1//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/ADT/SmallPtrSet.h"
17#include "llvm/Analysis/InstructionSimplify.h"
18#include "llvm/IR/Constants.h"
19#include "llvm/IR/DataLayout.h"
20#include "llvm/IR/GlobalAlias.h"
21#include "llvm/IR/GlobalVariable.h"
22#include "llvm/IR/Instructions.h"
23#include "llvm/IR/IntrinsicInst.h"
24#include "llvm/IR/LLVMContext.h"
25#include "llvm/IR/Metadata.h"
26#include "llvm/IR/Operator.h"
27#include "llvm/Support/ConstantRange.h"
28#include "llvm/Support/GetElementPtrTypeIterator.h"
29#include "llvm/Support/MathExtras.h"
30#include "llvm/Support/PatternMatch.h"
31#include <cstring>
32using namespace llvm;
33using namespace llvm::PatternMatch;
34
35const unsigned MaxDepth = 6;
36
37/// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if
38/// unknown returns 0).  For vector types, returns the element type's bitwidth.
39static unsigned getBitWidth(Type *Ty, const DataLayout *TD) {
40  if (unsigned BitWidth = Ty->getScalarSizeInBits())
41    return BitWidth;
42  assert(isa<PointerType>(Ty) && "Expected a pointer type!");
43  return TD ? TD->getPointerSizeInBits() : 0;
44}
45
46static void ComputeMaskedBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
47                                    APInt &KnownZero, APInt &KnownOne,
48                                    APInt &KnownZero2, APInt &KnownOne2,
49                                    const DataLayout *TD, unsigned Depth) {
50  if (!Add) {
51    if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
52      // We know that the top bits of C-X are clear if X contains less bits
53      // than C (i.e. no wrap-around can happen).  For example, 20-X is
54      // positive if we can prove that X is >= 0 and < 16.
55      if (!CLHS->getValue().isNegative()) {
56        unsigned BitWidth = KnownZero.getBitWidth();
57        unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
58        // NLZ can't be BitWidth with no sign bit
59        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
60        llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
61
62        // If all of the MaskV bits are known to be zero, then we know the
63        // output top bits are zero, because we now know that the output is
64        // from [0-C].
65        if ((KnownZero2 & MaskV) == MaskV) {
66          unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
67          // Top bits known zero.
68          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
69        }
70      }
71    }
72  }
73
74  unsigned BitWidth = KnownZero.getBitWidth();
75
76  // If one of the operands has trailing zeros, then the bits that the
77  // other operand has in those bit positions will be preserved in the
78  // result. For an add, this works with either operand. For a subtract,
79  // this only works if the known zeros are in the right operand.
80  APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
81  llvm::ComputeMaskedBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1);
82  assert((LHSKnownZero & LHSKnownOne) == 0 &&
83         "Bits known to be one AND zero?");
84  unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
85
86  llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
87  assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
88  unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
89
90  // Determine which operand has more trailing zeros, and use that
91  // many bits from the other operand.
92  if (LHSKnownZeroOut > RHSKnownZeroOut) {
93    if (Add) {
94      APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
95      KnownZero |= KnownZero2 & Mask;
96      KnownOne  |= KnownOne2 & Mask;
97    } else {
98      // If the known zeros are in the left operand for a subtract,
99      // fall back to the minimum known zeros in both operands.
100      KnownZero |= APInt::getLowBitsSet(BitWidth,
101                                        std::min(LHSKnownZeroOut,
102                                                 RHSKnownZeroOut));
103    }
104  } else if (RHSKnownZeroOut >= LHSKnownZeroOut) {
105    APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut);
106    KnownZero |= LHSKnownZero & Mask;
107    KnownOne  |= LHSKnownOne & Mask;
108  }
109
110  // Are we still trying to solve for the sign bit?
111  if (!KnownZero.isNegative() && !KnownOne.isNegative()) {
112    if (NSW) {
113      if (Add) {
114        // Adding two positive numbers can't wrap into negative
115        if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
116          KnownZero |= APInt::getSignBit(BitWidth);
117        // and adding two negative numbers can't wrap into positive.
118        else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
119          KnownOne |= APInt::getSignBit(BitWidth);
120      } else {
121        // Subtracting a negative number from a positive one can't wrap
122        if (LHSKnownZero.isNegative() && KnownOne2.isNegative())
123          KnownZero |= APInt::getSignBit(BitWidth);
124        // neither can subtracting a positive number from a negative one.
125        else if (LHSKnownOne.isNegative() && KnownZero2.isNegative())
126          KnownOne |= APInt::getSignBit(BitWidth);
127      }
128    }
129  }
130}
131
132static void ComputeMaskedBitsMul(Value *Op0, Value *Op1, bool NSW,
133                                 APInt &KnownZero, APInt &KnownOne,
134                                 APInt &KnownZero2, APInt &KnownOne2,
135                                 const DataLayout *TD, unsigned Depth) {
136  unsigned BitWidth = KnownZero.getBitWidth();
137  ComputeMaskedBits(Op1, KnownZero, KnownOne, TD, Depth+1);
138  ComputeMaskedBits(Op0, KnownZero2, KnownOne2, TD, Depth+1);
139  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
140  assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
141
142  bool isKnownNegative = false;
143  bool isKnownNonNegative = false;
144  // If the multiplication is known not to overflow, compute the sign bit.
145  if (NSW) {
146    if (Op0 == Op1) {
147      // The product of a number with itself is non-negative.
148      isKnownNonNegative = true;
149    } else {
150      bool isKnownNonNegativeOp1 = KnownZero.isNegative();
151      bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
152      bool isKnownNegativeOp1 = KnownOne.isNegative();
153      bool isKnownNegativeOp0 = KnownOne2.isNegative();
154      // The product of two numbers with the same sign is non-negative.
155      isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
156        (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
157      // The product of a negative number and a non-negative number is either
158      // negative or zero.
159      if (!isKnownNonNegative)
160        isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
161                           isKnownNonZero(Op0, TD, Depth)) ||
162                          (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
163                           isKnownNonZero(Op1, TD, Depth));
164    }
165  }
166
167  // If low bits are zero in either operand, output low known-0 bits.
168  // Also compute a conserative estimate for high known-0 bits.
169  // More trickiness is possible, but this is sufficient for the
170  // interesting case of alignment computation.
171  KnownOne.clearAllBits();
172  unsigned TrailZ = KnownZero.countTrailingOnes() +
173                    KnownZero2.countTrailingOnes();
174  unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
175                             KnownZero2.countLeadingOnes(),
176                             BitWidth) - BitWidth;
177
178  TrailZ = std::min(TrailZ, BitWidth);
179  LeadZ = std::min(LeadZ, BitWidth);
180  KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
181              APInt::getHighBitsSet(BitWidth, LeadZ);
182
183  // Only make use of no-wrap flags if we failed to compute the sign bit
184  // directly.  This matters if the multiplication always overflows, in
185  // which case we prefer to follow the result of the direct computation,
186  // though as the program is invoking undefined behaviour we can choose
187  // whatever we like here.
188  if (isKnownNonNegative && !KnownOne.isNegative())
189    KnownZero.setBit(BitWidth - 1);
190  else if (isKnownNegative && !KnownZero.isNegative())
191    KnownOne.setBit(BitWidth - 1);
192}
193
194void llvm::computeMaskedBitsLoad(const MDNode &Ranges, APInt &KnownZero) {
195  unsigned BitWidth = KnownZero.getBitWidth();
196  unsigned NumRanges = Ranges.getNumOperands() / 2;
197  assert(NumRanges >= 1);
198
199  // Use the high end of the ranges to find leading zeros.
200  unsigned MinLeadingZeros = BitWidth;
201  for (unsigned i = 0; i < NumRanges; ++i) {
202    ConstantInt *Lower = cast<ConstantInt>(Ranges.getOperand(2*i + 0));
203    ConstantInt *Upper = cast<ConstantInt>(Ranges.getOperand(2*i + 1));
204    ConstantRange Range(Lower->getValue(), Upper->getValue());
205    if (Range.isWrappedSet())
206      MinLeadingZeros = 0; // -1 has no zeros
207    unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros();
208    MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros);
209  }
210
211  KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros);
212}
213/// ComputeMaskedBits - Determine which of the bits are known to be either zero
214/// or one and return them in the KnownZero/KnownOne bit sets.
215///
216/// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
217/// we cannot optimize based on the assumption that it is zero without changing
218/// it to be an explicit zero.  If we don't change it to zero, other code could
219/// optimized based on the contradictory assumption that it is non-zero.
220/// Because instcombine aggressively folds operations with undef args anyway,
221/// this won't lose us code quality.
222///
223/// This function is defined on values with integer type, values with pointer
224/// type (but only if TD is non-null), and vectors of integers.  In the case
225/// where V is a vector, known zero, and known one values are the
226/// same width as the vector element, and the bit is set only if it is true
227/// for all of the elements in the vector.
