1//===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the CodeGenDAGPatterns class, which is used to read and
11// represent the patterns present in a .td file for instructions.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CodeGenDAGPatterns.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/StringExtras.h"
18#include "llvm/ADT/Twine.h"
19#include "llvm/Support/Debug.h"
20#include "llvm/Support/ErrorHandling.h"
21#include "llvm/TableGen/Error.h"
22#include "llvm/TableGen/Record.h"
23#include <algorithm>
24#include <cstdio>
25#include <set>
26using namespace llvm;
27
28//===----------------------------------------------------------------------===//
29//  EEVT::TypeSet Implementation
30//===----------------------------------------------------------------------===//
31
32static inline bool isInteger(MVT::SimpleValueType VT) {
33  return EVT(VT).isInteger();
34}
35static inline bool isFloatingPoint(MVT::SimpleValueType VT) {
36  return EVT(VT).isFloatingPoint();
37}
38static inline bool isVector(MVT::SimpleValueType VT) {
39  return EVT(VT).isVector();
40}
41static inline bool isScalar(MVT::SimpleValueType VT) {
42  return !EVT(VT).isVector();
43}
44
45EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) {
46  if (VT == MVT::iAny)
47    EnforceInteger(TP);
48  else if (VT == MVT::fAny)
49    EnforceFloatingPoint(TP);
50  else if (VT == MVT::vAny)
51    EnforceVector(TP);
52  else {
53    assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR ||
54            VT == MVT::iPTRAny) && "Not a concrete type!");
55    TypeVec.push_back(VT);
56  }
57}
58
59
60EEVT::TypeSet::TypeSet(ArrayRef<MVT::SimpleValueType> VTList) {
61  assert(!VTList.empty() && "empty list?");
62  TypeVec.append(VTList.begin(), VTList.end());
63
64  if (!VTList.empty())
65    assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny &&
66           VTList[0] != MVT::fAny);
67
68  // Verify no duplicates.
69  array_pod_sort(TypeVec.begin(), TypeVec.end());
70  assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end());
71}
72
73/// FillWithPossibleTypes - Set to all legal types and return true, only valid
74/// on completely unknown type sets.
75bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP,
76                                          bool (*Pred)(MVT::SimpleValueType),
77                                          const char *PredicateName) {
78  assert(isCompletelyUnknown());
79  ArrayRef<MVT::SimpleValueType> LegalTypes =
80    TP.getDAGPatterns().getTargetInfo().getLegalValueTypes();
81
82  if (TP.hasError())
83    return false;
84
85  for (unsigned i = 0, e = LegalTypes.size(); i != e; ++i)
86    if (Pred == 0 || Pred(LegalTypes[i]))
87      TypeVec.push_back(LegalTypes[i]);
88
89  // If we have nothing that matches the predicate, bail out.
90  if (TypeVec.empty()) {
91    TP.error("Type inference contradiction found, no " +
92             std::string(PredicateName) + " types found");
93    return false;
94  }
95  // No need to sort with one element.
96  if (TypeVec.size() == 1) return true;
97
98  // Remove duplicates.
99  array_pod_sort(TypeVec.begin(), TypeVec.end());
100  TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end());
101
102  return true;
103}
104
105/// hasIntegerTypes - Return true if this TypeSet contains iAny or an
106/// integer value type.
107bool EEVT::TypeSet::hasIntegerTypes() const {
108  for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
109    if (isInteger(TypeVec[i]))
110      return true;
111  return false;
112}
113
114/// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or
115/// a floating point value type.
116bool EEVT::TypeSet::hasFloatingPointTypes() const {
117  for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
118    if (isFloatingPoint(TypeVec[i]))
119      return true;
120  return false;
121}
122
123/// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector
124/// value type.
125bool EEVT::TypeSet::hasVectorTypes() const {
126  for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
127    if (isVector(TypeVec[i]))
128      return true;
129  return false;
130}
131
132
133std::string EEVT::TypeSet::getName() const {
134  if (TypeVec.empty()) return "<empty>";
135
136  std::string Result;
137
138  for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) {
139    std::string VTName = llvm::getEnumName(TypeVec[i]);
140    // Strip off MVT:: prefix if present.
