1/* 2******************************************************************************* 3* 4* Copyright (C) 2009-2012, International Business Machines 5* Corporation and others. All Rights Reserved. 6* 7******************************************************************************* 8* file name: normalizer2impl.cpp 9* encoding: US-ASCII 10* tab size: 8 (not used) 11* indentation:4 12* 13* created on: 2009nov22 14* created by: Markus W. Scherer 15*/ 16 17#include "unicode/utypes.h" 18 19#if !UCONFIG_NO_NORMALIZATION 20 21#include "unicode/normalizer2.h" 22#include "unicode/udata.h" 23#include "unicode/ustring.h" 24#include "unicode/utf16.h" 25#include "cmemory.h" 26#include "mutex.h" 27#include "normalizer2impl.h" 28#include "putilimp.h" 29#include "uassert.h" 30#include "uset_imp.h" 31#include "utrie2.h" 32#include "uvector.h" 33 34U_NAMESPACE_BEGIN 35 36// ReorderingBuffer -------------------------------------------------------- *** 37 38UBool ReorderingBuffer::init(int32_t destCapacity, UErrorCode &errorCode) { 39 int32_t length=str.length(); 40 start=str.getBuffer(destCapacity); 41 if(start==NULL) { 42 // getBuffer() already did str.setToBogus() 43 errorCode=U_MEMORY_ALLOCATION_ERROR; 44 return FALSE; 45 } 46 limit=start+length; 47 remainingCapacity=str.getCapacity()-length; 48 reorderStart=start; 49 if(start==limit) { 50 lastCC=0; 51 } else { 52 setIterator(); 53 lastCC=previousCC(); 54 // Set reorderStart after the last code point with cc<=1 if there is one. 55 if(lastCC>1) { 56 while(previousCC()>1) {} 57 } 58 reorderStart=codePointLimit; 59 } 60 return TRUE; 61} 62 63UBool ReorderingBuffer::equals(const UChar *otherStart, const UChar *otherLimit) const { 64 int32_t length=(int32_t)(limit-start); 65 return 66 length==(int32_t)(otherLimit-otherStart) && 67 0==u_memcmp(start, otherStart, length); 68} 69 70UBool ReorderingBuffer::appendSupplementary(UChar32 c, uint8_t cc, UErrorCode &errorCode) { 71 if(remainingCapacity<2 && !resize(2, errorCode)) { 72 return FALSE; 73 } 74 if(lastCC<=cc || cc==0) { 75 limit[0]=U16_LEAD(c); 76 limit[1]=U16_TRAIL(c); 77 limit+=2; 78 lastCC=cc; 79 if(cc<=1) { 80 reorderStart=limit; 81 } 82 } else { 83 insert(c, cc); 84 } 85 remainingCapacity-=2; 86 return TRUE; 87} 88 89UBool ReorderingBuffer::append(const UChar *s, int32_t length, 90 uint8_t leadCC, uint8_t trailCC, 91 UErrorCode &errorCode) { 92 if(length==0) { 93 return TRUE; 94 } 95 if(remainingCapacity<length && !resize(length, errorCode)) { 96 return FALSE; 97 } 98 remainingCapacity-=length; 99 if(lastCC<=leadCC || leadCC==0) { 100 if(trailCC<=1) { 101 reorderStart=limit+length; 102 } else if(leadCC<=1) { 103 reorderStart=limit+1; // Ok if not a code point boundary. 104 } 105 const UChar *sLimit=s+length; 106 do { *limit++=*s++; } while(s!=sLimit); 107 lastCC=trailCC; 108 } else { 109 int32_t i=0; 110 UChar32 c; 111 U16_NEXT(s, i, length, c); 112 insert(c, leadCC); // insert first code point 113 while(i<length) { 114 U16_NEXT(s, i, length, c); 115 if(i<length) { 116 // s must be in NFD, otherwise we need to use getCC(). 117 leadCC=Normalizer2Impl::getCCFromYesOrMaybe(impl.getNorm16(c)); 118 } else { 119 leadCC=trailCC; 120 } 121 append(c, leadCC, errorCode); 122 } 123 } 124 return TRUE; 125} 126 127UBool ReorderingBuffer::appendZeroCC(UChar32 c, UErrorCode &errorCode) { 128 int32_t cpLength=U16_LENGTH(c); 129 if(remainingCapacity<cpLength && !resize(cpLength, errorCode)) { 130 return FALSE; 131 } 132 remainingCapacity-=cpLength; 133 if(cpLength==1) { 134 *limit++=(UChar)c; 135 } else { 136 limit[0]=U16_LEAD(c); 137 limit[1]=U16_TRAIL(c); 138 limit+=2; 139 } 140 lastCC=0; 141 reorderStart=limit; 142 return TRUE; 143} 144 145UBool ReorderingBuffer::appendZeroCC(const UChar *s, const UChar *sLimit, UErrorCode &errorCode) { 146 if(s==sLimit) { 147 return TRUE; 148 } 149 int32_t length=(int32_t)(sLimit-s); 150 if(remainingCapacity<length && !resize(length, errorCode)) { 151 return FALSE; 152 } 153 u_memcpy(limit, s, length); 154 limit+=length; 155 remainingCapacity-=length; 156 lastCC=0; 157 reorderStart=limit; 158 return TRUE; 159} 160 161void ReorderingBuffer::remove() { 162 reorderStart=limit=start; 163 remainingCapacity=str.getCapacity(); 164 lastCC=0; 165} 166 167void ReorderingBuffer::removeSuffix(int32_t suffixLength) { 168 if(suffixLength<(limit-start)) { 169 limit-=suffixLength; 170 remainingCapacity+=suffixLength; 171 } else { 172 limit=start; 173 remainingCapacity=str.getCapacity(); 174 } 175 lastCC=0; 176 reorderStart=limit; 177} 178 179UBool ReorderingBuffer::resize(int32_t appendLength, UErrorCode &errorCode) { 180 int32_t reorderStartIndex=(int32_t)(reorderStart-start); 181 int32_t length=(int32_t)(limit-start); 182 str.releaseBuffer(length); 183 int32_t newCapacity=length+appendLength; 184 int32_t doubleCapacity=2*str.getCapacity(); 185 if(newCapacity<doubleCapacity) { 186 newCapacity=doubleCapacity; 187 } 188 if(newCapacity<256) { 189 newCapacity=256; 190 } 191 start=str.getBuffer(newCapacity); 192 if(start==NULL) { 193 // getBuffer() already did str.setToBogus() 194 errorCode=U_MEMORY_ALLOCATION_ERROR; 195 return FALSE; 196 } 197 reorderStart=start+reorderStartIndex; 198 limit=start+length; 199 remainingCapacity=str.getCapacity()-length; 200 return TRUE; 201} 202 203void ReorderingBuffer::skipPrevious() { 204 codePointLimit=codePointStart; 205 UChar c=*--codePointStart; 206 if(U16_IS_TRAIL(c) && start<codePointStart && U16_IS_LEAD(*(codePointStart-1))) { 207 --codePointStart; 208 } 209} 210 211uint8_t ReorderingBuffer::previousCC() { 212 codePointLimit=codePointStart; 213 if(reorderStart>=codePointStart) { 214 return 0; 215 } 216 UChar32 c=*--codePointStart; 217 if(c<Normalizer2Impl::MIN_CCC_LCCC_CP) { 218 return 0; 219 } 220 221 UChar c2; 222 if(U16_IS_TRAIL(c) && start<codePointStart && U16_IS_LEAD(c2=*(codePointStart-1))) { 223 --codePointStart; 224 c=U16_GET_SUPPLEMENTARY(c2, c); 225 } 226 return Normalizer2Impl::getCCFromYesOrMaybe(impl.getNorm16(c)); 227} 228 229// Inserts c somewhere before the last character. 230// Requires 0<cc<lastCC which implies reorderStart<limit. 231void ReorderingBuffer::insert(UChar32 c, uint8_t cc) { 232 for(setIterator(), skipPrevious(); previousCC()>cc;) {} 233 // insert c at codePointLimit, after the character with prevCC<=cc 234 UChar *q=limit; 235 UChar *r=limit+=U16_LENGTH(c); 236 do { 237 *--r=*--q; 238 } while(codePointLimit!=q); 239 writeCodePoint(q, c); 240 if(cc<=1) { 241 reorderStart=r; 242 } 243} 244 245// Normalizer2Impl --------------------------------------------------------- *** 246 247struct CanonIterData : public UMemory { 248 CanonIterData(UErrorCode &errorCode); 249 ~CanonIterData(); 250 void addToStartSet(UChar32 origin, UChar32 decompLead, UErrorCode &errorCode); 251 UTrie2 *trie; 252 UVector canonStartSets; // contains UnicodeSet * 253}; 254 255Normalizer2Impl::~Normalizer2Impl() { 256 udata_close(memory); 257 utrie2_close(normTrie); 258 delete (CanonIterData *)canonIterDataSingleton.fInstance; 259} 260 261UBool U_CALLCONV 262Normalizer2Impl::isAcceptable(void *context, 263 const char * /* type */, const char * /*name*/, 264 const UDataInfo *pInfo) { 265 if( 266 pInfo->size>=20 && 267 pInfo->isBigEndian==U_IS_BIG_ENDIAN && 268 pInfo->charsetFamily==U_CHARSET_FAMILY && 269 pInfo->dataFormat[0]==0x4e && /* dataFormat="Nrm2" */ 270 pInfo->dataFormat[1]==0x72 && 271 pInfo->dataFormat[2]==0x6d && 272 pInfo->dataFormat[3]==0x32 && 273 pInfo->formatVersion[0]==2 274 ) { 275 Normalizer2Impl *me=(Normalizer2Impl *)context; 276 uprv_memcpy(me->dataVersion, pInfo->dataVersion, 4); 277 return TRUE; 278 } else { 279 return FALSE; 280 } 281} 282 283void 284Normalizer2Impl::load(const char *packageName, const char *name, UErrorCode &errorCode) { 285 if(U_FAILURE(errorCode)) { 286 return; 287 } 288 memory=udata_openChoice(packageName, "nrm", name, isAcceptable, this, &errorCode); 289 if(U_FAILURE(errorCode)) { 290 return; 291 } 292 const uint8_t *inBytes=(const uint8_t *)udata_getMemory(memory); 293 const int32_t *inIndexes=(const int32_t *)inBytes; 294 int32_t indexesLength=inIndexes[IX_NORM_TRIE_OFFSET]/4; 295 if(indexesLength<=IX_MIN_MAYBE_YES) { 296 errorCode=U_INVALID_FORMAT_ERROR; // Not enough indexes. 