format string is not a string literal.
2185  //
2186  // Dynamically generated format strings are difficult to
2187  // automatically vet at compile time.  Requiring that format strings
2188  // are string literals: (1) permits the checking of format strings by
2189  // the compiler and thereby (2) can practically remove the source of
2190  // many format string exploits.
2191
2192  // Format string can be either ObjC string (e.g. @"%d") or
2193  // C string (e.g. "%d")
2194  // ObjC string uses the same format specifiers as C string, so we can use
2195  // the same format string checking logic for both ObjC and C strings.
2196  StringLiteralCheckType CT =
2197      checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg,
2198                            format_idx, firstDataArg, Type, CallType,
2199                            /*IsFunctionCall*/true, CheckedVarArgs);
2200  if (CT != SLCT_NotALiteral)
2201    // Literal format string found, check done!
2202    return CT == SLCT_CheckedLiteral;
2203
2204  // Strftime is particular as it always uses a single 'time' argument,
2205  // so it is safe to pass a non-literal string.
2206  if (Type == FST_Strftime)
2207    return false;
2208
2209  // Do not emit diag when the string param is a macro expansion and the
2210  // format is either NSString or CFString. This is a hack to prevent
2211  // diag when using the NSLocalizedString and CFCopyLocalizedString macros
2212  // which are usually used in place of NS and CF string literals.
2213  if (Type == FST_NSString &&
2214      SourceMgr.isInSystemMacro(Args[format_idx]->getLocStart()))
2215    return false;
2216
2217  // If there are no arguments specified, warn with -Wformat-security, otherwise
2218  // warn only with -Wformat-nonliteral.
2219  if (Args.size() == firstDataArg)
2220    Diag(Args[format_idx]->getLocStart(),
2221         diag::warn_format_nonliteral_noargs)
2222      << OrigFormatExpr->getSourceRange();
2223  else
2224    Diag(Args[format_idx]->getLocStart(),
2225         diag::warn_format_nonliteral)
2226           << OrigFormatExpr->getSourceRange();
2227  return false;
2228}
2229
2230namespace {
2231class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
2232protected:
2233  Sema &S;
2234  const StringLiteral *FExpr;
2235  const Expr *OrigFormatExpr;
2236  const unsigned FirstDataArg;
2237  const unsigned NumDataArgs;
2238  const char *Beg; // Start of format string.
2239  const bool HasVAListArg;
2240  ArrayRef<const Expr *> Args;
2241  unsigned FormatIdx;
2242  llvm::SmallBitVector CoveredArgs;
2243  bool usesPositionalArgs;
2244  bool atFirstArg;
2245  bool inFunctionCall;
2246  Sema::VariadicCallType CallType;
2247  llvm::SmallBitVector &CheckedVarArgs;
2248public:
2249  CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
2250                     const Expr *origFormatExpr, unsigned firstDataArg,
2251                     unsigned numDataArgs, const char *beg, bool hasVAListArg,
2252                     ArrayRef<const Expr *> Args,
2253                     unsigned formatIdx, bool inFunctionCall,
2254                     Sema::VariadicCallType callType,
2255                     llvm::SmallBitVector &CheckedVarArgs)
2256    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
2257      FirstDataArg(firstDataArg), NumDataArgs(numDataArgs),
2258      Beg(beg), HasVAListArg(hasVAListArg),
2259      Args(Args), FormatIdx(formatIdx),
2260      usesPositionalArgs(false), atFirstArg(true),
2261      inFunctionCall(inFunctionCall), CallType(callType),
2262      CheckedVarArgs(CheckedVarArgs) {
2263    CoveredArgs.resize(numDataArgs);
2264    CoveredArgs.reset();
2265  }
2266
2267  void DoneProcessing();
2268
2269  void HandleIncompleteSpecifier(const char *startSpecifier,
2270                                 unsigned specifierLen);
2271
2272  void HandleInvalidLengthModifier(
2273      const analyze_format_string::FormatSpecifier &FS,
2274      const analyze_format_string::ConversionSpecifier &CS,
2275      const char *startSpecifier, unsigned specifierLen, unsigned DiagID);
2276
2277  void HandleNonStandardLengthModifier(
2278      const analyze_format_string::FormatSpecifier &FS,
2279      const char *startSpecifier, unsigned specifierLen);
2280
2281  void HandleNonStandardConversionSpecifier(
2282      const analyze_format_string::ConversionSpecifier &CS,
2283      const char *startSpecifier, unsigned specifierLen);
2284
2285  virtual void HandlePosition(const char *startPos, unsigned posLen);
2286
2287  virtual void HandleInvalidPosition(const char *startSpecifier,
2288                                     unsigned specifierLen,
2289                                     analyze_format_string::PositionContext p);
2290
2291  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
2292
2293  void HandleNullChar(const char *nullCharacter);
2294
2295  template <typename Range>
2296  static void EmitFormatDiagnostic(Sema &S, bool inFunctionCall,
2297                                   const Expr *ArgumentExpr,
2298                                   PartialDiagnostic PDiag,
2299                                   SourceLocation StringLoc,
2300                                   bool IsStringLocation, Range StringRange,
2301                                   ArrayRef<FixItHint> Fixit = None);
2302
2303protected:
2304  bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
2305                                        const char *startSpec,
2306                                        unsigned specifierLen,
2307                                        const char *csStart, unsigned csLen);
2308
2309  void HandlePositionalNonpositionalArgs(SourceLocation Loc,
2310                                         const char *startSpec,
2311                                         unsigned specifierLen);
2312
2313  SourceRange getFormatStringRange();
2314  CharSourceRange getSpecifierRange(const char *startSpecifier,
2315                                    unsigned specifierLen);
2316  SourceLocation getLocationOfByte(const char *x);
2317
2318  const Expr *getDataArg(unsigned i) const;
2319
2320  bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
2321                    const analyze_format_string::ConversionSpecifier &CS,
2322                    const char *startSpecifier, unsigned specifierLen,
2323                    unsigned argIndex);
2324
2325  template <typename Range>
2326  void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
2327                            bool IsStringLocation, Range StringRange,
2328                            ArrayRef<FixItHint> Fixit = None);
2329
2330  void CheckPositionalAndNonpositionalArgs(
2331      const analyze_format_string::FormatSpecifier *FS);
2332};
2333}
2334
2335SourceRange CheckFormatHandler::getFormatStringRange() {
2336  return OrigFormatExpr->getSourceRange();
2337}
2338
2339CharSourceRange CheckFormatHandler::
2340getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
2341  SourceLocation Start = getLocationOfByte(startSpecifier);
2342  SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
2343
2344  // Advance the end SourceLocation by one due to half-open ranges.
2345  End = End.getLocWithOffset(1);
2346
2347  return CharSourceRange::getCharRange(Start, End);
2348}
2349
2350SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
2351  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
2352}
2353
2354void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
2355                                                   unsigned specifierLen){
2356  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
2357                       getLocationOfByte(startSpecifier),
2358                       /*IsStringLocation*/true,
2359                       getSpecifierRange(startSpecifier, specifierLen));
2360}
2361
2362void CheckFormatHandler::HandleInvalidLengthModifier(
2363    const analyze_format_string::FormatSpecifier &FS,
2364    const analyze_format_string::ConversionSpecifier &CS,
2365    const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
2366  using namespace analyze_format_string;
2367
2368  const LengthModifier &LM = FS.getLengthModifier();
2369  CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
2370
2371  // See if we know how to fix this length modifier.
2372  Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
2373  if (FixedLM) {
2374    EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
2375                         getLocationOfByte(LM.getStart()),
2376                         /*IsStringLocation*/true,
2377                         getSpecifierRange(startSpecifier, specifierLen));
2378
2379    S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
2380      << FixedLM->toString()
2381      << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
2382
2383  } else {
2384    FixItHint Hint;
2385    if (DiagID == diag::warn_format_nonsensical_length)
2386      Hint = FixItHint::CreateRemoval(LMRange);
2387
2388    EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
2389                         getLocationOfByte(LM.getStart()),
2390                         /*IsStringLocation*/true,
2391                         getSpecifierRange(startSpecifier, specifierLen),
2392                         Hint);
2393  }
2394}
2395
2396void CheckFormatHandler::HandleNonStandardLengthModifier(
2397    const analyze_format_string::FormatSpecifier &FS,
2398    const char *startSpecifier, unsigned specifierLen) {
2399  using namespace analyze_format_string;
2400
2401  const LengthModifier &LM = FS.getLengthModifier();
2402  CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
2403
2404  // See if we know how to fix this length modifier.
2405  Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
2406  if (FixedLM) {
2407    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2408                           << LM.toString() << 0,
2409                         getLocationOfByte(LM.getStart()),
2410                         /*IsStringLocation*/true,
2411                         getSpecifierRange(startSpecifier, specifierLen));
2412
2413    S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
2414      << FixedLM->toString()
2415      << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
2416
2417  } else {
2418    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2419                           << LM.toString() << 0,
2420                         getLocationOfByte(LM.getStart()),
2421                         /*IsStringLocation*/true,
2422                         getSpecifierRange(startSpecifier, specifierLen));
2423  }
2424}
2425
2426void CheckFormatHandler::HandleNonStandardConversionSpecifier(
2427    const analyze_format_string::ConversionSpecifier &CS,
2428    const char *startSpecifier, unsigned specifierLen) {
2429  using namespace analyze_format_string;
2430
2431  // See if we know how to fix this conversion specifier.
2432  Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
2433  if (FixedCS) {
2434    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2435                          << CS.toString() << /*conversion specifier*/1,
2436                         getLocationOfByte(CS.getStart()),
2437                         /*IsStringLocation*/true,
2438                         getSpecifierRange(startSpecifier, specifierLen));
2439
2440    CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
2441    S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
2442      << FixedCS->toString()
2443      << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
2444  } else {
2445    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2446                          << CS.toString() << /*conversion specifier*/1,
2447                         getLocationOfByte(CS.getStart()),
2448                         /*IsStringLocation*/true,
2449                         getSpecifierRange(startSpecifier, specifierLen));
2450  }
2451}
2452
2453void CheckFormatHandler::HandlePosition(const char *startPos,
2454                                        unsigned posLen) {
2455  EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
2456                               getLocationOfByte(startPos),
2457                               /*IsStringLocation*/true,
2458                               getSpecifierRange(startPos, posLen));
2459}
2460
2461void
2462CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
2463                                     analyze_format_string::PositionContext p) {
2464  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
2465                         << (unsigned) p,
2466                       getLocationOfByte(startPos), /*IsStringLocation*/true,
2467                       getSpecifierRange(startPos, posLen));
2468}
2469
2470void CheckFormatHandler::HandleZeroPosition(const char *startPos,
2471                                            unsigned posLen) {
2472  EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
2473                               getLocationOfByte(startPos),
2474                               /*IsStringLocation*/true,
2475                               getSpecifierRange(startPos, posLen));
2476}
2477
2478void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
2479  if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
2480    // The presence of a null character is likely an error.
2481    EmitFormatDiagnostic(
2482      S.PDiag(diag::warn_printf_format_string_contains_null_char),
2483      getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
2484      getFormatStringRange());
2485  }
2486}
2487
2488// Note that this may return NULL if there was an error parsing or building
2489// one of the argument expressions.
2490const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
2491  return Args[FirstDataArg + i];
2492}
2493
2494void CheckFormatHandler::DoneProcessing() {
2495    // Does the number of data arguments exceed the number of
2496    // format conversions in the format string?
2497  if (!HasVAListArg) {
2498      // Find any arguments that weren't covered.
2499    CoveredArgs.flip();
2500    signed notCoveredArg = CoveredArgs.find_first();
2501    if (notCoveredArg >= 0) {
2502      assert((unsigned)notCoveredArg < NumDataArgs);
2503      if (const Expr *E = getDataArg((unsigned) notCoveredArg)) {
2504        SourceLocation Loc = E->getLocStart();
2505        if (!S.getSourceManager().isInSystemMacro(Loc)) {
2506          EmitFormatDiagnostic(S.PDiag(diag::warn_printf_data_arg_not_used),
2507                               Loc, /*IsStringLocation*/false,
2508                               getFormatStringRange());
2509        }
2510      }
2511    }
2512  }
2513}
2514
2515bool
2516CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
2517                                                     SourceLocation Loc,
2518                                                     const char *startSpec,
2519                                                     unsigned specifierLen,
2520                                                     const char *csStart,
2521                                                     unsigned csLen) {
2522
2523  bool keepGoing = true;
2524  if (argIndex < NumDataArgs) {
2525    // Consider the argument coverered, even though the specifier doesn't
2526    // make sense.
2527    CoveredArgs.set(argIndex);
2528  }
2529  else {
2530    // If argIndex exceeds the number of data arguments we
2531    // don't issue a warning because that is just a cascade of warnings (and
2532    // they may have intended '%%' anyway). We don't want to continue processing
2533    // the format string after this point, however, as we will like just get
2534    // gibberish when trying to match arguments.
2535    keepGoing = false;
2536  }
2537
2538  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_conversion)
2539                         << StringRef(csStart, csLen),
2540                       Loc, /*IsStringLocation*/true,
2541                       getSpecifierRange(startSpec, specifierLen));
2542
2543  return keepGoing;
2544}
2545
2546void
2547CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
2548                                                      const char *startSpec,
2549                                                      unsigned specifierLen) {
2550  EmitFormatDiagnostic(
2551    S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
2552    Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
2553}
2554
2555bool
2556CheckFormatHandler::CheckNumArgs(
2557  const analyze_format_string::FormatSpecifier &FS,
2558  const analyze_format_string::ConversionSpecifier &CS,
2559  const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
2560
2561  if (argIndex >= NumDataArgs) {
2562    PartialDiagnostic PDiag = FS.usesPositionalArg()
2563      ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
2564           << (argIndex+1) << NumDataArgs)
2565      : S.PDiag(diag::warn_printf_insufficient_data_args);
2566    EmitFormatDiagnostic(
2567      PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
2568      getSpecifierRange(startSpecifier, specifierLen));
2569    return false;
2570  }
2571  return true;
2572}
2573
2574template<typename Range>
2575void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
2576                                              SourceLocation Loc,
2577                                              bool IsStringLocation,
2578                                              Range StringRange,
2579                                              ArrayRef<FixItHint> FixIt) {
2580  EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
2581                       Loc, IsStringLocation, StringRange, FixIt);
2582}
2583
2584/// \brief If the format string is not within the funcion call, emit a note
2585/// so that the function call and string are in diagnostic messages.
2586///
2587/// \param InFunctionCall if true, the format string is within the function
2588/// call and only one diagnostic message will be produced.  Otherwise, an
2589/// extra note will be emitted pointing to location of the format string.
2590///
2591/// \param ArgumentExpr the expression that is passed as the format string
2592/// argument in the function call.  Used for getting locations when two
2593/// diagnostics are emitted.
2594///
2595/// \param PDiag the callee should already have provided any strings for the
2596/// diagnostic message.  This function only adds locations and fixits
2597/// to diagnostics.
2598///
2599/// \param Loc primary location for diagnostic.  If two diagnostics are
2600/// required, one will be at Loc and a new SourceLocation will be created for
2601/// the other one.
2602///
2603/// \param IsStringLocation if true, Loc points to the format string should be
2604/// used for the note.  Otherwise, Loc points to the argument list and will
2605/// be used with PDiag.
2606///
2607/// \param StringRange some or all of the string to highlight.  This is
2608/// templated so it can accept either a CharSourceRange or a SourceRange.
2609///
2610/// \param FixIt optional fix it hint for the format string.
2611template<typename Range>
2612void CheckFormatHandler::EmitFormatDiagnostic(Sema &S, bool InFunctionCall,
2613                                              const Expr *ArgumentExpr,
2614                                              PartialDiagnostic PDiag,
2615                                              SourceLocation Loc,
2616                                              bool IsStringLocation,
2617                                              Range StringRange,
2618                                              ArrayRef<FixItHint> FixIt) {
2619  if (InFunctionCall) {
2620    const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
2621    D << StringRange;
2622    for (ArrayRef<FixItHint>::iterator I = FixIt.begin(), E = FixIt.end();
2623         I != E; ++I) {
2624      D << *I;
2625    }
2626  } else {
2627    S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
2628      << ArgumentExpr->getSourceRange();
2629
2630    const Sema::SemaDiagnosticBuilder &Note =
2631      S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
2632             diag::note_format_string_defined);
2633
2634    Note << StringRange;
2635    for (ArrayRef<FixItHint>::iterator I = FixIt.begin(), E = FixIt.end();
2636         I != E; ++I) {
2637      Note << *I;
2638    }
2639  }
2640}
2641
2642//===--- CHECK: Printf format string checking ------------------------------===//
2643
2644namespace {
2645class CheckPrintfHandler : public CheckFormatHandler {
2646  bool ObjCContext;
2647public:
2648  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
2649                     const Expr *origFormatExpr, unsigned firstDataArg,
2650                     unsigned numDataArgs, bool isObjC,
2651                     const char *beg, bool hasVAListArg,
2652                     ArrayRef<const Expr *> Args,
2653                     unsigned formatIdx, bool inFunctionCall,
2654                     Sema::VariadicCallType CallType,
2655                     llvm::SmallBitVector &CheckedVarArgs)
2656    : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
2657                         numDataArgs, beg, hasVAListArg, Args,
2658                         formatIdx, inFunctionCall, CallType, CheckedVarArgs),
2659      ObjCContext(isObjC)
2660  {}
2661
2662
2663  bool HandleInvalidPrintfConversionSpecifier(
2664                                      const analyze_printf::PrintfSpecifier &FS,
2665                                      const char *startSpecifier,
2666                                      unsigned specifierLen);
2667
2668  bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
2669                             const char *startSpecifier,
2670                             unsigned specifierLen);
2671  bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
2672                       const char *StartSpecifier,
2673                       unsigned SpecifierLen,
2674                       const Expr *E);
2675
2676  bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
2677                    const char *startSpecifier, unsigned specifierLen);
2678  void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
2679                           const analyze_printf::OptionalAmount &Amt,
2680                           unsigned type,
2681                           const char *startSpecifier, unsigned specifierLen);
2682  void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2683                  const analyze_printf::OptionalFlag &flag,
2684                  const char *startSpecifier, unsigned specifierLen);
2685  void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
2686                         const analyze_printf::OptionalFlag &ignoredFlag,
2687                         const analyze_printf::OptionalFlag &flag,
2688                         const char *startSpecifier, unsigned specifierLen);
2689  bool checkForCStrMembers(const analyze_printf::ArgType &AT,
2690                           const Expr *E, const CharSourceRange &CSR);
2691
2692};
2693}
2694
2695bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
2696                                      const analyze_printf::PrintfSpecifier &FS,
2697                                      const char *startSpecifier,
2698                                      unsigned specifierLen) {
2699  const analyze_printf::PrintfConversionSpecifier &CS =
2700    FS.getConversionSpecifier();
2701
2702  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
2703                                          getLocationOfByte(CS.getStart()),
2704                                          startSpecifier, specifierLen,
2705                                          CS.getStart(), CS.getLength());
2706}
2707
2708bool CheckPrintfHandler::HandleAmount(
2709                               const analyze_format_string::OptionalAmount &Amt,
2710                               unsigned k, const char *startSpecifier,
2711                               unsigned specifierLen) {
2712
2713  if (Amt.hasDataArgument()) {
2714    if (!HasVAListArg) {
2715      unsigned argIndex = Amt.getArgIndex();
2716      if (argIndex >= NumDataArgs) {
2717        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
2718                               << k,
2719                             getLocationOfByte(Amt.getStart()),
2720                             /*IsStringLocation*/true,
2721                             getSpecifierRange(startSpecifier, specifierLen));
2722        // Don't do any more checking.  We will just emit
2723        // spurious errors.
2724        return false;
2725      }
2726
2727      // Type check the data argument.  It should be an 'int'.
2728      // Although not in conformance with C99, we also allow the argument to be
2729      // an 'unsigned int' as that is a reasonably safe case.  GCC also
2730      // doesn't emit a warning for that case.
2731      CoveredArgs.set(argIndex);
2732      const Expr *Arg = getDataArg(argIndex);
2733      if (!Arg)
2734        return false;
2735
2736      QualType T = Arg->getType();
2737
2738      const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
2739      assert(AT.isValid());
2740
2741      if (!AT.matchesType(S.Context, T)) {
2742        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
2743                               << k << AT.getRepresentativeTypeName(S.Context)
2744                               << T << Arg->getSourceRange(),
2745                             getLocationOfByte(Amt.getStart()),
2746                             /*IsStringLocation*/true,
2747                             getSpecifierRange(startSpecifier, specifierLen));
2748        // Don't do any more checking.  We will just emit
2749        // spurious errors.
2750        return false;
2751      }
2752    }
2753  }
2754  return true;
2755}
2756
2757void CheckPrintfHandler::HandleInvalidAmount(
2758                                      const analyze_printf::PrintfSpecifier &FS,
2759                                      const analyze_printf::OptionalAmount &Amt,
2760                                      unsigned type,
2761                                      const char *startSpecifier,
2762                                      unsigned specifierLen) {
2763  const analyze_printf::PrintfConversionSpecifier &CS =
2764    FS.getConversionSpecifier();
2765
2766  FixItHint fixit =
2767    Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
2768      ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
2769                                 Amt.getConstantLength()))
2770      : FixItHint();
2771
2772  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
2773                         << type << CS.toString(),
2774                       getLocationOfByte(Amt.getStart()),
2775                       /*IsStringLocation*/true,
2776                       getSpecifierRange(startSpecifier, specifierLen),
2777                       fixit);
2778}
2779
2780void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2781                                    const analyze_printf::OptionalFlag &flag,
2782                                    const char *startSpecifier,
2783                                    unsigned specifierLen) {
2784  // Warn about pointless flag with a fixit removal.
2785  const analyze_printf::PrintfConversionSpecifier &CS =
2786    FS.getConversionSpecifier();
2787  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
2788                         << flag.toString() << CS.toString(),
2789                       getLocationOfByte(flag.getPosition()),
2790                       /*IsStringLocation*/true,
2791                       getSpecifierRange(startSpecifier, specifierLen),
2792                       FixItHint::CreateRemoval(
2793                         getSpecifierRange(flag.getPosition(), 1)));
2794}
2795
2796void CheckPrintfHandler::HandleIgnoredFlag(
2797                                const analyze_printf::PrintfSpecifier &FS,
2798                                const analyze_printf::OptionalFlag &ignoredFlag,
2799                                const analyze_printf::OptionalFlag &flag,
2800                                const char *startSpecifier,
2801                                unsigned specifierLen) {
2802  // Warn about ignored flag with a fixit removal.
