1//===-- MachineCSE.cpp - Machine Common Subexpression Elimination Pass ----===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This pass performs global common subexpression elimination on machine 11// instructions using a scoped hash table based value numbering scheme. It 12// must be run while the machine function is still in SSA form. 13// 14//===----------------------------------------------------------------------===// 15 16#define DEBUG_TYPE "machine-cse" 17#include "llvm/CodeGen/Passes.h" 18#include "llvm/ADT/DenseMap.h" 19#include "llvm/ADT/ScopedHashTable.h" 20#include "llvm/ADT/SmallSet.h" 21#include "llvm/ADT/Statistic.h" 22#include "llvm/Analysis/AliasAnalysis.h" 23#include "llvm/CodeGen/MachineDominators.h" 24#include "llvm/CodeGen/MachineInstr.h" 25#include "llvm/CodeGen/MachineRegisterInfo.h" 26#include "llvm/Support/Debug.h" 27#include "llvm/Support/RecyclingAllocator.h" 28#include "llvm/Target/TargetInstrInfo.h" 29using namespace llvm; 30 31STATISTIC(NumCoalesces, "Number of copies coalesced"); 32STATISTIC(NumCSEs, "Number of common subexpression eliminated"); 33STATISTIC(NumPhysCSEs, 34 "Number of physreg referencing common subexpr eliminated"); 35STATISTIC(NumCrossBBCSEs, 36 "Number of cross-MBB physreg referencing CS eliminated"); 37STATISTIC(NumCommutes, "Number of copies coalesced after commuting"); 38 39namespace { 40 class MachineCSE : public MachineFunctionPass { 41 const TargetInstrInfo *TII; 42 const TargetRegisterInfo *TRI; 43 AliasAnalysis *AA; 44 MachineDominatorTree *DT; 45 MachineRegisterInfo *MRI; 46 public: 47 static char ID; // Pass identification 48 MachineCSE() : MachineFunctionPass(ID), LookAheadLimit(5), CurrVN(0) { 49 initializeMachineCSEPass(*PassRegistry::getPassRegistry()); 50 } 51 52 virtual bool runOnMachineFunction(MachineFunction &MF); 53 54 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 55 AU.setPreservesCFG(); 56 MachineFunctionPass::getAnalysisUsage(AU); 57 AU.addRequired<AliasAnalysis>(); 58 AU.addPreservedID(MachineLoopInfoID); 59 AU.addRequired<MachineDominatorTree>(); 60 AU.addPreserved<MachineDominatorTree>(); 61 } 62 63 virtual void releaseMemory() { 64 ScopeMap.clear(); 65 Exps.clear(); 66 } 67 68 private: 69 const unsigned LookAheadLimit; 70 typedef RecyclingAllocator<BumpPtrAllocator, 71 ScopedHashTableVal<MachineInstr*, unsigned> > AllocatorTy; 72 typedef ScopedHashTable<MachineInstr*, unsigned, 73 MachineInstrExpressionTrait, AllocatorTy> ScopedHTType; 74 typedef ScopedHTType::ScopeTy ScopeType; 75 DenseMap<MachineBasicBlock*, ScopeType*> ScopeMap; 76 ScopedHTType VNT; 77 SmallVector<MachineInstr*, 64> Exps; 78 unsigned CurrVN; 79 80 bool PerformTrivialCoalescing(MachineInstr *MI, MachineBasicBlock *MBB); 81 bool isPhysDefTriviallyDead(unsigned Reg, 82 MachineBasicBlock::const_iterator I, 83 MachineBasicBlock::const_iterator E) const; 84 bool hasLivePhysRegDefUses(const MachineInstr *MI, 85 const MachineBasicBlock *MBB, 86 SmallSet<unsigned,8> &PhysRefs, 87 SmallVectorImpl<unsigned> &PhysDefs, 88 bool &PhysUseDef) const; 89 bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, 90 SmallSet<unsigned,8> &PhysRefs, 91 SmallVectorImpl<unsigned> &PhysDefs, 92 bool &NonLocal) const; 93 bool isCSECandidate(MachineInstr *MI); 94 bool isProfitableToCSE(unsigned CSReg, unsigned Reg, 95 MachineInstr *CSMI, MachineInstr *MI); 96 void EnterScope(MachineBasicBlock *MBB); 97 void ExitScope(MachineBasicBlock *MBB); 98 bool ProcessBlock(MachineBasicBlock *MBB); 99 void ExitScopeIfDone(MachineDomTreeNode *Node, 100 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren); 101 bool PerformCSE(MachineDomTreeNode *Node); 102 }; 103} // end anonymous