297 return; 298 } 299 300 minDecompNoCP=inIndexes[IX_MIN_DECOMP_NO_CP]; 301 minCompNoMaybeCP=inIndexes[IX_MIN_COMP_NO_MAYBE_CP]; 302 303 minYesNo=inIndexes[IX_MIN_YES_NO]; 304 minYesNoMappingsOnly=inIndexes[IX_MIN_YES_NO_MAPPINGS_ONLY]; 305 minNoNo=inIndexes[IX_MIN_NO_NO]; 306 limitNoNo=inIndexes[IX_LIMIT_NO_NO]; 307 minMaybeYes=inIndexes[IX_MIN_MAYBE_YES]; 308 309 int32_t offset=inIndexes[IX_NORM_TRIE_OFFSET]; 310 int32_t nextOffset=inIndexes[IX_EXTRA_DATA_OFFSET]; 311 normTrie=utrie2_openFromSerialized(UTRIE2_16_VALUE_BITS, 312 inBytes+offset, nextOffset-offset, NULL, 313 &errorCode); 314 if(U_FAILURE(errorCode)) { 315 return; 316 } 317 318 offset=nextOffset; 319 nextOffset=inIndexes[IX_SMALL_FCD_OFFSET]; 320 maybeYesCompositions=(const uint16_t *)(inBytes+offset); 321 extraData=maybeYesCompositions+(MIN_NORMAL_MAYBE_YES-minMaybeYes); 322 323 // smallFCD: new in formatVersion 2 324 offset=nextOffset; 325 smallFCD=inBytes+offset; 326 327 // Build tccc180[]. 328 // gennorm2 enforces lccc=0 for c<MIN_CCC_LCCC_CP=U+0300. 329 uint8_t bits=0; 330 for(UChar c=0; c<0x180; bits>>=1) { 331 if((c&0xff)==0) { 332 bits=smallFCD[c>>8]; // one byte per 0x100 code points 333 } 334 if(bits&1) { 335 for(int i=0; i<0x20; ++i, ++c) { 336 tccc180[c]=(uint8_t)getFCD16FromNormData(c); 337 } 338 } else { 339 uprv_memset(tccc180+c, 0, 0x20); 340 c+=0x20; 341 } 342 } 343} 344 345uint8_t Normalizer2Impl::getTrailCCFromCompYesAndZeroCC(const UChar *cpStart, const UChar *cpLimit) const { 346 UChar32 c; 347 if(cpStart==(cpLimit-1)) { 348 c=*cpStart; 349 } else { 350 c=U16_GET_SUPPLEMENTARY(cpStart[0], cpStart[1]); 351 } 352 uint16_t prevNorm16=getNorm16(c); 353 if(prevNorm16<=minYesNo) { 354 return 0; // yesYes and Hangul LV/LVT have ccc=tccc=0 355 } else { 356 return (uint8_t)(*getMapping(prevNorm16)>>8); // tccc from yesNo 357 } 358} 359 360U_CDECL_BEGIN 361 362static UBool U_CALLCONV 363enumPropertyStartsRange(const void *context, UChar32 start, UChar32 /*end*/, uint32_t /*value*/) { 364 /* add the start code point to the USet */ 365 const USetAdder *sa=(const USetAdder *)context; 366 sa->add(sa->set, start); 367 return TRUE; 368} 369 370static uint32_t U_CALLCONV 371segmentStarterMapper(const void * /*context*/, uint32_t value) { 372 return value&CANON_NOT_SEGMENT_STARTER; 373} 374 375U_CDECL_END 376 377void 378Normalizer2Impl::addPropertyStarts(const USetAdder *sa, UErrorCode & /*errorCode*/) const { 379 /* add the start code point of each same-value range of each trie */ 380 utrie2_enum(normTrie, NULL, enumPropertyStartsRange, sa); 381 382 /* add Hangul LV syllables and LV+1 because of skippables */ 383 for(UChar c=Hangul::HANGUL_BASE; c<Hangul::HANGUL_LIMIT; c+=Hangul::JAMO_T_COUNT) { 384 sa->add(sa->set, c); 385 sa->add(sa->set, c+1); 386 } 387 sa->add(sa->set, Hangul::HANGUL_LIMIT); /* add Hangul+1 to continue with other properties */ 388} 389 390void 391Normalizer2Impl::addCanonIterPropertyStarts(const USetAdder *sa, UErrorCode &errorCode) const { 392 /* add the start code point of each same-value range of the canonical iterator data trie */ 393 if(ensureCanonIterData(errorCode)) { 394 // currently only used for the SEGMENT_STARTER property 395 utrie2_enum(((CanonIterData *)canonIterDataSingleton.fInstance)->trie, 396 segmentStarterMapper, enumPropertyStartsRange, sa); 397 } 398} 399 400const UChar * 401Normalizer2Impl::copyLowPrefixFromNulTerminated(const UChar *src, 402 UChar32 minNeedDataCP, 403 ReorderingBuffer *buffer, 404 UErrorCode &errorCode) const { 405 // Make some effort to support NUL-terminated strings reasonably. 406 // Take the part of the fast quick check loop that does not look up 407 // data and check the first part of the string. 408 // After this prefix, determine the string length to simplify the rest 409 // of the code. 410 const UChar *prevSrc=src; 411 UChar c; 412 while((c=*src++)<minNeedDataCP && c!=0) {} 413 // Back out the last character for full processing. 414 // Copy this prefix. 415 if(--src!=prevSrc) { 416 if(buffer!=NULL) { 417 buffer->appendZeroCC(prevSrc, src, errorCode); 418 } 419 } 420 return src; 421} 422 423// Dual functionality: 424// buffer!=NULL: normalize 425// buffer==NULL: isNormalized/spanQuickCheckYes 426const UChar * 427Normalizer2Impl::decompose(const UChar *src, const UChar *limit, 428 ReorderingBuffer *buffer, 429 UErrorCode &errorCode) const { 430 UChar32 minNoCP=minDecompNoCP; 431 if(limit==NULL) { 432 src=copyLowPrefixFromNulTerminated(src, minNoCP, buffer, errorCode); 433 if(U_FAILURE(errorCode)) { 434 return src; 435 } 436 limit=u_strchr(src, 0); 437 } 438 439 const UChar *prevSrc; 440 UChar32 c=0; 441 uint16_t norm16=0; 442 443 // only for quick check 444 const UChar *prevBoundary=src; 445 uint8_t prevCC=0; 446 447 for(;;) { 448 // count code units below the minimum or with irrelevant data for the quick check 449 for(prevSrc=src; src!=limit;) { 450 if( (c=*src)<minNoCP || 451 isMostDecompYesAndZeroCC(norm16=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(normTrie, c)) 452 ) { 453 ++src; 454 } else if(!U16_IS_SURROGATE(c)) { 455 break; 456 } else { 457 UChar c2; 458 if(U16_IS_SURROGATE_LEAD(c)) { 459 if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) { 460 c=U16_GET_SUPPLEMENTARY(c, c2); 461 } 462 } else /* trail surrogate */ { 463 if(prevSrc<src && U16_IS_LEAD(c2=*(src-1))) { 464 --src; 465 c=U16_GET_SUPPLEMENTARY(c2, c); 466 } 467 } 468 if(isMostDecompYesAndZeroCC(norm16=getNorm16(c))) { 469 src+=U16_LENGTH(c); 470 } else { 471 break; 472 } 473 } 474 } 475 // copy these code units all at once 476 if(src!=prevSrc) { 477 if(buffer!=NULL) { 478 if(!buffer->appendZeroCC(prevSrc, src, errorCode)) { 479 break; 480 } 481 } else { 482 prevCC=0; 483 prevBoundary=src; 484 } 485 } 486 if(src==limit) { 487 break; 488 } 489 490 // Check one above-minimum, relevant code point. 491 src+=U16_LENGTH(c); 492 if(buffer!=NULL) { 493 if(!decompose(c, norm16, *buffer, errorCode)) { 494 break; 495 } 496 } else { 497 if(isDecompYes(norm16)) { 498 uint8_t cc=getCCFromYesOrMaybe(norm16); 499 if(prevCC<=cc || cc==0) { 500 prevCC=cc; 501 if(cc<=1) { 502 prevBoundary=src; 503 } 504 continue; 505 } 506 } 507 return prevBoundary; // "no" or cc out of order 508 } 509 } 510 return src; 511} 512 513// Decompose a short piece of text which is likely to contain characters that 514// fail the quick check loop and/or where the quick check loop's overhead 515// is unlikely to be amortized. 516// Called by the compose() and makeFCD() implementations. 517UBool Normalizer2Impl::decomposeShort(const UChar *src, const UChar *limit, 518 ReorderingBuffer &buffer, 519 UErrorCode &errorCode) const { 520 while(src<limit) { 521 UChar32 c; 522 uint16_t norm16; 523 UTRIE2_U16_NEXT16(normTrie, src, limit, c, norm16); 524 if(!decompose(c, norm16, buffer, errorCode)) { 525 return FALSE; 526 } 527 } 528 return TRUE; 529} 530 531UBool Normalizer2Impl::decompose(UChar32 c, uint16_t norm16, 532 ReorderingBuffer &buffer, 533 UErrorCode &errorCode) const { 534 // Only loops for 1:1 algorithmic mappings. 535 for(;;) { 536 // get the decomposition and the lead and trail cc's 537 if(isDecompYes(norm16)) { 538 // c does not decompose 539 return buffer.append(c, getCCFromYesOrMaybe(norm16), errorCode); 540 } else if(isHangul(norm16)) { 541 // Hangul syllable: decompose algorithmically 542 UChar jamos[3]; 543 return buffer.appendZeroCC(jamos, jamos+Hangul::decompose(c, jamos), errorCode); 544 } else if(isDecompNoAlgorithmic(norm16)) { 545 c=mapAlgorithmic(c, norm16); 546 norm16=getNorm16(c); 547 } else { 548 // c decomposes, get everything from the variable-length extra data 549 const uint16_t *mapping=getMapping(norm16); 550 uint16_t firstUnit=*mapping; 551 int32_t length=firstUnit&MAPPING_LENGTH_MASK; 552 uint8_t leadCC, trailCC; 553 trailCC=(uint8_t)(firstUnit>>8); 554 if(firstUnit&MAPPING_HAS_CCC_LCCC_WORD) { 555 leadCC=(uint8_t)(*(mapping-1)>>8); 556 } else { 557 leadCC=0; 558 } 559 return buffer.append((const UChar *)mapping+1, length, leadCC, trailCC, errorCode); 560 } 561 } 562} 563 564const UChar * 565Normalizer2Impl::getDecomposition(UChar32 c, UChar buffer[4], int32_t &length) const { 566 const UChar *decomp=NULL; 567 uint16_t norm16; 568 for(;;) { 569 if(c<minDecompNoCP || isDecompYes(norm16=getNorm16(c))) { 570 // c does not decompose 571 return decomp; 572 } else if(isHangul(norm16)) { 573 // Hangul syllable: decompose algorithmically 574 length=Hangul::decompose(c, buffer); 575 return buffer; 576 } else if(isDecompNoAlgorithmic(norm16)) { 577 c=mapAlgorithmic(c, norm16); 578 decomp=buffer; 579 length=0; 580 U16_APPEND_UNSAFE(buffer, length, c); 581 } else { 582 // c decomposes, get everything from the variable-length extra data 583 const uint16_t *mapping=getMapping(norm16); 584 length=*mapping&MAPPING_LENGTH_MASK; 585 return (const UChar *)mapping+1; 586 } 587 } 588} 589 590// The capacity of the buffer must be 30=MAPPING_LENGTH_MASK-1 591// so that a raw mapping fits that consists of one unit ("rm0") 592// plus all but the first two code units of the normal mapping. 