2803  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
2804                         << ignoredFlag.toString() << flag.toString(),
2805                       getLocationOfByte(ignoredFlag.getPosition()),
2806                       /*IsStringLocation*/true,
2807                       getSpecifierRange(startSpecifier, specifierLen),
2808                       FixItHint::CreateRemoval(
2809                         getSpecifierRange(ignoredFlag.getPosition(), 1)));
2810}
2811
2812// Determines if the specified is a C++ class or struct containing
2813// a member with the specified name and kind (e.g. a CXXMethodDecl named
2814// "c_str()").
2815template<typename MemberKind>
2816static llvm::SmallPtrSet<MemberKind*, 1>
2817CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
2818  const RecordType *RT = Ty->getAs<RecordType>();
2819  llvm::SmallPtrSet<MemberKind*, 1> Results;
2820
2821  if (!RT)
2822    return Results;
2823  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
2824  if (!RD)
2825    return Results;
2826
2827  LookupResult R(S, &S.PP.getIdentifierTable().get(Name), SourceLocation(),
2828                 Sema::LookupMemberName);
2829
2830  // We just need to include all members of the right kind turned up by the
2831  // filter, at this point.
2832  if (S.LookupQualifiedName(R, RT->getDecl()))
2833    for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2834      NamedDecl *decl = (*I)->getUnderlyingDecl();
2835      if (MemberKind *FK = dyn_cast<MemberKind>(decl))
2836        Results.insert(FK);
2837    }
2838  return Results;
2839}
2840
2841// Check if a (w)string was passed when a (w)char* was needed, and offer a
2842// better diagnostic if so. AT is assumed to be valid.
2843// Returns true when a c_str() conversion method is found.
2844bool CheckPrintfHandler::checkForCStrMembers(
2845    const analyze_printf::ArgType &AT, const Expr *E,
2846    const CharSourceRange &CSR) {
2847  typedef llvm::SmallPtrSet<CXXMethodDecl*, 1> MethodSet;
2848
2849  MethodSet Results =
2850      CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
2851
2852  for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
2853       MI != ME; ++MI) {
2854    const CXXMethodDecl *Method = *MI;
2855    if (Method->getNumParams() == 0 &&
2856          AT.matchesType(S.Context, Method->getResultType())) {
2857      // FIXME: Suggest parens if the expression needs them.
2858      SourceLocation EndLoc =
2859          S.getPreprocessor().getLocForEndOfToken(E->getLocEnd());
2860      S.Diag(E->getLocStart(), diag::note_printf_c_str)
2861          << "c_str()"
2862          << FixItHint::CreateInsertion(EndLoc, ".c_str()");
2863      return true;
2864    }
2865  }
2866
2867  return false;
2868}
2869
2870bool
2871CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
2872                                            &FS,
2873                                          const char *startSpecifier,
2874                                          unsigned specifierLen) {
2875
2876  using namespace analyze_format_string;
2877  using namespace analyze_printf;
2878  const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
2879
2880  if (FS.consumesDataArgument()) {
2881    if (atFirstArg) {
2882        atFirstArg = false;
2883        usesPositionalArgs = FS.usesPositionalArg();
2884    }
2885    else if (usesPositionalArgs != FS.usesPositionalArg()) {
2886      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
2887                                        startSpecifier, specifierLen);
2888      return false;
2889    }
2890  }
2891
2892  // First check if the field width, precision, and conversion specifier
2893  // have matching data arguments.
2894  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
2895                    startSpecifier, specifierLen)) {
2896    return false;
2897  }
2898
2899  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
2900                    startSpecifier, specifierLen)) {
2901    return false;
2902  }
2903
2904  if (!CS.consumesDataArgument()) {
2905    // FIXME: Technically specifying a precision or field width here
2906    // makes no sense.  Worth issuing a warning at some point.
2907    return true;
2908  }
2909
2910  // Consume the argument.
2911  unsigned argIndex = FS.getArgIndex();
2912  if (argIndex < NumDataArgs) {
2913    // The check to see if the argIndex is valid will come later.
2914    // We set the bit here because we may exit early from this
2915    // function if we encounter some other error.
2916    CoveredArgs.set(argIndex);
2917  }
2918
2919  // Check for using an Objective-C specific conversion specifier
2920  // in a non-ObjC literal.
2921  if (!ObjCContext && CS.isObjCArg()) {
2922    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
2923                                                  specifierLen);
2924  }
2925
2926  // Check for invalid use of field width
2927  if (!FS.hasValidFieldWidth()) {
2928    HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
2929        startSpecifier, specifierLen);
2930  }
2931
2932  // Check for invalid use of precision
2933  if (!FS.hasValidPrecision()) {
2934    HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
2935        startSpecifier, specifierLen);
2936  }
2937
2938  // Check each flag does not conflict with any other component.
2939  if (!FS.hasValidThousandsGroupingPrefix())
2940    HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
2941  if (!FS.hasValidLeadingZeros())
2942    HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
2943  if (!FS.hasValidPlusPrefix())
2944    HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
2945  if (!FS.hasValidSpacePrefix())
2946    HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
2947  if (!FS.hasValidAlternativeForm())
2948    HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
2949  if (!FS.hasValidLeftJustified())
2950    HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
2951
2952  // Check that flags are not ignored by another flag
2953  if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
2954    HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
2955        startSpecifier, specifierLen);
2956  if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
2957    HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
2958            startSpecifier, specifierLen);
2959
2960  // Check the length modifier is valid with the given conversion specifier.
2961  if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
2962    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
2963                                diag::warn_format_nonsensical_length);
2964  else if (!FS.hasStandardLengthModifier())
2965    HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
2966  else if (!FS.hasStandardLengthConversionCombination())
2967    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
2968                                diag::warn_format_non_standard_conversion_spec);
2969
2970  if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
2971    HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
2972
2973  // The remaining checks depend on the data arguments.
2974  if (HasVAListArg)
2975    return true;
2976
2977  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
2978    return false;
2979
2980  const Expr *Arg = getDataArg(argIndex);
2981  if (!Arg)
2982    return true;
2983
2984  return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
2985}
2986
2987static bool requiresParensToAddCast(const Expr *E) {
2988  // FIXME: We should have a general way to reason about operator
2989  // precedence and whether parens are actually needed here.
2990  // Take care of a few common cases where they aren't.
2991  const Expr *Inside = E->IgnoreImpCasts();
2992  if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
2993    Inside = POE->getSyntacticForm()->IgnoreImpCasts();
2994
2995  switch (Inside->getStmtClass()) {
2996  case Stmt::ArraySubscriptExprClass:
2997  case Stmt::CallExprClass:
2998  case Stmt::CharacterLiteralClass:
2999  case Stmt::CXXBoolLiteralExprClass:
3000  case Stmt::DeclRefExprClass:
3001  case Stmt::FloatingLiteralClass:
3002  case Stmt::IntegerLiteralClass:
3003  case Stmt::MemberExprClass:
3004  case Stmt::ObjCArrayLiteralClass:
3005  case Stmt::ObjCBoolLiteralExprClass:
3006  case Stmt::ObjCBoxedExprClass:
3007  case Stmt::ObjCDictionaryLiteralClass:
3008  case Stmt::ObjCEncodeExprClass:
3009  case Stmt::ObjCIvarRefExprClass:
3010  case Stmt::ObjCMessageExprClass:
3011  case Stmt::ObjCPropertyRefExprClass:
3012  case Stmt::ObjCStringLiteralClass:
3013  case Stmt::ObjCSubscriptRefExprClass:
3014  case Stmt::ParenExprClass:
3015  case Stmt::StringLiteralClass:
3016  case Stmt::UnaryOperatorClass:
3017    return false;
3018  default:
3019    return true;
3020  }
3021}
3022
3023bool
3024CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
3025                                    const char *StartSpecifier,
3026                                    unsigned SpecifierLen,
3027                                    const Expr *E) {
3028  using namespace analyze_format_string;
3029  using namespace analyze_printf;
3030  // Now type check the data expression that matches the
3031  // format specifier.
3032  const analyze_printf::ArgType &AT = FS.getArgType(S.Context,
3033                                                    ObjCContext);
3034  if (!AT.isValid())
3035    return true;
3036
3037  QualType ExprTy = E->getType();
3038  while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) {
3039    ExprTy = TET->getUnderlyingExpr()->getType();
3040  }
3041
3042  if (AT.matchesType(S.Context, ExprTy))
3043    return true;
3044
3045  // Look through argument promotions for our error message's reported type.
3046  // This includes the integral and floating promotions, but excludes array
3047  // and function pointer decay; seeing that an argument intended to be a
3048  // string has type 'char [6]' is probably more confusing than 'char *'.
3049  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3050    if (ICE->getCastKind() == CK_IntegralCast ||
3051        ICE->getCastKind() == CK_FloatingCast) {
3052      E = ICE->getSubExpr();
3053      ExprTy = E->getType();
3054
3055      // Check if we didn't match because of an implicit cast from a 'char'
3056      // or 'short' to an 'int'.  This is done because printf is a varargs
3057      // function.
3058      if (ICE->getType() == S.Context.IntTy ||
3059          ICE->getType() == S.Context.UnsignedIntTy) {
3060        // All further checking is done on the subexpression.
3061        if (AT.matchesType(S.Context, ExprTy))
3062          return true;
3063      }
3064    }
3065  } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
3066    // Special case for 'a', which has type 'int' in C.
3067    // Note, however, that we do /not/ want to treat multibyte constants like
3068    // 'MooV' as characters! This form is deprecated but still exists.
3069    if (ExprTy == S.Context.IntTy)
3070      if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue()))
3071        ExprTy = S.Context.CharTy;
3072  }
3073
3074  // %C in an Objective-C context prints a unichar, not a wchar_t.
3075  // If the argument is an integer of some kind, believe the %C and suggest
3076  // a cast instead of changing the conversion specifier.
3077  QualType IntendedTy = ExprTy;
3078  if (ObjCContext &&
3079      FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
3080    if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
3081        !ExprTy->isCharType()) {
3082      // 'unichar' is defined as a typedef of unsigned short, but we should
3083      // prefer using the typedef if it is visible.
3084      IntendedTy = S.Context.UnsignedShortTy;
3085
3086      LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getLocStart(),
3087                          Sema::LookupOrdinaryName);
3088      if (S.LookupName(Result, S.getCurScope())) {
3089        NamedDecl *ND = Result.getFoundDecl();
3090        if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
3091          if (TD->getUnderlyingType() == IntendedTy)
3092            IntendedTy = S.Context.getTypedefType(TD);
3093      }
3094    }
3095  }
3096
3097  // Special-case some of Darwin's platform-independence types by suggesting
3098  // casts to primitive types that are known to be large enough.
3099  bool ShouldNotPrintDirectly = false;
3100  if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
3101    // Use a 'while' to peel off layers of typedefs.
3102    QualType TyTy = IntendedTy;
3103    while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
3104      StringRef Name = UserTy->getDecl()->getName();
3105      QualType CastTy = llvm::StringSwitch<QualType>(Name)
3106        .Case("NSInteger", S.Context.LongTy)
3107        .Case("NSUInteger", S.Context.UnsignedLongTy)
3108        .Case("SInt32", S.Context.IntTy)
3109        .Case("UInt32", S.Context.UnsignedIntTy)
3110        .Default(QualType());
3111
3112      if (!CastTy.isNull()) {
3113        ShouldNotPrintDirectly = true;
3114        IntendedTy = CastTy;
3115        break;
3116      }
3117      TyTy = UserTy->desugar();
3118    }
3119  }
3120
3121  // We may be able to offer a FixItHint if it is a supported type.
3122  PrintfSpecifier fixedFS = FS;
3123  bool success = fixedFS.fixType(IntendedTy, S.getLangOpts(),
3124                                 S.Context, ObjCContext);
3125
3126  if (success) {
3127    // Get the fix string from the fixed format specifier
3128    SmallString<16> buf;
3129    llvm::raw_svector_ostream os(buf);
3130    fixedFS.toString(os);
3131
3132    CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
3133
3134    if (IntendedTy == ExprTy) {
3135      // In this case, the specifier is wrong and should be changed to match
3136      // the argument.
3137      EmitFormatDiagnostic(
3138        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3139          << AT.getRepresentativeTypeName(S.Context) << IntendedTy
3140          << E->getSourceRange(),
3141        E->getLocStart(),
3142        /*IsStringLocation*/false,
3143        SpecRange,
3144        FixItHint::CreateReplacement(SpecRange, os.str()));
3145
3146    } else {
3147      // The canonical type for formatting this value is different from the
3148      // actual type of the expression. (This occurs, for example, with Darwin's
3149      // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
3150      // should be printed as 'long' for 64-bit compatibility.)
3151      // Rather than emitting a normal format/argument mismatch, we want to
3152      // add a cast to the recommended type (and correct the format string
3153      // if necessary).
3154      SmallString<16> CastBuf;
3155      llvm::raw_svector_ostream CastFix(CastBuf);
3156      CastFix << "(";
3157      IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
3158      CastFix << ")";
3159
3160      SmallVector<FixItHint,4> Hints;
3161      if (!AT.matchesType(S.Context, IntendedTy))
3162        Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
3163
3164      if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
3165        // If there's already a cast present, just replace it.
3166        SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
3167        Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
3168
3169      } else if (!requiresParensToAddCast(E)) {
3170        // If the expression has high enough precedence,
3171        // just write the C-style cast.
3172        Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
3173                                                   CastFix.str()));
3174      } else {
3175        // Otherwise, add parens around the expression as well as the cast.
3176        CastFix << "(";
3177        Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
3178                                                   CastFix.str()));
3179
3180        SourceLocation After = S.PP.getLocForEndOfToken(E->getLocEnd());
3181        Hints.push_back(FixItHint::CreateInsertion(After, ")"));
3182      }
3183
3184      if (ShouldNotPrintDirectly) {
3185        // The expression has a type that should not be printed directly.
3186        // We extract the name from the typedef because we don't want to show
3187        // the underlying type in the diagnostic.
3188        StringRef Name = cast<TypedefType>(ExprTy)->getDecl()->getName();
3189
3190        EmitFormatDiagnostic(S.PDiag(diag::warn_format_argument_needs_cast)
3191                               << Name << IntendedTy
3192                               << E->getSourceRange(),
3193                             E->getLocStart(), /*IsStringLocation=*/false,
3194                             SpecRange, Hints);
3195      } else {
3196        // In this case, the expression could be printed using a different
3197        // specifier, but we've decided that the specifier is probably correct
3198        // and we should cast instead. Just use the normal warning message.
3199        EmitFormatDiagnostic(
3200          S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3201            << AT.getRepresentativeTypeName(S.Context) << ExprTy
3202            << E->getSourceRange(),
3203          E->getLocStart(), /*IsStringLocation*/false,
3204          SpecRange, Hints);
3205      }
3206    }
3207  } else {
3208    const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
3209                                                   SpecifierLen);
3210    // Since the warning for passing non-POD types to variadic functions
3211    // was deferred until now, we emit a warning for non-POD
3212    // arguments here.
3213    switch (S.isValidVarArgType(ExprTy)) {
3214    case Sema::VAK_Valid:
3215    case Sema::VAK_ValidInCXX11:
3216      EmitFormatDiagnostic(
3217        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3218          << AT.getRepresentativeTypeName(S.Context) << ExprTy
3219          << CSR
3220          << E->getSourceRange(),
3221        E->getLocStart(), /*IsStringLocation*/false, CSR);
3222      break;
3223
3224    case Sema::VAK_Undefined:
3225      EmitFormatDiagnostic(
3226        S.PDiag(diag::warn_non_pod_vararg_with_format_string)
3227          << S.getLangOpts().CPlusPlus11
3228          << ExprTy
3229          << CallType
3230          << AT.getRepresentativeTypeName(S.Context)
3231          << CSR
3232          << E->getSourceRange(),
3233        E->getLocStart(), /*IsStringLocation*/false, CSR);
3234      checkForCStrMembers(AT, E, CSR);
3235      break;
3236
3237    case Sema::VAK_Invalid:
3238      if (ExprTy->isObjCObjectType())
3239        EmitFormatDiagnostic(
3240          S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format)
3241            << S.getLangOpts().CPlusPlus11
3242            << ExprTy
3243            << CallType
3244            << AT.getRepresentativeTypeName(S.Context)
3245            << CSR
3246            << E->getSourceRange(),
3247          E->getLocStart(), /*IsStringLocation*/false, CSR);
3248      else
3249        // FIXME: If this is an initializer list, suggest removing the braces
3250        // or inserting a cast to the target type.
3251        S.Diag(E->getLocStart(), diag::err_cannot_pass_to_vararg_format)
3252          << isa<InitListExpr>(E) << ExprTy << CallType
3253          << AT.getRepresentativeTypeName(S.Context)
3254          << E->getSourceRange();
3255      break;
3256    }
3257
3258    assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() &&
3259           "format string specifier index out of range");
3260    CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true;
3261  }
3262
3263  return true;
3264}
3265
3266//===--- CHECK: Scanf format string checking ------------------------------===//
3267
3268namespace {
3269class CheckScanfHandler : public CheckFormatHandler {
3270public:
3271  CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
3272                    const Expr *origFormatExpr, unsigned firstDataArg,
3273                    unsigned numDataArgs, const char *beg, bool hasVAListArg,
3274                    ArrayRef<const Expr *> Args,
3275                    unsigned formatIdx, bool inFunctionCall,
3276                    Sema::VariadicCallType CallType,
3277                    llvm::SmallBitVector &CheckedVarArgs)
3278    : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
3279                         numDataArgs, beg, hasVAListArg,
3280                         Args, formatIdx, inFunctionCall, CallType,
3281                         CheckedVarArgs)
3282  {}
3283
3284  bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
3285                            const char *startSpecifier,
3286                            unsigned specifierLen);
3287
3288  bool HandleInvalidScanfConversionSpecifier(
3289          const analyze_scanf::ScanfSpecifier &FS,
3290          const char *startSpecifier,
3291          unsigned specifierLen);
3292
3293  void HandleIncompleteScanList(const char *start, const char *end);
3294};
3295}
3296
3297void CheckScanfHandler::HandleIncompleteScanList(const char *start,
3298                                                 const char *end) {
3299  EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
3300                       getLocationOfByte(end), /*IsStringLocation*/true,
3301                       getSpecifierRange(start, end - start));
3302}
3303
3304bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
3305                                        const analyze_scanf::ScanfSpecifier &FS,
3306                                        const char *startSpecifier,
3307                                        unsigned specifierLen) {
3308
3309  const analyze_scanf::ScanfConversionSpecifier &CS =
3310    FS.getConversionSpecifier();
3311
3312  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
3313                                          getLocationOfByte(CS.getStart()),
3314                                          startSpecifier, specifierLen,
3315                                          CS.getStart(), CS.getLength());
3316}
3317
3318bool CheckScanfHandler::HandleScanfSpecifier(
3319                                       const analyze_scanf::ScanfSpecifier &FS,
3320                                       const char *startSpecifier,
3321                                       unsigned specifierLen) {
3322
3323  using namespace analyze_scanf;
3324  using namespace analyze_format_string;
3325
3326  const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
3327
3328  // Handle case where '%' and '*' don't consume an argument.  These shouldn't
3329  // be used to decide if we are using positional arguments consistently.
3330  if (FS.consumesDataArgument()) {
3331    if (atFirstArg) {
3332      atFirstArg = false;
3333      usesPositionalArgs = FS.usesPositionalArg();
3334    }
3335    else if (usesPositionalArgs != FS.usesPositionalArg()) {
3336      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
3337                                        startSpecifier, specifierLen);
3338      return false;
3339    }
3340  }
3341
3342  // Check if the field with is non-zero.
3343  const OptionalAmount &Amt = FS.getFieldWidth();
3344  if (Amt.getHowSpecified() == OptionalAmount::Constant) {
3345    if (Amt.getConstantAmount() == 0) {
3346      const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
3347                                                   Amt.getConstantLength());
3348      EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
3349                           getLocationOfByte(Amt.getStart()),
3350                           /*IsStringLocation*/true, R,
3351                           FixItHint::CreateRemoval(R));
3352    }
3353  }
3354
3355  if (!FS.consumesDataArgument()) {
3356    // FIXME: Technically specifying a precision or field width here
3357    // makes no sense.  Worth issuing a warning at some point.
3358    return true;
3359  }
3360
3361  // Consume the argument.
3362  unsigned argIndex = FS.getArgIndex();
3363  if (argIndex < NumDataArgs) {
3364      // The check to see if the argIndex is valid will come later.
3365      // We set the bit here because we may exit early from this
3366      // function if we encounter some other error.
3367    CoveredArgs.set(argIndex);
3368  }
3369
3370  // Check the length modifier is valid with the given conversion specifier.
3371  if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
3372    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
3373                                diag::warn_format_nonsensical_length);
3374  else if (!FS.hasStandardLengthModifier())
3375    HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
3376  else if (!FS.hasStandardLengthConversionCombination())
3377    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
3378                                diag::warn_format_non_standard_conversion_spec);
3379
3380  if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
3381    HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
3382
3383  // The remaining checks depend on the data arguments.
3384  if (HasVAListArg)
3385    return true;
3386
3387  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
3388    return false;
3389
3390  // Check that the argument type matches the format specifier.
3391  const Expr *Ex = getDataArg(argIndex);
3392  if (!Ex)
3393    return true;
3394
3395  const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
3396  if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType())) {
3397    ScanfSpecifier fixedFS = FS;
3398    bool success = fixedFS.fixType(Ex->getType(), S.getLangOpts(),
3399                                   S.Context);
3400
3401    if (success) {
3402      // Get the fix string from the fixed format specifier.
3403      SmallString<128> buf;
3404      llvm::raw_svector_ostream os(buf);
3405      fixedFS.toString(os);
3406
3407      EmitFormatDiagnostic(
3408        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3409          << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
3410          << Ex->getSourceRange(),
3411        Ex->getLocStart(),
3412        /*IsStringLocation*/false,
3413        getSpecifierRange(startSpecifier, specifierLen),
3414        FixItHint::CreateReplacement(
3415          getSpecifierRange(startSpecifier, specifierLen),
3416          os.str()));
3417    } else {
3418      EmitFormatDiagnostic(
3419        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3420          << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
3421          << Ex->getSourceRange(),
3422        Ex->getLocStart(),
3423        /*IsStringLocation*/false,
3424        getSpecifierRange(startSpecifier, specifierLen));
3425    }
3426  }
3427
3428  return true;
3429}
3430
3431void Sema::CheckFormatString(const StringLiteral *FExpr,
3432                             const Expr *OrigFormatExpr,
3433                             ArrayRef<const Expr *> Args,
3434                             bool HasVAListArg, unsigned format_idx,
3435                             unsigned firstDataArg, FormatStringType Type,
3436                             bool inFunctionCall, VariadicCallType CallType,
3437                             llvm::SmallBitVector &CheckedVarArgs) {
3438
3439  // CHECK: is the format string a wide literal?