141    if (VTName.substr(0,5) == "MVT::")
142      VTName = VTName.substr(5);
143    if (i) Result += ':';
144    Result += VTName;
145  }
146
147  if (TypeVec.size() == 1)
148    return Result;
149  return "{" + Result + "}";
150}
151
152/// MergeInTypeInfo - This merges in type information from the specified
153/// argument.  If 'this' changes, it returns true.  If the two types are
154/// contradictory (e.g. merge f32 into i32) then this flags an error.
155bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){
156  if (InVT.isCompletelyUnknown() || *this == InVT || TP.hasError())
157    return false;
158
159  if (isCompletelyUnknown()) {
160    *this = InVT;
161    return true;
162  }
163
164  assert(TypeVec.size() >= 1 && InVT.TypeVec.size() >= 1 && "No unknowns");
165
166  // Handle the abstract cases, seeing if we can resolve them better.
167  switch (TypeVec[0]) {
168  default: break;
169  case MVT::iPTR:
170  case MVT::iPTRAny:
171    if (InVT.hasIntegerTypes()) {
172      EEVT::TypeSet InCopy(InVT);
173      InCopy.EnforceInteger(TP);
174      InCopy.EnforceScalar(TP);
175
176      if (InCopy.isConcrete()) {
177        // If the RHS has one integer type, upgrade iPTR to i32.
178        TypeVec[0] = InVT.TypeVec[0];
179        return true;
180      }
181
182      // If the input has multiple scalar integers, this doesn't add any info.
183      if (!InCopy.isCompletelyUnknown())
184        return false;
185    }
186    break;
187  }
188
189  // If the input constraint is iAny/iPTR and this is an integer type list,
190  // remove non-integer types from the list.
191  if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
192      hasIntegerTypes()) {
193    bool MadeChange = EnforceInteger(TP);
194
195    // If we're merging in iPTR/iPTRAny and the node currently has a list of
196    // multiple different integer types, replace them with a single iPTR.
197    if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
198        TypeVec.size() != 1) {
199      TypeVec.resize(1);
200      TypeVec[0] = InVT.TypeVec[0];
201      MadeChange = true;
202    }
203
204    return MadeChange;
205  }
206
207  // If this is a type list and the RHS is a typelist as well, eliminate entries
208  // from this list that aren't in the other one.
209  bool MadeChange = false;
210  TypeSet InputSet(*this);
211
212  for (unsigned i = 0; i != TypeVec.size(); ++i) {
213    bool InInVT = false;
214    for (unsigned j = 0, e = InVT.TypeVec.size(); j != e; ++j)
215      if (TypeVec[i] == InVT.TypeVec[j]) {
216        InInVT = true;
217        break;
218      }
219
220    if (InInVT) continue;
221    TypeVec.erase(TypeVec.begin()+i--);
222    MadeChange = true;
223  }
224
225  // If we removed all of our types, we have a type contradiction.
226  if (!TypeVec.empty())
227    return MadeChange;
228
229  // FIXME: Really want an SMLoc here!
230  TP.error("Type inference contradiction found, merging '" +
231           InVT.getName() + "' into '" + InputSet.getName() + "'");
232  return false;
233}
234
235/// EnforceInteger - Remove all non-integer types from this set.
236bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) {
237  if (TP.hasError())
238    return false;
239  // If we know nothing, then get the full set.
240  if (TypeVec.empty())
241    return FillWithPossibleTypes(TP, isInteger, "integer");
242  if (!hasFloatingPointTypes())
243    return false;
244
245  TypeSet InputSet(*this);
246
247  // Filter out all the fp types.
248  for (unsigned i = 0; i != TypeVec.size(); ++i)
249    if (!isInteger(TypeVec[i]))
250      TypeVec.erase(TypeVec.begin()+i--);
251
252  if (TypeVec.empty()) {
253    TP.error("Type inference contradiction found, '" +
254             InputSet.getName() + "' needs to be integer");
255    return false;
256  }
257  return true;
258}
259
260/// EnforceFloatingPoint - Remove all integer types from this set.
261bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) {
262  if (TP.hasError())
263    return false;
264  // If we know nothing, then get the full set.
265  if (TypeVec.empty())
266    return FillWithPossibleTypes(TP, isFloatingPoint, "floating point");
267
268  if (!hasIntegerTypes())
269    return false;
270
271  TypeSet InputSet(*this);
272
273  // Filter out all the fp types.
274  for (unsigned i = 0; i != TypeVec.size(); ++i)
275    if (!isFloatingPoint(TypeVec[i]))
276      TypeVec.erase(TypeVec.begin()+i--);
277
278  if (TypeVec.empty()) {
279    TP.error("Type inference contradiction found, '" +
280             InputSet.getName() + "' needs to be floating point");
281    return false;
282  }
283  return true;
284}
285
286/// EnforceScalar - Remove all vector types from this.
287bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) {
288  if (TP.hasError())
289    return false;
290
291  // If we know nothing, then get the full set.
292  if (TypeVec.empty())
293    return FillWithPossibleTypes(TP, isScalar, "scalar");
294
295  if (!hasVectorTypes())
296    return false;
297
298  TypeSet InputSet(*this);
299
300  // Filter out all the vector types.
301  for (unsigned i = 0; i != TypeVec.size(); ++i)
302    if (!isScalar(TypeVec[i]))
303      TypeVec.erase(TypeVec.begin()+i--);
304
305  if (TypeVec.empty()) {
306    TP.error("Type inference contradiction found, '" +
307             InputSet.getName() + "' needs to be scalar");
308    return false;
309  }
310  return true;
311}
312
313/// EnforceVector - Remove all vector types from this.
314bool EEVT::TypeSet::EnforceVector(TreePattern &TP) {
315  if (TP.hasError())
316    return false;
317
318  // If we know nothing, then get the full set.
319  if (TypeVec.empty())
320    return FillWithPossibleTypes(TP, isVector, "vector");
321
322  TypeSet InputSet(*this);
323  bool MadeChange = false;
324
325  // Filter out all the scalar types.
326  for (unsigned i = 0; i != TypeVec.size(); ++i)
327    if (!isVector(TypeVec[i])) {
328      TypeVec.erase(TypeVec.begin()+i--);
329      MadeChange = true;
330    }
331
332  if (TypeVec.empty()) {
333    TP.error("Type inference contradiction found, '" +
334             InputSet.getName() + "' needs to be a vector");
335    return false;
336  }
337  return MadeChange;
338}
339
340
341
342/// EnforceSmallerThan - 'this' must be a smaller VT than Other.  Update
343/// this an other based on this information.
344bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) {
345  if (TP.hasError())
346    return false;
347
348  // Both operands must be integer or FP, but we don't care which.
349  bool MadeChange = false;
350
351  if (isCompletelyUnknown())
352    MadeChange = FillWithPossibleTypes(TP);
353
354  if (Other.isCompletelyUnknown())
355    MadeChange = Other.FillWithPossibleTypes(TP);
356
357  // If one side is known to be integer or known to be FP but the other side has
358  // no information, get at least the type integrality info in there.
359  if (!hasFloatingPointTypes())
360    MadeChange |= Other.EnforceInteger(TP);
361  else if (!hasIntegerTypes())
362    MadeChange |= Other.EnforceFloatingPoint(TP);
363  if (!Other.hasFloatingPointTypes())
364    MadeChange |= EnforceInteger(TP);
365  else if (!Other.hasIntegerTypes())
366    MadeChange |= EnforceFloatingPoint(TP);
367
368  assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() &&
369         "Should have a type list now");
370
371  // If one contains vectors but the other doesn't pull vectors out.
372  if (!hasVectorTypes())
373    MadeChange |= Other.EnforceScalar(TP);
374  if (!hasVectorTypes())
375    MadeChange |= EnforceScalar(TP);
376
377  if (TypeVec.size() == 1 && Other.TypeVec.size() == 1) {
378    // If we are down to concrete types, this code does not currently
379    // handle nodes which have multiple types, where some types are
380    // integer, and some are fp.  Assert that this is not the case.
381    assert(!(hasIntegerTypes() && hasFloatingPointTypes()) &&
382           !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) &&
383           "SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
384
385    // Otherwise, if these are both vector types, either this vector
386    // must have a larger bitsize than the other, or this element type
387    // must be larger than the other.
388    EVT Type(TypeVec[0]);
389    EVT OtherType(Other.TypeVec[0]);
390
391    if (hasVectorTypes() && Other.hasVectorTypes()) {
392      if (Type.getSizeInBits() >= OtherType.getSizeInBits())
393        if (Type.getVectorElementType().getSizeInBits()
394            >= OtherType.getVectorElementType().getSizeInBits()) {
395          TP.error("Type inference contradiction found, '" +
396                   getName() + "' element type not smaller than '" +
397                   Other.getName() +"'!");
398          return false;
399        }
400    }
401    else
402      // For scalar types, the bitsize of this type must be larger
403      // than that of the other.