593// The maximum length of a normal mapping is 31=MAPPING_LENGTH_MASK. 594const UChar * 595Normalizer2Impl::getRawDecomposition(UChar32 c, UChar buffer[30], int32_t &length) const { 596 // We do not loop in this method because an algorithmic mapping itself 597 // becomes a final result rather than having to be decomposed recursively. 598 uint16_t norm16; 599 if(c<minDecompNoCP || isDecompYes(norm16=getNorm16(c))) { 600 // c does not decompose 601 return NULL; 602 } else if(isHangul(norm16)) { 603 // Hangul syllable: decompose algorithmically 604 Hangul::getRawDecomposition(c, buffer); 605 length=2; 606 return buffer; 607 } else if(isDecompNoAlgorithmic(norm16)) { 608 c=mapAlgorithmic(c, norm16); 609 length=0; 610 U16_APPEND_UNSAFE(buffer, length, c); 611 return buffer; 612 } else { 613 // c decomposes, get everything from the variable-length extra data 614 const uint16_t *mapping=getMapping(norm16); 615 uint16_t firstUnit=*mapping; 616 int32_t mLength=firstUnit&MAPPING_LENGTH_MASK; // length of normal mapping 617 if(firstUnit&MAPPING_HAS_RAW_MAPPING) { 618 // Read the raw mapping from before the firstUnit and before the optional ccc/lccc word. 619 // Bit 7=MAPPING_HAS_CCC_LCCC_WORD 620 const uint16_t *rawMapping=mapping-((firstUnit>>7)&1)-1; 621 uint16_t rm0=*rawMapping; 622 if(rm0<=MAPPING_LENGTH_MASK) { 623 length=rm0; 624 return (const UChar *)rawMapping-rm0; 625 } else { 626 // Copy the normal mapping and replace its first two code units with rm0. 627 buffer[0]=(UChar)rm0; 628 u_memcpy(buffer+1, (const UChar *)mapping+1+2, mLength-2); 629 length=mLength-1; 630 return buffer; 631 } 632 } else { 633 length=mLength; 634 return (const UChar *)mapping+1; 635 } 636 } 637} 638 639void Normalizer2Impl::decomposeAndAppend(const UChar *src, const UChar *limit, 640 UBool doDecompose, 641 UnicodeString &safeMiddle, 642 ReorderingBuffer &buffer, 643 UErrorCode &errorCode) const { 644 buffer.copyReorderableSuffixTo(safeMiddle); 645 if(doDecompose) { 646 decompose(src, limit, &buffer, errorCode); 647 return; 648 } 649 // Just merge the strings at the boundary. 650 ForwardUTrie2StringIterator iter(normTrie, src, limit); 651 uint8_t firstCC, prevCC, cc; 652 firstCC=prevCC=cc=getCC(iter.next16()); 653 while(cc!=0) { 654 prevCC=cc; 655 cc=getCC(iter.next16()); 656 }; 657 if(limit==NULL) { // appendZeroCC() needs limit!=NULL 658 limit=u_strchr(iter.codePointStart, 0); 659 } 660 661 if (buffer.append(src, (int32_t)(iter.codePointStart-src), firstCC, prevCC, errorCode)) { 662 buffer.appendZeroCC(iter.codePointStart, limit, errorCode); 663 } 664} 665 666// Note: hasDecompBoundary() could be implemented as aliases to 667// hasFCDBoundaryBefore() and hasFCDBoundaryAfter() 668// at the cost of building the FCD trie for a decomposition normalizer. 669UBool Normalizer2Impl::hasDecompBoundary(UChar32 c, UBool before) const { 670 for(;;) { 671 if(c<minDecompNoCP) { 672 return TRUE; 673 } 674 uint16_t norm16=getNorm16(c); 675 if(isHangul(norm16) || isDecompYesAndZeroCC(norm16)) { 676 return TRUE; 677 } else if(norm16>MIN_NORMAL_MAYBE_YES) { 678 return FALSE; // ccc!=0 679 } else if(isDecompNoAlgorithmic(norm16)) { 680 c=mapAlgorithmic(c, norm16); 681 } else { 682 // c decomposes, get everything from the variable-length extra data 683 const uint16_t *mapping=getMapping(norm16); 684 uint16_t firstUnit=*mapping; 685 if((firstUnit&MAPPING_LENGTH_MASK)==0) { 686 return FALSE; 687 } 688 if(!before) { 689 // decomp after-boundary: same as hasFCDBoundaryAfter(), 690 // fcd16<=1 || trailCC==0 691 if(firstUnit>0x1ff) { 692 return FALSE; // trailCC>1 693 } 694 if(firstUnit<=0xff) { 695 return TRUE; // trailCC==0 696 } 697 // if(trailCC==1) test leadCC==0, same as checking for before-boundary 698 } 699 // TRUE if leadCC==0 (hasFCDBoundaryBefore()) 700 return (firstUnit&MAPPING_HAS_CCC_LCCC_WORD)==0 || (*(mapping-1)&0xff00)==0; 701 } 702 } 703} 704 705/* 706 * Finds the recomposition result for 707 * a forward-combining "lead" character, 708 * specified with a pointer to its compositions list, 709 * and a backward-combining "trail" character. 710 * 711 * If the lead and trail characters combine, then this function returns 712 * the following "compositeAndFwd" value: 713 * Bits 21..1 composite character 714 * Bit 0 set if the composite is a forward-combining starter 715 * otherwise it returns -1. 716 * 717 * The compositions list has (trail, compositeAndFwd) pair entries, 718 * encoded as either pairs or triples of 16-bit units. 719 * The last entry has the high bit of its first unit set. 720 * 721 * The list is sorted by ascending trail characters (there are no duplicates). 722 * A linear search is used. 723 * 724 * See normalizer2impl.h for a more detailed description 725 * of the compositions list format. 726 */ 727int32_t Normalizer2Impl::combine(const uint16_t *list, UChar32 trail) { 728 uint16_t key1, firstUnit; 729 if(trail<COMP_1_TRAIL_LIMIT) { 730 // trail character is 0..33FF 731 // result entry may have 2 or 3 units 732 key1=(uint16_t)(trail<<1); 733 while(key1>(firstUnit=*list)) { 734 list+=2+(firstUnit&COMP_1_TRIPLE); 735 } 736 if(key1==(firstUnit&COMP_1_TRAIL_MASK)) { 737 if(firstUnit&COMP_1_TRIPLE) { 738 return ((int32_t)list[1]<<16)|list[2]; 739 } else { 740 return list[1]; 741 } 742 } 743 } else { 744 // trail character is 3400..10FFFF 745 // result entry has 3 units 746 key1=(uint16_t)(COMP_1_TRAIL_LIMIT+ 747 (((trail>>COMP_1_TRAIL_SHIFT))& 748 ~COMP_1_TRIPLE)); 749 uint16_t key2=(uint16_t)(trail<<COMP_2_TRAIL_SHIFT); 750 uint16_t secondUnit; 751 for(;;) { 752 if(key1>(firstUnit=*list)) { 753 list+=2+(firstUnit&COMP_1_TRIPLE); 754 } else if(key1==(firstUnit&COMP_1_TRAIL_MASK)) { 755 if(key2>(secondUnit=list[1])) { 756 if(firstUnit&COMP_1_LAST_TUPLE) { 757 break; 758 } else { 759 list+=3; 760 } 761 } else if(key2==(secondUnit&COMP_2_TRAIL_MASK)) { 762 return ((int32_t)(secondUnit&~COMP_2_TRAIL_MASK)<<16)|list[2]; 763 } else { 764 break; 765 } 766 } else { 767 break; 768 } 769 } 770 } 771 return -1; 772} 773 774/** 775 * @param list some character's compositions list 776 * @param set recursively receives the composites from these compositions 777 */ 778void Normalizer2Impl::addComposites(const uint16_t *list, UnicodeSet &set) const { 779 uint16_t firstUnit; 780 int32_t compositeAndFwd; 781 do { 782 firstUnit=*list; 783 if((firstUnit&COMP_1_TRIPLE)==0) { 784 compositeAndFwd=list[1]; 785 list+=2; 786 } else { 787 compositeAndFwd=(((int32_t)list[1]&~COMP_2_TRAIL_MASK)<<16)|list[2]; 788 list+=3; 789 } 790 UChar32 composite=compositeAndFwd>>1; 791 if((compositeAndFwd&1)!=0) { 792 addComposites(getCompositionsListForComposite(getNorm16(composite)), set); 793 } 794 set.add(composite); 795 } while((firstUnit&COMP_1_LAST_TUPLE)==0); 796} 797 798/* 799 * Recomposes the buffer text starting at recomposeStartIndex 800 * (which is in NFD - decomposed and canonically ordered), 801 * and truncates the buffer contents. 802 * 803 * Note that recomposition never lengthens the text: 804 * Any character consists of either one or two code units; 805 * a composition may contain at most one more code unit than the original starter, 806 * while the combining mark that is removed has at least one code unit. 807 */ 808void Normalizer2Impl::recompose(ReorderingBuffer &buffer, int32_t recomposeStartIndex, 809 UBool onlyContiguous) const { 810 UChar *p=buffer.getStart()+recomposeStartIndex; 811 UChar *limit=buffer.getLimit(); 812 if(p==limit) { 813 return; 814 } 815 816 UChar *starter, *pRemove, *q, *r; 817 const uint16_t *compositionsList; 818 UChar32 c, compositeAndFwd; 819 uint16_t norm16; 820 uint8_t cc, prevCC; 821 UBool starterIsSupplementary; 822 823 // Some of the following variables are not used until we have a forward-combining starter 824 // and are only initialized now to avoid compiler warnings. 