228void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
229                             const DataLayout *TD, unsigned Depth) {
230  assert(V && "No Value?");
231  assert(Depth <= MaxDepth && "Limit Search Depth");
232  unsigned BitWidth = KnownZero.getBitWidth();
233
234  assert((V->getType()->isIntOrIntVectorTy() ||
235          V->getType()->getScalarType()->isPointerTy()) &&
236         "Not integer or pointer type!");
237  assert((!TD ||
238          TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
239         (!V->getType()->isIntOrIntVectorTy() ||
240          V->getType()->getScalarSizeInBits() == BitWidth) &&
241         KnownZero.getBitWidth() == BitWidth &&
242         KnownOne.getBitWidth() == BitWidth &&
243         "V, Mask, KnownOne and KnownZero should have same BitWidth");
244
245  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
246    // We know all of the bits for a constant!
247    KnownOne = CI->getValue();
248    KnownZero = ~KnownOne;
249    return;
250  }
251  // Null and aggregate-zero are all-zeros.
252  if (isa<ConstantPointerNull>(V) ||
253      isa<ConstantAggregateZero>(V)) {
254    KnownOne.clearAllBits();
255    KnownZero = APInt::getAllOnesValue(BitWidth);
256    return;
257  }
258  // Handle a constant vector by taking the intersection of the known bits of
259  // each element.  There is no real need to handle ConstantVector here, because
260  // we don't handle undef in any particularly useful way.
261  if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
262    // We know that CDS must be a vector of integers. Take the intersection of
263    // each element.
264    KnownZero.setAllBits(); KnownOne.setAllBits();
265    APInt Elt(KnownZero.getBitWidth(), 0);
266    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
267      Elt = CDS->getElementAsInteger(i);
268      KnownZero &= ~Elt;
269      KnownOne &= Elt;
270    }
271    return;
272  }
273
274  // The address of an aligned GlobalValue has trailing zeros.
275  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
276    unsigned Align = GV->getAlignment();
277    if (Align == 0 && TD) {
278      if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
279        Type *ObjectType = GVar->getType()->getElementType();
280        if (ObjectType->isSized()) {
281          // If the object is defined in the current Module, we'll be giving
282          // it the preferred alignment. Otherwise, we have to assume that it
283          // may only have the minimum ABI alignment.
284          if (!GVar->isDeclaration() && !GVar->isWeakForLinker())
285            Align = TD->getPreferredAlignment(GVar);
286          else
287            Align = TD->getABITypeAlignment(ObjectType);
288        }
289      }
290    }
291    if (Align > 0)
292      KnownZero = APInt::getLowBitsSet(BitWidth,
293                                       countTrailingZeros(Align));
294    else
295      KnownZero.clearAllBits();
296    KnownOne.clearAllBits();
297    return;
298  }
299  // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
300  // the bits of its aliasee.
301  if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
302    if (GA->mayBeOverridden()) {
303      KnownZero.clearAllBits(); KnownOne.clearAllBits();
304    } else {
305      ComputeMaskedBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth+1);
306    }
307    return;
308  }
309
310  if (Argument *A = dyn_cast<Argument>(V)) {
311    unsigned Align = 0;
312
313    if (A->hasByValAttr()) {
314      // Get alignment information off byval arguments if specified in the IR.
315      Align = A->getParamAlignment();
316    } else if (TD && A->hasStructRetAttr()) {
317      // An sret parameter has at least the ABI alignment of the return type.
318      Type *EltTy = cast<PointerType>(A->getType())->getElementType();
319      if (EltTy->isSized())
320        Align = TD->getABITypeAlignment(EltTy);
321    }
322
323    if (Align)
324      KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
325    return;
326  }
327
328  // Start out not knowing anything.
329  KnownZero.clearAllBits(); KnownOne.clearAllBits();
330
331  if (Depth == MaxDepth)
332    return;  // Limit search depth.
333
334  Operator *I = dyn_cast<Operator>(V);
335  if (!I) return;
336
337  APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
338  switch (I->getOpcode()) {
339  default: break;
340  case Instruction::Load:
341    if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
342      computeMaskedBitsLoad(*MD, KnownZero);
343    return;
344  case Instruction::And: {
345    // If either the LHS or the RHS are Zero, the result is zero.
346    ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
347    ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
348    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
349    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
350
351    // Output known-1 bits are only known if set in both the LHS & RHS.
352    KnownOne &= KnownOne2;
353    // Output known-0 are known to be clear if zero in either the LHS | RHS.
354    KnownZero |= KnownZero2;
355    return;
356  }
357  case Instruction::Or: {
358    ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
359    ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
360    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
361    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
362
363    // Output known-0 bits are only known if clear in both the LHS & RHS.
364    KnownZero &= KnownZero2;
365    // Output known-1 are known to be set if set in either the LHS | RHS.
366    KnownOne |= KnownOne2;
367    return;
368  }
369  case Instruction::Xor: {
370    ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
371    ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
372    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
373    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
374
375    // Output known-0 bits are known if clear or set in both the LHS & RHS.
376    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
377    // Output known-1 are known to be set if set in only one of the LHS, RHS.
378    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
379    KnownZero = KnownZeroOut;
380    return;
381  }
382  case Instruction::Mul: {
383    bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
384    ComputeMaskedBitsMul(I->getOperand(0), I->getOperand(1), NSW,
385                         KnownZero, KnownOne, KnownZero2, KnownOne2, TD, Depth);
386    break;
387  }
388  case Instruction::UDiv: {
389    // For the purposes of computing leading zeros we can conservatively
390    // treat a udiv as a logical right shift by the power of 2 known to
391    // be less than the denominator.
392    ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
393    unsigned LeadZ = KnownZero2.countLeadingOnes();
394
395    KnownOne2.clearAllBits();
396    KnownZero2.clearAllBits();
397    ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
398    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
399    if (RHSUnknownLeadingOnes != BitWidth)
400      LeadZ = std::min(BitWidth,
401                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
402
403    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
404    return;
405  }
406  case Instruction::Select:
407    ComputeMaskedBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1);
408    ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD,
409                      Depth+1);
410    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
411    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
412
413    // Only known if known in both the LHS and RHS.
414    KnownOne &= KnownOne2;
415    KnownZero &= KnownZero2;
416    return;
417  case Instruction::FPTrunc:
418  case Instruction::FPExt:
419  case Instruction::FPToUI:
420  case Instruction::FPToSI:
421  case Instruction::SIToFP:
422  case Instruction::UIToFP:
423    return; // Can't work with floating point.
424  case Instruction::PtrToInt:
425  case Instruction::IntToPtr:
426    // We can't handle these if we don't know the pointer size.
427    if (!TD) return;
428    // FALL THROUGH and handle them the same as zext/trunc.
429  case Instruction::ZExt:
430  case Instruction::Trunc: {
431    Type *SrcTy = I->getOperand(0)->getType();
432
433    unsigned SrcBitWidth;
434    // Note that we handle pointer operands here because of inttoptr/ptrtoint
435    // which fall through here.
436    if(TD) {
437      SrcBitWidth = TD->getTypeSizeInBits(SrcTy->getScalarType());
438    } else {
439      SrcBitWidth = SrcTy->getScalarSizeInBits();
440      if (!SrcBitWidth) return;
441    }
442
443    assert(SrcBitWidth && "SrcBitWidth can't be zero");
444    KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
445    KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
446    ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
447    KnownZero = KnownZero.zextOrTrunc(BitWidth);
448    KnownOne = KnownOne.zextOrTrunc(BitWidth);
449    // Any top bits are known to be zero.
450    if (BitWidth > SrcBitWidth)
451      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
452    return;
453  }
454  case Instruction::BitCast: {
455    Type *SrcTy = I->getOperand(0)->getType();
456    if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
457        // TODO: For now, not handling conversions like:
458        // (bitcast i64 %x to <2 x i32>)
459        !I->getType()->isVectorTy()) {
460      ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
461      return;
462    }
463    break;
464  }
465  case Instruction::SExt: {
466    // Compute the bits in the result that are not present in the input.
467    unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
468
469    KnownZero = KnownZero.trunc(SrcBitWidth);
470    KnownOne = KnownOne.trunc(SrcBitWidth);
471    ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
472    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
473    KnownZero = KnownZero.zext(BitWidth);
474    KnownOne = KnownOne.zext(BitWidth);
475
476    // If the sign bit of the input is known set or clear, then we know the
477    // top bits of the result.
478    if (KnownZero[SrcBitWidth-1])             // Input sign bit known zero
479      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
480    else if (KnownOne[SrcBitWidth-1])           // Input sign bit known set
481      KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
482    return;
483  }
484  case Instruction::Shl:
485    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
486    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
487      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
488      ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
489      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
490      KnownZero <<= ShiftAmt;
491      KnownOne  <<= ShiftAmt;
492      KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
493      return;
494    }
495    break;
496  case Instruction::LShr:
497    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
498    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
499      // Compute the new bits that are at the top now.