404      if (Type.getSizeInBits() >= OtherType.getSizeInBits()) {
405        TP.error("Type inference contradiction found, '" +
406                 getName() + "' is not smaller than '" +
407                 Other.getName() +"'!");
408        return false;
409      }
410  }
411
412
413  // Handle int and fp as disjoint sets.  This won't work for patterns
414  // that have mixed fp/int types but those are likely rare and would
415  // not have been accepted by this code previously.
416
417  // Okay, find the smallest type from the current set and remove it from the
418  // largest set.
419  MVT::SimpleValueType SmallestInt = MVT::LAST_VALUETYPE;
420  for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
421    if (isInteger(TypeVec[i])) {
422      SmallestInt = TypeVec[i];
423      break;
424    }
425  for (unsigned i = 1, e = TypeVec.size(); i != e; ++i)
426    if (isInteger(TypeVec[i]) && TypeVec[i] < SmallestInt)
427      SmallestInt = TypeVec[i];
428
429  MVT::SimpleValueType SmallestFP = MVT::LAST_VALUETYPE;
430  for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
431    if (isFloatingPoint(TypeVec[i])) {
432      SmallestFP = TypeVec[i];
433      break;
434    }
435  for (unsigned i = 1, e = TypeVec.size(); i != e; ++i)
436    if (isFloatingPoint(TypeVec[i]) && TypeVec[i] < SmallestFP)
437      SmallestFP = TypeVec[i];
438
439  int OtherIntSize = 0;
440  int OtherFPSize = 0;
441  for (SmallVectorImpl<MVT::SimpleValueType>::iterator TVI =
442         Other.TypeVec.begin();
443       TVI != Other.TypeVec.end();
444       /* NULL */) {
445    if (isInteger(*TVI)) {
446      ++OtherIntSize;
447      if (*TVI == SmallestInt) {
448        TVI = Other.TypeVec.erase(TVI);
449        --OtherIntSize;
450        MadeChange = true;
451        continue;
452      }
453    }
454    else if (isFloatingPoint(*TVI)) {
455      ++OtherFPSize;
456      if (*TVI == SmallestFP) {
457        TVI = Other.TypeVec.erase(TVI);
458        --OtherFPSize;
459        MadeChange = true;
460        continue;
461      }
462    }
463    ++TVI;
464  }
465
466  // If this is the only type in the large set, the constraint can never be
467  // satisfied.
468  if ((Other.hasIntegerTypes() && OtherIntSize == 0)
469      || (Other.hasFloatingPointTypes() && OtherFPSize == 0)) {
470    TP.error("Type inference contradiction found, '" +
471             Other.getName() + "' has nothing larger than '" + getName() +"'!");
472    return false;
473  }
474
475  // Okay, find the largest type in the Other set and remove it from the
476  // current set.
477  MVT::SimpleValueType LargestInt = MVT::Other;
478  for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i)
479    if (isInteger(Other.TypeVec[i])) {
480      LargestInt = Other.TypeVec[i];
481      break;
482    }
483  for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i)
484    if (isInteger(Other.TypeVec[i]) && Other.TypeVec[i] > LargestInt)
485      LargestInt = Other.TypeVec[i];
486
487  MVT::SimpleValueType LargestFP = MVT::Other;
488  for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i)
489    if (isFloatingPoint(Other.TypeVec[i])) {
490      LargestFP = Other.TypeVec[i];
491      break;
492    }
493  for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i)
494    if (isFloatingPoint(Other.TypeVec[i]) && Other.TypeVec[i] > LargestFP)
495      LargestFP = Other.TypeVec[i];
496
497  int IntSize = 0;
498  int FPSize = 0;
499  for (SmallVectorImpl<MVT::SimpleValueType>::iterator TVI =
500         TypeVec.begin();
501       TVI != TypeVec.end();
502       /* NULL */) {
503    if (isInteger(*TVI)) {
504      ++IntSize;
505      if (*TVI == LargestInt) {
506        TVI = TypeVec.erase(TVI);
507        --IntSize;
508        MadeChange = true;
509        continue;
510      }
511    }
512    else if (isFloatingPoint(*TVI)) {
513      ++FPSize;
514      if (*TVI == LargestFP) {
515        TVI = TypeVec.erase(TVI);
516        --FPSize;
517        MadeChange = true;
518        continue;
519      }
520    }
521    ++TVI;
522  }
523
524  // If this is the only type in the small set, the constraint can never be
525  // satisfied.