825 compositionsList=NULL; // used as indicator for whether we have a forward-combining starter 826 starter=NULL; 827 starterIsSupplementary=FALSE; 828 prevCC=0; 829 830 for(;;) { 831 UTRIE2_U16_NEXT16(normTrie, p, limit, c, norm16); 832 cc=getCCFromYesOrMaybe(norm16); 833 if( // this character combines backward and 834 isMaybe(norm16) && 835 // we have seen a starter that combines forward and 836 compositionsList!=NULL && 837 // the backward-combining character is not blocked 838 (prevCC<cc || prevCC==0) 839 ) { 840 if(isJamoVT(norm16)) { 841 // c is a Jamo V/T, see if we can compose it with the previous character. 842 if(c<Hangul::JAMO_T_BASE) { 843 // c is a Jamo Vowel, compose with previous Jamo L and following Jamo T. 844 UChar prev=(UChar)(*starter-Hangul::JAMO_L_BASE); 845 if(prev<Hangul::JAMO_L_COUNT) { 846 pRemove=p-1; 847 UChar syllable=(UChar) 848 (Hangul::HANGUL_BASE+ 849 (prev*Hangul::JAMO_V_COUNT+(c-Hangul::JAMO_V_BASE))* 850 Hangul::JAMO_T_COUNT); 851 UChar t; 852 if(p!=limit && (t=(UChar)(*p-Hangul::JAMO_T_BASE))<Hangul::JAMO_T_COUNT) { 853 ++p; 854 syllable+=t; // The next character was a Jamo T. 855 } 856 *starter=syllable; 857 // remove the Jamo V/T 858 q=pRemove; 859 r=p; 860 while(r<limit) { 861 *q++=*r++; 862 } 863 limit=q; 864 p=pRemove; 865 } 866 } 867 /* 868 * No "else" for Jamo T: 869 * Since the input is in NFD, there are no Hangul LV syllables that 870 * a Jamo T could combine with. 871 * All Jamo Ts are combined above when handling Jamo Vs. 872 */ 873 if(p==limit) { 874 break; 875 } 876 compositionsList=NULL; 877 continue; 878 } else if((compositeAndFwd=combine(compositionsList, c))>=0) { 879 // The starter and the combining mark (c) do combine. 880 UChar32 composite=compositeAndFwd>>1; 881 882 // Replace the starter with the composite, remove the combining mark. 883 pRemove=p-U16_LENGTH(c); // pRemove & p: start & limit of the combining mark 884 if(starterIsSupplementary) { 885 if(U_IS_SUPPLEMENTARY(composite)) { 886 // both are supplementary 887 starter[0]=U16_LEAD(composite); 888 starter[1]=U16_TRAIL(composite); 889 } else { 890 *starter=(UChar)composite; 891 // The composite is shorter than the starter, 892 // move the intermediate characters forward one. 893 starterIsSupplementary=FALSE; 894 q=starter+1; 895 r=q+1; 896 while(r<pRemove) { 897 *q++=*r++; 898 } 899 --pRemove; 900 } 901 } else if(U_IS_SUPPLEMENTARY(composite)) { 902 // The composite is longer than the starter, 903 // move the intermediate characters back one. 904 starterIsSupplementary=TRUE; 905 ++starter; // temporarily increment for the loop boundary 906 q=pRemove; 907 r=++pRemove; 908 while(starter<q) { 909 *--r=*--q; 910 } 911 *starter=U16_TRAIL(composite); 912 *--starter=U16_LEAD(composite); // undo the temporary increment 913 } else { 914 // both are on the BMP 915 *starter=(UChar)composite; 916 } 917 918 /* remove the combining mark by moving the following text over it */ 919 if(pRemove<p) { 920 q=pRemove; 921 r=p; 922 while(r<limit) { 923 *q++=*r++; 924 } 925 limit=q; 926 p=pRemove; 927 } 928 // Keep prevCC because we removed the combining mark. 929 930 if(p==limit) { 931 break; 932 } 933 // Is the composite a starter that combines forward? 934 if(compositeAndFwd&1) { 935 compositionsList= 936 getCompositionsListForComposite(getNorm16(composite)); 937 } else { 938 compositionsList=NULL; 939 } 940 941 // We combined; continue with looking for compositions. 942 continue; 943 } 944 } 945 946 // no combination this time 947 prevCC=cc; 948 if(p==limit) { 949 break; 950 } 951 952 // If c did not combine, then check if it is a starter. 953 if(cc==0) { 954 // Found a new starter. 955 if((compositionsList=getCompositionsListForDecompYes(norm16))!=NULL) { 956 // It may combine with something, prepare for it. 957 if(U_IS_BMP(c)) { 958 starterIsSupplementary=FALSE; 959 starter=p-1; 960 } else { 961 starterIsSupplementary=TRUE; 962 starter=p-2; 963 } 964 } 965 } else if(onlyContiguous) { 966 // FCC: no discontiguous compositions; any intervening character blocks. 967 compositionsList=NULL; 968 } 969 } 970 buffer.setReorderingLimit(limit); 971} 972 973UChar32 974Normalizer2Impl::composePair(UChar32 a, UChar32 b) const { 975 uint16_t norm16=getNorm16(a); // maps an out-of-range 'a' to inert norm16=0 976 const uint16_t *list; 977 if(isInert(norm16)) { 978 return U_SENTINEL; 979 } else if(norm16<minYesNoMappingsOnly) { 980 if(isJamoL(norm16)) { 981 b-=Hangul::JAMO_V_BASE; 982 if(0<=b && b<Hangul::JAMO_V_COUNT) { 983 return 984 (Hangul::HANGUL_BASE+ 985 ((a-Hangul::JAMO_L_BASE)*Hangul::JAMO_V_COUNT+b)* 986 Hangul::JAMO_T_COUNT); 987 } else { 988 return U_SENTINEL; 989 } 990 } else if(isHangul(norm16)) { 991 b-=Hangul::JAMO_T_BASE; 992 if(Hangul::isHangulWithoutJamoT(a) && 0<b && b<Hangul::JAMO_T_COUNT) { // not b==0! 993 return a+b; 994 } else { 995 return U_SENTINEL; 996 } 997 } else { 998 // 'a' has a compositions list in extraData 999 list=extraData+norm16; 1000 if(norm16>minYesNo) { // composite 'a' has both mapping & compositions list 1001 list+= // mapping pointer 1002 1+ // +1 to skip the first unit with the mapping lenth 1003 (*list&MAPPING_LENGTH_MASK); // + mapping length 1004 } 1005 } 1006 } else if(norm16<minMaybeYes || MIN_NORMAL_MAYBE_YES<=norm16) { 1007 return U_SENTINEL; 1008 } else { 1009 list=maybeYesCompositions+norm16-minMaybeYes; 1010 } 1011 if(b<0 || 0x10ffff<b) { // combine(list, b) requires a valid code point b 1012 return U_SENTINEL; 1013 } 1014#if U_SIGNED_RIGHT_SHIFT_IS_ARITHMETIC 1015 return combine(list, b)>>1; 1016#else 1017 int32_t compositeAndFwd=combine(list, b); 1018 return compositeAndFwd>=0 ? compositeAndFwd>>1 : U_SENTINEL; 1019#endif 1020} 1021 1022// Very similar to composeQuickCheck(): Make the same changes in both places if relevant. 1023// doCompose: normalize 1024// !doCompose: isNormalized (buffer must be empty and initialized) 1025UBool 1026Normalizer2Impl::compose(const UChar *src, const UChar *limit, 1027 UBool onlyContiguous, 1028 UBool doCompose, 1029 ReorderingBuffer &buffer, 1030 UErrorCode &errorCode) const { 1031 /* 1032 * prevBoundary points to the last character before the current one 1033 * that has a composition boundary before it with ccc==0 and quick check "yes". 1034 * Keeping track of prevBoundary saves us looking for a composition boundary 1035 * when we find a "no" or "maybe". 1036 * 1037 * When we back out from prevSrc back to prevBoundary, 1038 * then we also remove those same characters (which had been simply copied 1039 * or canonically-order-inserted) from the ReorderingBuffer. 1040 * Therefore, at all times, the [prevBoundary..prevSrc[ source units 1041 * must correspond 1:1 to destination units at the end of the destination buffer. 1042 */ 1043 const UChar *prevBoundary=src; 1044 UChar32 minNoMaybeCP=minCompNoMaybeCP; 1045 if(limit==NULL) { 1046 src=copyLowPrefixFromNulTerminated(src, minNoMaybeCP, 1047 doCompose ? &buffer : NULL, 1048 errorCode); 1049 if(U_FAILURE(errorCode)) { 1050 return FALSE; 1051 } 1052 if(prevBoundary<src) { 1053 // Set prevBoundary to the last character in the prefix. 1054 prevBoundary=src-1; 1055 } 1056 limit=u_strchr(src, 0); 1057 } 1058 1059 const UChar *prevSrc; 1060 UChar32 c=0; 1061 uint16_t norm16=0; 1062 1063 // only for isNormalized 1064 uint8_t prevCC=0; 1065 1066 for(;;) { 1067 // count code units below the minimum or with irrelevant data for the quick check 1068 for(prevSrc=src; src!=limit;) { 1069 if( (c=*src)<minNoMaybeCP || 1070 isCompYesAndZeroCC(norm16=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(normTrie, c)) 1071 ) { 1072 ++src; 1073 } else if(!U16_IS_SURROGATE(c)) { 1074 break; 1075 } else { 1076 UChar c2; 1077 if(U16_IS_SURROGATE_LEAD(c)) { 1078 if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) { 1079 c=U16_GET_SUPPLEMENTARY(c, c2); 1080 } 1081 } else /* trail surrogate */ { 1082 if(prevSrc<src && U16_IS_LEAD(c2=*(src-1))) { 1083 --src; 1084 c=U16_GET_SUPPLEMENTARY(c2, c); 1085 } 1086 } 1087 if(isCompYesAndZeroCC(norm16=getNorm16(c))) { 1088 src+=U16_LENGTH(c); 1089 } else { 1090 break; 1091 } 1092 } 1093 } 1094 // copy these code units all at once 1095 if(src!