500      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
501
502      // Unsigned shift right.
503      ComputeMaskedBits(I->getOperand(0), KnownZero,KnownOne, TD, Depth+1);
504      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
505      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
506      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
507      // high bits known zero.
508      KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
509      return;
510    }
511    break;
512  case Instruction::AShr:
513    // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
514    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
515      // Compute the new bits that are at the top now.
516      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
517
518      // Signed shift right.
519      ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
520      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
521      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
522      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
523
524      APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
525      if (KnownZero[BitWidth-ShiftAmt-1])    // New bits are known zero.
526        KnownZero |= HighBits;
527      else if (KnownOne[BitWidth-ShiftAmt-1])  // New bits are known one.
528        KnownOne |= HighBits;
529      return;
530    }
531    break;
532  case Instruction::Sub: {
533    bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
534    ComputeMaskedBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
535                            KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
536                            Depth);
537    break;
538  }
539  case Instruction::Add: {
540    bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
541    ComputeMaskedBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
542                            KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
543                            Depth);
544    break;
545  }
546  case Instruction::SRem:
547    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
548      APInt RA = Rem->getValue().abs();
549      if (RA.isPowerOf2()) {
550        APInt LowBits = RA - 1;
551        ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
552
553        // The low bits of the first operand are unchanged by the srem.
554        KnownZero = KnownZero2 & LowBits;
555        KnownOne = KnownOne2 & LowBits;
556
557        // If the first operand is non-negative or has all low bits zero, then
558        // the upper bits are all zero.
559        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
560          KnownZero |= ~LowBits;
561
562        // If the first operand is negative and not all low bits are zero, then
563        // the upper bits are all one.
564        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
565          KnownOne |= ~LowBits;
566
567        assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
568      }
569    }
570
571    // The sign bit is the LHS's sign bit, except when the result of the
572    // remainder is zero.
573    if (KnownZero.isNonNegative()) {
574      APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
575      ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD,
576                        Depth+1);
577      // If it's known zero, our sign bit is also zero.
578      if (LHSKnownZero.isNegative())
579        KnownZero.setBit(BitWidth - 1);
580    }
581
582    break;
583  case Instruction::URem: {
584    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
585      APInt RA = Rem->getValue();
586      if (RA.isPowerOf2()) {
587        APInt LowBits = (RA - 1);
588        ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD,
589                          Depth+1);
590        assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
591        KnownZero |= ~LowBits;
592        KnownOne &= LowBits;
593        break;
594      }
595    }
596
597    // Since the result is less than or equal to either operand, any leading
598    // zero bits in either operand must also exist in the result.
599    ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
600    ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
601
602    unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
603                                KnownZero2.countLeadingOnes());
604    KnownOne.clearAllBits();
605    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
606    break;
607  }
608
609  case Instruction::Alloca: {
610    AllocaInst *AI = cast<AllocaInst>(V);
611    unsigned Align = AI->getAlignment();
612    if (Align == 0 && TD)
613      Align = TD->getABITypeAlignment(AI->getType()->getElementType());
614
615    if (Align > 0)
616      KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
617    break;
618  }
619  case Instruction::GetElementPtr: {
620    // Analyze all of the subscripts of this getelementptr instruction
621    // to determine if we can prove known low zero bits.
622    APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
623    ComputeMaskedBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD,
624                      Depth+1);
625    unsigned TrailZ = LocalKnownZero.countTrailingOnes();
626
627    gep_type_iterator GTI = gep_type_begin(I);
628    for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
629      Value *Index = I->getOperand(i);
630      if (StructType *STy = dyn_cast<StructType>(*GTI)) {
631        // Handle struct member offset arithmetic.
632        if (!TD) return;
633        const StructLayout *SL = TD->getStructLayout(STy);
634        unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
635        uint64_t Offset = SL->getElementOffset(Idx);
636        TrailZ = std::min<unsigned>(TrailZ,
637                                    countTrailingZeros(Offset));
638      } else {
639        // Handle array index arithmetic.
640        Type *IndexedTy = GTI.getIndexedType();
641        if (!IndexedTy->isSized()) return;
642        unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
643        uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
644        LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
645        ComputeMaskedBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1);
646        TrailZ = std::min(TrailZ,
647                          unsigned(countTrailingZeros(TypeSize) +
648                                   LocalKnownZero.countTrailingOnes()));
649      }
650    }
651
652    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
653    break;
654  }
655  case Instruction::PHI: {
656    PHINode *P = cast<PHINode>(I);
657    // Handle the case of a simple two-predecessor recurrence PHI.
658    // There's a lot more that could theoretically be done here, but
659    // this is sufficient to catch some interesting cases.
660    if (P->getNumIncomingValues() == 2) {
661      for (unsigned i = 0; i != 2; ++i) {
662        Value *L = P->getIncomingValue(i);
663        Value *R = P->getIncomingValue(!i);
664        Operator *LU = dyn_cast<Operator>(L);
665        if (!LU)
666          continue;
667        unsigned Opcode = LU->getOpcode();
668        // Check for operations that have the property that if
669        // both their operands have low zero bits, the result
670        // will have low zero bits.
671        if (Opcode == Instruction::Add ||
672            Opcode == Instruction::Sub ||
673            Opcode == Instruction::And ||
674            Opcode == Instruction::Or ||
675            Opcode == Instruction::Mul) {
676          Value *LL = LU->getOperand(0);
677          Value *LR = LU->getOperand(1);
678          // Find a recurrence.
679          if (LL == I)
680            L = LR;
681          else if (LR == I)
682            L = LL;
683          else
684            break;
685          // Ok, we have a PHI of the form L op= R. Check for low
686          // zero bits.
687          ComputeMaskedBits(R, KnownZero2, KnownOne2, TD, Depth+1);
688
689          // We need to take the minimum number of known bits
690          APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
691          ComputeMaskedBits(L, KnownZero3, KnownOne3, TD, Depth+1);
692
693          KnownZero = APInt::getLowBitsSet(BitWidth,
694                                           std::min(KnownZero2.countTrailingOnes(),
695                                                    KnownZero3.countTrailingOnes()));
696          break;
697        }
698      }
699    }
700
701    // Unreachable blocks may have zero-operand PHI nodes.
702    if (P->getNumIncomingValues() == 0)
703      return;
704
705    // Otherwise take the unions of the known bit sets of the operands,
706    // taking conservative care to avoid excessive recursion.
707    if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
708      // Skip if every incoming value references to ourself.
709      if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
710        break;
711
712      KnownZero = APInt::getAllOnesValue(BitWidth);
713      KnownOne = APInt::getAllOnesValue(BitWidth);
714      for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
715        // Skip direct self references.
716        if (P->getIncomingValue(i) == P) continue;
717
718        KnownZero2 = APInt(BitWidth, 0);
719        KnownOne2 = APInt(BitWidth, 0);
720        // Recurse, but cap the recursion to one level, because we don't
721        // want to waste time spinning around in loops.
722        ComputeMaskedBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD,
723                          MaxDepth-1);
724        KnownZero &= KnownZero2;
725        KnownOne &= KnownOne2;
726        // If all bits have been ruled out, there's no need to check
727        // more operands.
728        if (!KnownZero && !KnownOne)
729          break;
730      }
731    }
732    break;
733  }
734  case Instruction::Call:
735    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
736      switch (II->getIntrinsicID()) {
737      default: break;
738      case Intrinsic::ctlz:
739      case Intrinsic::cttz: {
740        unsigned LowBits = Log2_32(BitWidth)+1;
741        // If this call is undefined for 0, the result will be less than 2^n.
742        if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
743          LowBits -= 1;
744        KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
745        break;
746      }
747      case Intrinsic::ctpop: {
748        unsigned LowBits = Log2_32(BitWidth)+1;
749        KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
750        break;
751      }
752      case Intrinsic::x86_sse42_crc32_64_8:
753      case Intrinsic::x86_sse42_crc32_64_64:
754        KnownZero = APInt::getHighBitsSet(64, 32);
755        break;
756      }
757    }
758    break;
759  case Instruction::ExtractValue:
760    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
761      ExtractValueInst *EVI = cast<ExtractValueInst>(I);
762      if (EVI->getNumIndices() != 1) break;
763      if (EVI->getIndices()[0] == 0) {
764        switch (II->getIntrinsicID()) {
765        default: break;
766        case Intrinsic::uadd_with_overflow:
767        case Intrinsic::sadd_with_overflow:
768          ComputeMaskedBitsAddSub(true, II->getArgOperand(0),
769                                  II->getArgOperand(1), false, KnownZero,
770                                  KnownOne, KnownZero2, KnownOne2, TD, Depth);
771          break;
772        case Intrinsic::usub_with_overflow:
773        case Intrinsic::ssub_with_overflow:
774          ComputeMaskedBitsAddSub(false, II->getArgOperand(0),
775                                  II->getArgOperand(1), false, KnownZero,
776                                  KnownOne, KnownZero2, KnownOne2, TD, Depth);
777          break;
778        case Intrinsic::umul_with_overflow:
779        case Intrinsic::smul_with_overflow:
780          ComputeMaskedBitsMul(II->getArgOperand(0), II->getArgOperand(1),
781                               false, KnownZero, KnownOne,
782                               KnownZero2, KnownOne2, TD, Depth);
783          break;
784        }
785      }
786    }
787  }
788}
789
790/// ComputeSignBit - Determine whether the sign bit is known to be zero or
791/// one.  Convenience wrapper around ComputeMaskedBits.