namespace 104 105char MachineCSE::ID = 0; 106char &llvm::MachineCSEID = MachineCSE::ID; 107INITIALIZE_PASS_BEGIN(MachineCSE, "machine-cse", 108 "Machine Common Subexpression Elimination", false, false) 109INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 110INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 111INITIALIZE_PASS_END(MachineCSE, "machine-cse", 112 "Machine Common Subexpression Elimination", false, false) 113 114bool MachineCSE::PerformTrivialCoalescing(MachineInstr *MI, 115 MachineBasicBlock *MBB) { 116 bool Changed = false; 117 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 118 MachineOperand &MO = MI->getOperand(i); 119 if (!MO.isReg() || !MO.isUse()) 120 continue; 121 unsigned Reg = MO.getReg(); 122 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 123 continue; 124 if (!MRI->hasOneNonDBGUse(Reg)) 125 // Only coalesce single use copies. This ensure the copy will be 126 // deleted. 127 continue; 128 MachineInstr *DefMI = MRI->getVRegDef(Reg); 129 if (!DefMI->isCopy()) 130 continue; 131 unsigned SrcReg = DefMI->getOperand(1).getReg(); 132 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 133 continue; 134 if (DefMI->getOperand(0).getSubReg() || DefMI->getOperand(1).getSubReg()) 135 continue; 136 if (!MRI->constrainRegClass(SrcReg, MRI->getRegClass(Reg))) 137 continue; 138 DEBUG(dbgs() << "Coalescing: " << *DefMI); 139 DEBUG(dbgs() << "*** to: " << *MI); 140 MO.setReg(SrcReg); 141 MRI->clearKillFlags(SrcReg); 142 DefMI->eraseFromParent(); 143 ++NumCoalesces; 144 Changed = true; 145 } 146 147 return Changed; 148} 149 150bool 151MachineCSE::isPhysDefTriviallyDead(unsigned Reg, 152 MachineBasicBlock::const_iterator I, 153 MachineBasicBlock::const_iterator E) const { 154 unsigned LookAheadLeft = LookAheadLimit; 155 while (LookAheadLeft) { 156 // Skip over dbg_value's. 157 while (I != E && I->isDebugValue()) 158 ++I; 159 160 if (I == E) 161 // Reached end of block, register is obviously dead. 162 return true; 163 164 bool SeenDef = false; 165 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 166 const MachineOperand &MO = I->getOperand(i); 167 if (MO.isRegMask() && MO.clobbersPhysReg(Reg)) 168 SeenDef = true; 169 if (!MO.isReg() || !MO.getReg()) 170 continue; 171 if (!TRI->regsOverlap(MO.getReg(), Reg)) 172 continue; 173 if (MO.isUse()) 174 // Found a use! 175 return false; 176 SeenDef = true; 177 } 178 if (SeenDef) 179 // See a def of Reg (or an alias) before encountering any use, it's 180 // trivially dead. 181 return true; 182 183 --LookAheadLeft; 184 ++I; 185 } 186 return false; 187} 188 189/// hasLivePhysRegDefUses - Return true if the specified instruction read/write 190/// physical registers (except for dead defs of physical registers). It also 191/// returns the physical register def by reference if it's the only one and the 192/// instruction does not uses a physical register. 193bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI, 194 const MachineBasicBlock *MBB, 195 SmallSet<unsigned,8> &PhysRefs, 196 SmallVectorImpl<unsigned> &PhysDefs, 197 bool &PhysUseDef) const{ 198 // First, add all uses to PhysRefs. 199 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 200 const MachineOperand &MO = MI->getOperand(i); 201 if (!MO.isReg() || MO.isDef()) 202 continue; 203 unsigned Reg = MO.getReg(); 204 if (!Reg) 205 continue; 206 if (TargetRegisterInfo::isVirtualRegister(Reg)) 207 continue; 208 // Reading constant physregs is ok. 209 if (!MRI->isConstantPhysReg(Reg, *MBB->getParent())) 210 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 211 PhysRefs.insert(*AI); 212 } 213 214 // Next, collect all defs into PhysDefs. If any is already in PhysRefs 215 // (which currently contains only uses), set the PhysUseDef flag. 216 PhysUseDef = false; 217 MachineBasicBlock::const_iterator I = MI; I = llvm::next(I); 218 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 219 const MachineOperand &MO = MI->getOperand(i); 220 if (!MO.isReg() || !MO.isDef()) 221 continue; 222 unsigned Reg = MO.getReg(); 223 if (!Reg) 224 continue; 225 if (TargetRegisterInfo::isVirtualRegister(Reg)) 226 continue; 227 // Check against PhysRefs even if the def is "dead". 