3440  if (!FExpr->isAscii() && !FExpr->isUTF8()) {
3441    CheckFormatHandler::EmitFormatDiagnostic(
3442      *this, inFunctionCall, Args[format_idx],
3443      PDiag(diag::warn_format_string_is_wide_literal), FExpr->getLocStart(),
3444      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
3445    return;
3446  }
3447
3448  // Str - The format string.  NOTE: this is NOT null-terminated!
3449  StringRef StrRef = FExpr->getString();
3450  const char *Str = StrRef.data();
3451  unsigned StrLen = StrRef.size();
3452  const unsigned numDataArgs = Args.size() - firstDataArg;
3453
3454  // CHECK: empty format string?
3455  if (StrLen == 0 && numDataArgs > 0) {
3456    CheckFormatHandler::EmitFormatDiagnostic(
3457      *this, inFunctionCall, Args[format_idx],
3458      PDiag(diag::warn_empty_format_string), FExpr->getLocStart(),
3459      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
3460    return;
3461  }
3462
3463  if (Type == FST_Printf || Type == FST_NSString) {
3464    CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
3465                         numDataArgs, (Type == FST_NSString),
3466                         Str, HasVAListArg, Args, format_idx,
3467                         inFunctionCall, CallType, CheckedVarArgs);
3468
3469    if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
3470                                                  getLangOpts(),
3471                                                  Context.getTargetInfo()))
3472      H.DoneProcessing();
3473  } else if (Type == FST_Scanf) {
3474    CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg, numDataArgs,
3475                        Str, HasVAListArg, Args, format_idx,
3476                        inFunctionCall, CallType, CheckedVarArgs);
3477
3478    if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
3479                                                 getLangOpts(),
3480                                                 Context.getTargetInfo()))
3481      H.DoneProcessing();
3482  } // TODO: handle other formats
3483}
3484
3485//===--- CHECK: Standard memory functions ---------------------------------===//
3486
3487/// \brief Determine whether the given type is a dynamic class type (e.g.,
3488/// whether it has a vtable).
3489static bool isDynamicClassType(QualType T) {
3490  if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
3491    if (CXXRecordDecl *Definition = Record->getDefinition())
3492      if (Definition->isDynamicClass())
3493        return true;
3494
3495  return false;
3496}
3497
3498/// \brief If E is a sizeof expression, returns its argument expression,
3499/// otherwise returns NULL.
3500static const Expr *getSizeOfExprArg(const Expr* E) {
3501  if (const UnaryExprOrTypeTraitExpr *SizeOf =
3502      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
3503    if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
3504      return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
3505
3506  return 0;
3507}
3508
3509/// \brief If E is a sizeof expression, returns its argument type.
3510static QualType getSizeOfArgType(const Expr* E) {
3511  if (const UnaryExprOrTypeTraitExpr *SizeOf =
3512      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
3513    if (SizeOf->getKind() == clang::UETT_SizeOf)
3514      return SizeOf->getTypeOfArgument();
3515
3516  return QualType();
3517}
3518
3519/// \brief Check for dangerous or invalid arguments to memset().
3520///
3521/// This issues warnings on known problematic, dangerous or unspecified
3522/// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
3523/// function calls.
3524///
3525/// \param Call The call expression to diagnose.
3526void Sema::CheckMemaccessArguments(const CallExpr *Call,
3527                                   unsigned BId,
3528                                   IdentifierInfo *FnName) {
3529  assert(BId != 0);
3530
3531  // It is possible to have a non-standard definition of memset.  Validate
3532  // we have enough arguments, and if not, abort further checking.
3533  unsigned ExpectedNumArgs = (BId == Builtin::BIstrndup ? 2 : 3);
3534  if (Call->getNumArgs() < ExpectedNumArgs)
3535    return;
3536
3537  unsigned LastArg = (BId == Builtin::BImemset ||
3538                      BId == Builtin::BIstrndup ? 1 : 2);
3539  unsigned LenArg = (BId == Builtin::BIstrndup ? 1 : 2);
3540  const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
3541
3542  // We have special checking when the length is a sizeof expression.
3543  QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
3544  const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
3545  llvm::FoldingSetNodeID SizeOfArgID;
3546
3547  for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
3548    const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
3549    SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
3550
3551    QualType DestTy = Dest->getType();
3552    if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
3553      QualType PointeeTy = DestPtrTy->getPointeeType();
3554
3555      // Never warn about void type pointers. This can be used to suppress
3556      // false positives.
3557      if (PointeeTy->isVoidType())
3558        continue;
3559
3560      // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
3561      // actually comparing the expressions for equality. Because computing the
3562      // expression IDs can be expensive, we only do this if the diagnostic is
3563      // enabled.
3564      if (SizeOfArg &&
3565          Diags.getDiagnosticLevel(diag::warn_sizeof_pointer_expr_memaccess,
3566                                   SizeOfArg->getExprLoc())) {
3567        // We only compute IDs for expressions if the warning is enabled, and
3568        // cache the sizeof arg's ID.
3569        if (SizeOfArgID == llvm::FoldingSetNodeID())
3570          SizeOfArg->Profile(SizeOfArgID, Context, true);
3571        llvm::FoldingSetNodeID DestID;
3572        Dest->Profile(DestID, Context, true);
3573        if (DestID == SizeOfArgID) {
3574          // TODO: For strncpy() and friends, this could suggest sizeof(dst)
3575          //       over sizeof(src) as well.
3576          unsigned ActionIdx = 0; // Default is to suggest dereferencing.
3577          StringRef ReadableName = FnName->getName();
3578
3579          if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
3580            if (UnaryOp->getOpcode() == UO_AddrOf)
3581              ActionIdx = 1; // If its an address-of operator, just remove it.
3582          if (!PointeeTy->isIncompleteType() &&
3583              (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
3584            ActionIdx = 2; // If the pointee's size is sizeof(char),
3585                           // suggest an explicit length.
3586
3587          // If the function is defined as a builtin macro, do not show macro
3588          // expansion.
3589          SourceLocation SL = SizeOfArg->getExprLoc();
3590          SourceRange DSR = Dest->getSourceRange();
3591          SourceRange SSR = SizeOfArg->getSourceRange();
3592          SourceManager &SM  = PP.getSourceManager();
3593
3594          if (SM.isMacroArgExpansion(SL)) {
3595            ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
3596            SL = SM.getSpellingLoc(SL);
3597            DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
3598                             SM.getSpellingLoc(DSR.getEnd()));
3599            SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
3600                             SM.getSpellingLoc(SSR.getEnd()));
3601          }
3602
3603          DiagRuntimeBehavior(SL, SizeOfArg,
3604                              PDiag(diag::warn_sizeof_pointer_expr_memaccess)
3605                                << ReadableName
3606                                << PointeeTy
3607                                << DestTy
3608                                << DSR
3609                                << SSR);
3610          DiagRuntimeBehavior(SL, SizeOfArg,
3611                         PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
3612                                << ActionIdx
3613                                << SSR);
3614
3615          break;
3616        }
3617      }
3618
3619      // Also check for cases where the sizeof argument is the exact same
3620      // type as the memory argument, and where it points to a user-defined
3621      // record type.
3622      if (SizeOfArgTy != QualType()) {
3623        if (PointeeTy->isRecordType() &&
3624            Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
3625          DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
3626                              PDiag(diag::warn_sizeof_pointer_type_memaccess)
3627                                << FnName << SizeOfArgTy << ArgIdx
3628                                << PointeeTy << Dest->getSourceRange()
3629                                << LenExpr->getSourceRange());
3630          break;
3631        }
3632      }
3633
3634      // Always complain about dynamic classes.
3635      if (isDynamicClassType(PointeeTy)) {
3636
3637        unsigned OperationType = 0;
3638        // "overwritten" if we're warning about the destination for any call
3639        // but memcmp; otherwise a verb appropriate to the call.
3640        if (ArgIdx != 0 || BId == Builtin::BImemcmp) {
3641          if (BId == Builtin::BImemcpy)
3642            OperationType = 1;
3643          else if(BId == Builtin::BImemmove)
3644            OperationType = 2;
3645          else if (BId == Builtin::BImemcmp)
3646            OperationType = 3;
3647        }
3648
3649        DiagRuntimeBehavior(
3650          Dest->getExprLoc(), Dest,
3651          PDiag(diag::warn_dyn_class_memaccess)
3652            << (BId == Builtin::BImemcmp ? ArgIdx + 2 : ArgIdx)
3653            << FnName << PointeeTy
3654            << OperationType
3655            << Call->getCallee()->getSourceRange());
3656      } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
3657               BId != Builtin::BImemset)
3658        DiagRuntimeBehavior(
3659          Dest->getExprLoc(), Dest,
3660          PDiag(diag::warn_arc_object_memaccess)
3661            << ArgIdx << FnName << PointeeTy
3662            << Call->getCallee()->getSourceRange());
3663      else
3664        continue;
3665
3666      DiagRuntimeBehavior(
3667        Dest->getExprLoc(), Dest,
3668        PDiag(diag::note_bad_memaccess_silence)
3669          << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
3670      break;
3671    }
3672  }
3673}
3674
3675// A little helper routine: ignore addition and subtraction of integer literals.
3676// This intentionally does not ignore all integer constant expressions because
3677// we don't want to remove sizeof().
3678static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
3679  Ex = Ex->IgnoreParenCasts();
3680
3681  for (;;) {
3682    const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
3683    if (!BO || !BO->isAdditiveOp())
3684      break;
3685
3686    const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
3687    const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
3688
3689    if (isa<IntegerLiteral>(RHS))
3690      Ex = LHS;
3691    else if (isa<IntegerLiteral>(LHS))
3692      Ex = RHS;
3693    else
3694      break;
3695  }
3696
3697  return Ex;
3698}
3699
3700static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
3701                                                      ASTContext &Context) {
3702  // Only handle constant-sized or VLAs, but not flexible members.
3703  if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
3704    // Only issue the FIXIT for arrays of size > 1.
3705    if (CAT->getSize().getSExtValue() <= 1)
3706      return false;
3707  } else if (!Ty->isVariableArrayType()) {
3708    return false;
3709  }
3710  return true;
3711}
3712
3713// Warn if the user has made the 'size' argument to strlcpy or strlcat
3714// be the size of the source, instead of the destination.
3715void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
3716                                    IdentifierInfo *FnName) {
3717
3718  // Don't crash if the user has the wrong number of arguments
3719  if (Call->getNumArgs() != 3)
3720    return;
3721
3722  const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
3723  const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
3724  const Expr *CompareWithSrc = NULL;
3725
3726  // Look for 'strlcpy(dst, x, sizeof(x))'
3727  if (const Expr *Ex = getSizeOfExprArg(SizeArg))
3728    CompareWithSrc = Ex;
3729  else {
3730    // Look for 'strlcpy(dst, x, strlen(x))'
3731    if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
3732      if (SizeCall->isBuiltinCall() == Builtin::BIstrlen
3733          && SizeCall->getNumArgs() == 1)
3734        CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
3735    }
3736  }
3737
3738  if (!CompareWithSrc)
3739    return;
3740
3741  // Determine if the argument to sizeof/strlen is equal to the source
3742  // argument.  In principle there's all kinds of things you could do
3743  // here, for instance creating an == expression and evaluating it with
3744  // EvaluateAsBooleanCondition, but this uses a more direct technique:
3745  const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
3746  if (!SrcArgDRE)
3747    return;
3748
3749  const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
3750  if (!CompareWithSrcDRE ||
3751      SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
3752    return;
3753
3754  const Expr *OriginalSizeArg = Call->getArg(2);
3755  Diag(CompareWithSrcDRE->getLocStart(), diag::warn_strlcpycat_wrong_size)
3756    << OriginalSizeArg->getSourceRange() << FnName;
3757
3758  // Output a FIXIT hint if the destination is an array (rather than a
3759  // pointer to an array).  This could be enhanced to handle some
3760  // pointers if we know the actual size, like if DstArg is 'array+2'
3761  // we could say 'sizeof(array)-2'.
3762  const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
3763  if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
3764    return;
3765
3766  SmallString<128> sizeString;
3767  llvm::raw_svector_ostream OS(sizeString);
3768  OS << "sizeof(";
3769  DstArg->printPretty(OS, 0, getPrintingPolicy());
3770  OS << ")";
3771
3772  Diag(OriginalSizeArg->getLocStart(), diag::note_strlcpycat_wrong_size)
3773    << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
3774                                    OS.str());
3775}
3776
3777/// Check if two expressions refer to the same declaration.
3778static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
3779  if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
3780    if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
3781      return D1->getDecl() == D2->getDecl();
3782  return false;
3783}
3784
3785static const Expr *getStrlenExprArg(const Expr *E) {
3786  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
3787    const FunctionDecl *FD = CE->getDirectCallee();
3788    if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
3789      return 0;
3790    return CE->getArg(0)->IgnoreParenCasts();
3791  }
3792  return 0;
3793}
3794
3795// Warn on anti-patterns as the 'size' argument to strncat.
3796// The correct size argument should look like following:
3797//   strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
3798void Sema::CheckStrncatArguments(const CallExpr *CE,
3799                                 IdentifierInfo *FnName) {
3800  // Don't crash if the user has the wrong number of arguments.
3801  if (CE->getNumArgs() < 3)
3802    return;
3803  const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
3804  const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
3805  const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
3806
3807  // Identify common expressions, which are wrongly used as the size argument
3808  // to strncat and may lead to buffer overflows.
3809  unsigned PatternType = 0;
3810  if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
3811    // - sizeof(dst)
3812    if (referToTheSameDecl(SizeOfArg, DstArg))
3813      PatternType = 1;
3814    // - sizeof(src)
3815    else if (referToTheSameDecl(SizeOfArg, SrcArg))
3816      PatternType = 2;
3817  } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
3818    if (BE->getOpcode() == BO_Sub) {
3819      const Expr *L = BE->getLHS()->IgnoreParenCasts();
3820      const Expr *R = BE->getRHS()->IgnoreParenCasts();
3821      // - sizeof(dst) - strlen(dst)
3822      if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
3823          referToTheSameDecl(DstArg, getStrlenExprArg(R)))
3824        PatternType = 1;
3825      // - sizeof(src) - (anything)
3826      else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
3827        PatternType = 2;
3828    }
3829  }
3830
3831  if (PatternType == 0)
3832    return;
3833
3834  // Generate the diagnostic.
3835  SourceLocation SL = LenArg->getLocStart();
3836  SourceRange SR = LenArg->getSourceRange();
3837  SourceManager &SM  = PP.getSourceManager();
3838
3839  // If the function is defined as a builtin macro, do not show macro expansion.
3840  if (SM.isMacroArgExpansion(SL)) {
3841    SL = SM.getSpellingLoc(SL);
3842    SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
3843                     SM.getSpellingLoc(SR.getEnd()));
3844  }
3845
3846  // Check if the destination is an array (rather than a pointer to an array).
3847  QualType DstTy = DstArg->getType();
3848  bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
3849                                                                    Context);
3850  if (!isKnownSizeArray) {
3851    if (PatternType == 1)
3852      Diag(SL, diag::warn_strncat_wrong_size) << SR;
3853    else
3854      Diag(SL, diag::warn_strncat_src_size) << SR;
3855    return;
3856  }
3857
3858  if (PatternType == 1)
3859    Diag(SL, diag::warn_strncat_large_size) << SR;
3860  else
3861    Diag(SL, diag::warn_strncat_src_size) << SR;
3862
3863  SmallString<128> sizeString;
3864  llvm::raw_svector_ostream OS(sizeString);
3865  OS << "sizeof(";
3866  DstArg->printPretty(OS, 0, getPrintingPolicy());
3867  OS << ") - ";
3868  OS << "strlen(";
3869  DstArg->printPretty(OS, 0, getPrintingPolicy());
3870  OS << ") - 1";
3871
3872  Diag(SL, diag::note_strncat_wrong_size)
3873    << FixItHint::CreateReplacement(SR, OS.str());
3874}
3875
3876//===--- CHECK: Return Address of Stack Variable --------------------------===//
3877
3878static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3879                     Decl *ParentDecl);
3880static Expr *EvalAddr(Expr* E, SmallVectorImpl<DeclRefExpr *> &refVars,
3881                      Decl *ParentDecl);
3882
3883/// CheckReturnStackAddr - Check if a return statement returns the address
3884///   of a stack variable.
3885void
3886Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
3887                           SourceLocation ReturnLoc) {
3888
3889  Expr *stackE = 0;
3890  SmallVector<DeclRefExpr *, 8> refVars;
3891
3892  // Perform checking for returned stack addresses, local blocks,
3893  // label addresses or references to temporaries.
3894  if (lhsType->isPointerType() ||
3895      (!getLangOpts().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
3896    stackE = EvalAddr(RetValExp, refVars, /*ParentDecl=*/0);
3897  } else if (lhsType->isReferenceType()) {
3898    stackE = EvalVal(RetValExp, refVars, /*ParentDecl=*/0);
3899  }
3900
3901  if (stackE == 0)
3902    return; // Nothing suspicious was found.
3903
3904  SourceLocation diagLoc;
3905  SourceRange diagRange;
3906  if (refVars.empty()) {
3907    diagLoc = stackE->getLocStart();
3908    diagRange = stackE->getSourceRange();
3909  } else {
3910    // We followed through a reference variable. 'stackE' contains the
3911    // problematic expression but we will warn at the return statement pointing
3912    // at the reference variable. We will later display the "trail" of
3913    // reference variables using notes.
3914    diagLoc = refVars[0]->getLocStart();
3915    diagRange = refVars[0]->getSourceRange();
3916  }
3917
3918  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
3919    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
3920                                             : diag::warn_ret_stack_addr)
3921     << DR->getDecl()->getDeclName() << diagRange;
3922  } else if (isa<BlockExpr>(stackE)) { // local block.
3923    Diag(diagLoc, diag::err_ret_local_block) << diagRange;
3924  } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
3925    Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
3926  } else { // local temporary.
3927    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
3928                                             : diag::warn_ret_local_temp_addr)
3929     << diagRange;
3930  }
3931
3932  // Display the "trail" of reference variables that we followed until we
3933  // found the problematic expression using notes.
3934  for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
3935    VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
3936    // If this var binds to another reference var, show the range of the next
3937    // var, otherwise the var binds to the problematic expression, in which case
3938    // show the range of the expression.
3939    SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
3940                                  : stackE->getSourceRange();
3941    Diag(VD->getLocation(), diag::note_ref_var_local_bind)
3942      << VD->getDeclName() << range;
3943  }
3944}
3945
3946/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
3947///  check if the expression in a return statement evaluates to an address
3948///  to a location on the stack, a local block, an address of a label, or a
3949///  reference to local temporary. The recursion is used to traverse the
3950///  AST of the return expression, with recursion backtracking when we
3951///  encounter a subexpression that (1) clearly does not lead to one of the
3952///  above problematic expressions (2) is something we cannot determine leads to
3953///  a problematic expression based on such local checking.
3954///
3955///  Both EvalAddr and EvalVal follow through reference variables to evaluate
3956///  the expression that they point to. Such variables are added to the
3957///  'refVars' vector so that we know what the reference variable "trail" was.
3958///
3959///  EvalAddr processes expressions that are pointers that are used as
3960///  references (and not L-values).  EvalVal handles all other values.
3961///  At the base case of the recursion is a check for the above problematic
3962///  expressions.
3963///
3964///  This implementation handles:
3965///
3966///   * pointer-to-pointer casts
3967///   * implicit conversions from array references to pointers
3968///   * taking the address of fields
3969///   * arbitrary interplay between "&" and "*" operators
3970///   * pointer arithmetic from an address of a stack variable
3971///   * taking the address of an array element where the array is on the stack
3972static Expr *EvalAddr(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3973                      Decl *ParentDecl) {
3974  if (E->isTypeDependent())
3975    return NULL;
3976
3977  // We should only be called for evaluating pointer expressions.
3978  assert((E->getType()->isAnyPointerType() ||
3979          E->getType()->isBlockPointerType() ||
3980          E->getType()->isObjCQualifiedIdType()) &&
3981         "EvalAddr only works on pointers");
3982
3983  E = E->IgnoreParens();
3984
3985  // Our "symbolic interpreter" is just a dispatch off the currently
3986  // viewed AST node.  We then recursively traverse the AST by calling
3987  // EvalAddr and EvalVal appropriately.
3988  switch (E->getStmtClass()) {
3989  case Stmt::DeclRefExprClass: {
3990    DeclRefExpr *DR = cast<DeclRefExpr>(E);
3991
3992    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
3993      // If this is a reference variable, follow through to the expression that
3994      // it points to.
3995      if (V->hasLocalStorage() &&
3996          V->getType()->isReferenceType() && V->hasInit()) {
3997        // Add the reference variable to the "trail".
3998        refVars.push_back(DR);
3999        return EvalAddr(V->getInit(), refVars, ParentDecl);
4000      }
4001
4002    return NULL;
4003  }
4004
4005  case Stmt::UnaryOperatorClass: {
4006    // The only unary operator that make sense to handle here
4007    // is AddrOf.  All others don't make sense as pointers.
4008    UnaryOperator *U = cast<UnaryOperator>(E);
4009
4010    if (U->getOpcode() == UO_AddrOf)
4011      return EvalVal(U->getSubExpr(), refVars, ParentDecl);
4012    else
4013      return NULL;
4014  }
4015
4016  case Stmt::BinaryOperatorClass: {
4017    // Handle pointer arithmetic.  All other binary operators are not valid
4018    // in this context.
4019    BinaryOperator *B = cast<BinaryOperator>(E);
4020    BinaryOperatorKind op = B->getOpcode();
4021
4022    if (op != BO_Add && op != BO_Sub)
4023      return NULL;
4024
4025    Expr *Base = B->getLHS();
4026
4027    // Determine which argument is the real pointer base.  It could be
4028    // the RHS argument instead of the LHS.
4029    if (!Base->getType()->isPointerType()) Base = B->getRHS();
4030
4031    assert (Base->getType()->isPointerType());
4032    return EvalAddr(Base, refVars, ParentDecl);
4033  }
4034
4035  // For conditional operators we need to see if either the LHS or RHS are
4036  // valid DeclRefExpr*s.  If one of them is valid, we return it.
4037  case Stmt::ConditionalOperatorClass: {
4038    ConditionalOperator *C = cast<ConditionalOperator>(E);
4039
4040    // Handle the GNU extension for missing LHS.
4041    if (Expr *lhsExpr = C->getLHS()) {
4042    // In C++, we can have a throw-expression, which has 'void' type.
4043      if (!lhsExpr->getType()->isVoidType())
4044        if (Expr* LHS = EvalAddr(lhsExpr, refVars, ParentDecl))
4045          return LHS;
4046    }
4047
4048    // In C++, we can have a throw-expression, which has 'void' type.