792void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
793                          const DataLayout *TD, unsigned Depth) {
794  unsigned BitWidth = getBitWidth(V->getType(), TD);
795  if (!BitWidth) {
796    KnownZero = false;
797    KnownOne = false;
798    return;
799  }
800  APInt ZeroBits(BitWidth, 0);
801  APInt OneBits(BitWidth, 0);
802  ComputeMaskedBits(V, ZeroBits, OneBits, TD, Depth);
803  KnownOne = OneBits[BitWidth - 1];
804  KnownZero = ZeroBits[BitWidth - 1];
805}
806
807/// isKnownToBeAPowerOfTwo - Return true if the given value is known to have exactly one
808/// bit set when defined. For vectors return true if every element is known to
809/// be a power of two when defined.  Supports values with integer or pointer
810/// types and vectors of integers.
811bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth) {
812  if (Constant *C = dyn_cast<Constant>(V)) {
813    if (C->isNullValue())
814      return OrZero;
815    if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
816      return CI->getValue().isPowerOf2();
817    // TODO: Handle vector constants.
818  }
819
820  // 1 << X is clearly a power of two if the one is not shifted off the end.  If
821  // it is shifted off the end then the result is undefined.
822  if (match(V, m_Shl(m_One(), m_Value())))
823    return true;
824
825  // (signbit) >>l X is clearly a power of two if the one is not shifted off the
826  // bottom.  If it is shifted off the bottom then the result is undefined.
827  if (match(V, m_LShr(m_SignBit(), m_Value())))
828    return true;
829
830  // The remaining tests are all recursive, so bail out if we hit the limit.
831  if (Depth++ == MaxDepth)
832    return false;
833
834  Value *X = 0, *Y = 0;
835  // A shift of a power of two is a power of two or zero.
836  if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
837                 match(V, m_Shr(m_Value(X), m_Value()))))
838    return isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth);
839
840  if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
841    return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth);
842
843  if (SelectInst *SI = dyn_cast<SelectInst>(V))
844    return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth) &&
845      isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth);
846
847  if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
848    // A power of two and'd with anything is a power of two or zero.
849    if (isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth) ||
850        isKnownToBeAPowerOfTwo(Y, /*OrZero*/true, Depth))
851      return true;
852    // X & (-X) is always a power of two or zero.
853    if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
854      return true;
855    return false;
856  }
857
858  // Adding a power-of-two or zero to the same power-of-two or zero yields
859  // either the original power-of-two, a larger power-of-two or zero.
860  if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
861    OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
862    if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
863      if (match(X, m_And(m_Specific(Y), m_Value())) ||
864          match(X, m_And(m_Value(), m_Specific(Y))))
865        if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth))
866          return true;
867      if (match(Y, m_And(m_Specific(X), m_Value())) ||
868          match(Y, m_And(m_Value(), m_Specific(X))))
869        if (isKnownToBeAPowerOfTwo(X, OrZero, Depth))
870          return true;
871
872      unsigned BitWidth = V->getType()->getScalarSizeInBits();
873      APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
874      ComputeMaskedBits(X, LHSZeroBits, LHSOneBits, 0, Depth);
875
876      APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
877      ComputeMaskedBits(Y, RHSZeroBits, RHSOneBits, 0, Depth);
878      // If i8 V is a power of two or zero:
879      //  ZeroBits: 1 1 1 0 1 1 1 1
880      // ~ZeroBits: 0 0 0 1 0 0 0 0
881      if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
882        // If OrZero isn't set, we cannot give back a zero result.
883        // Make sure either the LHS or RHS has a bit set.
884        if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
885          return true;
886    }
887  }
888
889  // An exact divide or right shift can only shift off zero bits, so the result
890  // is a power of two only if the first operand is a power of two and not
891  // copying a sign bit (sdiv int_min, 2).
892  if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
893      match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
894    return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, Depth);
895  }
896
897  return false;
898}
899
900/// \brief Test whether a GEP's result is known to be non-null.
901///
902/// Uses properties inherent in a GEP to try to determine whether it is known
903/// to be non-null.
904///
905/// Currently this routine does not support vector GEPs.
906static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL,
907                              unsigned Depth) {
908  if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
909    return false;
910
911  // FIXME: Support vector-GEPs.
912  assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
913
914  // If the base pointer is non-null, we cannot walk to a null address with an
915  // inbounds GEP in address space zero.
916  if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth))
917    return true;
918
919  // Past this, if we don't have DataLayout, we can't do much.
920  if (!DL)
921    return false;
922
923  // Walk the GEP operands and see if any operand introduces a non-zero offset.
924  // If so, then the GEP cannot produce a null pointer, as doing so would
925  // inherently violate the inbounds contract within address space zero.
926  for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
927       GTI != GTE; ++GTI) {
928    // Struct types are easy -- they must always be indexed by a constant.
929    if (StructType *STy = dyn_cast<StructType>(*GTI)) {
930      ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
931      unsigned ElementIdx = OpC->getZExtValue();
932      const StructLayout *SL = DL->getStructLayout(STy);
933      uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
934      if (ElementOffset > 0)
935        return true;
936      continue;
937    }
938
939    // If we have a zero-sized type, the index doesn't matter. Keep looping.
940    if (DL->getTypeAllocSize(GTI.getIndexedType()) == 0)
941      continue;
942
943    // Fast path the constant operand case both for efficiency and so we don't
944    // increment Depth when just zipping down an all-constant GEP.
945    if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
946      if (!OpC->isZero())
947        return true;
948      continue;
949    }
950
951    // We post-increment Depth here because while isKnownNonZero increments it
952    // as well, when we pop back up that increment won't persist. We don't want
953    // to recurse 10k times just because we have 10k GEP operands. We don't
954    // bail completely out because we want to handle constant GEPs regardless
955    // of depth.
956    if (Depth++ >= MaxDepth)
957      continue;
958
959    if (isKnownNonZero(GTI.getOperand(), DL, Depth))
960      return true;
961  }
962
963  return false;
964}
965
966/// isKnownNonZero - Return true if the given value is known to be non-zero
967/// when defined.  For vectors return true if every element is known to be
968/// non-zero when defined.  Supports values with integer or pointer type and
969/// vectors of integers.
970bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) {
971  if (Constant *C = dyn_cast<Constant>(V)) {
972    if (C->isNullValue())
973      return false;
974    if (isa<ConstantInt>(C))
975      // Must be non-zero due to null test above.
976      return true;
977    // TODO: Handle vectors
978    return false;
979  }
980
981  // The remaining tests are all recursive, so bail out if we hit the limit.
982  if (Depth++ >= MaxDepth)
983    return false;
984
985  // Check for pointer simplifications.
986  if (V->getType()->isPointerTy()) {
987    if (isKnownNonNull(V))
988      return true;
989    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
990      if (isGEPKnownNonNull(GEP, TD, Depth))
991        return true;
992  }
993
994  unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), TD);
995
996  // X | Y != 0 if X != 0 or Y != 0.
997  Value *X = 0, *Y = 0;
998  if (match(V, m_Or(m_Value(X), m_Value(Y))))
999    return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth);
1000
1001  // ext X != 0 if X != 0.
1002  if (isa<SExtInst>(V) || isa<ZExtInst>(V))
1003    return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth);
1004
1005  // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
1006  // if the lowest bit is shifted off the end.
1007  if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
1008    // shl nuw can't remove any non-zero bits.
1009    OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1010    if (BO->hasNoUnsignedWrap())
1011      return isKnownNonZero(X, TD, Depth);
1012
1013    APInt KnownZero(BitWidth, 0);
1014    APInt KnownOne(BitWidth, 0);
1015    ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth);
1016    if (KnownOne[0])
1017      return true;
1018  }
1019  // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
1020  // defined if the sign bit is shifted off the end.
1021  else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
1022    // shr exact can only shift out zero bits.
1023    PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
1024    if (BO->isExact())
1025      return isKnownNonZero(X, TD, Depth);
1026
1027    bool XKnownNonNegative, XKnownNegative;
1028    ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
1029    if (XKnownNegative)
1030      return true;
1031  }
1032  // div exact can only produce a zero if the dividend is zero.
1033  else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
1034    return isKnownNonZero(X, TD, Depth);
1035  }
1036  // X + Y.
1037  else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1038    bool XKnownNonNegative, XKnownNegative;
1039    bool YKnownNonNegative, YKnownNegative;
1040    ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
1041    ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth);
1042
1043    // If X and Y are both non-negative (as signed values) then their sum is not
1044    // zero unless both X and Y are zero.