228 if (PhysRefs.count(Reg)) 229 PhysUseDef = true; 230 // If the def is dead, it's ok. But the def may not marked "dead". That's 231 // common since this pass is run before livevariables. We can scan 232 // forward a few instructions and check if it is obviously dead. 233 if (!MO.isDead() && !isPhysDefTriviallyDead(Reg, I, MBB->end())) 234 PhysDefs.push_back(Reg); 235 } 236 237 // Finally, add all defs to PhysRefs as well. 238 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) 239 for (MCRegAliasIterator AI(PhysDefs[i], TRI, true); AI.isValid(); ++AI) 240 PhysRefs.insert(*AI); 241 242 return !PhysRefs.empty(); 243} 244 245bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, 246 SmallSet<unsigned,8> &PhysRefs, 247 SmallVectorImpl<unsigned> &PhysDefs, 248 bool &NonLocal) const { 249 // For now conservatively returns false if the common subexpression is 250 // not in the same basic block as the given instruction. The only exception 251 // is if the common subexpression is in the sole predecessor block. 252 const MachineBasicBlock *MBB = MI->getParent(); 253 const MachineBasicBlock *CSMBB = CSMI->getParent(); 254 255 bool CrossMBB = false; 256 if (CSMBB != MBB) { 257 if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB) 258 return false; 259 260 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) { 261 if (MRI->isAllocatable(PhysDefs[i]) || MRI->isReserved(PhysDefs[i])) 262 // Avoid extending live range of physical registers if they are 263 //allocatable or reserved. 264 return false; 265 } 266 CrossMBB = true; 267 } 268 MachineBasicBlock::const_iterator I = CSMI; I = llvm::next(I); 269 MachineBasicBlock::const_iterator E = MI; 270 MachineBasicBlock::const_iterator EE = CSMBB->end(); 271 unsigned LookAheadLeft = LookAheadLimit; 272 while (LookAheadLeft) { 273 // Skip over dbg_value's. 274 while (I != E && I != EE && I->isDebugValue()) 275 ++I; 276 277 if (I == EE) { 278 assert(CrossMBB && "Reaching end-of-MBB without finding MI?"); 279 (void)CrossMBB; 280 CrossMBB = false; 281 NonLocal = true; 282 I = MBB->begin(); 283 EE = MBB->end(); 284 continue; 285 } 286 287 if (I == E) 288 return true; 289 290 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 291 const MachineOperand &MO = I->getOperand(i); 292 // RegMasks go on instructions like calls that clobber lots of physregs. 293 // Don't attempt to CSE across such an instruction. 294 if (MO.isRegMask()) 295 return false; 296 if (!MO.isReg() || !MO.isDef()) 297 continue; 298 unsigned MOReg = MO.getReg(); 299 if (TargetRegisterInfo::isVirtualRegister(MOReg)) 300 continue; 301 if (PhysRefs.count(MOReg)) 302 return false; 303 } 304 305 --LookAheadLeft; 306 ++I; 307 } 308 309 return false; 310} 311 312bool MachineCSE::isCSECandidate(MachineInstr *MI) { 313 if (MI->isLabel() || MI->isPHI() || MI->isImplicitDef() || 314 MI->isKill() || MI->isInlineAsm() || MI->isDebugValue()) 315 return false; 316 317 // Ignore copies. 