4049    if (C->getRHS()->getType()->isVoidType())
4050      return NULL;
4051
4052    return EvalAddr(C->getRHS(), refVars, ParentDecl);
4053  }
4054
4055  case Stmt::BlockExprClass:
4056    if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
4057      return E; // local block.
4058    return NULL;
4059
4060  case Stmt::AddrLabelExprClass:
4061    return E; // address of label.
4062
4063  case Stmt::ExprWithCleanupsClass:
4064    return EvalAddr(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,
4065                    ParentDecl);
4066
4067  // For casts, we need to handle conversions from arrays to
4068  // pointer values, and pointer-to-pointer conversions.
4069  case Stmt::ImplicitCastExprClass:
4070  case Stmt::CStyleCastExprClass:
4071  case Stmt::CXXFunctionalCastExprClass:
4072  case Stmt::ObjCBridgedCastExprClass:
4073  case Stmt::CXXStaticCastExprClass:
4074  case Stmt::CXXDynamicCastExprClass:
4075  case Stmt::CXXConstCastExprClass:
4076  case Stmt::CXXReinterpretCastExprClass: {
4077    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
4078    switch (cast<CastExpr>(E)->getCastKind()) {
4079    case CK_BitCast:
4080    case CK_LValueToRValue:
4081    case CK_NoOp:
4082    case CK_BaseToDerived:
4083    case CK_DerivedToBase:
4084    case CK_UncheckedDerivedToBase:
4085    case CK_Dynamic:
4086    case CK_CPointerToObjCPointerCast:
4087    case CK_BlockPointerToObjCPointerCast:
4088    case CK_AnyPointerToBlockPointerCast:
4089      return EvalAddr(SubExpr, refVars, ParentDecl);
4090
4091    case CK_ArrayToPointerDecay:
4092      return EvalVal(SubExpr, refVars, ParentDecl);
4093
4094    default:
4095      return 0;
4096    }
4097  }
4098
4099  case Stmt::MaterializeTemporaryExprClass:
4100    if (Expr *Result = EvalAddr(
4101                         cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
4102                                refVars, ParentDecl))
4103      return Result;
4104
4105    return E;
4106
4107  // Everything else: we simply don't reason about them.
4108  default:
4109    return NULL;
4110  }
4111}
4112
4113
4114///  EvalVal - This function is complements EvalAddr in the mutual recursion.
4115///   See the comments for EvalAddr for more details.
4116static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
4117                     Decl *ParentDecl) {
4118do {
4119  // We should only be called for evaluating non-pointer expressions, or
4120  // expressions with a pointer type that are not used as references but instead
4121  // are l-values (e.g., DeclRefExpr with a pointer type).
4122
4123  // Our "symbolic interpreter" is just a dispatch off the currently
4124  // viewed AST node.  We then recursively traverse the AST by calling
4125  // EvalAddr and EvalVal appropriately.
4126
4127  E = E->IgnoreParens();
4128  switch (E->getStmtClass()) {
4129  case Stmt::ImplicitCastExprClass: {
4130    ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
4131    if (IE->getValueKind() == VK_LValue) {
4132      E = IE->getSubExpr();
4133      continue;
4134    }
4135    return NULL;
4136  }
4137
4138  case Stmt::ExprWithCleanupsClass:
4139    return EvalVal(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,ParentDecl);
4140
4141  case Stmt::DeclRefExprClass: {
4142    // When we hit a DeclRefExpr we are looking at code that refers to a
4143    // variable's name. If it's not a reference variable we check if it has
4144    // local storage within the function, and if so, return the expression.
4145    DeclRefExpr *DR = cast<DeclRefExpr>(E);
4146
4147    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl())) {
4148      // Check if it refers to itself, e.g. "int& i = i;".
4149      if (V == ParentDecl)
4150        return DR;
4151
4152      if (V->hasLocalStorage()) {
4153        if (!V->getType()->isReferenceType())
4154          return DR;
4155
4156        // Reference variable, follow through to the expression that
4157        // it points to.
4158        if (V->hasInit()) {
4159          // Add the reference variable to the "trail".
4160          refVars.push_back(DR);
4161          return EvalVal(V->getInit(), refVars, V);
4162        }
4163      }
4164    }
4165
4166    return NULL;
4167  }
4168
4169  case Stmt::UnaryOperatorClass: {
4170    // The only unary operator that make sense to handle here
4171    // is Deref.  All others don't resolve to a "name."  This includes
4172    // handling all sorts of rvalues passed to a unary operator.
4173    UnaryOperator *U = cast<UnaryOperator>(E);
4174
4175    if (U->getOpcode() == UO_Deref)
4176      return EvalAddr(U->getSubExpr(), refVars, ParentDecl);
4177
4178    return NULL;
4179  }
4180
4181  case Stmt::ArraySubscriptExprClass: {
4182    // Array subscripts are potential references to data on the stack.  We
4183    // retrieve the DeclRefExpr* for the array variable if it indeed
4184    // has local storage.
4185    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars,ParentDecl);
4186  }
4187
4188  case Stmt::ConditionalOperatorClass: {
4189    // For conditional operators we need to see if either the LHS or RHS are
4190    // non-NULL Expr's.  If one is non-NULL, we return it.
4191    ConditionalOperator *C = cast<ConditionalOperator>(E);
4192
4193    // Handle the GNU extension for missing LHS.
4194    if (Expr *lhsExpr = C->getLHS())
4195      if (Expr *LHS = EvalVal(lhsExpr, refVars, ParentDecl))
4196        return LHS;
4197
4198    return EvalVal(C->getRHS(), refVars, ParentDecl);
4199  }
4200
4201  // Accesses to members are potential references to data on the stack.
4202  case Stmt::MemberExprClass: {
4203    MemberExpr *M = cast<MemberExpr>(E);
4204
4205    // Check for indirect access.  We only want direct field accesses.
4206    if (M->isArrow())
4207      return NULL;
4208
4209    // Check whether the member type is itself a reference, in which case
4210    // we're not going to refer to the member, but to what the member refers to.
4211    if (M->getMemberDecl()->getType()->isReferenceType())
4212      return NULL;
4213
4214    return EvalVal(M->getBase(), refVars, ParentDecl);
4215  }
4216
4217  case Stmt::MaterializeTemporaryExprClass:
4218    if (Expr *Result = EvalVal(
4219                          cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
4220                               refVars, ParentDecl))
4221      return Result;
4222
4223    return E;
4224
4225  default:
4226    // Check that we don't return or take the address of a reference to a
4227    // temporary. This is only useful in C++.
4228    if (!E->isTypeDependent() && E->isRValue())
4229      return E;
4230
4231    // Everything else: we simply don't reason about them.
4232    return NULL;
4233  }
4234} while (true);
4235}
4236
4237//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
4238
4239/// Check for comparisons of floating point operands using != and ==.
4240/// Issue a warning if these are no self-comparisons, as they are not likely
4241/// to do what the programmer intended.
4242void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
4243  Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
4244  Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
4245
4246  // Special case: check for x == x (which is OK).
4247  // Do not emit warnings for such cases.
4248  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
4249    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
4250      if (DRL->getDecl() == DRR->getDecl())
4251        return;
4252
4253
4254  // Special case: check for comparisons against literals that can be exactly
4255  //  represented by APFloat.  In such cases, do not emit a warning.  This
4256  //  is a heuristic: often comparison against such literals are used to
4257  //  detect if a value in a variable has not changed.  This clearly can
4258  //  lead to false negatives.
4259  if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
4260    if (FLL->isExact())
4261      return;
4262  } else
4263    if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
4264      if (FLR->isExact())
4265        return;
4266
4267  // Check for comparisons with builtin types.
4268  if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
4269    if (CL->isBuiltinCall())
4270      return;
4271
4272  if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
4273    if (CR->isBuiltinCall())
4274      return;
4275
4276  // Emit the diagnostic.
4277  Diag(Loc, diag::warn_floatingpoint_eq)
4278    << LHS->getSourceRange() << RHS->getSourceRange();
4279}
4280
4281//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
4282//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
4283
4284namespace {
4285
4286/// Structure recording the 'active' range of an integer-valued
4287/// expression.
4288struct IntRange {
4289  /// The number of bits active in the int.
4290  unsigned Width;
4291
4292  /// True if the int is known not to have negative values.
4293  bool NonNegative;
4294
4295  IntRange(unsigned Width, bool NonNegative)
4296    : Width(Width), NonNegative(NonNegative)
4297  {}
4298
4299  /// Returns the range of the bool type.
4300  static IntRange forBoolType() {
4301    return IntRange(1, true);
4302  }
4303
4304  /// Returns the range of an opaque value of the given integral type.
4305  static IntRange forValueOfType(ASTContext &C, QualType T) {
4306    return forValueOfCanonicalType(C,
4307                          T->getCanonicalTypeInternal().getTypePtr());
4308  }
4309
4310  /// Returns the range of an opaque value of a canonical integral type.
4311  static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
4312    assert(T->isCanonicalUnqualified());
4313
4314    if (const VectorType *VT = dyn_cast<VectorType>(T))
4315      T = VT->getElementType().getTypePtr();
4316    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
4317      T = CT->getElementType().getTypePtr();
4318
4319    // For enum types, use the known bit width of the enumerators.
4320    if (const EnumType *ET = dyn_cast<EnumType>(T)) {
4321      EnumDecl *Enum = ET->getDecl();
4322      if (!Enum->isCompleteDefinition())
4323        return IntRange(C.getIntWidth(QualType(T, 0)), false);
4324
4325      unsigned NumPositive = Enum->getNumPositiveBits();
4326      unsigned NumNegative = Enum->getNumNegativeBits();
4327
4328      if (NumNegative == 0)
4329        return IntRange(NumPositive, true/*NonNegative*/);
4330      else
4331        return IntRange(std::max(NumPositive + 1, NumNegative),
4332                        false/*NonNegative*/);
4333    }
4334
4335    const BuiltinType *BT = cast<BuiltinType>(T);
4336    assert(BT->isInteger());
4337
4338    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
4339  }
4340
4341  /// Returns the "target" range of a canonical integral type, i.e.
4342  /// the range of values expressible in the type.
4343  ///
4344  /// This matches forValueOfCanonicalType except that enums have the
4345  /// full range of their type, not the range of their enumerators.
4346  static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
4347    assert(T->isCanonicalUnqualified());
4348
4349    if (const VectorType *VT = dyn_cast<VectorType>(T))
4350      T = VT->getElementType().getTypePtr();
4351    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
4352      T = CT->getElementType().getTypePtr();
4353    if (const EnumType *ET = dyn_cast<EnumType>(T))
4354      T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
4355
4356    const BuiltinType *BT = cast<BuiltinType>(T);
4357    assert(BT->isInteger());
4358
4359    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
4360  }
4361
4362  /// Returns the supremum of two ranges: i.e. their conservative merge.
4363  static IntRange join(IntRange L, IntRange R) {
4364    return IntRange(std::max(L.Width, R.Width),
4365                    L.NonNegative && R.NonNegative);
4366  }
4367
4368  /// Returns the infinum of two ranges: i.e. their aggressive merge.
4369  static IntRange meet(IntRange L, IntRange R) {
4370    return IntRange(std::min(L.Width, R.Width),
4371                    L.NonNegative || R.NonNegative);
4372  }
4373};
4374
4375static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
4376                              unsigned MaxWidth) {
4377  if (value.isSigned() && value.isNegative())
4378    return IntRange(value.getMinSignedBits(), false);
4379
4380  if (value.getBitWidth() > MaxWidth)
4381    value = value.trunc(MaxWidth);
4382
4383  // isNonNegative() just checks the sign bit without considering
4384  // signedness.
4385  return IntRange(value.getActiveBits(), true);
4386}
4387
4388static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
4389                              unsigned MaxWidth) {
4390  if (result.isInt())
4391    return GetValueRange(C, result.getInt(), MaxWidth);
4392
4393  if (result.isVector()) {
4394    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
4395    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
4396      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
4397      R = IntRange::join(R, El);
4398    }
4399    return R;
4400  }
4401
4402  if (result.isComplexInt()) {
4403    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
4404    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
4405    return IntRange::join(R, I);
4406  }
4407
4408  // This can happen with lossless casts to intptr_t of "based" lvalues.
4409  // Assume it might use arbitrary bits.
4410  // FIXME: The only reason we need to pass the type in here is to get
4411  // the sign right on this one case.  It would be nice if APValue
4412  // preserved this.
4413  assert(result.isLValue() || result.isAddrLabelDiff());
4414  return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
4415}
4416
4417static QualType GetExprType(Expr *E) {
4418  QualType Ty = E->getType();
4419  if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>())
4420    Ty = AtomicRHS->getValueType();
4421  return Ty;
4422}
4423
4424/// Pseudo-evaluate the given integer expression, estimating the
4425/// range of values it might take.
4426///
4427/// \param MaxWidth - the width to which the value will be truncated
4428static IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
4429  E = E->IgnoreParens();
4430
4431  // Try a full evaluation first.
4432  Expr::EvalResult result;
4433  if (E->EvaluateAsRValue(result, C))
4434    return GetValueRange(C, result.Val, GetExprType(E), MaxWidth);
4435
4436  // I think we only want to look through implicit casts here; if the
4437  // user has an explicit widening cast, we should treat the value as
4438  // being of the new, wider type.
4439  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
4440    if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
4441      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
4442
4443    IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE));
4444
4445    bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
4446
4447    // Assume that non-integer casts can span the full range of the type.
4448    if (!isIntegerCast)
4449      return OutputTypeRange;
4450
4451    IntRange SubRange
4452      = GetExprRange(C, CE->getSubExpr(),
4453                     std::min(MaxWidth, OutputTypeRange.Width));
4454
4455    // Bail out if the subexpr's range is as wide as the cast type.
4456    if (SubRange.Width >= OutputTypeRange.Width)
4457      return OutputTypeRange;
4458
4459    // Otherwise, we take the smaller width, and we're non-negative if
4460    // either the output type or the subexpr is.
4461    return IntRange(SubRange.Width,
4462                    SubRange.NonNegative || OutputTypeRange.NonNegative);
4463  }
4464
4465  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
4466    // If we can fold the condition, just take that operand.
4467    bool CondResult;
4468    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
4469      return GetExprRange(C, CondResult ? CO->getTrueExpr()
4470                                        : CO->getFalseExpr(),
4471                          MaxWidth);
4472
4473    // Otherwise, conservatively merge.
4474    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
4475    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
4476    return IntRange::join(L, R);
4477  }
4478
4479  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4480    switch (BO->getOpcode()) {
4481
4482    // Boolean-valued operations are single-bit and positive.
4483    case BO_LAnd:
4484    case BO_LOr:
4485    case BO_LT:
4486    case BO_GT:
4487    case BO_LE:
4488    case BO_GE:
4489    case BO_EQ:
4490    case BO_NE:
4491      return IntRange::forBoolType();
4492
4493    // The type of the assignments is the type of the LHS, so the RHS
4494    // is not necessarily the same type.
4495    case BO_MulAssign:
4496    case BO_DivAssign:
4497    case BO_RemAssign:
4498    case BO_AddAssign:
4499    case BO_SubAssign:
4500    case BO_XorAssign:
4501    case BO_OrAssign:
4502      // TODO: bitfields?
4503      return IntRange::forValueOfType(C, GetExprType(E));
4504
4505    // Simple assignments just pass through the RHS, which will have
4506    // been coerced to the LHS type.
4507    case BO_Assign:
4508      // TODO: bitfields?
4509      return GetExprRange(C, BO->getRHS(), MaxWidth);
4510
4511    // Operations with opaque sources are black-listed.
4512    case BO_PtrMemD:
4513    case BO_PtrMemI:
4514      return IntRange::forValueOfType(C, GetExprType(E));
4515
4516    // Bitwise-and uses the *infinum* of the two source ranges.
4517    case BO_And:
4518    case BO_AndAssign:
4519      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
4520                            GetExprRange(C, BO->getRHS(), MaxWidth));
4521
4522    // Left shift gets black-listed based on a judgement call.
4523    case BO_Shl:
4524      // ...except that we want to treat '1 << (blah)' as logically
4525      // positive.  It's an important idiom.
4526      if (IntegerLiteral *I
4527            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
4528        if (I->getValue() == 1) {
4529          IntRange R = IntRange::forValueOfType(C, GetExprType(E));
4530          return IntRange(R.Width, /*NonNegative*/ true);
4531        }
4532      }
4533      // fallthrough
4534
4535    case BO_ShlAssign:
4536      return IntRange::forValueOfType(C, GetExprType(E));
4537
4538    // Right shift by a constant can narrow its left argument.
4539    case BO_Shr:
4540    case BO_ShrAssign: {
4541      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
4542
4543      // If the shift amount is a positive constant, drop the width by
4544      // that much.
4545      llvm::APSInt shift;
4546      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
4547          shift.isNonNegative()) {
4548        unsigned zext = shift.getZExtValue();
4549        if (zext >= L.Width)
4550          L.Width = (L.NonNegative ? 0 : 1);
4551        else
4552          L.Width -= zext;
4553      }
4554
4555      return L;
4556    }
4557
4558    // Comma acts as its right operand.
4559    case BO_Comma:
4560      return GetExprRange(C, BO->getRHS(), MaxWidth);
4561
4562    // Black-list pointer subtractions.
4563    case BO_Sub:
4564      if (BO->getLHS()->getType()->isPointerType())
4565        return IntRange::forValueOfType(C, GetExprType(E));
4566      break;
4567
4568    // The width of a division result is mostly determined by the size
4569    // of the LHS.
4570    case BO_Div: {
4571      // Don't 'pre-truncate' the operands.
4572      unsigned opWidth = C.getIntWidth(GetExprType(E));
4573      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
4574
4575      // If the divisor is constant, use that.
4576      llvm::APSInt divisor;
4577      if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
4578        unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
4579        if (log2 >= L.Width)
4580          L.Width = (L.NonNegative ? 0 : 1);
4581        else
4582          L.Width = std::min(L.Width - log2, MaxWidth);
4583        return L;
4584      }
4585
4586      // Otherwise, just use the LHS's width.
4587      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
4588      return IntRange(L.Width, L.NonNegative && R.NonNegative);
4589    }
4590
4591    // The result of a remainder can't be larger than the result of
4592    // either side.
4593    case BO_Rem: {
4594      // Don't 'pre-truncate' the operands.
4595      unsigned opWidth = C.getIntWidth(GetExprType(E));
4596      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
4597      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
4598
4599      IntRange meet = IntRange::meet(L, R);
4600      meet.Width = std::min(meet.Width, MaxWidth);
4601      return meet;
4602    }
4603
4604    // The default behavior is okay for these.
4605    case BO_Mul:
4606    case BO_Add:
4607    case BO_Xor:
4608    case BO_Or:
4609      break;
4610    }
4611
4612    // The default case is to treat the operation as if it were closed
4613    // on the narrowest type that encompasses both operands.
4614    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
4615    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
4616    return IntRange::join(L, R);
4617  }
4618
4619  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
4620    switch (UO->getOpcode()) {
4621    // Boolean-valued operations are white-listed.
4622    case UO_LNot:
4623      return IntRange::forBoolType();
4624
4625    // Operations with opaque sources are black-listed.
4626    case UO_Deref:
4627    case UO_AddrOf: // should be impossible
4628      return IntRange::forValueOfType(C, GetExprType(E));
4629
4630    default:
4631      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
4632    }
4633  }
4634
4635  if (FieldDecl *BitField = E->getSourceBitField())
4636    return IntRange(BitField->getBitWidthValue(C),
4637                    BitField->getType()->isUnsignedIntegerOrEnumerationType());
4638
4639  return IntRange::forValueOfType(C, GetExprType(E));
4640}
4641
4642static IntRange GetExprRange(ASTContext &C, Expr *E) {
4643  return GetExprRange(C, E, C.getIntWidth(GetExprType(E)));
4644}
4645
4646/// Checks whether the given value, which currently has the given
4647/// source semantics, has the same value when coerced through the
4648/// target semantics.
4649static bool IsSameFloatAfterCast(const llvm::APFloat &value,
4650                                 const llvm::fltSemantics &Src,
4651                                 const llvm::fltSemantics &Tgt) {
4652  llvm::APFloat truncated = value;
4653
4654  bool ignored;
4655  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
4656  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
4657
4658  return truncated.bitwiseIsEqual(value);
4659}
4660
4661/// Checks whether the given value, which currently has the given
4662/// source semantics, has the same value when coerced through the
4663/// target semantics.
4664///
4665/// The value might be a vector of floats (or a complex number).
4666static bool IsSameFloatAfterCast(const APValue &value,
4667                                 const llvm::fltSemantics &Src,
4668                                 const llvm::fltSemantics &Tgt) {
4669  if (value.isFloat())
4670    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
4671
4672  if (value.isVector()) {
4673    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
4674      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
4675        return false;
4676    return true;
4677  }
4678
4679  assert(value.isComplexFloat());
4680  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
4681          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
4682}
4683
4684static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
4685
4686static bool IsZero(Sema &S, Expr *E) {
4687  // Suppress cases where we are comparing against an enum constant.
4688  if (const DeclRefExpr *DR =
4689      dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
4690    if (isa<EnumConstantDecl>(DR->getDecl()))
4691      return false;
4692
4693  // Suppress cases where the '0' value is expanded from a macro.
4694  if (E->getLocStart().isMacroID())
4695    return false;
4696
4697  llvm::APSInt Value;
4698  return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
4699}
4700
4701static bool HasEnumType(Expr *E) {
4702  // Strip off implicit integral promotions.
4703  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
4704    if (ICE->getCastKind() != CK_IntegralCast &&
4705        ICE->getCastKind() != CK_NoOp)
4706      break;
4707    E = ICE->getSubExpr();
4708  }
4709
4710  return E->getType()->isEnumeralType();
4711}
4712
4713static void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
4714  BinaryOperatorKind op = E->getOpcode();
4715  if (E->isValueDependent())
4716    return;
4717
4718  if (op == BO_LT && IsZero(S, E->getRHS())) {
4719    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
4720      << "< 0" << "false" << HasEnumType(E->getLHS())
4721      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4722  } else if (op == BO_GE && IsZero(S, E->getRHS())) {
4723    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
4724      << ">= 0" << "true" << HasEnumType(E->getLHS())
4725      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4726  } else if (op == BO_GT && IsZero(S, E->getLHS())) {
4727    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
4728      << "0 >" << "false" << HasEnumType(E->getRHS())
4729      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4730  } else if (op == BO_LE && IsZero(S, E->getLHS())) {
4731    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
4732      << "0 <=" << "true" << HasEnumType(E->getRHS())
4733      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4734  }
4735}
4736
4737static void DiagnoseOutOfRangeComparison(Sema &S, BinaryOperator *E,
4738                                         Expr *Constant, Expr *Other,
4739                                         llvm::APSInt Value,
4740                                         bool RhsConstant) {
4741  // 0 values are handled later by CheckTrivialUnsignedComparison().