1045    if (XKnownNonNegative && YKnownNonNegative)
1046      if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth))
1047        return true;
1048
1049    // If X and Y are both negative (as signed values) then their sum is not
1050    // zero unless both X and Y equal INT_MIN.
1051    if (BitWidth && XKnownNegative && YKnownNegative) {
1052      APInt KnownZero(BitWidth, 0);
1053      APInt KnownOne(BitWidth, 0);
1054      APInt Mask = APInt::getSignedMaxValue(BitWidth);
1055      // The sign bit of X is set.  If some other bit is set then X is not equal
1056      // to INT_MIN.
1057      ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth);
1058      if ((KnownOne & Mask) != 0)
1059        return true;
1060      // The sign bit of Y is set.  If some other bit is set then Y is not equal
1061      // to INT_MIN.
1062      ComputeMaskedBits(Y, KnownZero, KnownOne, TD, Depth);
1063      if ((KnownOne & Mask) != 0)
1064        return true;
1065    }
1066
1067    // The sum of a non-negative number and a power of two is not zero.
1068    if (XKnownNonNegative && isKnownToBeAPowerOfTwo(Y, /*OrZero*/false, Depth))
1069      return true;
1070    if (YKnownNonNegative && isKnownToBeAPowerOfTwo(X, /*OrZero*/false, Depth))
1071      return true;
1072  }
1073  // X * Y.
1074  else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
1075    OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1076    // If X and Y are non-zero then so is X * Y as long as the multiplication
1077    // does not overflow.
1078    if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
1079        isKnownNonZero(X, TD, Depth) && isKnownNonZero(Y, TD, Depth))
1080      return true;
1081  }
1082  // (C ? X : Y) != 0 if X != 0 and Y != 0.
1083  else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
1084    if (isKnownNonZero(SI->getTrueValue(), TD, Depth) &&
1085        isKnownNonZero(SI->getFalseValue(), TD, Depth))
1086      return true;
1087  }
1088
1089  if (!BitWidth) return false;
1090  APInt KnownZero(BitWidth, 0);
1091  APInt KnownOne(BitWidth, 0);
1092  ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
1093  return KnownOne != 0;
1094}
1095
1096/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1097/// this predicate to simplify operations downstream.  Mask is known to be zero
1098/// for bits that V cannot have.
1099///
1100/// This function is defined on values with integer type, values with pointer
1101/// type (but only if TD is non-null), and vectors of integers.  In the case
1102/// where V is a vector, the mask, known zero, and known one values are the
1103/// same width as the vector element, and the bit is set only if it is true
1104/// for all of the elements in the vector.
1105bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
1106                             const DataLayout *TD, unsigned Depth) {
1107  APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
1108  ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
1109  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1110  return (KnownZero & Mask) == Mask;
1111}
1112
1113
1114
1115/// ComputeNumSignBits - Return the number of times the sign bit of the
1116/// register is replicated into the other bits.  We know that at least 1 bit
1117/// is always equal to the sign bit (itself), but other cases can give us
1118/// information.  For example, immediately after an "ashr X, 2", we know that
1119/// the top 3 bits are all equal to each other, so we return 3.
1120///
1121/// 'Op' must have a scalar integer type.
1122///
1123unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
1124                                  unsigned Depth) {
1125  assert((TD || V->getType()->isIntOrIntVectorTy()) &&
1126         "ComputeNumSignBits requires a DataLayout object to operate "
1127         "on non-integer values!");
1128  Type *Ty = V->getType();
1129  unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
1130                         Ty->getScalarSizeInBits();
1131  unsigned Tmp, Tmp2;
1132  unsigned FirstAnswer = 1;
1133
1134  // Note that ConstantInt is handled by the general ComputeMaskedBits case
1135  // below.
1136
1137  if (Depth == 6)
1138    return 1;  // Limit search depth.
1139
1140  Operator *U = dyn_cast<Operator>(V);
1141  switch (Operator::getOpcode(V)) {
1142  default: break;
1143  case Instruction::SExt:
1144    Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
1145    return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
1146
1147  case Instruction::AShr: {
1148    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1149    // ashr X, C   -> adds C sign bits.  Vectors too.
1150    const APInt *ShAmt;
1151    if (match(U->getOperand(1), m_APInt(ShAmt))) {
1152      Tmp += ShAmt->getZExtValue();
1153      if (Tmp > TyBits) Tmp = TyBits;
1154    }
1155    return Tmp;
1156  }
1157  case Instruction::Shl: {
1158    const APInt *ShAmt;
1159    if (match(U->getOperand(1), m_APInt(ShAmt))) {
1160      // shl destroys sign bits.
1161      Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1162      Tmp2 = ShAmt->getZExtValue();
1163      if (Tmp2 >= TyBits ||      // Bad shift.
1164          Tmp2 >= Tmp) break;    // Shifted all sign bits out.
1165      return Tmp - Tmp2;
1166    }
1167    break;
1168  }
1169  case Instruction::And:
1170  case Instruction::Or:
1171  case Instruction::Xor:    // NOT is handled here.
1172    // Logical binary ops preserve the number of sign bits at the worst.
1173    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1174    if (Tmp != 1) {
1175      Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1176      FirstAnswer = std::min(Tmp, Tmp2);
1177      // We computed what we know about the sign bits as our first
1178      // answer. Now proceed to the generic code that uses
1179      // ComputeMaskedBits, and pick whichever answer is better.
1180    }
1181    break;
1182
1183  case Instruction::Select:
1184    Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1185    if (Tmp == 1) return 1;  // Early out.
1186    Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
1187    return std::min(Tmp, Tmp2);
1188
1189  case Instruction::Add:
1190    // Add can have at most one carry bit.  Thus we know that the output
1191    // is, at worst, one more bit than the inputs.
1192    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1193    if (Tmp == 1) return 1;  // Early out.
1194
1195    // Special case decrementing a value (ADD X, -1):
1196    if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
1197      if (CRHS->isAllOnesValue()) {
1198        APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
1199        ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
1200
1201        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1202        // sign bits set.
1203        if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
1204          return TyBits;
1205
1206        // If we are subtracting one from a positive number, there is no carry
1207        // out of the result.
1208        if (KnownZero.isNegative())
1209          return Tmp;
1210      }
1211
1212    Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1213    if (Tmp2 == 1) return 1;
1214    return std::min(Tmp, Tmp2)-1;
1215
1216  case Instruction::Sub:
1217    Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1218    if (Tmp2 == 1) return 1;
1219
1220    // Handle NEG.
1221    if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
1222      if (CLHS->isNullValue()) {
1223        APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
1224        ComputeMaskedBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
1225        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1226        // sign bits set.
1227        if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
1228          return TyBits;
1229
1230        // If the input is known to be positive (the sign bit is known clear),
1231        // the output of the NEG has the same number of sign bits as the input.
1232        if (KnownZero.isNegative())
1233          return Tmp2;
1234
1235        // Otherwise, we treat this like a SUB.
1236      }
1237
1238    // Sub can have at most one carry bit.  Thus we know that the output
1239    // is, at worst, one more bit than the inputs.
1240    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1241    if (Tmp == 1) return 1;  // Early out.
1242    return std::min(Tmp, Tmp2)-1;
1243
1244  case Instruction::PHI: {
1245    PHINode *PN = cast<PHINode>(U);
1246    // Don't analyze large in-degree PHIs.
1247    if (PN->getNumIncomingValues() > 4) break;
1248
1249    // Take the minimum of all incoming values.  This can't infinitely loop
1250    // because of our depth threshold.
1251    Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1);
1252    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
1253      if (Tmp == 1) return Tmp;
1254      Tmp = std::min(Tmp,
1255                     ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1));
1256    }
1257    return Tmp;
1258  }
1259
1260  case Instruction::Trunc:
1261    // FIXME: it's tricky to do anything useful for this, but it is an important
1262    // case for targets like X86.
1263    break;
1264  }
1265
1266  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1267  // use this information.
1268  APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
1269  APInt Mask;
1270  ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
1271
1272  if (KnownZero.isNegative()) {        // sign bit is 0
1273    Mask = KnownZero;
1274  } else if (KnownOne.isNegative()) {  // sign bit is 1;
1275    Mask = KnownOne;
1276  } else {
1277    // Nothing known.
1278    return FirstAnswer;
1279  }
1280
1281  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1282  // the number of identical bits in the top of the input value.
1283  Mask = ~Mask;
1284  Mask <<= Mask.getBitWidth()-TyBits;
1285  // Return # leading zeros.  We use 'min' here in case Val was zero before
1286  // shifting.  We don't want to return '64' as for an i32 "0".
1287  return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
1288}
1289
1290/// ComputeMultiple - This function computes the integer multiple of Base that
1291/// equals V.  If successful, it returns true and returns the multiple in
1292/// Multiple.  If unsuccessful, it returns false. It looks
1293/// through SExt instructions only if LookThroughSExt is true.
