1//===-- llvm/Value.h - Definition of the Value class ------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the Value class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_IR_VALUE_H
15#define LLVM_IR_VALUE_H
16
17#include "llvm/IR/Use.h"
18#include "llvm/Support/Casting.h"
19#include "llvm/Support/CBindingWrapping.h"
20#include "llvm/Support/Compiler.h"
21#include "llvm-c/Core.h"
22
23namespace llvm {
24
25class Constant;
26class Argument;
27class Instruction;
28class BasicBlock;
29class GlobalValue;
30class Function;
31class GlobalVariable;
32class GlobalAlias;
33class InlineAsm;
34class ValueSymbolTable;
35template<typename ValueTy> class StringMapEntry;
36typedef StringMapEntry<Value*> ValueName;
37class raw_ostream;
38class AssemblyAnnotationWriter;
39class ValueHandleBase;
40class LLVMContext;
41class Twine;
42class MDNode;
43class Type;
44class StringRef;
45
46//===----------------------------------------------------------------------===//
47//                                 Value Class
48//===----------------------------------------------------------------------===//
49
50/// This is a very important LLVM class. It is the base class of all values
51/// computed by a program that may be used as operands to other values. Value is
52/// the super class of other important classes such as Instruction and Function.
53/// All Values have a Type. Type is not a subclass of Value. Some values can
54/// have a name and they belong to some Module.  Setting the name on the Value
55/// automatically updates the module's symbol table.
56///
57/// Every value has a "use list" that keeps track of which other Values are
58/// using this Value.  A Value can also have an arbitrary number of ValueHandle
59/// objects that watch it and listen to RAUW and Destroy events.  See
60/// llvm/Support/ValueHandle.h for details.
61///
62/// @brief LLVM Value Representation
63class Value {
64  const unsigned char SubclassID;   // Subclass identifier (for isa/dyn_cast)
65  unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this?
66protected:
67  /// SubclassOptionalData - This member is similar to SubclassData, however it
68  /// is for holding information which may be used to aid optimization, but
69  /// which may be cleared to zero without affecting conservative
70  /// interpretation.
71  unsigned char SubclassOptionalData : 7;
72
73private:
74  /// SubclassData - This member is defined by this class, but is not used for
75  /// anything.  Subclasses can use it to hold whatever state they find useful.
76  /// This field is initialized to zero by the ctor.
77  unsigned short SubclassData;
78
79  Type *VTy;
80  Use *UseList;
81
82  friend class ValueSymbolTable; // Allow ValueSymbolTable to directly mod Name.
83  friend class ValueHandleBase;
84  ValueName *Name;
85
86  void operator=(const Value &) LLVM_DELETED_FUNCTION;
87  Value(const Value &) LLVM_DELETED_FUNCTION;
88
89protected:
90  /// printCustom - Value subclasses can override this to implement custom
91  /// printing behavior.
92  virtual void printCustom(raw_ostream &O) const;
93
94  Value(Type *Ty, unsigned scid);
95public:
96  virtual ~Value();
97
98  /// dump - Support for debugging, callable in GDB: V->dump()
99  //
100  void dump() const;
101
102  /// print - Implement operator<< on Value.
103  ///
104  void print(raw_ostream &O, AssemblyAnnotationWriter *AAW = 0) const;
105
106  /// All values are typed, get the type of this value.
107  ///
108  Type *getType() const { return VTy; }
109
110  /// All values hold a context through their type.
111  LLVMContext &getContext() const;
112
113  // All values can potentially be named.
114  bool hasName() const { return Name != 0 && SubclassID != MDStringVal; }
115  ValueName *getValueName() const { return Name; }
116  void setValueName(ValueName *VN) { Name = VN; }
117
118  /// getName() - Return a constant reference to the value's name. This is cheap
119  /// and guaranteed to return the same reference as long as the value is not
120  /// modified.
121  StringRef getName() const;
122
123  /// setName() - Change the name of the value, choosing a new unique name if
124  /// the provided name is taken.
125  ///
126  /// \param Name The new name; or "" if the value's name should be removed.
127  void setName(const Twine &Name);
128
129
130  /// takeName - transfer the name from V to this value, setting V's name to
131  /// empty.  It is an error to call V->takeName(V).