318 if (MI->isCopyLike()) 319 return false; 320 321 // Ignore stuff that we obviously can't move. 322 if (MI->mayStore() || MI->isCall() || MI->isTerminator() || 323 MI->hasUnmodeledSideEffects()) 324 return false; 325 326 if (MI->mayLoad()) { 327 // Okay, this instruction does a load. As a refinement, we allow the target 328 // to decide whether the loaded value is actually a constant. If so, we can 329 // actually use it as a load. 330 if (!MI->isInvariantLoad(AA)) 331 // FIXME: we should be able to hoist loads with no other side effects if 332 // there are no other instructions which can change memory in this loop. 333 // This is a trivial form of alias analysis. 334 return false; 335 } 336 return true; 337} 338 339/// isProfitableToCSE - Return true if it's profitable to eliminate MI with a 340/// common expression that defines Reg. 341bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg, 342 MachineInstr *CSMI, MachineInstr *MI) { 343 // FIXME: Heuristics that works around the lack the live range splitting. 344 345 // If CSReg is used at all uses of Reg, CSE should not increase register 346 // pressure of CSReg. 347 bool MayIncreasePressure = true; 348 if (TargetRegisterInfo::isVirtualRegister(CSReg) && 349 TargetRegisterInfo::isVirtualRegister(Reg)) { 350 MayIncreasePressure = false; 351 SmallPtrSet<MachineInstr*, 8> CSUses; 352 for (MachineRegisterInfo::use_nodbg_iterator I =MRI->use_nodbg_begin(CSReg), 353 E = MRI->use_nodbg_end(); I != E; ++I) { 354 MachineInstr *Use = &*I; 355 CSUses.insert(Use); 356 } 357 for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(Reg), 358 E = MRI->use_nodbg_end(); I != E; ++I) { 359 MachineInstr *Use = &*I; 360 if (!CSUses.count(Use)) { 361 MayIncreasePressure = true; 362 break; 363 } 364 } 365 } 366 if (!MayIncreasePressure) return true; 367 368 // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in 369 // an immediate predecessor. We don't want to increase register pressure and 370 // end up causing other computation to be spilled. 371 if (MI->isAsCheapAsAMove()) { 372 MachineBasicBlock *CSBB = CSMI->getParent(); 373 MachineBasicBlock *BB = MI->getParent(); 374 if (CSBB != BB && !CSBB->isSuccessor(BB)) 375 return false; 376 } 377 378 // Heuristics #2: If the expression doesn't not use a vr and the only use 379 // of the redundant computation are copies, do not cse. 380 bool HasVRegUse = false; 381 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 382 const MachineOperand &MO = MI->getOperand(i); 383 if (MO.isReg() && MO.isUse() && 384 TargetRegisterInfo::isVirtualRegister(MO.getReg())) { 385 HasVRegUse = true; 386 break; 387 } 388 } 389 if (!HasVRegUse) { 390 bool HasNonCopyUse = false; 391 for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(Reg), 392 E = MRI->use_nodbg_end(); I != E; ++I) { 393 MachineInstr *Use = &*I; 394 // Ignore copies. 395 if (!Use->isCopyLike()) { 396 HasNonCopyUse = true; 397 break; 398 } 399 } 400 if (!HasNonCopyUse) 401 return false; 402 } 403 404 // Heuristics #3: If the common subexpression is used by PHIs, do not reuse 405 // it unless the defined value is already used in the BB of the new use. 406 bool HasPHI = false; 407 SmallPtrSet<MachineBasicBlock*, 4> CSBBs; 408 for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(CSReg), 409 E = MRI->use_nodbg_end(); I != E; ++I) { 410 MachineInstr *Use = &*I; 411 HasPHI |= Use->isPHI(); 412 CSBBs.insert(Use->getParent()); 413 } 414 415 if (!HasPHI) 416 return true; 417 return CSBBs.count(MI->getParent()); 418} 419 420void MachineCSE::EnterScope(MachineBasicBlock *MBB) { 421 DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n'); 422 ScopeType *Scope = new ScopeType(VNT); 423 ScopeMap[MBB] = Scope; 424} 425 426void MachineCSE::ExitScope(MachineBasicBlock *MBB) { 427 DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n'); 428 DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB); 429 assert(SI != ScopeMap.end()); 430 delete SI->second; 431 ScopeMap.erase(SI); 432} 433 434bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) { 435 bool Changed = false; 436 437 SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs; 438 SmallVector<unsigned, 2> ImplicitDefsToUpdate; 439 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) { 440 MachineInstr *MI = &*I; 441 ++I; 442 443 if (!isCSECandidate(MI)) 444 continue; 445 446 bool FoundCSE = VNT.count(MI); 447 if (!FoundCSE) { 448 // Look for trivial copy coalescing opportunities. 