1294bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
1295                           bool LookThroughSExt, unsigned Depth) {
1296  const unsigned MaxDepth = 6;
1297
1298  assert(V && "No Value?");
1299  assert(Depth <= MaxDepth && "Limit Search Depth");
1300  assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
1301
1302  Type *T = V->getType();
1303
1304  ConstantInt *CI = dyn_cast<ConstantInt>(V);
1305
1306  if (Base == 0)
1307    return false;
1308
1309  if (Base == 1) {
1310    Multiple = V;
1311    return true;
1312  }
1313
1314  ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
1315  Constant *BaseVal = ConstantInt::get(T, Base);
1316  if (CO && CO == BaseVal) {
1317    // Multiple is 1.
1318    Multiple = ConstantInt::get(T, 1);
1319    return true;
1320  }
1321
1322  if (CI && CI->getZExtValue() % Base == 0) {
1323    Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
1324    return true;
1325  }
1326
1327  if (Depth == MaxDepth) return false;  // Limit search depth.
1328
1329  Operator *I = dyn_cast<Operator>(V);
1330  if (!I) return false;
1331
1332  switch (I->getOpcode()) {
1333  default: break;
1334  case Instruction::SExt:
1335    if (!LookThroughSExt) return false;
1336    // otherwise fall through to ZExt
1337  case Instruction::ZExt:
1338    return ComputeMultiple(I->getOperand(0), Base, Multiple,
1339                           LookThroughSExt, Depth+1);
1340  case Instruction::Shl:
1341  case Instruction::Mul: {
1342    Value *Op0 = I->getOperand(0);
1343    Value *Op1 = I->getOperand(1);
1344
1345    if (I->getOpcode() == Instruction::Shl) {
1346      ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
1347      if (!Op1CI) return false;
1348      // Turn Op0 << Op1 into Op0 * 2^Op1
1349      APInt Op1Int = Op1CI->getValue();
1350      uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
1351      APInt API(Op1Int.getBitWidth(), 0);
1352      API.setBit(BitToSet);
1353      Op1 = ConstantInt::get(V->getContext(), API);
1354    }
1355
1356    Value *Mul0 = NULL;
1357    if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
1358      if (Constant *Op1C = dyn_cast<Constant>(Op1))
1359        if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
1360          if (Op1C->getType()->getPrimitiveSizeInBits() <
1361              MulC->getType()->getPrimitiveSizeInBits())
1362            Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
1363          if (Op1C->getType()->getPrimitiveSizeInBits() >
1364              MulC->getType()->getPrimitiveSizeInBits())
1365            MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
1366
1367          // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
1368          Multiple = ConstantExpr::getMul(MulC, Op1C);
1369          return true;
1370        }
1371
1372      if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
1373        if (Mul0CI->getValue() == 1) {
1374          // V == Base * Op1, so return Op1
1375          Multiple = Op1;
1376          return true;
1377        }
1378    }
1379
1380    Value *Mul1 = NULL;
1381    if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
1382      if (Constant *Op0C = dyn_cast<Constant>(Op0))
1383        if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
1384          if (Op0C->getType()->getPrimitiveSizeInBits() <
1385              MulC->getType()->getPrimitiveSizeInBits())
1386            Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
1387          if (Op0C->getType()->getPrimitiveSizeInBits() >
1388              MulC->getType()->getPrimitiveSizeInBits())
1389            MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
1390
1391          // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
1392          Multiple = ConstantExpr::getMul(MulC, Op0C);
1393          return true;
1394        }
1395
1396      if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
1397        if (Mul1CI->getValue() == 1) {
1398          // V == Base * Op0, so return Op0
1399          Multiple = Op0;
1400          return true;
1401        }
1402    }
1403  }
1404  }
1405
1406  // We could not determine if V is a multiple of Base.
1407  return false;
1408}
1409
1410/// CannotBeNegativeZero - Return true if we can prove that the specified FP
1411/// value is never equal to -0.0.
1412///
1413/// NOTE: this function will need to be revisited when we support non-default
1414/// rounding modes!
1415///
1416bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
1417  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
1418    return !CFP->getValueAPF().isNegZero();
1419
1420  if (Depth == 6)
1421    return 1;  // Limit search depth.
1422
1423  const Operator *I = dyn_cast<Operator>(V);
1424  if (I == 0) return false;
1425
1426  // Check if the nsz fast-math flag is set
1427  if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
1428    if (FPO->hasNoSignedZeros())
1429      return true;
1430
1431  // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
1432  if (I->getOpcode() == Instruction::FAdd)
1433    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
1434      if (CFP->isNullValue())
1435        return true;
1436
1437  // sitofp and uitofp turn into +0.0 for zero.
1438  if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
1439    return true;
1440
1441  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1442    // sqrt(-0.0) = -0.0, no other negative results are possible.
1443    if (II->getIntrinsicID() == Intrinsic::sqrt)
1444      return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
1445
1446  if (const CallInst *CI = dyn_cast<CallInst>(I))
1447    if (const Function *F = CI->getCalledFunction()) {
1448      if (F->isDeclaration()) {
1449        // abs(x) != -0.0
1450        if (F->getName() == "abs") return true;
1451        // fabs[lf](x) != -0.0
1452        if (F->getName() == "fabs") return true;
1453        if (F->getName() == "fabsf") return true;
1454        if (F->getName() == "fabsl") return true;
1455        if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
1456            F->getName() == "sqrtl")
1457          return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
1458      }
1459    }
1460
1461  return false;
1462}
1463
1464/// isBytewiseValue - If the specified value can be set by repeating the same
1465/// byte in memory, return the i8 value that it is represented with.  This is
1466/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
1467/// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated
1468/// byte store (e.g. i16 0x1234), return null.
1469Value *llvm::isBytewiseValue(Value *V) {
1470  // All byte-wide stores are splatable, even of arbitrary variables.
1471  if (V->getType()->isIntegerTy(8)) return V;
1472
1473  // Handle 'null' ConstantArrayZero etc.
1474  if (Constant *C = dyn_cast<Constant>(V))
1475    if (C->isNullValue())
1476      return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
1477
1478  // Constant float and double values can be handled as integer values if the
1479  // corresponding integer value is "byteable".  An important case is 0.0.
1480  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1481    if (CFP->getType()->isFloatTy())
1482      V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
1483    if (CFP->getType()->isDoubleTy())
1484      V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
1485    // Don't handle long double formats, which have strange constraints.
1486  }
1487
1488  // We can handle constant integers that are power of two in size and a
1489  // multiple of 8 bits.
1490  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1491    unsigned Width = CI->getBitWidth();
1492    if (isPowerOf2_32(Width) && Width > 8) {
1493      // We can handle this value if the recursive binary decomposition is the
1494      // same at all levels.
1495      APInt Val = CI->getValue();
1496      APInt Val2;
1497      while (Val.getBitWidth() != 8) {
1498        unsigned NextWidth = Val.getBitWidth()/2;
1499        Val2  = Val.lshr(NextWidth);
1500        Val2 = Val2.trunc(Val.getBitWidth()/2);
1501        Val = Val.trunc(Val.getBitWidth()/2);
1502
1503        // If the top/bottom halves aren't the same, reject it.
1504        if (Val != Val2)
1505          return 0;
1506      }
1507      return ConstantInt::get(V->getContext(), Val);
1508    }
1509  }
1510
1511  // A ConstantDataArray/Vector is splatable if all its members are equal and
1512  // also splatable.
1513  if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
1514    Value *Elt = CA->getElementAsConstant(0);
1515    Value *Val = isBytewiseValue(Elt);
1516    if (!Val)
1517      return 0;
1518
1519    for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
1520      if (CA->getElementAsConstant(I) != Elt)
1521        return 0;
1522
1523    return Val;
1524  }
1525
1526  // Conceptually, we could handle things like:
1527  //   %a = zext i8 %X to i16
1528  //   %b = shl i16 %a, 8
1529  //   %c = or i16 %a, %b
1530  // but until there is an example that actually needs this, it doesn't seem
1531  // worth worrying about.
1532  return 0;
1533}
1534
1535
1536// This is the recursive version of BuildSubAggregate. It takes a few different
1537// arguments. Idxs is the index within the nested struct From that we are
1538// looking at now (which is of type IndexedType). IdxSkip is the number of
1539// indices from Idxs that should be left out when inserting into the resulting
1540// struct. To is the result struct built so far, new insertvalue instructions
1541// build on that.