=prevSrc) { 1096 if(doCompose) { 1097 if(!buffer.appendZeroCC(prevSrc, src, errorCode)) { 1098 break; 1099 } 1100 } else { 1101 prevCC=0; 1102 } 1103 if(src==limit) { 1104 break; 1105 } 1106 // Set prevBoundary to the last character in the quick check loop. 1107 prevBoundary=src-1; 1108 if( U16_IS_TRAIL(*prevBoundary) && prevSrc<prevBoundary && 1109 U16_IS_LEAD(*(prevBoundary-1)) 1110 ) { 1111 --prevBoundary; 1112 } 1113 // The start of the current character (c). 1114 prevSrc=src; 1115 } else if(src==limit) { 1116 break; 1117 } 1118 1119 src+=U16_LENGTH(c); 1120 /* 1121 * isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo. 1122 * c is either a "noNo" (has a mapping) or a "maybeYes" (combines backward) 1123 * or has ccc!=0. 1124 * Check for Jamo V/T, then for regular characters. 1125 * c is not a Hangul syllable or Jamo L because those have "yes" properties. 1126 */ 1127 if(isJamoVT(norm16) && prevBoundary!=prevSrc) { 1128 UChar prev=*(prevSrc-1); 1129 UBool needToDecompose=FALSE; 1130 if(c<Hangul::JAMO_T_BASE) { 1131 // c is a Jamo Vowel, compose with previous Jamo L and following Jamo T. 1132 prev=(UChar)(prev-Hangul::JAMO_L_BASE); 1133 if(prev<Hangul::JAMO_L_COUNT) { 1134 if(!doCompose) { 1135 return FALSE; 1136 } 1137 UChar syllable=(UChar) 1138 (Hangul::HANGUL_BASE+ 1139 (prev*Hangul::JAMO_V_COUNT+(c-Hangul::JAMO_V_BASE))* 1140 Hangul::JAMO_T_COUNT); 1141 UChar t; 1142 if(src!=limit && (t=(UChar)(*src-Hangul::JAMO_T_BASE))<Hangul::JAMO_T_COUNT) { 1143 ++src; 1144 syllable+=t; // The next character was a Jamo T. 1145 prevBoundary=src; 1146 buffer.setLastChar(syllable); 1147 continue; 1148 } 1149 // If we see L+V+x where x!=T then we drop to the slow path, 1150 // decompose and recompose. 1151 // This is to deal with NFKC finding normal L and V but a 1152 // compatibility variant of a T. We need to either fully compose that 1153 // combination here (which would complicate the code and may not work 1154 // with strange custom data) or use the slow path -- or else our replacing 1155 // two input characters (L+V) with one output character (LV syllable) 1156 // would violate the invariant that [prevBoundary..prevSrc[ has the same 1157 // length as what we appended to the buffer since prevBoundary. 1158 needToDecompose=TRUE; 1159 } 1160 } else if(Hangul::isHangulWithoutJamoT(prev)) { 1161 // c is a Jamo Trailing consonant, 1162 // compose with previous Hangul LV that does not contain a Jamo T. 1163 if(!doCompose) { 1164 return FALSE; 1165 } 1166 buffer.setLastChar((UChar)(prev+c-Hangul::JAMO_T_BASE)); 1167 prevBoundary=src; 1168 continue; 1169 } 1170 if(!needToDecompose) { 1171 // The Jamo V/T did not compose into a Hangul syllable. 1172 if(doCompose) { 1173 if(!buffer.appendBMP((UChar)c, 0, errorCode)) { 1174 break; 1175 } 1176 } else { 1177 prevCC=0; 1178 } 1179 continue; 1180 } 1181 } 1182 /* 1183 * Source buffer pointers: 1184 * 1185 * all done quick check current char not yet 1186 * "yes" but (c) processed 1187 * may combine 1188 * forward 1189 * [-------------[-------------[-------------[-------------[ 1190 * | | | | | 1191 * orig. src prevBoundary prevSrc src limit 1192 * 1193 * 1194 * Destination buffer pointers inside the ReorderingBuffer: 1195 * 1196 * all done might take not filled yet 1197 * characters for 1198 * reordering 1199 * [-------------[-------------[-------------[ 1200 * | | | | 1201 * start reorderStart limit | 1202 * +remainingCap.+ 1203 */ 1204 if(norm16>=MIN_YES_YES_WITH_CC) { 1205 uint8_t cc=(uint8_t)norm16; // cc!=0 1206 if( onlyContiguous && // FCC 1207 (doCompose ? buffer.getLastCC() : prevCC)==0 && 1208 prevBoundary<prevSrc && 1209 // buffer.getLastCC()==0 && prevBoundary<prevSrc tell us that 1210 // [prevBoundary..prevSrc[ (which is exactly one character under these conditions) 1211 // passed the quick check "yes && ccc==0" test. 1212 // Check whether the last character was a "yesYes" or a "yesNo". 1213 // If a "yesNo", then we get its trailing ccc from its 1214 // mapping and check for canonical order. 1215 // All other cases are ok. 1216 getTrailCCFromCompYesAndZeroCC(prevBoundary, prevSrc)>cc 1217 ) { 1218 // Fails FCD test, need to decompose and contiguously recompose. 1219 if(!doCompose) { 1220 return FALSE; 1221 } 1222 } else if(doCompose) { 1223 if(!buffer.append(c, cc, errorCode)) { 1224 break; 1225 } 1226 continue; 1227 } else if(prevCC<=cc) { 1228 prevCC=cc; 1229 continue; 1230 } else { 1231 return FALSE; 1232 } 1233 } else if(!doCompose && !isMaybeOrNonZeroCC(norm16)) { 1234 return FALSE; 1235 } 1236 1237 /* 1238 * Find appropriate boundaries around this character, 1239 * decompose the source text from between the boundaries, 1240 * and recompose it. 1241 * 1242 * We may need to remove the last few characters from the ReorderingBuffer 1243 * to account for source text that was copied or appended 1244 * but needs to take part in the recomposition. 1245 */ 1246 1247 /* 1248 * Find the last composition boundary in [prevBoundary..src[. 1249 * It is either the decomposition of the current character (at prevSrc), 1250 * or prevBoundary. 1251 */ 1252 if(hasCompBoundaryBefore(c, norm16)) { 1253 prevBoundary=prevSrc; 1254 } else if(doCompose) { 1255 buffer.removeSuffix((int32_t)(prevSrc-prevBoundary)); 1256 } 1257 1258 // Find the next composition boundary in [src..limit[ - 1259 // modifies src to point to the next starter. 1260 src=(UChar *)findNextCompBoundary(src, limit); 1261 1262 // Decompose [prevBoundary..src[ into the buffer and then recompose that part of it. 1263 int32_t recomposeStartIndex=buffer.length(); 1264 if(!decomposeShort(prevBoundary, src, buffer, errorCode)) { 1265 break; 1266 } 1267 recompose(buffer, recomposeStartIndex, onlyContiguous); 1268 if(!doCompose) { 1269 if(!buffer.equals(prevBoundary, src)) { 1270 return FALSE; 1271 } 1272 buffer.remove(); 1273 prevCC=0; 1274 } 1275 1276 // Move to the next starter. We never need to look back before this point again. 1277 prevBoundary=src; 1278 } 1279 return TRUE; 1280} 1281 1282// Very similar to compose(): Make the same changes in both places if relevant. 1283// pQCResult==NULL: spanQuickCheckYes 1284// pQCResult!=NULL: quickCheck (*pQCResult must be UNORM_YES) 1285const UChar * 1286Normalizer2Impl::composeQuickCheck(const UChar *src, const UChar *limit, 1287 UBool onlyContiguous, 1288 UNormalizationCheckResult *pQCResult) const { 1289 /* 1290 * prevBoundary points to the last character before the current one 1291 * that has a composition boundary before it with ccc==0 and quick check "yes". 1292 */ 1293 const UChar *prevBoundary=src; 1294 UChar32 minNoMaybeCP=minCompNoMaybeCP; 1295 if(limit==NULL) { 1296 UErrorCode errorCode=U_ZERO_ERROR; 1297 src=copyLowPrefixFromNulTerminated(src, minNoMaybeCP, NULL, errorCode); 1298 if(prevBoundary<src) { 1299 // Set prevBoundary to the last character in the prefix. 1300 prevBoundary=src-1; 1301 } 1302 limit=u_strchr(src, 0); 1303 } 1304 1305 const UChar *prevSrc; 1306 UChar32 c=0; 1307 uint16_t norm16=0; 1308 uint8_t prevCC=0; 1309 1310 for(;;) { 1311 // count code units below the minimum or with irrelevant data for the quick check 1312 for(prevSrc=src;;) { 1313 if(src==limit) { 1314 return src; 1315 } 1316 if( (c=*src)<minNoMaybeCP || 1317 isCompYesAndZeroCC(norm16=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(normTrie, c)) 1318 ) { 1319 ++src; 1320 } else if(!U16_IS_SURROGATE(c)) { 1321 break; 1322 } else { 1323 UChar c2; 1324 if(U16_IS_SURROGATE_LEAD(c)) { 1325 if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) { 1326 c=U16_GET_SUPPLEMENTARY(c, c2); 1327 } 1328 } else /* trail surrogate */ { 1329 if(prevSrc<src && U16_IS_LEAD(c2=*(src-1))) { 1330 --src; 1331 c=U16_GET_SUPPLEMENTARY(c2, c); 1332 } 1333 } 1334 if(isCompYesAndZeroCC(norm16=getNorm16(c))) { 1335 src+=U16_LENGTH(c); 1336 } else { 1337 break; 1338 } 1339 } 1340 } 1341 if(src!=prevSrc) { 1342 // Set prevBoundary to the last character in the quick check loop. 1343 prevBoundary=src-1; 1344 if( U16_IS_TRAIL(*prevBoundary) && prevSrc<prevBoundary && 1345 U16_IS_LEAD(*(prevBoundary-1)) 1346 ) { 1347 --prevBoundary; 1348 } 1349 prevCC=0; 1350 // The start of the current character (c). 