4742  if (Value == 0)
4743    return;
4744
4745  BinaryOperatorKind op = E->getOpcode();
4746  QualType OtherT = Other->getType();
4747  QualType ConstantT = Constant->getType();
4748  QualType CommonT = E->getLHS()->getType();
4749  if (S.Context.hasSameUnqualifiedType(OtherT, ConstantT))
4750    return;
4751  assert((OtherT->isIntegerType() && ConstantT->isIntegerType())
4752         && "comparison with non-integer type");
4753
4754  bool ConstantSigned = ConstantT->isSignedIntegerType();
4755  bool CommonSigned = CommonT->isSignedIntegerType();
4756
4757  bool EqualityOnly = false;
4758
4759  // TODO: Investigate using GetExprRange() to get tighter bounds on
4760  // on the bit ranges.
4761  IntRange OtherRange = IntRange::forValueOfType(S.Context, OtherT);
4762  unsigned OtherWidth = OtherRange.Width;
4763
4764  if (CommonSigned) {
4765    // The common type is signed, therefore no signed to unsigned conversion.
4766    if (!OtherRange.NonNegative) {
4767      // Check that the constant is representable in type OtherT.
4768      if (ConstantSigned) {
4769        if (OtherWidth >= Value.getMinSignedBits())
4770          return;
4771      } else { // !ConstantSigned
4772        if (OtherWidth >= Value.getActiveBits() + 1)
4773          return;
4774      }
4775    } else { // !OtherSigned
4776      // Check that the constant is representable in type OtherT.
4777      // Negative values are out of range.
4778      if (ConstantSigned) {
4779        if (Value.isNonNegative() && OtherWidth >= Value.getActiveBits())
4780          return;
4781      } else { // !ConstantSigned
4782        if (OtherWidth >= Value.getActiveBits())
4783          return;
4784      }
4785    }
4786  } else {  // !CommonSigned
4787    if (OtherRange.NonNegative) {
4788      if (OtherWidth >= Value.getActiveBits())
4789        return;
4790    } else if (!OtherRange.NonNegative && !ConstantSigned) {
4791      // Check to see if the constant is representable in OtherT.
4792      if (OtherWidth > Value.getActiveBits())
4793        return;
4794      // Check to see if the constant is equivalent to a negative value
4795      // cast to CommonT.
4796      if (S.Context.getIntWidth(ConstantT) == S.Context.getIntWidth(CommonT) &&
4797          Value.isNegative() && Value.getMinSignedBits() <= OtherWidth)
4798        return;
4799      // The constant value rests between values that OtherT can represent after
4800      // conversion.  Relational comparison still works, but equality
4801      // comparisons will be tautological.
4802      EqualityOnly = true;
4803    } else { // OtherSigned && ConstantSigned
4804      assert(0 && "Two signed types converted to unsigned types.");
4805    }
4806  }
4807
4808  bool PositiveConstant = !ConstantSigned || Value.isNonNegative();
4809
4810  bool IsTrue = true;
4811  if (op == BO_EQ || op == BO_NE) {
4812    IsTrue = op == BO_NE;
4813  } else if (EqualityOnly) {
4814    return;
4815  } else if (RhsConstant) {
4816    if (op == BO_GT || op == BO_GE)
4817      IsTrue = !PositiveConstant;
4818    else // op == BO_LT || op == BO_LE
4819      IsTrue = PositiveConstant;
4820  } else {
4821    if (op == BO_LT || op == BO_LE)
4822      IsTrue = !PositiveConstant;
4823    else // op == BO_GT || op == BO_GE
4824      IsTrue = PositiveConstant;
4825  }
4826
4827  // If this is a comparison to an enum constant, include that
4828  // constant in the diagnostic.
4829  const EnumConstantDecl *ED = 0;
4830  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
4831    ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
4832
4833  SmallString<64> PrettySourceValue;
4834  llvm::raw_svector_ostream OS(PrettySourceValue);
4835  if (ED)
4836    OS << '\'' << *ED << "' (" << Value << ")";
4837  else
4838    OS << Value;
4839
4840  S.Diag(E->getOperatorLoc(), diag::warn_out_of_range_compare)
4841      << OS.str() << OtherT << IsTrue
4842      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4843}
4844
4845/// Analyze the operands of the given comparison.  Implements the
4846/// fallback case from AnalyzeComparison.
4847static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
4848  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
4849  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
4850}
4851
4852/// \brief Implements -Wsign-compare.
4853///
4854/// \param E the binary operator to check for warnings
4855static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
4856  // The type the comparison is being performed in.
4857  QualType T = E->getLHS()->getType();
4858  assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
4859         && "comparison with mismatched types");
4860  if (E->isValueDependent())
4861    return AnalyzeImpConvsInComparison(S, E);
4862
4863  Expr *LHS = E->getLHS()->IgnoreParenImpCasts();
4864  Expr *RHS = E->getRHS()->IgnoreParenImpCasts();
4865
4866  bool IsComparisonConstant = false;
4867
4868  // Check whether an integer constant comparison results in a value
4869  // of 'true' or 'false'.
4870  if (T->isIntegralType(S.Context)) {
4871    llvm::APSInt RHSValue;
4872    bool IsRHSIntegralLiteral =
4873      RHS->isIntegerConstantExpr(RHSValue, S.Context);
4874    llvm::APSInt LHSValue;
4875    bool IsLHSIntegralLiteral =
4876      LHS->isIntegerConstantExpr(LHSValue, S.Context);
4877    if (IsRHSIntegralLiteral && !IsLHSIntegralLiteral)
4878        DiagnoseOutOfRangeComparison(S, E, RHS, LHS, RHSValue, true);
4879    else if (!IsRHSIntegralLiteral && IsLHSIntegralLiteral)
4880      DiagnoseOutOfRangeComparison(S, E, LHS, RHS, LHSValue, false);
4881    else
4882      IsComparisonConstant =
4883        (IsRHSIntegralLiteral && IsLHSIntegralLiteral);
4884  } else if (!T->hasUnsignedIntegerRepresentation())
4885      IsComparisonConstant = E->isIntegerConstantExpr(S.Context);
4886
4887  // We don't do anything special if this isn't an unsigned integral
4888  // comparison:  we're only interested in integral comparisons, and
4889  // signed comparisons only happen in cases we don't care to warn about.
4890  //
4891  // We also don't care about value-dependent expressions or expressions
4892  // whose result is a constant.
4893  if (!T->hasUnsignedIntegerRepresentation() || IsComparisonConstant)
4894    return AnalyzeImpConvsInComparison(S, E);
4895
4896  // Check to see if one of the (unmodified) operands is of different
4897  // signedness.
4898  Expr *signedOperand, *unsignedOperand;
4899  if (LHS->getType()->hasSignedIntegerRepresentation()) {
4900    assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
4901           "unsigned comparison between two signed integer expressions?");
4902    signedOperand = LHS;
4903    unsignedOperand = RHS;
4904  } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
4905    signedOperand = RHS;
4906    unsignedOperand = LHS;
4907  } else {
4908    CheckTrivialUnsignedComparison(S, E);
4909    return AnalyzeImpConvsInComparison(S, E);
4910  }
4911
4912  // Otherwise, calculate the effective range of the signed operand.
4913  IntRange signedRange = GetExprRange(S.Context, signedOperand);
4914
4915  // Go ahead and analyze implicit conversions in the operands.  Note
4916  // that we skip the implicit conversions on both sides.
4917  AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
4918  AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
4919
4920  // If the signed range is non-negative, -Wsign-compare won't fire,
4921  // but we should still check for comparisons which are always true
4922  // or false.
4923  if (signedRange.NonNegative)
4924    return CheckTrivialUnsignedComparison(S, E);
4925
4926  // For (in)equality comparisons, if the unsigned operand is a
4927  // constant which cannot collide with a overflowed signed operand,
4928  // then reinterpreting the signed operand as unsigned will not
4929  // change the result of the comparison.
4930  if (E->isEqualityOp()) {
4931    unsigned comparisonWidth = S.Context.getIntWidth(T);
4932    IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
4933
4934    // We should never be unable to prove that the unsigned operand is
4935    // non-negative.
4936    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
4937
4938    if (unsignedRange.Width < comparisonWidth)
4939      return;
4940  }
4941
4942  S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
4943    S.PDiag(diag::warn_mixed_sign_comparison)
4944      << LHS->getType() << RHS->getType()
4945      << LHS->getSourceRange() << RHS->getSourceRange());
4946}
4947
4948/// Analyzes an attempt to assign the given value to a bitfield.
4949///
4950/// Returns true if there was something fishy about the attempt.
4951static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
4952                                      SourceLocation InitLoc) {
4953  assert(Bitfield->isBitField());
4954  if (Bitfield->isInvalidDecl())
4955    return false;
4956
4957  // White-list bool bitfields.
4958  if (Bitfield->getType()->isBooleanType())
4959    return false;
4960
4961  // Ignore value- or type-dependent expressions.
4962  if (Bitfield->getBitWidth()->isValueDependent() ||
4963      Bitfield->getBitWidth()->isTypeDependent() ||
4964      Init->isValueDependent() ||
4965      Init->isTypeDependent())
4966    return false;
4967
4968  Expr *OriginalInit = Init->IgnoreParenImpCasts();
4969
4970  llvm::APSInt Value;
4971  if (!OriginalInit->EvaluateAsInt(Value, S.Context, Expr::SE_AllowSideEffects))
4972    return false;
4973
4974  unsigned OriginalWidth = Value.getBitWidth();
4975  unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
4976
4977  if (OriginalWidth <= FieldWidth)
4978    return false;
4979
4980  // Compute the value which the bitfield will contain.
4981  llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
4982  TruncatedValue.setIsSigned(Bitfield->getType()->isSignedIntegerType());
4983
4984  // Check whether the stored value is equal to the original value.
4985  TruncatedValue = TruncatedValue.extend(OriginalWidth);
4986  if (llvm::APSInt::isSameValue(Value, TruncatedValue))
4987    return false;
4988
4989  // Special-case bitfields of width 1: booleans are naturally 0/1, and
4990  // therefore don't strictly fit into a signed bitfield of width 1.
4991  if (FieldWidth == 1 && Value == 1)
4992    return false;
4993
4994  std::string PrettyValue = Value.toString(10);
4995  std::string PrettyTrunc = TruncatedValue.toString(10);
4996
4997  S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
4998    << PrettyValue << PrettyTrunc << OriginalInit->getType()
4999    << Init->getSourceRange();
5000
5001  return true;
5002}
5003
5004/// Analyze the given simple or compound assignment for warning-worthy
5005/// operations.
5006static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
5007  // Just recurse on the LHS.
5008  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
5009
5010  // We want to recurse on the RHS as normal unless we're assigning to
5011  // a bitfield.
5012  if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) {
5013    if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
5014                                  E->getOperatorLoc())) {
5015      // Recurse, ignoring any implicit conversions on the RHS.
5016      return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
5017                                        E->getOperatorLoc());
5018    }
5019  }
5020
5021  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
5022}
5023
5024/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
5025static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
5026                            SourceLocation CContext, unsigned diag,
5027                            bool pruneControlFlow = false) {
5028  if (pruneControlFlow) {
5029    S.DiagRuntimeBehavior(E->getExprLoc(), E,
5030                          S.PDiag(diag)
5031                            << SourceType << T << E->getSourceRange()
5032                            << SourceRange(CContext));
5033    return;
5034  }
5035  S.Diag(E->getExprLoc(), diag)
5036    << SourceType << T << E->getSourceRange() << SourceRange(CContext);
5037}
5038
5039/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
5040static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
5041                            SourceLocation CContext, unsigned diag,
5042                            bool pruneControlFlow = false) {
5043  DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
5044}
5045
5046/// Diagnose an implicit cast from a literal expression. Does not warn when the
5047/// cast wouldn't lose information.
5048void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
5049                                    SourceLocation CContext) {
5050  // Try to convert the literal exactly to an integer. If we can, don't warn.
5051  bool isExact = false;
5052  const llvm::APFloat &Value = FL->getValue();
5053  llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
5054                            T->hasUnsignedIntegerRepresentation());
5055  if (Value.convertToInteger(IntegerValue,
5056                             llvm::APFloat::rmTowardZero, &isExact)
5057      == llvm::APFloat::opOK && isExact)
5058    return;
5059
5060  SmallString<16> PrettySourceValue;
5061  Value.toString(PrettySourceValue);
5062  SmallString<16> PrettyTargetValue;
5063  if (T->isSpecificBuiltinType(BuiltinType::Bool))
5064    PrettyTargetValue = IntegerValue == 0 ? "false" : "true";
5065  else
5066    IntegerValue.toString(PrettyTargetValue);
5067
5068  S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
5069    << FL->getType() << T.getUnqualifiedType() << PrettySourceValue
5070    << PrettyTargetValue << FL->getSourceRange() << SourceRange(CContext);
5071}
5072
5073std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
5074  if (!Range.Width) return "0";
5075
5076  llvm::APSInt ValueInRange = Value;
5077  ValueInRange.setIsSigned(!Range.NonNegative);
5078  ValueInRange = ValueInRange.trunc(Range.Width);
5079  return ValueInRange.toString(10);
5080}
5081
5082static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
5083  if (!isa<ImplicitCastExpr>(Ex))
5084    return false;
5085
5086  Expr *InnerE = Ex->IgnoreParenImpCasts();
5087  const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
5088  const Type *Source =
5089    S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
5090  if (Target->isDependentType())
5091    return false;
5092
5093  const BuiltinType *FloatCandidateBT =
5094    dyn_cast<BuiltinType>(ToBool ? Source : Target);
5095  const Type *BoolCandidateType = ToBool ? Target : Source;
5096
5097  return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
5098          FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
5099}
5100
5101void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
5102                                      SourceLocation CC) {
5103  unsigned NumArgs = TheCall->getNumArgs();
5104  for (unsigned i = 0; i < NumArgs; ++i) {
5105    Expr *CurrA = TheCall->getArg(i);
5106    if (!IsImplicitBoolFloatConversion(S, CurrA, true))
5107      continue;
5108
5109    bool IsSwapped = ((i > 0) &&
5110        IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
5111    IsSwapped |= ((i < (NumArgs - 1)) &&
5112        IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
5113    if (IsSwapped) {
5114      // Warn on this floating-point to bool conversion.
5115      DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
5116                      CurrA->getType(), CC,
5117                      diag::warn_impcast_floating_point_to_bool);
5118    }
5119  }
5120}
5121
5122void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
5123                             SourceLocation CC, bool *ICContext = 0) {
5124  if (E->isTypeDependent() || E->isValueDependent()) return;
5125
5126  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
5127  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
5128  if (Source == Target) return;
5129  if (Target->isDependentType()) return;
5130
5131  // If the conversion context location is invalid don't complain. We also
5132  // don't want to emit a warning if the issue occurs from the expansion of
5133  // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
5134  // delay this check as long as possible. Once we detect we are in that
5135  // scenario, we just return.
5136  if (CC.isInvalid())
5137    return;
5138
5139  // Diagnose implicit casts to bool.
5140  if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
5141    if (isa<StringLiteral>(E))
5142      // Warn on string literal to bool.  Checks for string literals in logical
5143      // expressions, for instances, assert(0 && "error here"), is prevented
5144      // by a check in AnalyzeImplicitConversions().
5145      return DiagnoseImpCast(S, E, T, CC,
5146                             diag::warn_impcast_string_literal_to_bool);
5147    if (Source->isFunctionType()) {
5148      // Warn on function to bool. Checks free functions and static member
5149      // functions. Weakly imported functions are excluded from the check,
5150      // since it's common to test their value to check whether the linker
5151      // found a definition for them.
5152      ValueDecl *D = 0;
5153      if (DeclRefExpr* R = dyn_cast<DeclRefExpr>(E)) {
5154        D = R->getDecl();
5155      } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
5156        D = M->getMemberDecl();
5157      }
5158
5159      if (D && !D->isWeak()) {
5160        if (FunctionDecl* F = dyn_cast<FunctionDecl>(D)) {
5161          S.Diag(E->getExprLoc(), diag::warn_impcast_function_to_bool)
5162            << F << E->getSourceRange() << SourceRange(CC);
5163          S.Diag(E->getExprLoc(), diag::note_function_to_bool_silence)
5164            << FixItHint::CreateInsertion(E->getExprLoc(), "&");
5165          QualType ReturnType;
5166          UnresolvedSet<4> NonTemplateOverloads;
5167          S.tryExprAsCall(*E, ReturnType, NonTemplateOverloads);
5168          if (!ReturnType.isNull()
5169              && ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
5170            S.Diag(E->getExprLoc(), diag::note_function_to_bool_call)
5171              << FixItHint::CreateInsertion(
5172                 S.getPreprocessor().getLocForEndOfToken(E->getLocEnd()), "()");
5173          return;
5174        }
5175      }
5176    }
5177  }
5178
5179  // Strip vector types.
5180  if (isa<VectorType>(Source)) {
5181    if (!isa<VectorType>(Target)) {
5182      if (S.SourceMgr.isInSystemMacro(CC))
5183        return;
5184      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
5185    }
5186
5187    // If the vector cast is cast between two vectors of the same size, it is
5188    // a bitcast, not a conversion.
5189    if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
5190      return;
5191
5192    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
5193    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
5194  }
5195
5196  // Strip complex types.
5197  if (isa<ComplexType>(Source)) {
5198    if (!isa<ComplexType>(Target)) {
5199      if (S.SourceMgr.isInSystemMacro(CC))
5200        return;
5201
5202      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
5203    }
5204
5205    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
5206    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
5207  }
5208
5209  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
5210  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
5211
5212  // If the source is floating point...
5213  if (SourceBT && SourceBT->isFloatingPoint()) {
5214    // ...and the target is floating point...
5215    if (TargetBT && TargetBT->isFloatingPoint()) {
5216      // ...then warn if we're dropping FP rank.
5217
5218      // Builtin FP kinds are ordered by increasing FP rank.
5219      if (SourceBT->getKind() > TargetBT->getKind()) {
5220        // Don't warn about float constants that are precisely
5221        // representable in the target type.
5222        Expr::EvalResult result;
5223        if (E->EvaluateAsRValue(result, S.Context)) {
5224          // Value might be a float, a float vector, or a float complex.
5225          if (IsSameFloatAfterCast(result.Val,
5226                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
5227                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
5228            return;
5229        }
5230
5231        if (S.SourceMgr.isInSystemMacro(CC))
5232          return;
5233
5234        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
5235      }
5236      return;
5237    }
5238
5239    // If the target is integral, always warn.
5240    if (TargetBT && TargetBT->isInteger()) {
5241      if (S.SourceMgr.isInSystemMacro(CC))
5242        return;
5243
5244      Expr *InnerE = E->IgnoreParenImpCasts();
5245      // We also want to warn on, e.g., "int i = -1.234"
5246      if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
5247        if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
5248          InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
5249
5250      if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
5251        DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
5252      } else {
5253        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
5254      }
5255    }
5256
5257    // If the target is bool, warn if expr is a function or method call.
5258    if (Target->isSpecificBuiltinType(BuiltinType::Bool) &&
5259        isa<CallExpr>(E)) {
5260      // Check last argument of function call to see if it is an
5261      // implicit cast from a type matching the type the result
5262      // is being cast to.
5263      CallExpr *CEx = cast<CallExpr>(E);
5264      unsigned NumArgs = CEx->getNumArgs();
5265      if (NumArgs > 0) {
5266        Expr *LastA = CEx->getArg(NumArgs - 1);
5267        Expr *InnerE = LastA->IgnoreParenImpCasts();
5268        const Type *InnerType =
5269          S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
5270        if (isa<ImplicitCastExpr>(LastA) && (InnerType == Target)) {
5271          // Warn on this floating-point to bool conversion
5272          DiagnoseImpCast(S, E, T, CC,
5273                          diag::warn_impcast_floating_point_to_bool);
5274        }
5275      }
5276    }
5277    return;
5278  }
5279
5280  if ((E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)
5281           == Expr::NPCK_GNUNull) && !Target->isAnyPointerType()
5282      && !Target->isBlockPointerType() && !Target->isMemberPointerType()
5283      && Target->isScalarType() && !Target->isNullPtrType()) {
5284    SourceLocation Loc = E->getSourceRange().getBegin();
5285    if (Loc.isMacroID())
5286      Loc = S.SourceMgr.getImmediateExpansionRange(Loc).first;
5287    if (!Loc.isMacroID() || CC.isMacroID())
5288      S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
5289          << T << clang::SourceRange(CC)
5290          << FixItHint::CreateReplacement(Loc, S.getFixItZeroLiteralForType(T));
5291  }
5292
5293  if (!Source->isIntegerType() || !Target->isIntegerType())
5294    return;
5295
5296  // TODO: remove this early return once the false positives for constant->bool
5297  // in templates, macros, etc, are reduced or removed.
5298  if (Target->isSpecificBuiltinType(BuiltinType::Bool))
5299    return;
5300
5301  IntRange SourceRange = GetExprRange(S.Context, E);
5302  IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
5303
5304  if (SourceRange.Width > TargetRange.Width) {
5305    // If the source is a constant, use a default-on diagnostic.
5306    // TODO: this should happen for bitfield stores, too.
5307    llvm::APSInt Value(32);
5308    if (E->isIntegerConstantExpr(Value, S.Context)) {
5309      if (S.SourceMgr.isInSystemMacro(CC))
5310        return;
5311
5312      std::string PrettySourceValue = Value.toString(10);
5313      std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
5314
5315      S.DiagRuntimeBehavior(E->getExprLoc(), E,
5316        S.PDiag(diag::warn_impcast_integer_precision_constant)
5317            << PrettySourceValue << PrettyTargetValue
5318            << E->getType() << T << E->getSourceRange()
5319            << clang::SourceRange(CC));
5320      return;
5321    }
5322
5323    // People want to build with -Wshorten-64-to-32 and not -Wconversion.
5324    if (S.SourceMgr.isInSystemMacro(CC))
5325      return;
5326
5327    if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
5328      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
5329                             /* pruneControlFlow */ true);
5330    return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
5331  }
5332
5333  if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
5334      (!TargetRange.NonNegative && SourceRange.NonNegative &&
5335       SourceRange.Width == TargetRange.Width)) {
5336
5337    if (S.SourceMgr.isInSystemMacro(CC))
5338      return;
5339
5340    unsigned DiagID = diag::warn_impcast_integer_sign;
5341
5342    // Traditionally, gcc has warned about this under -Wsign-compare.
5343    // We also want to warn about it in -Wconversion.
5344    // So if -Wconversion is off, use a completely identical diagnostic
5345    // in the sign-compare group.