132  void takeName(Value *V);
133
134  /// replaceAllUsesWith - Go through the uses list for this definition and make
135  /// each use point to "V" instead of "this".  After this completes, 'this's
136  /// use list is guaranteed to be empty.
137  ///
138  void replaceAllUsesWith(Value *V);
139
140  //----------------------------------------------------------------------
141  // Methods for handling the chain of uses of this Value.
142  //
143  typedef value_use_iterator<User>       use_iterator;
144  typedef value_use_iterator<const User> const_use_iterator;
145
146  bool               use_empty() const { return UseList == 0; }
147  use_iterator       use_begin()       { return use_iterator(UseList); }
148  const_use_iterator use_begin() const { return const_use_iterator(UseList); }
149  use_iterator       use_end()         { return use_iterator(0);   }
150  const_use_iterator use_end()   const { return const_use_iterator(0);   }
151  User              *use_back()        { return *use_begin(); }
152  const User        *use_back()  const { return *use_begin(); }
153
154  /// hasOneUse - Return true if there is exactly one user of this value.  This
155  /// is specialized because it is a common request and does not require
156  /// traversing the whole use list.
157  ///
158  bool hasOneUse() const {
159    const_use_iterator I = use_begin(), E = use_end();
160    if (I == E) return false;
161    return ++I == E;
162  }
163
164  /// hasNUses - Return true if this Value has exactly N users.
165  ///
166  bool hasNUses(unsigned N) const;
167
168  /// hasNUsesOrMore - Return true if this value has N users or more.  This is
169  /// logically equivalent to getNumUses() >= N.
170  ///
171  bool hasNUsesOrMore(unsigned N) const;
172
173  bool isUsedInBasicBlock(const BasicBlock *BB) const;
174
175  /// getNumUses - This method computes the number of uses of this Value.  This
176  /// is a linear time operation.  Use hasOneUse, hasNUses, or hasNUsesOrMore
177  /// to check for specific values.
178  unsigned getNumUses() const;
179
180  /// addUse - This method should only be used by the Use class.
181  ///
182  void addUse(Use &U) { U.addToList(&UseList); }
183
184  /// An enumeration for keeping track of the concrete subclass of Value that
185  /// is actually instantiated. Values of this enumeration are kept in the
186  /// Value classes SubclassID field. They are used for concrete type
187  /// identification.
188  enum ValueTy {
189    ArgumentVal,              // This is an instance of Argument
190    BasicBlockVal,            // This is an instance of BasicBlock
191    FunctionVal,              // This is an instance of Function
192    GlobalAliasVal,           // This is an instance of GlobalAlias
193    GlobalVariableVal,        // This is an instance of GlobalVariable
194    UndefValueVal,            // This is an instance of UndefValue
195    BlockAddressVal,          // This is an instance of BlockAddress
196    ConstantExprVal,          // This is an instance of ConstantExpr
197    ConstantAggregateZeroVal, // This is an instance of ConstantAggregateZero
198    ConstantDataArrayVal,     // This is an instance of ConstantDataArray
199    ConstantDataVectorVal,    // This is an instance of ConstantDataVector
200    ConstantIntVal,           // This is an instance of ConstantInt
201    ConstantFPVal,            // This is an instance of ConstantFP
202    ConstantArrayVal,         // This is an instance of ConstantArray
203    ConstantStructVal,        // This is an instance of ConstantStruct
204    ConstantVectorVal,        // This is an instance of ConstantVector
205    ConstantPointerNullVal,   // This is an instance of ConstantPointerNull
206    MDNodeVal,                // This is an instance of MDNode
207    MDStringVal,              // This is an instance of MDString
208    InlineAsmVal,             // This is an instance of InlineAsm
209    PseudoSourceValueVal,     // This is an instance of PseudoSourceValue
210    FixedStackPseudoSourceValueVal, // This is an instance of
211                                    // FixedStackPseudoSourceValue
212    InstructionVal,           // This is an instance of Instruction
213    // Enum values starting at InstructionVal are used for Instructions;
214    // don't add new values here!