526  if ((hasIntegerTypes() && IntSize == 0)
527      || (hasFloatingPointTypes() && FPSize == 0)) {
528    TP.error("Type inference contradiction found, '" +
529             getName() + "' has nothing smaller than '" + Other.getName()+"'!");
530    return false;
531  }
532
533  return MadeChange;
534}
535
536/// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type
537/// whose element is specified by VTOperand.
538bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand,
539                                           TreePattern &TP) {
540  if (TP.hasError())
541    return false;
542
543  // "This" must be a vector and "VTOperand" must be a scalar.
544  bool MadeChange = false;
545  MadeChange |= EnforceVector(TP);
546  MadeChange |= VTOperand.EnforceScalar(TP);
547
548  // If we know the vector type, it forces the scalar to agree.
549  if (isConcrete()) {
550    EVT IVT = getConcrete();
551    IVT = IVT.getVectorElementType();
552    return MadeChange |
553      VTOperand.MergeInTypeInfo(IVT.getSimpleVT().SimpleTy, TP);
554  }
555
556  // If the scalar type is known, filter out vector types whose element types
557  // disagree.
558  if (!VTOperand.isConcrete())
559    return MadeChange;
560
561  MVT::SimpleValueType VT = VTOperand.getConcrete();
562
563  TypeSet InputSet(*this);
564
565  // Filter out all the types which don't have the right element type.
566  for (unsigned i = 0; i != TypeVec.size(); ++i) {
567    assert(isVector(TypeVec[i]) && "EnforceVector didn't work");
568    if (EVT(TypeVec[i]).getVectorElementType().getSimpleVT().SimpleTy != VT) {
569      TypeVec.erase(TypeVec.begin()+i--);
570      MadeChange = true;
571    }
572  }
573
574  if (TypeVec.empty()) {  // FIXME: Really want an SMLoc here!
575    TP.error("Type inference contradiction found, forcing '" +
576             InputSet.getName() + "' to have a vector element");
577    return false;
578  }
579  return MadeChange;
580}
581
582/// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to be a
583/// vector type specified by VTOperand.
584bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VTOperand,
585                                                 TreePattern &TP) {
586  // "This" must be a vector and "VTOperand" must be a vector.
587  bool MadeChange = false;
588  MadeChange |= EnforceVector(TP);
589  MadeChange |= VTOperand.EnforceVector(TP);
590
591  // "This" must be larger than "VTOperand."
592  MadeChange |= VTOperand.EnforceSmallerThan(*this, TP);
593
594  // If we know the vector type, it forces the scalar types to agree.
595  if (isConcrete()) {
596    EVT IVT = getConcrete();
597    IVT = IVT.getVectorElementType();
598
599    EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP);
600    MadeChange |= VTOperand.EnforceVectorEltTypeIs(EltTypeSet, TP);
601  } else if (VTOperand.isConcrete()) {
602    EVT IVT = VTOperand.getConcrete();
603    IVT = IVT.getVectorElementType();
604
605    EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP);
606    MadeChange |= EnforceVectorEltTypeIs(EltTypeSet, TP);
607  }
608
609  return MadeChange;
610}
611
612//===----------------------------------------------------------------------===//
613// Helpers for working with extended types.
614
615/// Dependent variable map for CodeGenDAGPattern variant generation
616typedef std::map<std::string, int> DepVarMap;
617
618/// Const iterator shorthand for DepVarMap
619typedef DepVarMap::const_iterator DepVarMap_citer;
620
621static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
622  if (N->isLeaf()) {
623    if (isa<DefInit>(N->getLeafValue()))
624      DepMap[N->getName()]++;
625  } else {
626    for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
627      FindDepVarsOf(N->getChild(i), DepMap);
628  }
629}
630
631/// Find dependent variables within child patterns
632static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
633  DepVarMap depcounts;
634  FindDepVarsOf(N, depcounts);
635  for (DepVarMap_citer i = depcounts.begin(); i != depcounts.end(); ++i) {
636    if (i->second > 1)            // std::pair<std::string, int>
637      DepVars.insert(i->first);
638  }
639}
640
641#ifndef NDEBUG
642/// Dump the dependent variable set:
643static void DumpDepVars(MultipleUseVarSet &DepVars) {
644  if (DepVars.empty()) {
645    DEBUG(errs() << "<empty set>");
646  } else {
647    DEBUG(errs() << "[ ");
648    for (MultipleUseVarSet::const_iterator i = DepVars.begin(),
649         e = DepVars.end(); i != e; ++i) {
650      DEBUG(errs() << (*i) << " ");
651    }
652    DEBUG(errs() << "]");
653  }
654}
655#endif
656
657
658//===----------------------------------------------------------------------===//
659// TreePredicateFn Implementation
660//===----------------------------------------------------------------------===//
661
662/// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
663TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
664  assert((getPredCode().empty() || getImmCode().empty()) &&
665        ".td file corrupt: can't have a node predicate *and* an imm predicate");
666}
667
668std::string TreePredicateFn::getPredCode() const {
669  return PatFragRec->getRecord()->getValueAsString("PredicateCode");
670}
671
672std::string TreePredicateFn::getImmCode() const {
673  return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
674}
675
676
677/// isAlwaysTrue - Return true if this is a noop predicate.