5346    // The conditional-checking code will
5347    if (ICContext) {
5348      DiagID = diag::warn_impcast_integer_sign_conditional;
5349      *ICContext = true;
5350    }
5351
5352    return DiagnoseImpCast(S, E, T, CC, DiagID);
5353  }
5354
5355  // Diagnose conversions between different enumeration types.
5356  // In C, we pretend that the type of an EnumConstantDecl is its enumeration
5357  // type, to give us better diagnostics.
5358  QualType SourceType = E->getType();
5359  if (!S.getLangOpts().CPlusPlus) {
5360    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
5361      if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
5362        EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
5363        SourceType = S.Context.getTypeDeclType(Enum);
5364        Source = S.Context.getCanonicalType(SourceType).getTypePtr();
5365      }
5366  }
5367
5368  if (const EnumType *SourceEnum = Source->getAs<EnumType>())
5369    if (const EnumType *TargetEnum = Target->getAs<EnumType>())
5370      if (SourceEnum->getDecl()->hasNameForLinkage() &&
5371          TargetEnum->getDecl()->hasNameForLinkage() &&
5372          SourceEnum != TargetEnum) {
5373        if (S.SourceMgr.isInSystemMacro(CC))
5374          return;
5375
5376        return DiagnoseImpCast(S, E, SourceType, T, CC,
5377                               diag::warn_impcast_different_enum_types);
5378      }
5379
5380  return;
5381}
5382
5383void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
5384                              SourceLocation CC, QualType T);
5385
5386void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
5387                             SourceLocation CC, bool &ICContext) {
5388  E = E->IgnoreParenImpCasts();
5389
5390  if (isa<ConditionalOperator>(E))
5391    return CheckConditionalOperator(S, cast<ConditionalOperator>(E), CC, T);
5392
5393  AnalyzeImplicitConversions(S, E, CC);
5394  if (E->getType() != T)
5395    return CheckImplicitConversion(S, E, T, CC, &ICContext);
5396  return;
5397}
5398
5399void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
5400                              SourceLocation CC, QualType T) {
5401  AnalyzeImplicitConversions(S, E->getCond(), CC);
5402
5403  bool Suspicious = false;
5404  CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
5405  CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
5406
5407  // If -Wconversion would have warned about either of the candidates
5408  // for a signedness conversion to the context type...
5409  if (!Suspicious) return;
5410
5411  // ...but it's currently ignored...
5412  if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional,
5413                                 CC))
5414    return;
5415
5416  // ...then check whether it would have warned about either of the
5417  // candidates for a signedness conversion to the condition type.
5418  if (E->getType() == T) return;
5419
5420  Suspicious = false;
5421  CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
5422                          E->getType(), CC, &Suspicious);
5423  if (!Suspicious)
5424    CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
5425                            E->getType(), CC, &Suspicious);
5426}
5427
5428/// AnalyzeImplicitConversions - Find and report any interesting
5429/// implicit conversions in the given expression.  There are a couple
5430/// of competing diagnostics here, -Wconversion and -Wsign-compare.
5431void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
5432  QualType T = OrigE->getType();
5433  Expr *E = OrigE->IgnoreParenImpCasts();
5434
5435  if (E->isTypeDependent() || E->isValueDependent())
5436    return;
5437
5438  // For conditional operators, we analyze the arguments as if they
5439  // were being fed directly into the output.
5440  if (isa<ConditionalOperator>(E)) {
5441    ConditionalOperator *CO = cast<ConditionalOperator>(E);
5442    CheckConditionalOperator(S, CO, CC, T);
5443    return;
5444  }
5445
5446  // Check implicit argument conversions for function calls.
5447  if (CallExpr *Call = dyn_cast<CallExpr>(E))
5448    CheckImplicitArgumentConversions(S, Call, CC);
5449
5450  // Go ahead and check any implicit conversions we might have skipped.
5451  // The non-canonical typecheck is just an optimization;
5452  // CheckImplicitConversion will filter out dead implicit conversions.
5453  if (E->getType() != T)
5454    CheckImplicitConversion(S, E, T, CC);
5455
5456  // Now continue drilling into this expression.
5457
5458  if (PseudoObjectExpr * POE = dyn_cast<PseudoObjectExpr>(E)) {
5459    if (POE->getResultExpr())
5460      E = POE->getResultExpr();
5461  }
5462
5463  if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E))
5464    return AnalyzeImplicitConversions(S, OVE->getSourceExpr(), CC);
5465
5466  // Skip past explicit casts.
5467  if (isa<ExplicitCastExpr>(E)) {
5468    E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
5469    return AnalyzeImplicitConversions(S, E, CC);
5470  }
5471
5472  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5473    // Do a somewhat different check with comparison operators.
5474    if (BO->isComparisonOp())
5475      return AnalyzeComparison(S, BO);
5476
5477    // And with simple assignments.
5478    if (BO->getOpcode() == BO_Assign)
5479      return AnalyzeAssignment(S, BO);
5480  }
5481
5482  // These break the otherwise-useful invariant below.  Fortunately,
5483  // we don't really need to recurse into them, because any internal
5484  // expressions should have been analyzed already when they were
5485  // built into statements.
5486  if (isa<StmtExpr>(E)) return;
5487
5488  // Don't descend into unevaluated contexts.
5489  if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
5490
5491  // Now just recurse over the expression's children.
5492  CC = E->getExprLoc();
5493  BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
5494  bool IsLogicalOperator = BO && BO->isLogicalOp();
5495  for (Stmt::child_range I = E->children(); I; ++I) {
5496    Expr *ChildExpr = dyn_cast_or_null<Expr>(*I);
5497    if (!ChildExpr)
5498      continue;
5499
5500    if (IsLogicalOperator &&
5501        isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
5502      // Ignore checking string literals that are in logical operators.
5503      continue;
5504    AnalyzeImplicitConversions(S, ChildExpr, CC);
5505  }
5506}
5507
5508} // end anonymous namespace
5509
5510/// Diagnoses "dangerous" implicit conversions within the given
5511/// expression (which is a full expression).  Implements -Wconversion
5512/// and -Wsign-compare.
5513///
5514/// \param CC the "context" location of the implicit conversion, i.e.
5515///   the most location of the syntactic entity requiring the implicit
5516///   conversion
5517void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
5518  // Don't diagnose in unevaluated contexts.
5519  if (isUnevaluatedContext())
5520    return;
5521
5522  // Don't diagnose for value- or type-dependent expressions.
5523  if (E->isTypeDependent() || E->isValueDependent())
5524    return;
5525
5526  // Check for array bounds violations in cases where the check isn't triggered
5527  // elsewhere for other Expr types (like BinaryOperators), e.g. when an
5528  // ArraySubscriptExpr is on the RHS of a variable initialization.
5529  CheckArrayAccess(E);
5530
5531  // This is not the right CC for (e.g.) a variable initialization.
5532  AnalyzeImplicitConversions(*this, E, CC);
5533}
5534
5535/// Diagnose when expression is an integer constant expression and its evaluation
5536/// results in integer overflow
5537void Sema::CheckForIntOverflow (Expr *E) {
5538  if (isa<BinaryOperator>(E->IgnoreParens())) {
5539    llvm::SmallVector<PartialDiagnosticAt, 4> Diags;
5540    E->EvaluateForOverflow(Context, &Diags);
5541  }
5542}
5543
5544namespace {
5545/// \brief Visitor for expressions which looks for unsequenced operations on the
5546/// same object.
5547class SequenceChecker : public EvaluatedExprVisitor<SequenceChecker> {
5548  typedef EvaluatedExprVisitor<SequenceChecker> Base;
5549
5550  /// \brief A tree of sequenced regions within an expression. Two regions are
5551  /// unsequenced if one is an ancestor or a descendent of the other. When we
5552  /// finish processing an expression with sequencing, such as a comma
5553  /// expression, we fold its tree nodes into its parent, since they are
5554  /// unsequenced with respect to nodes we will visit later.
5555  class SequenceTree {
5556    struct Value {
5557      explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
5558      unsigned Parent : 31;
5559      bool Merged : 1;
5560    };
5561    llvm::SmallVector<Value, 8> Values;
5562
5563  public:
5564    /// \brief A region within an expression which may be sequenced with respect
5565    /// to some other region.
5566    class Seq {
5567      explicit Seq(unsigned N) : Index(N) {}
5568      unsigned Index;
5569      friend class SequenceTree;
5570    public:
5571      Seq() : Index(0) {}
5572    };
5573
5574    SequenceTree() { Values.push_back(Value(0)); }
5575    Seq root() const { return Seq(0); }
5576
5577    /// \brief Create a new sequence of operations, which is an unsequenced
5578    /// subset of \p Parent. This sequence of operations is sequenced with
5579    /// respect to other children of \p Parent.
5580    Seq allocate(Seq Parent) {
5581      Values.push_back(Value(Parent.Index));
5582      return Seq(Values.size() - 1);
5583    }
5584
5585    /// \brief Merge a sequence of operations into its parent.
5586    void merge(Seq S) {
5587      Values[S.Index].Merged = true;
5588    }
5589
5590    /// \brief Determine whether two operations are unsequenced. This operation
5591    /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
5592    /// should have been merged into its parent as appropriate.
5593    bool isUnsequenced(Seq Cur, Seq Old) {
5594      unsigned C = representative(Cur.Index);
5595      unsigned Target = representative(Old.Index);
5596      while (C >= Target) {
5597        if (C == Target)
5598          return true;
5599        C = Values[C].Parent;
5600      }
5601      return false;
5602    }
5603
5604  private:
5605    /// \brief Pick a representative for a sequence.
5606    unsigned representative(unsigned K) {
5607      if (Values[K].Merged)
5608        // Perform path compression as we go.
5609        return Values[K].Parent = representative(Values[K].Parent);
5610      return K;
5611    }
5612  };
5613
5614  /// An object for which we can track unsequenced uses.
5615  typedef NamedDecl *Object;
5616
5617  /// Different flavors of object usage which we track. We only track the
5618  /// least-sequenced usage of each kind.
5619  enum UsageKind {
5620    /// A read of an object. Multiple unsequenced reads are OK.
5621    UK_Use,
5622    /// A modification of an object which is sequenced before the value
5623    /// computation of the expression, such as ++n in C++.
5624    UK_ModAsValue,
5625    /// A modification of an object which is not sequenced before the value
5626    /// computation of the expression, such as n++.
5627    UK_ModAsSideEffect,
5628
5629    UK_Count = UK_ModAsSideEffect + 1
5630  };
5631
5632  struct Usage {
5633    Usage() : Use(0), Seq() {}
5634    Expr *Use;
5635    SequenceTree::Seq Seq;
5636  };
5637
5638  struct UsageInfo {
5639    UsageInfo() : Diagnosed(false) {}
5640    Usage Uses[UK_Count];
5641    /// Have we issued a diagnostic for this variable already?
5642    bool Diagnosed;
5643  };
5644  typedef llvm::SmallDenseMap<Object, UsageInfo, 16> UsageInfoMap;
5645
5646  Sema &SemaRef;
5647  /// Sequenced regions within the expression.
5648  SequenceTree Tree;
5649  /// Declaration modifications and references which we have seen.
5650  UsageInfoMap UsageMap;
5651  /// The region we are currently within.
5652  SequenceTree::Seq Region;
5653  /// Filled in with declarations which were modified as a side-effect
5654  /// (that is, post-increment operations).
5655  llvm::SmallVectorImpl<std::pair<Object, Usage> > *ModAsSideEffect;
5656  /// Expressions to check later. We defer checking these to reduce
5657  /// stack usage.
5658  llvm::SmallVectorImpl<Expr*> &WorkList;
5659
5660  /// RAII object wrapping the visitation of a sequenced subexpression of an
5661  /// expression. At the end of this process, the side-effects of the evaluation
5662  /// become sequenced with respect to the value computation of the result, so
5663  /// we downgrade any UK_ModAsSideEffect within the evaluation to
5664  /// UK_ModAsValue.
5665  struct SequencedSubexpression {
5666    SequencedSubexpression(SequenceChecker &Self)
5667      : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
5668      Self.ModAsSideEffect = &ModAsSideEffect;
5669    }
5670    ~SequencedSubexpression() {
5671      for (unsigned I = 0, E = ModAsSideEffect.size(); I != E; ++I) {
5672        UsageInfo &U = Self.UsageMap[ModAsSideEffect[I].first];
5673        U.Uses[UK_ModAsSideEffect] = ModAsSideEffect[I].second;
5674        Self.addUsage(U, ModAsSideEffect[I].first,
5675                      ModAsSideEffect[I].second.Use, UK_ModAsValue);
5676      }
5677      Self.ModAsSideEffect = OldModAsSideEffect;
5678    }
5679
5680    SequenceChecker &Self;
5681    llvm::SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
5682    llvm::SmallVectorImpl<std::pair<Object, Usage> > *OldModAsSideEffect;
5683  };
5684
5685  /// RAII object wrapping the visitation of a subexpression which we might
5686  /// choose to evaluate as a constant. If any subexpression is evaluated and
5687  /// found to be non-constant, this allows us to suppress the evaluation of
5688  /// the outer expression.
5689  class EvaluationTracker {
5690  public:
5691    EvaluationTracker(SequenceChecker &Self)
5692        : Self(Self), Prev(Self.EvalTracker), EvalOK(true) {
5693      Self.EvalTracker = this;
5694    }
5695    ~EvaluationTracker() {
5696      Self.EvalTracker = Prev;
5697      if (Prev)
5698        Prev->EvalOK &= EvalOK;
5699    }
5700
5701    bool evaluate(const Expr *E, bool &Result) {
5702      if (!EvalOK || E->isValueDependent())
5703        return false;
5704      EvalOK = E->EvaluateAsBooleanCondition(Result, Self.SemaRef.Context);
5705      return EvalOK;
5706    }
5707
5708  private:
5709    SequenceChecker &Self;
5710    EvaluationTracker *Prev;
5711    bool EvalOK;
5712  } *EvalTracker;
5713
5714  /// \brief Find the object which is produced by the specified expression,
5715  /// if any.
5716  Object getObject(Expr *E, bool Mod) const {
5717    E = E->IgnoreParenCasts();
5718    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
5719      if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
5720        return getObject(UO->getSubExpr(), Mod);
5721    } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5722      if (BO->getOpcode() == BO_Comma)
5723        return getObject(BO->getRHS(), Mod);
5724      if (Mod && BO->isAssignmentOp())
5725        return getObject(BO->getLHS(), Mod);
5726    } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5727      // FIXME: Check for more interesting cases, like "x.n = ++x.n".
5728      if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
5729        return ME->getMemberDecl();
5730    } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
5731      // FIXME: If this is a reference, map through to its value.
5732      return DRE->getDecl();
5733    return 0;
5734  }
5735
5736  /// \brief Note that an object was modified or used by an expression.
5737  void addUsage(UsageInfo &UI, Object O, Expr *Ref, UsageKind UK) {
5738    Usage &U = UI.Uses[UK];
5739    if (!U.Use || !Tree.isUnsequenced(Region, U.Seq)) {
5740      if (UK == UK_ModAsSideEffect && ModAsSideEffect)
5741        ModAsSideEffect->push_back(std::make_pair(O, U));
5742      U.Use = Ref;
5743      U.Seq = Region;
5744    }
5745  }
5746  /// \brief Check whether a modification or use conflicts with a prior usage.
5747  void checkUsage(Object O, UsageInfo &UI, Expr *Ref, UsageKind OtherKind,
5748                  bool IsModMod) {
5749    if (UI.Diagnosed)
5750      return;
5751
5752    const Usage &U = UI.Uses[OtherKind];
5753    if (!U.Use || !Tree.isUnsequenced(Region, U.Seq))
5754      return;
5755
5756    Expr *Mod = U.Use;
5757    Expr *ModOrUse = Ref;
5758    if (OtherKind == UK_Use)
5759      std::swap(Mod, ModOrUse);
5760
5761    SemaRef.Diag(Mod->getExprLoc(),
5762                 IsModMod ? diag::warn_unsequenced_mod_mod
5763                          : diag::warn_unsequenced_mod_use)
5764      << O << SourceRange(ModOrUse->getExprLoc());
5765    UI.Diagnosed = true;
5766  }
5767
5768  void notePreUse(Object O, Expr *Use) {
5769    UsageInfo &U = UsageMap[O];
5770    // Uses conflict with other modifications.
5771    checkUsage(O, U, Use, UK_ModAsValue, false);
5772  }
5773  void notePostUse(Object O, Expr *Use) {
5774    UsageInfo &U = UsageMap[O];
5775    checkUsage(O, U, Use, UK_ModAsSideEffect, false);
5776    addUsage(U, O, Use, UK_Use);
5777  }
5778
5779  void notePreMod(Object O, Expr *Mod) {
5780    UsageInfo &U = UsageMap[O];
5781    // Modifications conflict with other modifications and with uses.
5782    checkUsage(O, U, Mod, UK_ModAsValue, true);
5783    checkUsage(O, U, Mod, UK_Use, false);
5784  }
5785  void notePostMod(Object O, Expr *Use, UsageKind UK) {
5786    UsageInfo &U = UsageMap[O];
5787    checkUsage(O, U, Use, UK_ModAsSideEffect, true);
5788    addUsage(U, O, Use, UK);
5789  }
5790
5791public:
5792  SequenceChecker(Sema &S, Expr *E,
5793                  llvm::SmallVectorImpl<Expr*> &WorkList)
5794    : Base(S.Context), SemaRef(S), Region(Tree.root()),
5795      ModAsSideEffect(0), WorkList(WorkList), EvalTracker(0) {
5796    Visit(E);
5797  }
5798
5799  void VisitStmt(Stmt *S) {
5800    // Skip all statements which aren't expressions for now.
5801  }
5802
5803  void VisitExpr(Expr *E) {
5804    // By default, just recurse to evaluated subexpressions.
5805    Base::VisitStmt(E);
5806  }
5807
5808  void VisitCastExpr(CastExpr *E) {
5809    Object O = Object();
5810    if (E->getCastKind() == CK_LValueToRValue)
5811      O = getObject(E->getSubExpr(), false);
5812
5813    if (O)
5814      notePreUse(O, E);
5815    VisitExpr(E);
5816    if (O)
5817      notePostUse(O, E);
5818  }
5819
5820  void VisitBinComma(BinaryOperator *BO) {
5821    // C++11 [expr.comma]p1:
5822    //   Every value computation and side effect associated with the left
5823    //   expression is sequenced before every value computation and side
5824    //   effect associated with the right expression.
5825    SequenceTree::Seq LHS = Tree.allocate(Region);
5826    SequenceTree::Seq RHS = Tree.allocate(Region);
5827    SequenceTree::Seq OldRegion = Region;
5828
5829    {
5830      SequencedSubexpression SeqLHS(*this);
5831      Region = LHS;
5832      Visit(BO->getLHS());
5833    }
5834
5835    Region = RHS;
5836    Visit(BO->getRHS());
5837
5838    Region = OldRegion;
5839
5840    // Forget that LHS and RHS are sequenced. They are both unsequenced
5841    // with respect to other stuff.
5842    Tree.merge(LHS);
5843    Tree.merge(RHS);
5844  }
5845
5846  void VisitBinAssign(BinaryOperator *BO) {
5847    // The modification is sequenced after the value computation of the LHS
5848    // and RHS, so check it before inspecting the operands and update the
5849    // map afterwards.
5850    Object O = getObject(BO->getLHS(), true);
5851    if (!O)
5852      return VisitExpr(BO);
5853
5854    notePreMod(O, BO);
5855
5856    // C++11 [expr.ass]p7:
5857    //   E1 op= E2 is equivalent to E1 = E1 op E2, except that E1 is evaluated
5858    //   only once.
5859    //
5860    // Therefore, for a compound assignment operator, O is considered used
5861    // everywhere except within the evaluation of E1 itself.
5862    if (isa<CompoundAssignOperator>(BO))
5863      notePreUse(O, BO);
5864
5865    Visit(BO->getLHS());
5866
5867    if (isa<CompoundAssignOperator>(BO))
5868      notePostUse(O, BO);
5869
5870    Visit(BO->getRHS());
5871
5872    // C++11 [expr.ass]p1:
5873    //   the assignment is sequenced [...] before the value computation of the
5874    //   assignment expression.
5875    // C11 6.5.16/3 has no such rule.
5876    notePostMod(O, BO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
5877                                                       : UK_ModAsSideEffect);
5878  }
5879  void VisitCompoundAssignOperator(CompoundAssignOperator *CAO) {
5880    VisitBinAssign(CAO);
5881  }
5882
5883  void VisitUnaryPreInc(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
5884  void VisitUnaryPreDec(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
5885  void VisitUnaryPreIncDec(UnaryOperator *UO) {
5886    Object O = getObject(UO->getSubExpr(), true);
5887    if (!O)
5888      return VisitExpr(UO);
5889
5890    notePreMod(O, UO);
5891    Visit(UO->getSubExpr());
5892    // C++11 [expr.pre.incr]p1:
5893    //   the expression ++x is equivalent to x+=1
5894    notePostMod(O, UO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
5895                                                       : UK_ModAsSideEffect);
5896  }
5897
5898  void VisitUnaryPostInc(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
5899  void VisitUnaryPostDec(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
5900  void VisitUnaryPostIncDec(UnaryOperator *UO) {
5901    Object O = getObject(UO->getSubExpr(), true);
5902    if (!O)
5903      return VisitExpr(UO);
5904
5905    notePreMod(O, UO);
5906    Visit(UO->getSubExpr());
5907    notePostMod(O, UO, UK_ModAsSideEffect);
5908  }
5909
5910  /// Don't visit the RHS of '&&' or '||' if it might not be evaluated.
5911  void VisitBinLOr(BinaryOperator *BO) {
5912    // The side-effects of the LHS of an '&&' are sequenced before the
5913    // value computation of the RHS, and hence before the value computation
5914    // of the '&&' itself, unless the LHS evaluates to zero. We treat them
5915    // as if they were unconditionally sequenced.
5916    EvaluationTracker Eval(*this);
5917    {
5918      SequencedSubexpression Sequenced(*this);
5919      Visit(BO->getLHS());
5920    }
5921
5922    bool Result;
5923    if (Eval.evaluate(BO->getLHS(), Result)) {
5924      if (!Result)
5925        Visit(BO->getRHS());
5926    } else {
5927      // Check for unsequenced operations in the RHS, treating it as an
5928      // entirely separate evaluation.
5929      //
5930      // FIXME: If there are operations in the RHS which are unsequenced
5931      // with respect to operations outside the RHS, and those operations
5932      // are unconditionally evaluated, diagnose them.