215
216    // Markers:
217    ConstantFirstVal = FunctionVal,
218    ConstantLastVal  = ConstantPointerNullVal
219  };
220
221  /// getValueID - Return an ID for the concrete type of this object.  This is
222  /// used to implement the classof checks.  This should not be used for any
223  /// other purpose, as the values may change as LLVM evolves.  Also, note that
224  /// for instructions, the Instruction's opcode is added to InstructionVal. So
225  /// this means three things:
226  /// # there is no value with code InstructionVal (no opcode==0).
227  /// # there are more possible values for the value type than in ValueTy enum.
228  /// # the InstructionVal enumerator must be the highest valued enumerator in
229  ///   the ValueTy enum.
230  unsigned getValueID() const {
231    return SubclassID;
232  }
233
234  /// getRawSubclassOptionalData - Return the raw optional flags value
235  /// contained in this value. This should only be used when testing two
236  /// Values for equivalence.
237  unsigned getRawSubclassOptionalData() const {
238    return SubclassOptionalData;
239  }
240
241  /// clearSubclassOptionalData - Clear the optional flags contained in
242  /// this value.
243  void clearSubclassOptionalData() {
244    SubclassOptionalData = 0;
245  }
246
247  /// hasSameSubclassOptionalData - Test whether the optional flags contained
248  /// in this value are equal to the optional flags in the given value.
249  bool hasSameSubclassOptionalData(const Value *V) const {
250    return SubclassOptionalData == V->SubclassOptionalData;
251  }
252
253  /// intersectOptionalDataWith - Clear any optional flags in this value
254  /// that are not also set in the given value.
255  void intersectOptionalDataWith(const Value *V) {
256    SubclassOptionalData &= V->SubclassOptionalData;
257  }
258
259  /// hasValueHandle - Return true if there is a value handle associated with
260  /// this value.
261  bool hasValueHandle() const { return HasValueHandle; }
262
263  /// \brief This method strips off any unneeded pointer casts,
264  /// all-zero GEPs and aliases from the specified value, returning the original
265  /// uncasted value. If this is called on a non-pointer value, it returns
266  /// 'this'.
267  Value *stripPointerCasts();
268  const Value *stripPointerCasts() const {
269    return const_cast<Value*>(this)->stripPointerCasts();
270  }
271
272  /// \brief This method strips off any unneeded pointer casts and
273  /// all-zero GEPs from the specified value, returning the original
274  /// uncasted value. If this is called on a non-pointer value, it returns
275  /// 'this'.
276  Value *stripPointerCastsNoFollowAliases();
277  const Value *stripPointerCastsNoFollowAliases() const {
278    return const_cast<Value*>(this)->stripPointerCastsNoFollowAliases();
279  }
280
281  /// stripInBoundsConstantOffsets - This method strips off unneeded pointer casts and
282  /// all-constant GEPs from the specified value, returning the original
283  /// pointer value. If this is called on a non-pointer value, it returns
284  /// 'this'.
285  Value *stripInBoundsConstantOffsets();
286  const Value *stripInBoundsConstantOffsets() const {
287    return const_cast<Value*>(this)->stripInBoundsConstantOffsets();
288  }
289
290  /// stripInBoundsOffsets - This method strips off unneeded pointer casts and
291  /// any in-bounds Offsets from the specified value, returning the original
292  /// pointer value. If this is called on a non-pointer value, it returns
293  /// 'this'.
294  Value *stripInBoundsOffsets();
295  const Value *stripInBoundsOffsets() const {
296    return const_cast<Value*>(this)->stripInBoundsOffsets();
297  }
298
299  /// isDereferenceablePointer - Test if this value is always a pointer to
300  /// allocated and suitably aligned memory for a simple load or store.
301  bool isDereferenceablePointer() const;
302
303  /// DoPHITranslation - If this value is a PHI node with CurBB as its parent,
304  /// return the value in the PHI node corresponding to PredBB.  If not, return
305  /// ourself.  This is useful if you want to know the value something has in a
306  /// predecessor block.
307  Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB);
308
309  const Value *DoPHITranslation(const BasicBlock *CurBB,
310                                const BasicBlock *PredBB) const{
311    return const_cast<Value*>(this)->DoPHITranslation(CurBB, PredBB);
312  }
313
314  /// MaximumAlignment - This is the greatest alignment value supported by
315  /// load, store, and alloca instructions, and global values.