449 if (PerformTrivialCoalescing(MI, MBB)) { 450 Changed = true; 451 452 // After coalescing MI itself may become a copy. 453 if (MI->isCopyLike()) 454 continue; 455 FoundCSE = VNT.count(MI); 456 } 457 } 458 459 // Commute commutable instructions. 460 bool Commuted = false; 461 if (!FoundCSE && MI->isCommutable()) { 462 MachineInstr *NewMI = TII->commuteInstruction(MI); 463 if (NewMI) { 464 Commuted = true; 465 FoundCSE = VNT.count(NewMI); 466 if (NewMI != MI) { 467 // New instruction. It doesn't need to be kept. 468 NewMI->eraseFromParent(); 469 Changed = true; 470 } else if (!FoundCSE) 471 // MI was changed but it didn't help, commute it back! 472 (void)TII->commuteInstruction(MI); 473 } 474 } 475 476 // If the instruction defines physical registers and the values *may* be 477 // used, then it's not safe to replace it with a common subexpression. 478 // It's also not safe if the instruction uses physical registers. 479 bool CrossMBBPhysDef = false; 480 SmallSet<unsigned, 8> PhysRefs; 481 SmallVector<unsigned, 2> PhysDefs; 482 bool PhysUseDef = false; 483 if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs, 484 PhysDefs, PhysUseDef)) { 485 FoundCSE = false; 486 487 // ... Unless the CS is local or is in the sole predecessor block 488 // and it also defines the physical register which is not clobbered 489 // in between and the physical register uses were not clobbered. 490 // This can never be the case if the instruction both uses and 491 // defines the same physical register, which was detected above. 492 if (!PhysUseDef) { 493 unsigned CSVN = VNT.lookup(MI); 494 MachineInstr *CSMI = Exps[CSVN]; 495 if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef)) 496 FoundCSE = true; 497 } 498 } 499 500 if (!FoundCSE) { 501 VNT.insert(MI, CurrVN++); 502 Exps.push_back(MI); 503 continue; 504 } 505 506 // Found a common subexpression, eliminate it. 507 unsigned CSVN = VNT.lookup(MI); 508 MachineInstr *CSMI = Exps[CSVN]; 509 DEBUG(dbgs() << "Examining: " << *MI); 510 DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI); 511 512 // Check if it's profitable to perform this CSE. 513 bool DoCSE = true; 514 unsigned NumDefs = MI->getDesc().getNumDefs() + 515 MI->getDesc().getNumImplicitDefs(); 516 517 for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) { 518 MachineOperand &MO = MI->getOperand(i); 519 if (!MO.isReg() || !MO.isDef()) 520 continue; 521 unsigned OldReg = MO.getReg(); 522 unsigned NewReg = CSMI->getOperand(i).getReg(); 523 524 // Go through implicit defs of CSMI and MI, if a def is not dead at MI, 525 // we should make sure it is not dead at CSMI. 526 if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead()) 527 ImplicitDefsToUpdate.push_back(i); 528 if (OldReg == NewReg) { 529 --NumDefs; 530 continue; 531 } 532 533 assert(TargetRegisterInfo::isVirtualRegister(OldReg) && 534 TargetRegisterInfo::isVirtualRegister(NewReg) && 535 "Do not CSE physical register defs!"); 536 537 if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) { 538 DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n"); 539 DoCSE = false; 540 break; 541 } 542 543 // Don't perform CSE if the result of the old instruction cannot exist 544 // within the register class of the new instruction. 