5933      WorkList.push_back(BO->getRHS());
5934    }
5935  }
5936  void VisitBinLAnd(BinaryOperator *BO) {
5937    EvaluationTracker Eval(*this);
5938    {
5939      SequencedSubexpression Sequenced(*this);
5940      Visit(BO->getLHS());
5941    }
5942
5943    bool Result;
5944    if (Eval.evaluate(BO->getLHS(), Result)) {
5945      if (Result)
5946        Visit(BO->getRHS());
5947    } else {
5948      WorkList.push_back(BO->getRHS());
5949    }
5950  }
5951
5952  // Only visit the condition, unless we can be sure which subexpression will
5953  // be chosen.
5954  void VisitAbstractConditionalOperator(AbstractConditionalOperator *CO) {
5955    EvaluationTracker Eval(*this);
5956    {
5957      SequencedSubexpression Sequenced(*this);
5958      Visit(CO->getCond());
5959    }
5960
5961    bool Result;
5962    if (Eval.evaluate(CO->getCond(), Result))
5963      Visit(Result ? CO->getTrueExpr() : CO->getFalseExpr());
5964    else {
5965      WorkList.push_back(CO->getTrueExpr());
5966      WorkList.push_back(CO->getFalseExpr());
5967    }
5968  }
5969
5970  void VisitCallExpr(CallExpr *CE) {
5971    // C++11 [intro.execution]p15:
5972    //   When calling a function [...], every value computation and side effect
5973    //   associated with any argument expression, or with the postfix expression
5974    //   designating the called function, is sequenced before execution of every
5975    //   expression or statement in the body of the function [and thus before
5976    //   the value computation of its result].
5977    SequencedSubexpression Sequenced(*this);
5978    Base::VisitCallExpr(CE);
5979
5980    // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions.
5981  }
5982
5983  void VisitCXXConstructExpr(CXXConstructExpr *CCE) {
5984    // This is a call, so all subexpressions are sequenced before the result.
5985    SequencedSubexpression Sequenced(*this);
5986
5987    if (!CCE->isListInitialization())
5988      return VisitExpr(CCE);
5989
5990    // In C++11, list initializations are sequenced.
5991    llvm::SmallVector<SequenceTree::Seq, 32> Elts;
5992    SequenceTree::Seq Parent = Region;
5993    for (CXXConstructExpr::arg_iterator I = CCE->arg_begin(),
5994                                        E = CCE->arg_end();
5995         I != E; ++I) {
5996      Region = Tree.allocate(Parent);
5997      Elts.push_back(Region);
5998      Visit(*I);
5999    }
6000
6001    // Forget that the initializers are sequenced.
6002    Region = Parent;
6003    for (unsigned I = 0; I < Elts.size(); ++I)
6004      Tree.merge(Elts[I]);
6005  }
6006
6007  void VisitInitListExpr(InitListExpr *ILE) {
6008    if (!SemaRef.getLangOpts().CPlusPlus11)
6009      return VisitExpr(ILE);
6010
6011    // In C++11, list initializations are sequenced.
6012    llvm::SmallVector<SequenceTree::Seq, 32> Elts;
6013    SequenceTree::Seq Parent = Region;
6014    for (unsigned I = 0; I < ILE->getNumInits(); ++I) {
6015      Expr *E = ILE->getInit(I);
6016      if (!E) continue;
6017      Region = Tree.allocate(Parent);
6018      Elts.push_back(Region);
6019      Visit(E);
6020    }
6021
6022    // Forget that the initializers are sequenced.
6023    Region = Parent;
6024    for (unsigned I = 0; I < Elts.size(); ++I)
6025      Tree.merge(Elts[I]);
6026  }
6027};
6028}
6029
6030void Sema::CheckUnsequencedOperations(Expr *E) {
6031  llvm::SmallVector<Expr*, 8> WorkList;
6032  WorkList.push_back(E);
6033  while (!WorkList.empty()) {
6034    Expr *Item = WorkList.back();
6035    WorkList.pop_back();
6036    SequenceChecker(*this, Item, WorkList);
6037  }
6038}
6039
6040void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
6041                              bool IsConstexpr) {
6042  CheckImplicitConversions(E, CheckLoc);
6043  CheckUnsequencedOperations(E);
6044  if (!IsConstexpr && !E->isValueDependent())
6045    CheckForIntOverflow(E);
6046}
6047
6048void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
6049                                       FieldDecl *BitField,
6050                                       Expr *Init) {
6051  (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
6052}
6053
6054/// CheckParmsForFunctionDef - Check that the parameters of the given
6055/// function are appropriate for the definition of a function. This
6056/// takes care of any checks that cannot be performed on the
6057/// declaration itself, e.g., that the types of each of the function
6058/// parameters are complete.
6059bool Sema::CheckParmsForFunctionDef(ParmVarDecl *const *P,
6060                                    ParmVarDecl *const *PEnd,
6061                                    bool CheckParameterNames) {
6062  bool HasInvalidParm = false;
6063  for (; P != PEnd; ++P) {
6064    ParmVarDecl *Param = *P;
6065
6066    // C99 6.7.5.3p4: the parameters in a parameter type list in a
6067    // function declarator that is part of a function definition of
6068    // that function shall not have incomplete type.
6069    //
6070    // This is also C++ [dcl.fct]p6.
6071    if (!Param->isInvalidDecl() &&
6072        RequireCompleteType(Param->getLocation(), Param->getType(),
6073                            diag::err_typecheck_decl_incomplete_type)) {
6074      Param->setInvalidDecl();
6075      HasInvalidParm = true;
6076    }
6077
6078    // C99 6.9.1p5: If the declarator includes a parameter type list, the
6079    // declaration of each parameter shall include an identifier.
6080    if (CheckParameterNames &&
6081        Param->getIdentifier() == 0 &&
6082        !Param->isImplicit() &&
6083        !getLangOpts().CPlusPlus)
6084      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
6085
6086    // C99 6.7.5.3p12:
6087    //   If the function declarator is not part of a definition of that
6088    //   function, parameters may have incomplete type and may use the [*]
6089    //   notation in their sequences of declarator specifiers to specify
6090    //   variable length array types.
6091    QualType PType = Param->getOriginalType();
6092    while (const ArrayType *AT = Context.getAsArrayType(PType)) {
6093      if (AT->getSizeModifier() == ArrayType::Star) {
6094        // FIXME: This diagnostic should point the '[*]' if source-location
6095        // information is added for it.
6096        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
6097        break;
6098      }
6099      PType= AT->getElementType();
6100    }
6101
6102    // MSVC destroys objects passed by value in the callee.  Therefore a
6103    // function definition which takes such a parameter must be able to call the
6104    // object's destructor.
6105    if (getLangOpts().CPlusPlus &&
6106        Context.getTargetInfo().getCXXABI().isArgumentDestroyedByCallee()) {
6107      if (const RecordType *RT = Param->getType()->getAs<RecordType>())
6108        FinalizeVarWithDestructor(Param, RT);
6109    }
6110  }
6111
6112  return HasInvalidParm;
6113}
6114
6115/// CheckCastAlign - Implements -Wcast-align, which warns when a
6116/// pointer cast increases the alignment requirements.
6117void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
6118  // This is actually a lot of work to potentially be doing on every
6119  // cast; don't do it if we're ignoring -Wcast_align (as is the default).
6120  if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align,
6121                                          TRange.getBegin())
6122        == DiagnosticsEngine::Ignored)
6123    return;
6124
6125  // Ignore dependent types.
6126  if (T->isDependentType() || Op->getType()->isDependentType())
6127    return;
6128
6129  // Require that the destination be a pointer type.
6130  const PointerType *DestPtr = T->getAs<PointerType>();
6131  if (!DestPtr) return;
6132
6133  // If the destination has alignment 1, we're done.
6134  QualType DestPointee = DestPtr->getPointeeType();
6135  if (DestPointee->isIncompleteType()) return;
6136  CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
6137  if (DestAlign.isOne()) return;
6138
6139  // Require that the source be a pointer type.
6140  const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
6141  if (!SrcPtr) return;
6142  QualType SrcPointee = SrcPtr->getPointeeType();
6143
6144  // Whitelist casts from cv void*.  We already implicitly
6145  // whitelisted casts to cv void*, since they have alignment 1.
6146  // Also whitelist casts involving incomplete types, which implicitly
6147  // includes 'void'.
6148  if (SrcPointee->isIncompleteType()) return;
6149
6150  CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
6151  if (SrcAlign >= DestAlign) return;
6152
6153  Diag(TRange.getBegin(), diag::warn_cast_align)
6154    << Op->getType() << T
6155    << static_cast<unsigned>(SrcAlign.getQuantity())
6156    << static_cast<unsigned>(DestAlign.getQuantity())
6157    << TRange << Op->getSourceRange();
6158}
6159
6160static const Type* getElementType(const Expr *BaseExpr) {
6161  const Type* EltType = BaseExpr->getType().getTypePtr();
6162  if (EltType->isAnyPointerType())
6163    return EltType->getPointeeType().getTypePtr();
6164  else if (EltType->isArrayType())
6165    return EltType->getBaseElementTypeUnsafe();
6166  return EltType;
6167}
6168
6169/// \brief Check whether this array fits the idiom of a size-one tail padded
6170/// array member of a struct.
6171///
6172/// We avoid emitting out-of-bounds access warnings for such arrays as they are
6173/// commonly used to emulate flexible arrays in C89 code.
6174static bool IsTailPaddedMemberArray(Sema &S, llvm::APInt Size,
6175                                    const NamedDecl *ND) {
6176  if (Size != 1 || !ND) return false;
6177
6178  const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
6179  if (!FD) return false;
6180
6181  // Don't consider sizes resulting from macro expansions or template argument
6182  // substitution to form C89 tail-padded arrays.
6183
6184  TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
6185  while (TInfo) {
6186    TypeLoc TL = TInfo->getTypeLoc();
6187    // Look through typedefs.
6188    if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) {
6189      const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
6190      TInfo = TDL->getTypeSourceInfo();
6191      continue;
6192    }
6193    if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
6194      const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
6195      if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
6196        return false;
6197    }
6198    break;
6199  }
6200
6201  const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
6202  if (!RD) return false;
6203  if (RD->isUnion()) return false;
6204  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
6205    if (!CRD->isStandardLayout()) return false;
6206  }
6207
6208  // See if this is the last field decl in the record.
6209  const Decl *D = FD;
6210  while ((D = D->getNextDeclInContext()))
6211    if (isa<FieldDecl>(D))
6212      return false;
6213  return true;
6214}
6215
6216void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
6217                            const ArraySubscriptExpr *ASE,
6218                            bool AllowOnePastEnd, bool IndexNegated) {
6219  IndexExpr = IndexExpr->IgnoreParenImpCasts();
6220  if (IndexExpr->isValueDependent())
6221    return;
6222
6223  const Type *EffectiveType = getElementType(BaseExpr);
6224  BaseExpr = BaseExpr->IgnoreParenCasts();
6225  const ConstantArrayType *ArrayTy =
6226    Context.getAsConstantArrayType(BaseExpr->getType());
6227  if (!ArrayTy)
6228    return;
6229
6230  llvm::APSInt index;
6231  if (!IndexExpr->EvaluateAsInt(index, Context))
6232    return;
6233  if (IndexNegated)
6234    index = -index;
6235
6236  const NamedDecl *ND = NULL;
6237  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
6238    ND = dyn_cast<NamedDecl>(DRE->getDecl());
6239  if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
6240    ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
6241
6242  if (index.isUnsigned() || !index.isNegative()) {
6243    llvm::APInt size = ArrayTy->getSize();
6244    if (!size.isStrictlyPositive())
6245      return;
6246
6247    const Type* BaseType = getElementType(BaseExpr);
6248    if (BaseType != EffectiveType) {
6249      // Make sure we're comparing apples to apples when comparing index to size
6250      uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
6251      uint64_t array_typesize = Context.getTypeSize(BaseType);
6252      // Handle ptrarith_typesize being zero, such as when casting to void*
6253      if (!ptrarith_typesize) ptrarith_typesize = 1;
6254      if (ptrarith_typesize != array_typesize) {
6255        // There's a cast to a different size type involved
6256        uint64_t ratio = array_typesize / ptrarith_typesize;
6257        // TODO: Be smarter about handling cases where array_typesize is not a
6258        // multiple of ptrarith_typesize
6259        if (ptrarith_typesize * ratio == array_typesize)
6260          size *= llvm::APInt(size.getBitWidth(), ratio);
6261      }
6262    }
6263
6264    if (size.getBitWidth() > index.getBitWidth())
6265      index = index.zext(size.getBitWidth());
6266    else if (size.getBitWidth() < index.getBitWidth())
6267      size = size.zext(index.getBitWidth());
6268
6269    // For array subscripting the index must be less than size, but for pointer
6270    // arithmetic also allow the index (offset) to be equal to size since
6271    // computing the next address after the end of the array is legal and
6272    // commonly done e.g. in C++ iterators and range-based for loops.
6273    if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
6274      return;
6275
6276    // Also don't warn for arrays of size 1 which are members of some
6277    // structure. These are often used to approximate flexible arrays in C89
6278    // code.
6279    if (IsTailPaddedMemberArray(*this, size, ND))
6280      return;
6281
6282    // Suppress the warning if the subscript expression (as identified by the
6283    // ']' location) and the index expression are both from macro expansions
6284    // within a system header.
6285    if (ASE) {
6286      SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
6287          ASE->getRBracketLoc());
6288      if (SourceMgr.isInSystemHeader(RBracketLoc)) {
6289        SourceLocation IndexLoc = SourceMgr.getSpellingLoc(
6290            IndexExpr->getLocStart());
6291        if (SourceMgr.isFromSameFile(RBracketLoc, IndexLoc))
6292          return;
6293      }
6294    }
6295
6296    unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
6297    if (ASE)
6298      DiagID = diag::warn_array_index_exceeds_bounds;
6299
6300    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
6301                        PDiag(DiagID) << index.toString(10, true)
6302                          << size.toString(10, true)
6303                          << (unsigned)size.getLimitedValue(~0U)
6304                          << IndexExpr->getSourceRange());
6305  } else {
6306    unsigned DiagID = diag::warn_array_index_precedes_bounds;
6307    if (!ASE) {
6308      DiagID = diag::warn_ptr_arith_precedes_bounds;
6309      if (index.isNegative()) index = -index;
6310    }
6311
6312    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
6313                        PDiag(DiagID) << index.toString(10, true)
6314                          << IndexExpr->getSourceRange());
6315  }
6316
6317  if (!ND) {
6318    // Try harder to find a NamedDecl to point at in the note.
6319    while (const ArraySubscriptExpr *ASE =
6320           dyn_cast<ArraySubscriptExpr>(BaseExpr))
6321      BaseExpr = ASE->getBase()->IgnoreParenCasts();
6322    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
6323      ND = dyn_cast<NamedDecl>(DRE->getDecl());
6324    if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
6325      ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
6326  }
6327
6328  if (ND)
6329    DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
6330                        PDiag(diag::note_array_index_out_of_bounds)
6331                          << ND->getDeclName());
6332}
6333
6334void Sema::CheckArrayAccess(const Expr *expr) {
6335  int AllowOnePastEnd = 0;
6336  while (expr) {
6337    expr = expr->IgnoreParenImpCasts();
6338    switch (expr->getStmtClass()) {
6339      case Stmt::ArraySubscriptExprClass: {
6340        const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
6341        CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
6342                         AllowOnePastEnd > 0);
6343        return;
6344      }
6345      case Stmt::UnaryOperatorClass: {
6346        // Only unwrap the * and & unary operators
6347        const UnaryOperator *UO = cast<UnaryOperator>(expr);
6348        expr = UO->getSubExpr();
6349        switch (UO->getOpcode()) {
6350          case UO_AddrOf:
6351            AllowOnePastEnd++;
6352            break;
6353          case UO_Deref:
6354            AllowOnePastEnd--;
6355            break;
6356          default:
6357            return;
6358        }
6359        break;
6360      }
6361      case Stmt::ConditionalOperatorClass: {
6362        const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
6363        if (const Expr *lhs = cond->getLHS())
6364          CheckArrayAccess(lhs);
6365        if (const Expr *rhs = cond->getRHS())
6366          CheckArrayAccess(rhs);
6367        return;
6368      }
6369      default:
6370        return;
6371    }
6372  }
6373}
6374
6375//===--- CHECK: Objective-C retain cycles ----------------------------------//
6376
6377namespace {
6378  struct RetainCycleOwner {
6379    RetainCycleOwner() : Variable(0), Indirect(false) {}
6380    VarDecl *Variable;
6381    SourceRange Range;
6382    SourceLocation Loc;
6383    bool Indirect;
6384
6385    void setLocsFrom(Expr *e) {
6386      Loc = e->getExprLoc();
6387      Range = e->getSourceRange();
6388    }
6389  };
6390}
6391
6392/// Consider whether capturing the given variable can possibly lead to
6393/// a retain cycle.
6394static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
6395  // In ARC, it's captured strongly iff the variable has __strong
6396  // lifetime.  In MRR, it's captured strongly if the variable is
6397  // __block and has an appropriate type.
6398  if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
6399    return false;
6400
6401  owner.Variable = var;
6402  if (ref)
6403    owner.setLocsFrom(ref);
6404  return true;
6405}
6406
6407static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
6408  while (true) {
6409    e = e->IgnoreParens();
6410    if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
6411      switch (cast->getCastKind()) {
6412      case CK_BitCast:
6413      case CK_LValueBitCast:
6414      case CK_LValueToRValue:
6415      case CK_ARCReclaimReturnedObject:
6416        e = cast->getSubExpr();
6417        continue;
6418
6419      default:
6420        return false;
6421      }
6422    }
6423
6424    if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
6425      ObjCIvarDecl *ivar = ref->getDecl();
6426      if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
6427        return false;
6428
6429      // Try to find a retain cycle in the base.
6430      if (!findRetainCycleOwner(S, ref->getBase(), owner))
6431        return false;
6432
6433      if (ref->isFreeIvar()) owner.setLocsFrom(ref);
6434      owner.Indirect = true;
6435      return true;
6436    }
6437
6438    if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
6439      VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
6440      if (!var) return false;
6441      return considerVariable(var, ref, owner);
6442    }
6443
6444    if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
6445      if (member->isArrow()) return false;
6446
6447      // Don't count this as an indirect ownership.
6448      e = member->getBase();
6449      continue;
6450    }
6451
6452    if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
6453      // Only pay attention to pseudo-objects on property references.
6454      ObjCPropertyRefExpr *pre
6455        = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
6456                                              ->IgnoreParens());
6457      if (!pre) return false;
6458      if (pre->isImplicitProperty()) return false;
6459      ObjCPropertyDecl *property = pre->getExplicitProperty();
6460      if (!property->isRetaining() &&
6461          !(property->getPropertyIvarDecl() &&
6462            property->getPropertyIvarDecl()->getType()
6463              .getObjCLifetime() == Qualifiers::OCL_Strong))
6464          return false;
6465
6466      owner.Indirect = true;
6467      if (pre->isSuperReceiver()) {
6468        owner.Variable = S.getCurMethodDecl()->getSelfDecl();
6469        if (!owner.Variable)
6470          return false;
6471        owner.Loc = pre->getLocation();
6472        owner.Range = pre->getSourceRange();
6473        return true;
6474      }
6475      e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
6476                              ->getSourceExpr());
6477      continue;
6478    }
6479
6480    // Array ivars?
6481
6482    return false;
6483  }
6484}
6485
6486namespace {
6487  struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
6488    FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
6489      : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
6490        Variable(variable), Capturer(0) {}
6491
6492    VarDecl *Variable;
6493    Expr *Capturer;
6494
6495    void VisitDeclRefExpr(DeclRefExpr *ref) {
6496      if (ref->getDecl() == Variable && !Capturer)
6497        Capturer = ref;
6498    }
6499
6500    void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
6501      if (Capturer) return;
6502      Visit(ref->getBase());
6503      if (Capturer && ref->isFreeIvar())
6504        Capturer = ref;
6505    }
6506
6507    void VisitBlockExpr(BlockExpr *block) {
6508      // Look inside nested blocks
6509      if (block->getBlockDecl()->capturesVariable(Variable))
6510        Visit(block->getBlockDecl()->getBody());
6511    }
6512
6513    void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
6514      if (Capturer) return;
6515      if (OVE->getSourceExpr())
6516        Visit(OVE->getSourceExpr());
6517    }
6518  };
6519}
6520
6521/// Check whether the given argument is a block which captures a
6522/// variable.
6523static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
6524  assert(owner.Variable && owner.Loc.isValid());
6525
6526  e = e->IgnoreParenCasts();
6527
6528  // Look through [^{...} copy] and Block_copy(^{...}).
6529  if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
6530    Selector Cmd = ME->getSelector();
6531    if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
6532      e = ME->getInstanceReceiver();
6533      if (!e)
6534        return 0;
6535      e = e->IgnoreParenCasts();
6536    }
6537  } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
6538    if (CE->getNumArgs() == 1) {
6539      FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
6540      if (Fn) {
6541        const IdentifierInfo *FnI = Fn->getIdentifier();
6542        if (FnI && FnI->isStr("_Block_copy")) {
6543          e = CE->getArg(0)->IgnoreParenCasts();
6544        }
6545      }
6546    }
6547  }
6548
6549  BlockExpr *block = dyn_cast<BlockExpr>(e);
6550  if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
6551    return 0;
6552
6553  FindCaptureVisitor visitor(S.Context, owner.Variable);
6554  visitor.Visit(block->getBlockDecl()->getBody());
6555  return visitor.Capturer;
6556}
6557
6558static void diagnoseRetainCycle(Sema &S, Expr *capturer,
6559                                RetainCycleOwner &owner) {
6560  assert(capturer);
6561  assert(owner.Variable && owner.Loc.isValid());
6562
6563  S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
6564    << owner.Variable << capturer->getSourceRange();
6565  S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
6566    << owner.Indirect << owner.Range;
6567}
6568
6569/// Check for a keyword selector that starts with the word 'add' or
6570/// 'set'.
6571static bool isSetterLikeSelector(Selector sel) {
6572  if (sel.isUnarySelector()) return false;
6573
6574  StringRef str = sel.getNameForSlot(0);
6575  while (!str.empty() && str.front() == '_') str = str.substr(1);
6576  if (str.startswith("set"))
6577    str = str.substr(3);
6578  else if (str.startswith("add")) {
6579    // Specially whitelist 'addOperationWithBlock:'.
6580    if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
6581      return false;
6582    str = str.substr(3);
6583  }
6584  else
6585    return false;
6586
6587  if (str.empty()) return true;
6588  return !isLowercase(str.front());
6589}
6590
6591/// Check a message send to see if it's likely to cause a retain cycle.
6592void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
6593  // Only check instance methods whose selector looks like a setter.
6594  if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
6595    return;
6596
6597  // Try to find a variable that the receiver is strongly owned by.