316  static const unsigned MaximumAlignment = 1u << 29;
317
318  /// mutateType - Mutate the type of this Value to be of the specified type.
319  /// Note that this is an extremely dangerous operation which can create
320  /// completely invalid IR very easily.  It is strongly recommended that you
321  /// recreate IR objects with the right types instead of mutating them in
322  /// place.
323  void mutateType(Type *Ty) {
324    VTy = Ty;
325  }
326
327protected:
328  unsigned short getSubclassDataFromValue() const { return SubclassData; }
329  void setValueSubclassData(unsigned short D) { SubclassData = D; }
330};
331
332inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) {
333  V.print(OS);
334  return OS;
335}
336
337void Use::set(Value *V) {
338  if (Val) removeFromList();
339  Val = V;
340  if (V) V->addUse(*this);
341}
342
343
344// isa - Provide some specializations of isa so that we don't have to include
345// the subtype header files to test to see if the value is a subclass...
346//
347template <> struct isa_impl<Constant, Value> {
348  static inline bool doit(const Value &Val) {
349    return Val.getValueID() >= Value::ConstantFirstVal &&
350      Val.getValueID() <= Value::ConstantLastVal;
351  }
352};
353
354template <> struct isa_impl<Argument, Value> {
355  static inline bool doit (const Value &Val) {
356    return Val.getValueID() == Value::ArgumentVal;
357  }
358};
359
360template <> struct isa_impl<InlineAsm, Value> {
361  static inline bool doit(const Value &Val) {
362    return Val.getValueID() == Value::InlineAsmVal;
363  }
364};
365
366template <> struct isa_impl<Instruction, Value> {
367  static inline bool doit(const Value &Val) {
368    return Val.getValueID() >= Value::InstructionVal;
369  }
370};
371
372template <> struct isa_impl<BasicBlock, Value> {
373  static inline bool doit(const Value &Val) {
374    return Val.getValueID() == Value::BasicBlockVal;
375  }
376};
377
378template <> struct isa_impl<Function, Value> {
379  static inline bool doit(const Value &Val) {
380    return Val.getValueID() == Value::FunctionVal;
381  }
382};
383
384template <> struct isa_impl<GlobalVariable, Value> {
385  static inline bool doit(const Value &Val) {
386    return Val.getValueID() == Value::GlobalVariableVal;
387  }
388};
389
390template <> struct isa_impl<GlobalAlias, Value> {
391  static inline bool doit(const Value &Val) {
392    return Val.getValueID() == Value::GlobalAliasVal;
393  }
394};
395
396template <> struct isa_impl<GlobalValue, Value> {
397  static inline bool doit(const Value &Val) {
398    return isa<GlobalVariable>(Val) || isa<Function>(Val) ||
399      isa<GlobalAlias>(Val);
400  }
401};
402
403template <> struct isa_impl<MDNode, Value> {
404  static inline bool doit(const Value &Val) {
405    return Val.getValueID() == Value::MDNodeVal;
406  }
407};
408
409// Value* is only 4-byte aligned.
410template<>
411class PointerLikeTypeTraits<Value*> {
412  typedef Value* PT;
413public:
414  static inline void *getAsVoidPointer(PT P) { return P; }
415  static inline PT getFromVoidPointer(void *P) {
416    return static_cast<PT>(P);
417  }
418  enum { NumLowBitsAvailable = 2 };
419};
420
421// Create wrappers for C Binding types (see CBindingWrapping.h).
422DEFINE_ISA_CONVERSION_FUNCTIONS(Value, LLVMValueRef)
423
424/* Specialized opaque value conversions.
425 */
426inline Value **unwrap(LLVMValueRef *Vals) {
427  return reinterpret_cast<Value**>(Vals);
428}
429
430template<typename T>
431inline T **unwrap(LLVMValueRef *Vals, unsigned Length) {
432#ifdef DEBUG
433  for (LLVMValueRef *I = Vals, *E = Vals + Length; I != E; ++I)
434    cast<T>(*I);
435#endif
436  (void)Length;
437  return reinterpret_cast<T**>(Vals);
438}
439
440inline LLVMValueRef *wrap(const Value **Vals) {
441  return reinterpret_cast<LLVMValueRef*>(const_cast<Value**>(Vals));
442}
443
444} // End llvm namespace
445
446#endif
447