1351 prevSrc=src; 1352 } 1353 1354 src+=U16_LENGTH(c); 1355 /* 1356 * isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo. 1357 * c is either a "noNo" (has a mapping) or a "maybeYes" (combines backward) 1358 * or has ccc!=0. 1359 */ 1360 if(isMaybeOrNonZeroCC(norm16)) { 1361 uint8_t cc=getCCFromYesOrMaybe(norm16); 1362 if( onlyContiguous && // FCC 1363 cc!=0 && 1364 prevCC==0 && 1365 prevBoundary<prevSrc && 1366 // prevCC==0 && prevBoundary<prevSrc tell us that 1367 // [prevBoundary..prevSrc[ (which is exactly one character under these conditions) 1368 // passed the quick check "yes && ccc==0" test. 1369 // Check whether the last character was a "yesYes" or a "yesNo". 1370 // If a "yesNo", then we get its trailing ccc from its 1371 // mapping and check for canonical order. 1372 // All other cases are ok. 1373 getTrailCCFromCompYesAndZeroCC(prevBoundary, prevSrc)>cc 1374 ) { 1375 // Fails FCD test. 1376 } else if(prevCC<=cc || cc==0) { 1377 prevCC=cc; 1378 if(norm16<MIN_YES_YES_WITH_CC) { 1379 if(pQCResult!=NULL) { 1380 *pQCResult=UNORM_MAYBE; 1381 } else { 1382 return prevBoundary; 1383 } 1384 } 1385 continue; 1386 } 1387 } 1388 if(pQCResult!=NULL) { 1389 *pQCResult=UNORM_NO; 1390 } 1391 return prevBoundary; 1392 } 1393} 1394 1395void Normalizer2Impl::composeAndAppend(const UChar *src, const UChar *limit, 1396 UBool doCompose, 1397 UBool onlyContiguous, 1398 UnicodeString &safeMiddle, 1399 ReorderingBuffer &buffer, 1400 UErrorCode &errorCode) const { 1401 if(!buffer.isEmpty()) { 1402 const UChar *firstStarterInSrc=findNextCompBoundary(src, limit); 1403 if(src!=firstStarterInSrc) { 1404 const UChar *lastStarterInDest=findPreviousCompBoundary(buffer.getStart(), 1405 buffer.getLimit()); 1406 int32_t destSuffixLength=(int32_t)(buffer.getLimit()-lastStarterInDest); 1407 UnicodeString middle(lastStarterInDest, destSuffixLength); 1408 buffer.removeSuffix(destSuffixLength); 1409 safeMiddle=middle; 1410 middle.append(src, (int32_t)(firstStarterInSrc-src)); 1411 const UChar *middleStart=middle.getBuffer(); 1412 compose(middleStart, middleStart+middle.length(), onlyContiguous, 1413 TRUE, buffer, errorCode); 1414 if(U_FAILURE(errorCode)) { 1415 return; 1416 } 1417 src=firstStarterInSrc; 1418 } 1419 } 1420 if(doCompose) { 1421 compose(src, limit, onlyContiguous, TRUE, buffer, errorCode); 1422 } else { 1423 if(limit==NULL) { // appendZeroCC() needs limit!=NULL 1424 limit=u_strchr(src, 0); 1425 } 1426 buffer.appendZeroCC(src, limit, errorCode); 1427 } 1428} 1429 1430/** 1431 * Does c have a composition boundary before it? 1432 * True if its decomposition begins with a character that has 1433 * ccc=0 && NFC_QC=Yes (isCompYesAndZeroCC()). 1434 * As a shortcut, this is true if c itself has ccc=0 && NFC_QC=Yes 1435 * (isCompYesAndZeroCC()) so we need not decompose. 1436 */ 1437UBool Normalizer2Impl::hasCompBoundaryBefore(UChar32 c, uint16_t norm16) const { 1438 for(;;) { 1439 if(isCompYesAndZeroCC(norm16)) { 1440 return TRUE; 1441 } else if(isMaybeOrNonZeroCC(norm16)) { 1442 return FALSE; 1443 } else if(isDecompNoAlgorithmic(norm16)) { 1444 c=mapAlgorithmic(c, norm16); 1445 norm16=getNorm16(c); 1446 } else { 1447 // c decomposes, get everything from the variable-length extra data 1448 const uint16_t *mapping=getMapping(norm16); 1449 uint16_t firstUnit=*mapping; 1450 if((firstUnit&MAPPING_LENGTH_MASK)==0) { 1451 return FALSE; 1452 } 1453 if((firstUnit&MAPPING_HAS_CCC_LCCC_WORD) && (*(mapping-1)&0xff00)) { 1454 return FALSE; // non-zero leadCC 1455 } 1456 int32_t i=1; // skip over the firstUnit 1457 UChar32 c; 1458 U16_NEXT_UNSAFE(mapping, i, c); 1459 return isCompYesAndZeroCC(getNorm16(c)); 1460 } 1461 } 1462} 1463 1464UBool Normalizer2Impl::hasCompBoundaryAfter(UChar32 c, UBool onlyContiguous, UBool testInert) const { 1465 for(;;) { 1466 uint16_t norm16=getNorm16(c); 1467 if(isInert(norm16)) { 1468 return TRUE; 1469 } else if(norm16<=minYesNo) { 1470 // Hangul: norm16==minYesNo 1471 // Hangul LVT has a boundary after it. 1472 // Hangul LV and non-inert yesYes characters combine forward. 1473 return isHangul(norm16) && !Hangul::isHangulWithoutJamoT((UChar)c); 1474 } else if(norm16>= (testInert ? minNoNo : minMaybeYes)) { 1475 return FALSE; 1476 } else if(isDecompNoAlgorithmic(norm16)) { 1477 c=mapAlgorithmic(c, norm16); 1478 } else { 1479 // c decomposes, get everything from the variable-length extra data. 1480 // If testInert, then c must be a yesNo character which has lccc=0, 1481 // otherwise it could be a noNo. 1482 const uint16_t *mapping=getMapping(norm16); 1483 uint16_t firstUnit=*mapping; 1484 // TRUE if 1485 // not MAPPING_NO_COMP_BOUNDARY_AFTER 1486 // (which is set if 1487 // c is not deleted, and 1488 // it and its decomposition do not combine forward, and it has a starter) 1489 // and if FCC then trailCC<=1 1490 return 1491 (firstUnit&MAPPING_NO_COMP_BOUNDARY_AFTER)==0 && 1492 (!onlyContiguous || firstUnit<=0x1ff); 1493 } 1494 } 1495} 1496 1497const UChar *Normalizer2Impl::findPreviousCompBoundary(const UChar *start, const UChar *p) const { 1498 BackwardUTrie2StringIterator iter(normTrie, start, p); 1499 uint16_t norm16; 1500 do { 1501 norm16=iter.previous16(); 1502 } while(!hasCompBoundaryBefore(iter.codePoint, norm16)); 1503 // We could also test hasCompBoundaryAfter() and return iter.codePointLimit, 1504 // but that's probably not worth the extra cost. 1505 return iter.codePointStart; 1506} 1507 1508const UChar *Normalizer2Impl::findNextCompBoundary(const UChar *p, const UChar *limit) const { 1509 ForwardUTrie2StringIterator iter(normTrie, p, limit); 1510 uint16_t norm16; 1511 do { 1512 norm16=iter.next16(); 1513 } while(!hasCompBoundaryBefore(iter.codePoint, norm16)); 1514 return iter.codePointStart; 1515} 1516 1517// Note: normalizer2impl.cpp r30982 (2011-nov-27) 1518// still had getFCDTrie() which built and cached an FCD trie. 1519// That provided faster access to FCD data than getFCD16FromNormData() 1520// but required synchronization and consumed some 10kB of heap memory 1521// in any process that uses FCD (e.g., via collation). 1522// tccc180[] and smallFCD[] are intended to help with any loss of performance, 1523// at least for Latin & CJK. 1524 1525// Gets the FCD value from the regular normalization data. 1526uint16_t Normalizer2Impl::getFCD16FromNormData(UChar32 c) const { 1527 // Only loops for 1:1 algorithmic mappings. 1528 for(;;) { 1529 uint16_t norm16=getNorm16(c); 1530 if(norm16<=minYesNo) { 1531 // no decomposition or Hangul syllable, all zeros 1532 return 0; 1533 } else if(norm16>=MIN_NORMAL_MAYBE_YES) { 1534 // combining mark 1535 norm16&=0xff; 1536 return norm16|(norm16<<8); 1537 } else if(norm16>=minMaybeYes) { 1538 return 0; 1539 } else if(isDecompNoAlgorithmic(norm16)) { 1540 c=mapAlgorithmic(c, norm16); 1541 } else { 1542 // c decomposes, get everything from the variable-length extra data 1543 const uint16_t *mapping=getMapping(norm16); 1544 uint16_t firstUnit=*mapping; 1545 if((firstUnit&MAPPING_LENGTH_MASK)==0) { 1546 // A character that is deleted (maps to an empty string) must 1547 // get the worst-case lccc and tccc values because arbitrary 1548 // characters on both sides will become adjacent. 1549 return 0x1ff; 1550 } else { 1551 norm16=firstUnit>>8; // tccc 1552 if(firstUnit&MAPPING_HAS_CCC_LCCC_WORD) { 1553 norm16|=*(mapping-1)&0xff00; // lccc 1554 } 1555 return norm16; 1556 } 1557 } 1558 } 1559} 1560 1561// Dual functionality: 1562// buffer!=NULL: normalize 1563// buffer==NULL: isNormalized/quickCheck/spanQuickCheckYes 1564const UChar * 1565Normalizer2Impl::makeFCD(const UChar *src, const UChar *limit, 1566 ReorderingBuffer *buffer, 1567 UErrorCode &errorCode) const { 1568 // Tracks the last FCD-safe boundary, before lccc=0 or after properly-ordered tccc<=1. 1569 // Similar to the prevBoundary in the compose() implementation. 1570 const UChar *prevBoundary=src; 1571 int32_t prevFCD16=0; 1572 if(limit==NULL) { 1573 src=copyLowPrefixFromNulTerminated(src, MIN_CCC_LCCC_CP, buffer, errorCode); 1574 if(U_FAILURE(errorCode)) { 1575 return src; 1576 } 1577 if(prevBoundary<src) { 1578 prevBoundary=src; 1579 // We know that the previous character's lccc==0. 