6598  RetainCycleOwner owner;
6599  if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
6600    if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
6601      return;
6602  } else {
6603    assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
6604    owner.Variable = getCurMethodDecl()->getSelfDecl();
6605    owner.Loc = msg->getSuperLoc();
6606    owner.Range = msg->getSuperLoc();
6607  }
6608
6609  // Check whether the receiver is captured by any of the arguments.
6610  for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
6611    if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
6612      return diagnoseRetainCycle(*this, capturer, owner);
6613}
6614
6615/// Check a property assign to see if it's likely to cause a retain cycle.
6616void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
6617  RetainCycleOwner owner;
6618  if (!findRetainCycleOwner(*this, receiver, owner))
6619    return;
6620
6621  if (Expr *capturer = findCapturingExpr(*this, argument, owner))
6622    diagnoseRetainCycle(*this, capturer, owner);
6623}
6624
6625void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
6626  RetainCycleOwner Owner;
6627  if (!considerVariable(Var, /*DeclRefExpr=*/0, Owner))
6628    return;
6629
6630  // Because we don't have an expression for the variable, we have to set the
6631  // location explicitly here.
6632  Owner.Loc = Var->getLocation();
6633  Owner.Range = Var->getSourceRange();
6634
6635  if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
6636    diagnoseRetainCycle(*this, Capturer, Owner);
6637}
6638
6639static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
6640                                     Expr *RHS, bool isProperty) {
6641  // Check if RHS is an Objective-C object literal, which also can get
6642  // immediately zapped in a weak reference.  Note that we explicitly
6643  // allow ObjCStringLiterals, since those are designed to never really die.
6644  RHS = RHS->IgnoreParenImpCasts();
6645
6646  // This enum needs to match with the 'select' in
6647  // warn_objc_arc_literal_assign (off-by-1).
6648  Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS);
6649  if (Kind == Sema::LK_String || Kind == Sema::LK_None)
6650    return false;
6651
6652  S.Diag(Loc, diag::warn_arc_literal_assign)
6653    << (unsigned) Kind
6654    << (isProperty ? 0 : 1)
6655    << RHS->getSourceRange();
6656
6657  return true;
6658}
6659
6660static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
6661                                    Qualifiers::ObjCLifetime LT,
6662                                    Expr *RHS, bool isProperty) {
6663  // Strip off any implicit cast added to get to the one ARC-specific.
6664  while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
6665    if (cast->getCastKind() == CK_ARCConsumeObject) {
6666      S.Diag(Loc, diag::warn_arc_retained_assign)
6667        << (LT == Qualifiers::OCL_ExplicitNone)
6668        << (isProperty ? 0 : 1)
6669        << RHS->getSourceRange();
6670      return true;
6671    }
6672    RHS = cast->getSubExpr();
6673  }
6674
6675  if (LT == Qualifiers::OCL_Weak &&
6676      checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
6677    return true;
6678
6679  return false;
6680}
6681
6682bool Sema::checkUnsafeAssigns(SourceLocation Loc,
6683                              QualType LHS, Expr *RHS) {
6684  Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
6685
6686  if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
6687    return false;
6688
6689  if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
6690    return true;
6691
6692  return false;
6693}
6694
6695void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
6696                              Expr *LHS, Expr *RHS) {
6697  QualType LHSType;
6698  // PropertyRef on LHS type need be directly obtained from
6699  // its declaration as it has a PsuedoType.
6700  ObjCPropertyRefExpr *PRE
6701    = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
6702  if (PRE && !PRE->isImplicitProperty()) {
6703    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
6704    if (PD)
6705      LHSType = PD->getType();
6706  }
6707
6708  if (LHSType.isNull())
6709    LHSType = LHS->getType();
6710
6711  Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
6712
6713  if (LT == Qualifiers::OCL_Weak) {
6714    DiagnosticsEngine::Level Level =
6715      Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak, Loc);
6716    if (Level != DiagnosticsEngine::Ignored)
6717      getCurFunction()->markSafeWeakUse(LHS);
6718  }
6719
6720  if (checkUnsafeAssigns(Loc, LHSType, RHS))
6721    return;
6722
6723  // FIXME. Check for other life times.
6724  if (LT != Qualifiers::OCL_None)
6725    return;
6726
6727  if (PRE) {
6728    if (PRE->isImplicitProperty())
6729      return;
6730    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
6731    if (!PD)
6732      return;
6733
6734    unsigned Attributes = PD->getPropertyAttributes();
6735    if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) {
6736      // when 'assign' attribute was not explicitly specified
6737      // by user, ignore it and rely on property type itself
6738      // for lifetime info.
6739      unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
6740      if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) &&
6741          LHSType->isObjCRetainableType())
6742        return;
6743
6744      while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
6745        if (cast->getCastKind() == CK_ARCConsumeObject) {
6746          Diag(Loc, diag::warn_arc_retained_property_assign)
6747          << RHS->getSourceRange();
6748          return;
6749        }
6750        RHS = cast->getSubExpr();
6751      }
6752    }
6753    else if (Attributes & ObjCPropertyDecl::OBJC_PR_weak) {
6754      if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
6755        return;
6756    }
6757  }
6758}
6759
6760//===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
6761
6762namespace {
6763bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
6764                                 SourceLocation StmtLoc,
6765                                 const NullStmt *Body) {
6766  // Do not warn if the body is a macro that expands to nothing, e.g:
6767  //
6768  // #define CALL(x)
6769  // if (condition)
6770  //   CALL(0);
6771  //
6772  if (Body->hasLeadingEmptyMacro())
6773    return false;
6774
6775  // Get line numbers of statement and body.
6776  bool StmtLineInvalid;
6777  unsigned StmtLine = SourceMgr.getSpellingLineNumber(StmtLoc,
6778                                                      &StmtLineInvalid);
6779  if (StmtLineInvalid)
6780    return false;
6781
6782  bool BodyLineInvalid;
6783  unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
6784                                                      &BodyLineInvalid);
6785  if (BodyLineInvalid)
6786    return false;
6787
6788  // Warn if null statement and body are on the same line.
6789  if (StmtLine != BodyLine)
6790    return false;
6791
6792  return true;
6793}
6794} // Unnamed namespace
6795
6796void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
6797                                 const Stmt *Body,
6798                                 unsigned DiagID) {
6799  // Since this is a syntactic check, don't emit diagnostic for template
6800  // instantiations, this just adds noise.
6801  if (CurrentInstantiationScope)
6802    return;
6803
6804  // The body should be a null statement.
6805  const NullStmt *NBody = dyn_cast<NullStmt>(Body);
6806  if (!NBody)
6807    return;
6808
6809  // Do the usual checks.
6810  if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
6811    return;
6812
6813  Diag(NBody->getSemiLoc(), DiagID);
6814  Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
6815}
6816
6817void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
6818                                 const Stmt *PossibleBody) {
6819  assert(!CurrentInstantiationScope); // Ensured by caller
6820
6821  SourceLocation StmtLoc;
6822  const Stmt *Body;
6823  unsigned DiagID;
6824  if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
6825    StmtLoc = FS->getRParenLoc();
6826    Body = FS->getBody();
6827    DiagID = diag::warn_empty_for_body;
6828  } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
6829    StmtLoc = WS->getCond()->getSourceRange().getEnd();
6830    Body = WS->getBody();
6831    DiagID = diag::warn_empty_while_body;
6832  } else
6833    return; // Neither `for' nor `while'.
6834
6835  // The body should be a null statement.
6836  const NullStmt *NBody = dyn_cast<NullStmt>(Body);
6837  if (!NBody)
6838    return;
6839
6840  // Skip expensive checks if diagnostic is disabled.
6841  if (Diags.getDiagnosticLevel(DiagID, NBody->getSemiLoc()) ==
6842          DiagnosticsEngine::Ignored)
6843    return;
6844
6845  // Do the usual checks.
6846  if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
6847    return;
6848
6849  // `for(...);' and `while(...);' are popular idioms, so in order to keep
6850  // noise level low, emit diagnostics only if for/while is followed by a
6851  // CompoundStmt, e.g.:
6852  //    for (int i = 0; i < n; i++);
6853  //    {
6854  //      a(i);
6855  //    }
6856  // or if for/while is followed by a statement with more indentation
6857  // than for/while itself:
6858  //    for (int i = 0; i < n; i++);
6859  //      a(i);
6860  bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
6861  if (!ProbableTypo) {
6862    bool BodyColInvalid;
6863    unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
6864                             PossibleBody->getLocStart(),
6865                             &BodyColInvalid);
6866    if (BodyColInvalid)
6867      return;
6868
6869    bool StmtColInvalid;
6870    unsigned StmtCol = SourceMgr.getPresumedColumnNumber(
6871                             S->getLocStart(),
6872                             &StmtColInvalid);
6873    if (StmtColInvalid)
6874      return;
6875
6876    if (BodyCol > StmtCol)
6877      ProbableTypo = true;
6878  }
6879
6880  if (ProbableTypo) {
6881    Diag(NBody->getSemiLoc(), DiagID);
6882    Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
6883  }
6884}
6885
6886//===--- Layout compatibility ----------------------------------------------//
6887
6888namespace {
6889
6890bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
6891
6892/// \brief Check if two enumeration types are layout-compatible.
6893bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
6894  // C++11 [dcl.enum] p8:
6895  // Two enumeration types are layout-compatible if they have the same
6896  // underlying type.
6897  return ED1->isComplete() && ED2->isComplete() &&
6898         C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
6899}
6900
6901/// \brief Check if two fields are layout-compatible.
6902bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1, FieldDecl *Field2) {
6903  if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
6904    return false;
6905
6906  if (Field1->isBitField() != Field2->isBitField())
6907    return false;
6908
6909  if (Field1->isBitField()) {
6910    // Make sure that the bit-fields are the same length.
6911    unsigned Bits1 = Field1->getBitWidthValue(C);
6912    unsigned Bits2 = Field2->getBitWidthValue(C);
6913
6914    if (Bits1 != Bits2)
6915      return false;
6916  }
6917
6918  return true;
6919}
6920
6921/// \brief Check if two standard-layout structs are layout-compatible.
6922/// (C++11 [class.mem] p17)
6923bool isLayoutCompatibleStruct(ASTContext &C,
6924                              RecordDecl *RD1,
6925                              RecordDecl *RD2) {
6926  // If both records are C++ classes, check that base classes match.
6927  if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
6928    // If one of records is a CXXRecordDecl we are in C++ mode,
6929    // thus the other one is a CXXRecordDecl, too.
6930    const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
6931    // Check number of base classes.
6932    if (D1CXX->getNumBases() != D2CXX->getNumBases())
6933      return false;
6934
6935    // Check the base classes.
6936    for (CXXRecordDecl::base_class_const_iterator
6937               Base1 = D1CXX->bases_begin(),
6938           BaseEnd1 = D1CXX->bases_end(),
6939              Base2 = D2CXX->bases_begin();
6940         Base1 != BaseEnd1;
6941         ++Base1, ++Base2) {
6942      if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
6943        return false;
6944    }
6945  } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
6946    // If only RD2 is a C++ class, it should have zero base classes.
6947    if (D2CXX->getNumBases() > 0)
6948      return false;
6949  }
6950
6951  // Check the fields.
6952  RecordDecl::field_iterator Field2 = RD2->field_begin(),
6953                             Field2End = RD2->field_end(),
6954                             Field1 = RD1->field_begin(),
6955                             Field1End = RD1->field_end();
6956  for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
6957    if (!isLayoutCompatible(C, *Field1, *Field2))
6958      return false;
6959  }
6960  if (Field1 != Field1End || Field2 != Field2End)
6961    return false;
6962
6963  return true;
6964}
6965
6966/// \brief Check if two standard-layout unions are layout-compatible.
6967/// (C++11 [class.mem] p18)
6968bool isLayoutCompatibleUnion(ASTContext &C,
6969                             RecordDecl *RD1,
6970                             RecordDecl *RD2) {
6971  llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
6972  for (RecordDecl::field_iterator Field2 = RD2->field_begin(),
6973                                  Field2End = RD2->field_end();
6974       Field2 != Field2End; ++Field2) {
6975    UnmatchedFields.insert(*Field2);
6976  }
6977
6978  for (RecordDecl::field_iterator Field1 = RD1->field_begin(),
6979                                  Field1End = RD1->field_end();
6980       Field1 != Field1End; ++Field1) {
6981    llvm::SmallPtrSet<FieldDecl *, 8>::iterator
6982        I = UnmatchedFields.begin(),
6983        E = UnmatchedFields.end();
6984
6985    for ( ; I != E; ++I) {
6986      if (isLayoutCompatible(C, *Field1, *I)) {
6987        bool Result = UnmatchedFields.erase(*I);
6988        (void) Result;
6989        assert(Result);
6990        break;
6991      }
6992    }
6993    if (I == E)
6994      return false;
6995  }
6996
6997  return UnmatchedFields.empty();
6998}
6999
7000bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1, RecordDecl *RD2) {
7001  if (RD1->isUnion() != RD2->isUnion())
7002    return false;
7003
7004  if (RD1->isUnion())
7005    return isLayoutCompatibleUnion(C, RD1, RD2);
7006  else
7007    return isLayoutCompatibleStruct(C, RD1, RD2);
7008}
7009
7010/// \brief Check if two types are layout-compatible in C++11 sense.
7011bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
7012  if (T1.isNull() || T2.isNull())
7013    return false;
7014
7015  // C++11 [basic.types] p11:
7016  // If two types T1 and T2 are the same type, then T1 and T2 are
7017  // layout-compatible types.
7018  if (C.hasSameType(T1, T2))
7019    return true;
7020
7021  T1 = T1.getCanonicalType().getUnqualifiedType();
7022  T2 = T2.getCanonicalType().getUnqualifiedType();
7023
7024  const Type::TypeClass TC1 = T1->getTypeClass();
7025  const Type::TypeClass TC2 = T2->getTypeClass();
7026
7027  if (TC1 != TC2)
7028    return false;
7029
7030  if (TC1 == Type::Enum) {
7031    return isLayoutCompatible(C,
7032                              cast<EnumType>(T1)->getDecl(),
7033                              cast<EnumType>(T2)->getDecl());
7034  } else if (TC1 == Type::Record) {
7035    if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
7036      return false;
7037
7038    return isLayoutCompatible(C,
7039                              cast<RecordType>(T1)->getDecl(),
7040                              cast<RecordType>(T2)->getDecl());
7041  }
7042
7043  return false;
7044}
7045}
7046
7047//===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
7048
7049namespace {
7050/// \brief Given a type tag expression find the type tag itself.
7051///
7052/// \param TypeExpr Type tag expression, as it appears in user's code.
7053///
7054/// \param VD Declaration of an identifier that appears in a type tag.
7055///
7056/// \param MagicValue Type tag magic value.
7057bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
7058                     const ValueDecl **VD, uint64_t *MagicValue) {
7059  while(true) {
7060    if (!TypeExpr)
7061      return false;
7062
7063    TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
7064
7065    switch (TypeExpr->getStmtClass()) {
7066    case Stmt::UnaryOperatorClass: {
7067      const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
7068      if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
7069        TypeExpr = UO->getSubExpr();
7070        continue;
7071      }
7072      return false;
7073    }
7074
7075    case Stmt::DeclRefExprClass: {
7076      const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
7077      *VD = DRE->getDecl();
7078      return true;
7079    }
7080
7081    case Stmt::IntegerLiteralClass: {
7082      const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
7083      llvm::APInt MagicValueAPInt = IL->getValue();
7084      if (MagicValueAPInt.getActiveBits() <= 64) {
7085        *MagicValue = MagicValueAPInt.getZExtValue();
7086        return true;
7087      } else
7088        return false;
7089    }
7090
7091    case Stmt::BinaryConditionalOperatorClass:
7092    case Stmt::ConditionalOperatorClass: {
7093      const AbstractConditionalOperator *ACO =
7094          cast<AbstractConditionalOperator>(TypeExpr);
7095      bool Result;
7096      if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx)) {
7097        if (Result)
7098          TypeExpr = ACO->getTrueExpr();
7099        else
7100          TypeExpr = ACO->getFalseExpr();
7101        continue;
7102      }
7103      return false;
7104    }
7105
7106    case Stmt::BinaryOperatorClass: {
7107      const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
7108      if (BO->getOpcode() == BO_Comma) {
7109        TypeExpr = BO->getRHS();
7110        continue;
7111      }
7112      return false;
7113    }
7114
7115    default:
7116      return false;
7117    }
7118  }
7119}
7120
7121/// \brief Retrieve the C type corresponding to type tag TypeExpr.
7122///
7123/// \param TypeExpr Expression that specifies a type tag.
7124///
7125/// \param MagicValues Registered magic values.
7126///
7127/// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
7128///        kind.
7129///
7130/// \param TypeInfo Information about the corresponding C type.
7131///
7132/// \returns true if the corresponding C type was found.
7133bool GetMatchingCType(
7134        const IdentifierInfo *ArgumentKind,
7135        const Expr *TypeExpr, const ASTContext &Ctx,
7136        const llvm::DenseMap<Sema::TypeTagMagicValue,
7137                             Sema::TypeTagData> *MagicValues,
7138        bool &FoundWrongKind,
7139        Sema::TypeTagData &TypeInfo) {
7140  FoundWrongKind = false;
7141
7142  // Variable declaration that has type_tag_for_datatype attribute.
7143  const ValueDecl *VD = NULL;
7144
7145  uint64_t MagicValue;
7146
7147  if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue))
7148    return false;
7149
7150  if (VD) {
7151    for (specific_attr_iterator<TypeTagForDatatypeAttr>
7152             I = VD->specific_attr_begin<TypeTagForDatatypeAttr>(),
7153             E = VD->specific_attr_end<TypeTagForDatatypeAttr>();
7154         I != E; ++I) {
7155      if (I->getArgumentKind() != ArgumentKind) {
7156        FoundWrongKind = true;
7157        return false;
7158      }
7159      TypeInfo.Type = I->getMatchingCType();
7160      TypeInfo.LayoutCompatible = I->getLayoutCompatible();
7161      TypeInfo.MustBeNull = I->getMustBeNull();
7162      return true;
7163    }
7164    return false;
7165  }
7166
7167  if (!MagicValues)
7168    return false;
7169
7170  llvm::DenseMap<Sema::TypeTagMagicValue,
7171                 Sema::TypeTagData>::const_iterator I =
7172      MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
7173  if (I == MagicValues->end())
7174    return false;
7175
7176  TypeInfo = I->second;
7177  return true;
7178}
7179} // unnamed namespace
7180
7181void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
7182                                      uint64_t MagicValue, QualType Type,
7183                                      bool LayoutCompatible,
7184                                      bool MustBeNull) {
7185  if (!TypeTagForDatatypeMagicValues)
7186    TypeTagForDatatypeMagicValues.reset(
7187        new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
7188
7189  TypeTagMagicValue Magic(ArgumentKind, MagicValue);
7190  (*TypeTagForDatatypeMagicValues)[Magic] =
7191      TypeTagData(Type, LayoutCompatible, MustBeNull);
7192}
7193
7194namespace {
7195bool IsSameCharType(QualType T1, QualType T2) {
7196  const BuiltinType *BT1 = T1->getAs<BuiltinType>();
7197  if (!BT1)
7198    return false;
7199
7200  const BuiltinType *BT2 = T2->getAs<BuiltinType>();
7201  if (!BT2)
7202    return false;
7203
7204  BuiltinType::Kind T1Kind = BT1->getKind();
7205  BuiltinType::Kind T2Kind = BT2->getKind();
7206
7207  return (T1Kind == BuiltinType::SChar  && T2Kind == BuiltinType::Char_S) ||
7208         (T1Kind == BuiltinType::UChar  && T2Kind == BuiltinType::Char_U) ||
7209         (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
7210         (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
7211}
7212} // unnamed namespace
7213
7214void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
7215                                    const Expr * const *ExprArgs) {
7216  const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
7217  bool IsPointerAttr = Attr->getIsPointer();
7218
7219  const Expr *TypeTagExpr = ExprArgs[Attr->getTypeTagIdx()];
7220  bool FoundWrongKind;
7221  TypeTagData TypeInfo;
7222  if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
7223                        TypeTagForDatatypeMagicValues.get(),
7224                        FoundWrongKind, TypeInfo)) {
7225    if (FoundWrongKind)
7226      Diag(TypeTagExpr->getExprLoc(),
7227           diag::warn_type_tag_for_datatype_wrong_kind)
7228        << TypeTagExpr->getSourceRange();
7229    return;
7230  }
7231
7232  const Expr *ArgumentExpr = ExprArgs[Attr->getArgumentIdx()];
7233  if (IsPointerAttr) {
7234    // Skip implicit cast of pointer to `void *' (as a function argument).
7235    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
7236      if (ICE->getType()->isVoidPointerType() &&
7237          ICE->getCastKind() == CK_BitCast)
7238        ArgumentExpr = ICE->getSubExpr();
7239  }
7240  QualType ArgumentType = ArgumentExpr->getType();
7241
7242  // Passing a `void*' pointer shouldn't trigger a warning.
7243  if (IsPointerAttr && ArgumentType->isVoidPointerType())
7244    return;
7245
7246  if (TypeInfo.MustBeNull) {
7247    // Type tag with matching void type requires a null pointer.
7248    if (!ArgumentExpr->isNullPointerConstant(Context,
7249                                             Expr::NPC_ValueDependentIsNotNull)) {
7250      Diag(ArgumentExpr->getExprLoc(),
7251           diag::warn_type_safety_null_pointer_required)
7252          << ArgumentKind->getName()
7253          << ArgumentExpr->getSourceRange()
7254          << TypeTagExpr->getSourceRange();
7255    }
7256    return;
7257  }
7258
7259  QualType RequiredType = TypeInfo.Type;
7260  if (IsPointerAttr)
7261    RequiredType = Context.getPointerType(RequiredType);
7262
7263  bool mismatch = false;
7264  if (!TypeInfo.LayoutCompatible) {
7265    mismatch = !Context.hasSameType(ArgumentType, RequiredType);
7266
7267    // C++11 [basic.fundamental] p1:
7268    // Plain char, signed char, and unsigned char are three distinct types.
7269    //
7270    // But we treat plain `char' as equivalent to `signed char' or `unsigned
7271    // char' depending on the current char signedness mode.
7272    if (mismatch)
7273      if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
7274                                           RequiredType->getPointeeType())) ||
7275          (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
7276        mismatch = false;
7277  } else
7278    if (IsPointerAttr)
7279      mismatch = !isLayoutCompatible(Context,
7280                                     ArgumentType->getPointeeType(),
7281                                     RequiredType->getPointeeType());
7282    else
7283      mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
7284
7285  if (mismatch)
7286    Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
7287        << ArgumentType << ArgumentKind->getName()
7288        << TypeInfo.LayoutCompatible << RequiredType
7289        << ArgumentExpr->getSourceRange()
7290        << TypeTagExpr->getSourceRange();
7291}
7292