1542static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
1543                                SmallVectorImpl<unsigned> &Idxs,
1544                                unsigned IdxSkip,
1545                                Instruction *InsertBefore) {
1546  llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
1547  if (STy) {
1548    // Save the original To argument so we can modify it
1549    Value *OrigTo = To;
1550    // General case, the type indexed by Idxs is a struct
1551    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1552      // Process each struct element recursively
1553      Idxs.push_back(i);
1554      Value *PrevTo = To;
1555      To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
1556                             InsertBefore);
1557      Idxs.pop_back();
1558      if (!To) {
1559        // Couldn't find any inserted value for this index? Cleanup
1560        while (PrevTo != OrigTo) {
1561          InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
1562          PrevTo = Del->getAggregateOperand();
1563          Del->eraseFromParent();
1564        }
1565        // Stop processing elements
1566        break;
1567      }
1568    }
1569    // If we successfully found a value for each of our subaggregates
1570    if (To)
1571      return To;
1572  }
1573  // Base case, the type indexed by SourceIdxs is not a struct, or not all of
1574  // the struct's elements had a value that was inserted directly. In the latter
1575  // case, perhaps we can't determine each of the subelements individually, but
1576  // we might be able to find the complete struct somewhere.
1577
1578  // Find the value that is at that particular spot
1579  Value *V = FindInsertedValue(From, Idxs);
1580
1581  if (!V)
1582    return NULL;
1583
1584  // Insert the value in the new (sub) aggregrate
1585  return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
1586                                       "tmp", InsertBefore);
1587}
1588
1589// This helper takes a nested struct and extracts a part of it (which is again a
1590// struct) into a new value. For example, given the struct:
1591// { a, { b, { c, d }, e } }
1592// and the indices "1, 1" this returns
1593// { c, d }.
1594//
1595// It does this by inserting an insertvalue for each element in the resulting
1596// struct, as opposed to just inserting a single struct. This will only work if
1597// each of the elements of the substruct are known (ie, inserted into From by an
1598// insertvalue instruction somewhere).
1599//
1600// All inserted insertvalue instructions are inserted before InsertBefore
1601static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
1602                                Instruction *InsertBefore) {
1603  assert(InsertBefore && "Must have someplace to insert!");
1604  Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
1605                                                             idx_range);
1606  Value *To = UndefValue::get(IndexedType);
1607  SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
1608  unsigned IdxSkip = Idxs.size();
1609
1610  return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
1611}
1612
1613/// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
1614/// the scalar value indexed is already around as a register, for example if it
1615/// were inserted directly into the aggregrate.
1616///
1617/// If InsertBefore is not null, this function will duplicate (modified)
1618/// insertvalues when a part of a nested struct is extracted.
1619Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
1620                               Instruction *InsertBefore) {
1621  // Nothing to index? Just return V then (this is useful at the end of our
1622  // recursion).
1623  if (idx_range.empty())
1624    return V;
1625  // We have indices, so V should have an indexable type.
1626  assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
1627         "Not looking at a struct or array?");
1628  assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
1629         "Invalid indices for type?");
1630
1631  if (Constant *C = dyn_cast<Constant>(V)) {
1632    C = C->getAggregateElement(idx_range[0]);
1633    if (C == 0) return 0;
1634    return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
1635  }
1636
1637  if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
1638    // Loop the indices for the insertvalue instruction in parallel with the
1639    // requested indices
1640    const unsigned *req_idx = idx_range.begin();
1641    for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
1642         i != e; ++i, ++req_idx) {
1643      if (req_idx == idx_range.end()) {
1644        // We can't handle this without inserting insertvalues
1645        if (!InsertBefore)
1646          return 0;
1647
1648        // The requested index identifies a part of a nested aggregate. Handle
1649        // this specially. For example,
1650        // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
1651        // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
1652        // %C = extractvalue {i32, { i32, i32 } } %B, 1
1653        // This can be changed into
1654        // %A = insertvalue {i32, i32 } undef, i32 10, 0
1655        // %C = insertvalue {i32, i32 } %A, i32 11, 1
1656        // which allows the unused 0,0 element from the nested struct to be
1657        // removed.
1658        return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
1659                                 InsertBefore);
1660      }
1661
1662      // This insert value inserts something else than what we are looking for.
1663      // See if the (aggregrate) value inserted into has the value we are
1664      // looking for, then.
1665      if (*req_idx != *i)
1666        return FindInsertedValue(I->getAggregateOperand(), idx_range,
1667                                 InsertBefore);
1668    }
1669    // If we end up here, the indices of the insertvalue match with those
1670    // requested (though possibly only partially). Now we recursively look at
1671    // the inserted value, passing any remaining indices.
1672    return FindInsertedValue(I->getInsertedValueOperand(),
1673                             makeArrayRef(req_idx, idx_range.end()),
1674                             InsertBefore);
1675  }
1676
1677  if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
1678    // If we're extracting a value from an aggregrate that was extracted from
1679    // something else, we can extract from that something else directly instead.
1680    // However, we will need to chain I's indices with the requested indices.
1681
1682    // Calculate the number of indices required
1683    unsigned size = I->getNumIndices() + idx_range.size();
1684    // Allocate some space to put the new indices in
1685    SmallVector<unsigned, 5> Idxs;
1686    Idxs.reserve(size);
1687    // Add indices from the extract value instruction
1688    Idxs.append(I->idx_begin(), I->idx_end());
1689
1690    // Add requested indices
1691    Idxs.append(idx_range.begin(), idx_range.end());
1692
1693    assert(Idxs.size() == size
1694           && "Number of indices added not correct?");
1695
1696    return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
1697  }
1698  // Otherwise, we don't know (such as, extracting from a function return value
1699  // or load instruction)
1700  return 0;
1701}
1702
1703/// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if
1704/// it can be expressed as a base pointer plus a constant offset.  Return the
1705/// base and offset to the caller.
1706Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
1707                                              const DataLayout *TD) {
1708  // Without DataLayout, conservatively assume 64-bit offsets, which is
1709  // the widest we support.
1710  unsigned BitWidth = TD ? TD->getPointerSizeInBits() : 64;
1711  APInt ByteOffset(BitWidth, 0);
1712  while (1) {
1713    if (Ptr->getType()->isVectorTy())
1714      break;
1715
1716    if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
1717      APInt GEPOffset(BitWidth, 0);
1718      if (TD && !GEP->accumulateConstantOffset(*TD, GEPOffset))
1719        break;
1720      ByteOffset += GEPOffset;
1721      Ptr = GEP->getPointerOperand();
1722    } else if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
1723      Ptr = cast<Operator>(Ptr)->getOperand(0);
1724    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
1725      if (GA->mayBeOverridden())
1726        break;
1727      Ptr = GA->getAliasee();
1728    } else {
1729      break;
1730    }
1731  }
1732  Offset = ByteOffset.getSExtValue();
1733  return Ptr;
1734}
1735
1736
1737/// getConstantStringInfo - This function computes the length of a
1738/// null-terminated C string pointed to by V.  If successful, it returns true
1739/// and returns the string in Str.  If unsuccessful, it returns false.
1740bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
1741                                 uint64_t Offset, bool TrimAtNul) {
1742  assert(V);
1743
1744  // Look through bitcast instructions and geps.
1745  V = V->stripPointerCasts();
1746
1747  // If the value is a GEP instructionor  constant expression, treat it as an
1748  // offset.
1749  if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
1750    // Make sure the GEP has exactly three arguments.
1751    if (GEP->getNumOperands() != 3)
1752      return false;
1753
1754    // Make sure the index-ee is a pointer to array of i8.
1755    PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
1756    ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
1757    if (AT == 0 || !AT->getElementType()->isIntegerTy(8))
1758      return false;
1759
1760    // Check to make sure that the first operand of the GEP is an integer and
1761    // has value 0 so that we are sure we're indexing into the initializer.
1762    const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
1763    if (FirstIdx == 0 || !FirstIdx->isZero())
1764      return false;
1765
1766    // If the second index isn't a ConstantInt, then this is a variable index
1767    // into the array.  If this occurs, we can't say anything meaningful about
1768    // the string.
1769    uint64_t StartIdx = 0;
1770    if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
1771      StartIdx = CI->getZExtValue();
1772    else
1773      return false;
1774    return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset);
1775  }
1776
1777  // The GEP instruction, constant or instruction, must reference a global
1778  // variable that is a constant and is initialized. The referenced constant
1779  // initializer is the array that we'll use for optimization.
1780  const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
1781  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
1782    return false;
1783
1784  // Handle the all-zeros case
1785  if (GV->getInitializer()->isNullValue()) {
1786    // This is a degenerate case. The initializer is constant zero so the
1787    // length of the string must be zero.
1788    Str = "";
1789    return true;
1790  }
1791
1792  // Must be a Constant Array
1793  const ConstantDataArray *Array =
1794    dyn_cast<ConstantDataArray>(GV->getInitializer());
1795  if (Array == 0 || !Array->isString())
1796    return false;
1797
1798  // Get the number of elements in the array
1799  uint64_t NumElts = Array->getType()->getArrayNumElements();
1800
1801  // Start out with the entire array in the StringRef.
1802  Str = Array->getAsString();
1803
1804  if (Offset > NumElts)
1805    return false;
1806
1807  // Skip over 'offset' bytes.