1580 // Fetching the fcd16 value was deferred for this below-U+0300 code point. 1581 prevFCD16=getFCD16(*(src-1)); 1582 if(prevFCD16>1) { 1583 --prevBoundary; 1584 } 1585 } 1586 limit=u_strchr(src, 0); 1587 } 1588 1589 // Note: In this function we use buffer->appendZeroCC() because we track 1590 // the lead and trail combining classes here, rather than leaving it to 1591 // the ReorderingBuffer. 1592 // The exception is the call to decomposeShort() which uses the buffer 1593 // in the normal way. 1594 1595 const UChar *prevSrc; 1596 UChar32 c=0; 1597 uint16_t fcd16=0; 1598 1599 for(;;) { 1600 // count code units with lccc==0 1601 for(prevSrc=src; src!=limit;) { 1602 if((c=*src)<MIN_CCC_LCCC_CP) { 1603 prevFCD16=~c; 1604 ++src; 1605 } else if(!singleLeadMightHaveNonZeroFCD16(c)) { 1606 prevFCD16=0; 1607 ++src; 1608 } else { 1609 if(U16_IS_SURROGATE(c)) { 1610 UChar c2; 1611 if(U16_IS_SURROGATE_LEAD(c)) { 1612 if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) { 1613 c=U16_GET_SUPPLEMENTARY(c, c2); 1614 } 1615 } else /* trail surrogate */ { 1616 if(prevSrc<src && U16_IS_LEAD(c2=*(src-1))) { 1617 --src; 1618 c=U16_GET_SUPPLEMENTARY(c2, c); 1619 } 1620 } 1621 } 1622 if((fcd16=getFCD16FromNormData(c))<=0xff) { 1623 prevFCD16=fcd16; 1624 src+=U16_LENGTH(c); 1625 } else { 1626 break; 1627 } 1628 } 1629 } 1630 // copy these code units all at once 1631 if(src!=prevSrc) { 1632 if(buffer!=NULL && !buffer->appendZeroCC(prevSrc, src, errorCode)) { 1633 break; 1634 } 1635 if(src==limit) { 1636 break; 1637 } 1638 prevBoundary=src; 1639 // We know that the previous character's lccc==0. 1640 if(prevFCD16<0) { 1641 // Fetching the fcd16 value was deferred for this below-U+0300 code point. 1642 UChar32 prev=~prevFCD16; 1643 prevFCD16= prev<0x180 ? tccc180[prev] : getFCD16FromNormData(prev); 1644 if(prevFCD16>1) { 1645 --prevBoundary; 1646 } 1647 } else { 1648 const UChar *p=src-1; 1649 if(U16_IS_TRAIL(*p) && prevSrc<p && U16_IS_LEAD(*(p-1))) { 1650 --p; 1651 // Need to fetch the previous character's FCD value because 1652 // prevFCD16 was just for the trail surrogate code point. 1653 prevFCD16=getFCD16FromNormData(U16_GET_SUPPLEMENTARY(p[0], p[1])); 1654 // Still known to have lccc==0 because its lead surrogate unit had lccc==0. 1655 } 1656 if(prevFCD16>1) { 1657 prevBoundary=p; 1658 } 1659 } 1660 // The start of the current character (c). 1661 prevSrc=src; 1662 } else if(src==limit) { 1663 break; 1664 } 1665 1666 src+=U16_LENGTH(c); 1667 // The current character (c) at [prevSrc..src[ has a non-zero lead combining class. 1668 // Check for proper order, and decompose locally if necessary. 1669 if((prevFCD16&0xff)<=(fcd16>>8)) { 1670 // proper order: prev tccc <= current lccc 1671 if((fcd16&0xff)<=1) { 1672 prevBoundary=src; 1673 } 1674 if(buffer!=NULL && !buffer->appendZeroCC(c, errorCode)) { 1675 break; 1676 } 1677 prevFCD16=fcd16; 1678 continue; 1679 } else if(buffer==NULL) { 1680 return prevBoundary; // quick check "no" 1681 } else { 1682 /* 1683 * Back out the part of the source that we copied or appended 1684 * already but is now going to be decomposed. 1685 * prevSrc is set to after what was copied/appended. 1686 */ 1687 buffer->removeSuffix((int32_t)(prevSrc-prevBoundary)); 1688 /* 1689 * Find the part of the source that needs to be decomposed, 1690 * up to the next safe boundary. 1691 */ 1692 src=findNextFCDBoundary(src, limit); 1693 /* 1694 * The source text does not fulfill the conditions for FCD. 1695 * Decompose and reorder a limited piece of the text. 1696 */ 1697 if(!decomposeShort(prevBoundary, src, *buffer, errorCode)) { 1698 break; 1699 } 1700 prevBoundary=src; 1701 prevFCD16=0; 1702 } 1703 } 1704 return src; 1705} 1706 1707void Normalizer2Impl::makeFCDAndAppend(const UChar *src, const UChar *limit, 1708 UBool doMakeFCD, 1709 UnicodeString &safeMiddle, 1710 ReorderingBuffer &buffer, 1711 UErrorCode &errorCode) const { 1712 if(!buffer.isEmpty()) { 1713 const UChar *firstBoundaryInSrc=findNextFCDBoundary(src, limit); 1714 if(src!=firstBoundaryInSrc) { 1715 const UChar *lastBoundaryInDest=findPreviousFCDBoundary(buffer.getStart(), 1716 buffer.getLimit()); 1717 int32_t destSuffixLength=(int32_t)(buffer.getLimit()-lastBoundaryInDest); 1718 UnicodeString middle(lastBoundaryInDest, destSuffixLength); 1719 buffer.removeSuffix(destSuffixLength); 1720 safeMiddle=middle; 1721 middle.append(src, (int32_t)(firstBoundaryInSrc-src)); 1722 const UChar *middleStart=middle.getBuffer(); 1723 makeFCD(middleStart, middleStart+middle.length(), &buffer, errorCode); 1724 if(U_FAILURE(errorCode)) { 1725 return; 1726 } 1727 src=firstBoundaryInSrc; 1728 } 1729 } 1730 if(doMakeFCD) { 1731 makeFCD(src, limit, &buffer, errorCode); 1732 } else { 1733 if(limit==NULL) { // appendZeroCC() needs limit!=NULL 1734 limit=u_strchr(src, 0); 1735 } 1736 buffer.appendZeroCC(src, limit, errorCode); 1737 } 1738} 1739 1740const UChar *Normalizer2Impl::findPreviousFCDBoundary(const UChar *start, const UChar *p) const { 1741 while(start<p && previousFCD16(start, p)>0xff) {} 1742 return p; 1743} 1744 1745const UChar *Normalizer2Impl::findNextFCDBoundary(const UChar *p, const UChar *limit) const { 1746 while(p<limit) { 1747 const UChar *codePointStart=p; 1748 if(nextFCD16(p, limit)<=0xff) { 1749 return codePointStart; 1750 } 1751 } 1752 return p; 1753} 1754 1755// CanonicalIterator data -------------------------------------------------- *** 1756 1757CanonIterData::CanonIterData(UErrorCode &errorCode) : 1758 trie(utrie2_open(0, 0, &errorCode)), 1759 canonStartSets(uprv_deleteUObject, NULL, errorCode) {} 1760 1761CanonIterData::~CanonIterData() { 1762 utrie2_close(trie); 1763} 1764 1765void CanonIterData::addToStartSet(UChar32 origin, UChar32 decompLead, UErrorCode &errorCode) { 1766 uint32_t canonValue=utrie2_get32(trie, decompLead); 1767 if((canonValue&(CANON_HAS_SET|CANON_VALUE_MASK))==0 && origin!=0) { 1768 // origin is the first character whose decomposition starts with 1769 // the character for which we are setting the value. 1770 utrie2_set32(trie, decompLead, canonValue|origin, &errorCode); 1771 } else { 1772 // origin is not the first character, or it is U+0000. 1773 UnicodeSet *set; 1774 if((canonValue&CANON_HAS_SET)==0) { 1775 set=new UnicodeSet; 1776 if(set==NULL) { 1777 errorCode=U_MEMORY_ALLOCATION_ERROR; 1778 return; 1779 } 1780 UChar32 firstOrigin=(UChar32)(canonValue&CANON_VALUE_MASK); 1781 canonValue=(canonValue&~CANON_VALUE_MASK)|CANON_HAS_SET|(uint32_t)canonStartSets.size(); 1782 utrie2_set32(trie, decompLead, canonValue, &errorCode); 1783 canonStartSets.addElement(set, errorCode); 1784 if(firstOrigin!=0) { 1785 set->add(firstOrigin); 1786 } 1787 } else { 1788 set=(UnicodeSet *)canonStartSets[(int32_t)(canonValue&CANON_VALUE_MASK)]; 1789 } 1790 set->add(origin); 1791 } 1792} 1793 1794class CanonIterDataSingleton { 1795public: 1796 CanonIterDataSingleton(SimpleSingleton &s, Normalizer2Impl &ni, UErrorCode &ec) : 1797 singleton(s), impl(ni), errorCode(ec) {} 1798 CanonIterData *getInstance(UErrorCode &errorCode) { 1799 void *duplicate; 1800 CanonIterData *instance= 1801 (CanonIterData *)singleton.getInstance(createInstance, this, duplicate, errorCode); 1802 delete (CanonIterData *)duplicate; 1803 return instance; 1804 } 1805 static void *createInstance(const void *context, UErrorCode &errorCode); 1806 UBool rangeHandler(UChar32 start, UChar32 end, uint32_t value) { 1807 if(value!=0) { 1808 impl.makeCanonIterDataFromNorm16(start, end, (uint16_t)value, *newData, errorCode); 1809 } 1810 return U_SUCCESS(errorCode); 1811 } 1812 1813private: 1814 SimpleSingleton &singleton; 1815 Normalizer2Impl &impl; 1816 CanonIterData *newData; 1817 UErrorCode &errorCode; 1818}; 1819 1820U_CDECL_BEGIN 1821 1822// Call Normalizer2Impl::makeCanonIterDataFromNorm16() for a range of same-norm16 characters. 