545 const TargetRegisterClass *OldRC = MRI->getRegClass(OldReg); 546 if (!MRI->constrainRegClass(NewReg, OldRC)) { 547 DEBUG(dbgs() << "*** Not the same register class, avoid CSE!\n"); 548 DoCSE = false; 549 break; 550 } 551 552 CSEPairs.push_back(std::make_pair(OldReg, NewReg)); 553 --NumDefs; 554 } 555 556 // Actually perform the elimination. 557 if (DoCSE) { 558 for (unsigned i = 0, e = CSEPairs.size(); i != e; ++i) { 559 MRI->replaceRegWith(CSEPairs[i].first, CSEPairs[i].second); 560 MRI->clearKillFlags(CSEPairs[i].second); 561 } 562 563 // Go through implicit defs of CSMI and MI, if a def is not dead at MI, 564 // we should make sure it is not dead at CSMI. 565 for (unsigned i = 0, e = ImplicitDefsToUpdate.size(); i != e; ++i) 566 CSMI->getOperand(ImplicitDefsToUpdate[i]).setIsDead(false); 567 568 if (CrossMBBPhysDef) { 569 // Add physical register defs now coming in from a predecessor to MBB 570 // livein list. 571 while (!PhysDefs.empty()) { 572 unsigned LiveIn = PhysDefs.pop_back_val(); 573 if (!MBB->isLiveIn(LiveIn)) 574 MBB->addLiveIn(LiveIn); 575 } 576 ++NumCrossBBCSEs; 577 } 578 579 MI->eraseFromParent(); 580 ++NumCSEs; 581 if (!PhysRefs.empty()) 582 ++NumPhysCSEs; 583 if (Commuted) 584 ++NumCommutes; 585 Changed = true; 586 } else { 587 VNT.insert(MI, CurrVN++); 588 Exps.push_back(MI); 589 } 590 CSEPairs.clear(); 591 ImplicitDefsToUpdate.clear(); 592 } 593 594 return Changed; 595} 596 597/// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given 598/// dominator tree node if its a leaf or all of its children are done. Walk 599/// up the dominator tree to destroy ancestors which are now done. 600void 601MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node, 602 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) { 603 if (OpenChildren[Node]) 604 return; 605 606 // Pop scope. 607 ExitScope(Node->getBlock()); 608 609 // Now traverse upwards to pop ancestors whose offsprings are all done. 610 while (MachineDomTreeNode *Parent = Node->getIDom()) { 611 unsigned Left = --OpenChildren[Parent]; 612 if (Left != 0) 613 break; 614 ExitScope(Parent->getBlock()); 615 Node = Parent; 616 } 617} 618 619bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) { 620 SmallVector<MachineDomTreeNode*, 32> Scopes; 621 SmallVector<MachineDomTreeNode*, 8> WorkList; 622 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; 623 624 CurrVN = 0; 625 626 // Perform a DFS walk to determine the order of visit. 627 WorkList.push_back(Node); 628 do { 629 Node = WorkList.pop_back_val(); 630 Scopes.push_back(Node); 631 const std::vector<MachineDomTreeNode*> &Children = Node->getChildren(); 632 unsigned NumChildren = Children.size(); 633 OpenChildren[Node] = NumChildren; 634 for (unsigned i = 0; i != NumChildren; ++i) { 635 MachineDomTreeNode *Child = Children[i]; 636 WorkList.push_back(Child); 637 } 638 } while (!WorkList.empty()); 639 640 // Now perform CSE. 641 bool Changed = false; 642 for (unsigned i = 0, e = Scopes.size(); i != e; ++i) { 643 MachineDomTreeNode *Node = Scopes[i]; 644 MachineBasicBlock *MBB = Node->getBlock(); 645 EnterScope(MBB); 646 Changed |= ProcessBlock(MBB); 647 // If it's a leaf node, it's done. Traverse upwards to pop ancestors. 648 ExitScopeIfDone(Node, OpenChildren); 649 } 650 651 return Changed; 652} 653 654bool MachineCSE::runOnMachineFunction(MachineFunction &MF) { 655 TII = MF.getTarget().getInstrInfo(); 656 TRI = MF.getTarget().getRegisterInfo(); 657 MRI = &MF.getRegInfo(); 658 AA = &getAnalysis<AliasAnalysis>(); 659 DT = &getAnalysis<MachineDominatorTree>(); 660 return PerformCSE(DT->getRootNode()); 661} 662