1808  Str = Str.substr(Offset);
1809
1810  if (TrimAtNul) {
1811    // Trim off the \0 and anything after it.  If the array is not nul
1812    // terminated, we just return the whole end of string.  The client may know
1813    // some other way that the string is length-bound.
1814    Str = Str.substr(0, Str.find('\0'));
1815  }
1816  return true;
1817}
1818
1819// These next two are very similar to the above, but also look through PHI
1820// nodes.
1821// TODO: See if we can integrate these two together.
1822
1823/// GetStringLengthH - If we can compute the length of the string pointed to by
1824/// the specified pointer, return 'len+1'.  If we can't, return 0.
1825static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
1826  // Look through noop bitcast instructions.
1827  V = V->stripPointerCasts();
1828
1829  // If this is a PHI node, there are two cases: either we have already seen it
1830  // or we haven't.
1831  if (PHINode *PN = dyn_cast<PHINode>(V)) {
1832    if (!PHIs.insert(PN))
1833      return ~0ULL;  // already in the set.
1834
1835    // If it was new, see if all the input strings are the same length.
1836    uint64_t LenSoFar = ~0ULL;
1837    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1838      uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
1839      if (Len == 0) return 0; // Unknown length -> unknown.
1840
1841      if (Len == ~0ULL) continue;
1842
1843      if (Len != LenSoFar && LenSoFar != ~0ULL)
1844        return 0;    // Disagree -> unknown.
1845      LenSoFar = Len;
1846    }
1847
1848    // Success, all agree.
1849    return LenSoFar;
1850  }
1851
1852  // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
1853  if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
1854    uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
1855    if (Len1 == 0) return 0;
1856    uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
1857    if (Len2 == 0) return 0;
1858    if (Len1 == ~0ULL) return Len2;
1859    if (Len2 == ~0ULL) return Len1;
1860    if (Len1 != Len2) return 0;
1861    return Len1;
1862  }
1863
1864  // Otherwise, see if we can read the string.
1865  StringRef StrData;
1866  if (!getConstantStringInfo(V, StrData))
1867    return 0;
1868
1869  return StrData.size()+1;
1870}
1871
1872/// GetStringLength - If we can compute the length of the string pointed to by
1873/// the specified pointer, return 'len+1'.  If we can't, return 0.
1874uint64_t llvm::GetStringLength(Value *V) {
1875  if (!V->getType()->isPointerTy()) return 0;
1876
1877  SmallPtrSet<PHINode*, 32> PHIs;
1878  uint64_t Len = GetStringLengthH(V, PHIs);
1879  // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
1880  // an empty string as a length.
1881  return Len == ~0ULL ? 1 : Len;
1882}
1883
1884Value *
1885llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) {
1886  if (!V->getType()->isPointerTy())
1887    return V;
1888  for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
1889    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
1890      V = GEP->getPointerOperand();
1891    } else if (Operator::getOpcode(V) == Instruction::BitCast) {
1892      V = cast<Operator>(V)->getOperand(0);
1893    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1894      if (GA->mayBeOverridden())
1895        return V;
1896      V = GA->getAliasee();
1897    } else {
1898      // See if InstructionSimplify knows any relevant tricks.
1899      if (Instruction *I = dyn_cast<Instruction>(V))
1900        // TODO: Acquire a DominatorTree and use it.
1901        if (Value *Simplified = SimplifyInstruction(I, TD, 0)) {
1902          V = Simplified;
1903          continue;
1904        }
1905
1906      return V;
1907    }
1908    assert(V->getType()->isPointerTy() && "Unexpected operand type!");
1909  }
1910  return V;
1911}
1912
1913void
1914llvm::GetUnderlyingObjects(Value *V,
1915                           SmallVectorImpl<Value *> &Objects,
1916                           const DataLayout *TD,
1917                           unsigned MaxLookup) {
1918  SmallPtrSet<Value *, 4> Visited;
1919  SmallVector<Value *, 4> Worklist;
1920  Worklist.push_back(V);
1921  do {
1922    Value *P = Worklist.pop_back_val();
1923    P = GetUnderlyingObject(P, TD, MaxLookup);
1924
1925    if (!Visited.insert(P))
1926      continue;
1927
1928    if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
1929      Worklist.push_back(SI->getTrueValue());
1930      Worklist.push_back(SI->getFalseValue());
1931      continue;
1932    }
1933
1934    if (PHINode *PN = dyn_cast<PHINode>(P)) {
1935      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1936        Worklist.push_back(PN->getIncomingValue(i));
1937      continue;
1938    }
1939
1940    Objects.push_back(P);
1941  } while (!Worklist.empty());
1942}
1943
1944/// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer
1945/// are lifetime markers.
1946///
1947bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
1948  for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
1949       UI != UE; ++UI) {
1950    const IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI);
1951    if (!II) return false;
1952
1953    if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
1954        II->getIntrinsicID() != Intrinsic::lifetime_end)
1955      return false;
1956  }
1957  return true;
1958}
1959
1960bool llvm::isSafeToSpeculativelyExecute(const Value *V,
1961                                        const DataLayout *TD) {
1962  const Operator *Inst = dyn_cast<Operator>(V);
1963  if (!Inst)
1964    return false;
1965
1966  for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
1967    if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
1968      if (C->canTrap())
1969        return false;
1970
1971  switch (Inst->getOpcode()) {
1972  default:
1973    return true;
1974  case Instruction::UDiv:
1975  case Instruction::URem:
1976    // x / y is undefined if y == 0, but calcuations like x / 3 are safe.
1977    return isKnownNonZero(Inst->getOperand(1), TD);
1978  case Instruction::SDiv:
1979  case Instruction::SRem: {
1980    Value *Op = Inst->getOperand(1);
1981    // x / y is undefined if y == 0
1982    if (!isKnownNonZero(Op, TD))
1983      return false;
1984    // x / y might be undefined if y == -1
1985    unsigned BitWidth = getBitWidth(Op->getType(), TD);
1986    if (BitWidth == 0)
1987      return false;
1988    APInt KnownZero(BitWidth, 0);
1989    APInt KnownOne(BitWidth, 0);
1990    ComputeMaskedBits(Op, KnownZero, KnownOne, TD);
1991    return !!KnownZero;
1992  }
1993  case Instruction::Load: {
1994    const LoadInst *LI = cast<LoadInst>(Inst);
1995    if (!LI->isUnordered())
1996      return false;
1997    return LI->getPointerOperand()->isDereferenceablePointer();
1998  }
1999  case Instruction::Call: {
2000   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
2001     switch (II->getIntrinsicID()) {
2002       // These synthetic intrinsics have no side-effects, and just mark
2003       // information about their operands.
2004       // FIXME: There are other no-op synthetic instructions that potentially
2005       // should be considered at least *safe* to speculate...
2006       case Intrinsic::dbg_declare:
2007       case Intrinsic::dbg_value:
2008         return true;
2009
2010       case Intrinsic::bswap:
2011       case Intrinsic::ctlz:
2012       case Intrinsic::ctpop:
2013       case Intrinsic::cttz:
2014       case Intrinsic::objectsize:
2015       case Intrinsic::sadd_with_overflow:
2016       case Intrinsic::smul_with_overflow:
2017       case Intrinsic::ssub_with_overflow:
2018       case Intrinsic::uadd_with_overflow:
2019       case Intrinsic::umul_with_overflow:
2020       case Intrinsic::usub_with_overflow:
2021         return true;
2022       // TODO: some fp intrinsics are marked as having the same error handling
2023       // as libm. They're safe to speculate when they won't error.
2024       // TODO: are convert_{from,to}_fp16 safe?
2025       // TODO: can we list target-specific intrinsics here?
2026       default: break;
2027     }
2028   }
2029    return false; // The called function could have undefined behavior or
2030                  // side-effects, even if marked readnone nounwind.
2031  }
2032  case Instruction::VAArg:
2033  case Instruction::Alloca:
2034  case Instruction::Invoke:
2035  case Instruction::PHI:
2036  case Instruction::Store:
2037  case Instruction::Ret:
2038  case Instruction::Br:
2039  case Instruction::IndirectBr:
2040  case Instruction::Switch:
2041  case Instruction::Unreachable:
2042  case Instruction::Fence:
2043  case Instruction::LandingPad:
2044  case Instruction::AtomicRMW:
2045  case Instruction::AtomicCmpXchg:
2046  case Instruction::Resume:
2047    return false; // Misc instructions which have effects
2048  }
2049}
2050
2051/// isKnownNonNull - Return true if we know that the specified value is never
2052/// null.
2053bool llvm::isKnownNonNull(const Value *V) {
2054  // Alloca never returns null, malloc might.
2055  if (isa<AllocaInst>(V)) return true;
2056
2057  // A byval argument is never null.
2058  if (const Argument *A = dyn_cast<Argument>(V))
2059    return A->hasByValAttr();
2060
2061  // Global values are not null unless extern weak.
2062  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2063    return !GV->hasExternalWeakLinkage();
2064  return false;
2065}
2066