1823static UBool U_CALLCONV 1824enumCIDRangeHandler(const void *context, UChar32 start, UChar32 end, uint32_t value) { 1825 return ((CanonIterDataSingleton *)context)->rangeHandler(start, end, value); 1826} 1827 1828U_CDECL_END 1829 1830void *CanonIterDataSingleton::createInstance(const void *context, UErrorCode &errorCode) { 1831 CanonIterDataSingleton *me=(CanonIterDataSingleton *)context; 1832 me->newData=new CanonIterData(errorCode); 1833 if(me->newData==NULL) { 1834 errorCode=U_MEMORY_ALLOCATION_ERROR; 1835 return NULL; 1836 } 1837 if(U_SUCCESS(errorCode)) { 1838 utrie2_enum(me->impl.getNormTrie(), NULL, enumCIDRangeHandler, me); 1839 utrie2_freeze(me->newData->trie, UTRIE2_32_VALUE_BITS, &errorCode); 1840 if(U_SUCCESS(errorCode)) { 1841 return me->newData; 1842 } 1843 } 1844 delete me->newData; 1845 return NULL; 1846} 1847 1848void Normalizer2Impl::makeCanonIterDataFromNorm16(UChar32 start, UChar32 end, uint16_t norm16, 1849 CanonIterData &newData, 1850 UErrorCode &errorCode) const { 1851 if(norm16==0 || (minYesNo<=norm16 && norm16<minNoNo)) { 1852 // Inert, or 2-way mapping (including Hangul syllable). 1853 // We do not write a canonStartSet for any yesNo character. 1854 // Composites from 2-way mappings are added at runtime from the 1855 // starter's compositions list, and the other characters in 1856 // 2-way mappings get CANON_NOT_SEGMENT_STARTER set because they are 1857 // "maybe" characters. 1858 return; 1859 } 1860 for(UChar32 c=start; c<=end; ++c) { 1861 uint32_t oldValue=utrie2_get32(newData.trie, c); 1862 uint32_t newValue=oldValue; 1863 if(norm16>=minMaybeYes) { 1864 // not a segment starter if it occurs in a decomposition or has cc!=0 1865 newValue|=CANON_NOT_SEGMENT_STARTER; 1866 if(norm16<MIN_NORMAL_MAYBE_YES) { 1867 newValue|=CANON_HAS_COMPOSITIONS; 1868 } 1869 } else if(norm16<minYesNo) { 1870 newValue|=CANON_HAS_COMPOSITIONS; 1871 } else { 1872 // c has a one-way decomposition 1873 UChar32 c2=c; 1874 uint16_t norm16_2=norm16; 1875 while(limitNoNo<=norm16_2 && norm16_2<minMaybeYes) { 1876 c2=mapAlgorithmic(c2, norm16_2); 1877 norm16_2=getNorm16(c2); 1878 } 1879 if(minYesNo<=norm16_2 && norm16_2<limitNoNo) { 1880 // c decomposes, get everything from the variable-length extra data 1881 const uint16_t *mapping=getMapping(norm16_2); 1882 uint16_t firstUnit=*mapping; 1883 int32_t length=firstUnit&MAPPING_LENGTH_MASK; 1884 if((firstUnit&MAPPING_HAS_CCC_LCCC_WORD)!=0) { 1885 if(c==c2 && (*(mapping-1)&0xff)!=0) { 1886 newValue|=CANON_NOT_SEGMENT_STARTER; // original c has cc!=0 1887 } 1888 } 1889 // Skip empty mappings (no characters in the decomposition). 1890 if(length!=0) { 1891 ++mapping; // skip over the firstUnit 1892 // add c to first code point's start set 1893 int32_t i=0; 1894 U16_NEXT_UNSAFE(mapping, i, c2); 1895 newData.addToStartSet(c, c2, errorCode); 1896 // Set CANON_NOT_SEGMENT_STARTER for each remaining code point of a 1897 // one-way mapping. A 2-way mapping is possible here after 1898 // intermediate algorithmic mapping. 1899 if(norm16_2>=minNoNo) { 1900 while(i<length) { 1901 U16_NEXT_UNSAFE(mapping, i, c2); 1902 uint32_t c2Value=utrie2_get32(newData.trie, c2); 1903 if((c2Value&CANON_NOT_SEGMENT_STARTER)==0) { 1904 utrie2_set32(newData.trie, c2, c2Value|CANON_NOT_SEGMENT_STARTER, 1905 &errorCode); 1906 } 1907 } 1908 } 1909 } 1910 } else { 1911 // c decomposed to c2 algorithmically; c has cc==0 1912 newData.addToStartSet(c, c2, errorCode); 1913 } 1914 } 1915 if(newValue!=oldValue) { 1916 utrie2_set32(newData.trie, c, newValue, &errorCode); 1917 } 1918 } 1919} 1920 1921UBool Normalizer2Impl::ensureCanonIterData(UErrorCode &errorCode) const { 1922 // Logically const: Synchronized instantiation. 1923 Normalizer2Impl *me=const_cast<Normalizer2Impl *>(this); 1924 CanonIterDataSingleton(me->canonIterDataSingleton, *me, errorCode).getInstance(errorCode); 1925 return U_SUCCESS(errorCode); 1926} 1927 1928int32_t Normalizer2Impl::getCanonValue(UChar32 c) const { 1929 return (int32_t)utrie2_get32(((CanonIterData *)canonIterDataSingleton.fInstance)->trie, c); 1930} 1931 1932const UnicodeSet &Normalizer2Impl::getCanonStartSet(int32_t n) const { 1933 return *(const UnicodeSet *)( 1934 ((CanonIterData *)canonIterDataSingleton.fInstance)->canonStartSets[n]); 1935} 1936 1937UBool Normalizer2Impl::isCanonSegmentStarter(UChar32 c) const { 1938 return getCanonValue(c)>=0; 1939} 1940 1941UBool Normalizer2Impl::getCanonStartSet(UChar32 c, UnicodeSet &set) const { 1942 int32_t canonValue=getCanonValue(c)&~CANON_NOT_SEGMENT_STARTER; 1943 if(canonValue==0) { 1944 return FALSE; 1945 } 1946 set.clear(); 1947 int32_t value=canonValue&CANON_VALUE_MASK; 1948 if((canonValue&CANON_HAS_SET)!=0) { 1949 set.addAll(getCanonStartSet(value)); 1950 } else if(value!=0) { 1951 set.add(value); 1952 } 1953 if((canonValue&CANON_HAS_COMPOSITIONS)!=0) { 1954 uint16_t norm16=getNorm16(c); 1955 if(norm16==JAMO_L) { 1956 UChar32 syllable= 1957 (UChar32)(Hangul::HANGUL_BASE+(c-Hangul::JAMO_L_BASE)*Hangul::JAMO_VT_COUNT); 1958 set.add(syllable, syllable+Hangul::JAMO_VT_COUNT-1); 1959 } else { 1960 addComposites(getCompositionsList(norm16), set); 1961 } 1962 } 1963 return TRUE; 1964} 1965 1966U_NAMESPACE_END 1967 1968// Normalizer2 data swapping ----------------------------------------------- *** 1969 1970U_NAMESPACE_USE 1971 1972U_CAPI int32_t U_EXPORT2 1973unorm2_swap(const UDataSwapper *ds, 1974 const void *inData, int32_t length, void *outData, 1975 UErrorCode *pErrorCode) { 1976 const UDataInfo *pInfo; 1977 int32_t headerSize; 1978 1979 const uint8_t *inBytes; 1980 uint8_t *outBytes; 1981 1982 const int32_t *inIndexes; 1983 int32_t indexes[Normalizer2Impl::IX_MIN_MAYBE_YES+1]; 1984 1985 int32_t i, offset, nextOffset, size; 1986 1987 /* udata_swapDataHeader checks the arguments */ 1988 headerSize=udata_swapDataHeader(ds, inData, length, outData, pErrorCode); 1989 if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { 1990 return 0; 1991 } 1992 1993 /* check data format and format version */ 1994 pInfo=(const UDataInfo *)((const char *)inData+4); 1995 if(!( 1996 pInfo->dataFormat[0]==0x4e && /* dataFormat="Nrm2" */ 1997 pInfo->dataFormat[1]==0x72 && 1998 pInfo->dataFormat[2]==0x6d && 1999 pInfo->dataFormat[3]==0x32 && 2000 (pInfo->formatVersion[0]==1 || pInfo->formatVersion[0]==2) 2001 )) { 2002 udata_printError(ds, "unorm2_swap(): data format %02x.%02x.%02x.%02x (format version %02x) is not recognized as Normalizer2 data\n", 2003 pInfo->dataFormat[0], pInfo->dataFormat[1], 2004 pInfo->dataFormat[2], pInfo->dataFormat[3], 2005 pInfo->formatVersion[0]); 2006 *pErrorCode=U_UNSUPPORTED_ERROR; 2007 return 0; 2008 } 2009 2010 inBytes=(const uint8_t *)inData+headerSize; 2011 outBytes=(uint8_t *)outData+headerSize; 2012 2013 inIndexes=(const int32_t *)inBytes; 2014 2015 if(length>=0) { 2016 length-=headerSize; 2017 if(length<(int32_t)sizeof(indexes)) { 2018 udata_printError(ds, "unorm2_swap(): too few bytes (%d after header) for Normalizer2 data\n", 2019 length); 2020 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; 2021 return 0; 2022 } 2023 } 2024 2025 /* read the first few indexes */ 2026 for(i=0; i<=Normalizer2Impl::IX_MIN_MAYBE_YES; ++i) { 2027 indexes[i]=udata_readInt32(ds, inIndexes[i]); 2028 } 2029 2030 /* get the total length of the data */ 2031 size=indexes[Normalizer2Impl::IX_TOTAL_SIZE]; 2032 2033 if(length>=0) { 2034 if(length<size) { 2035 udata_printError(ds, "unorm2_swap(): too few bytes (%d after header) for all of Normalizer2 data\n", 2036 length); 2037 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; 2038 return 0; 2039 } 2040 2041 /* copy the data for inaccessible bytes */ 2042 if(inBytes!=outBytes) { 2043 uprv_memcpy(outBytes, inBytes, size); 2044 } 2045 2046 offset=0; 2047 2048 /* swap the int32_t indexes[] */ 2049 nextOffset=indexes[Normalizer2Impl::IX_NORM_TRIE_OFFSET]; 2050 ds->swapArray32(ds, inBytes, nextOffset-offset, outBytes, pErrorCode); 2051 offset=nextOffset; 2052 2053 /* swap the UTrie2 */ 2054 nextOffset=indexes[Normalizer2Impl::IX_EXTRA_DATA_OFFSET]; 2055 utrie2_swap(ds, inBytes+offset, nextOffset-offset, outBytes+offset, pErrorCode); 2056 offset=nextOffset; 2057 2058 /* swap the uint16_t extraData[] */ 2059 nextOffset=indexes[Normalizer2Impl::IX_SMALL_FCD_OFFSET]; 2060 ds->swapArray16(ds, inBytes+offset, nextOffset-offset, outBytes+offset, pErrorCode); 2061 offset=nextOffset; 2062 2063 /* no need to swap the uint8_t smallFCD[] (new in formatVersion 2) */ 2064 nextOffset=indexes[Normalizer2Impl::IX_SMALL_FCD_OFFSET+1]; 2065 offset=nextOffset; 2066 2067 U_ASSERT(offset==size); 2068 } 2069 2070 return headerSize+size; 2071} 2072 2073#endif // !UCONFIG_NO_NORMALIZATION 2074