678bool TreePredicateFn::isAlwaysTrue() const {
679  return getPredCode().empty() && getImmCode().empty();
680}
681
682/// Return the name to use in the generated code to reference this, this is
683/// "Predicate_foo" if from a pattern fragment "foo".
684std::string TreePredicateFn::getFnName() const {
685  return "Predicate_" + PatFragRec->getRecord()->getName();
686}
687
688/// getCodeToRunOnSDNode - Return the code for the function body that
689/// evaluates this predicate.  The argument is expected to be in "Node",
690/// not N.  This handles casting and conversion to a concrete node type as
691/// appropriate.
692std::string TreePredicateFn::getCodeToRunOnSDNode() const {
693  // Handle immediate predicates first.
694  std::string ImmCode = getImmCode();
695  if (!ImmCode.empty()) {
696    std::string Result =
697      "    int64_t Imm = cast<ConstantSDNode>(Node)->getSExtValue();\n";
698    return Result + ImmCode;
699  }
700
701  // Handle arbitrary node predicates.
702  assert(!getPredCode().empty() && "Don't have any predicate code!");
703  std::string ClassName;
704  if (PatFragRec->getOnlyTree()->isLeaf())
705    ClassName = "SDNode";
706  else {
707    Record *Op = PatFragRec->getOnlyTree()->getOperator();
708    ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
709  }
710  std::string Result;
711  if (ClassName == "SDNode")
712    Result = "    SDNode *N = Node;\n";
713  else
714    Result = "    " + ClassName + "*N = cast<" + ClassName + ">(Node);\n";
715
716  return Result + getPredCode();
717}
718
719//===----------------------------------------------------------------------===//
720// PatternToMatch implementation
721//
722
723
724/// getPatternSize - Return the 'size' of this pattern.  We want to match large
725/// patterns before small ones.  This is used to determine the size of a
726/// pattern.
727static unsigned getPatternSize(const TreePatternNode *P,
728                               const CodeGenDAGPatterns &CGP) {
729  unsigned Size = 3;  // The node itself.
730  // If the root node is a ConstantSDNode, increases its size.
731  // e.g. (set R32:$dst, 0).
732  if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
733    Size += 2;
734
735  // FIXME: This is a hack to statically increase the priority of patterns
736  // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD.
737  // Later we can allow complexity / cost for each pattern to be (optionally)
738  // specified. To get best possible pattern match we'll need to dynamically
739  // calculate the complexity of all patterns a dag can potentially map to.
740  const ComplexPattern *AM = P->getComplexPatternInfo(CGP);
741  if (AM)
742    Size += AM->getNumOperands() * 3;
743
744  // If this node has some predicate function that must match, it adds to the
745  // complexity of this node.
746  if (!P->getPredicateFns().empty())
747    ++Size;
748
749  // Count children in the count if they are also nodes.
750  for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
751    TreePatternNode *Child = P->getChild(i);
752    if (!Child->isLeaf() && Child->getNumTypes() &&
753        Child->getType(0) != MVT::Other)
754      Size += getPatternSize(Child, CGP);
755    else if (Child->isLeaf()) {
756      if (isa<IntInit>(Child->getLeafValue()))
757        Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2).
758      else if (Child->getComplexPatternInfo(CGP))
759        Size += getPatternSize(Child, CGP);
760      else if (!Child->getPredicateFns().empty())
761        ++Size;
762    }
763  }
764
765  return Size;
766}
767
768/// Compute the complexity metric for the input pattern.  This roughly
769/// corresponds to the number of nodes that are covered.
770unsigned PatternToMatch::
771getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
772  return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
773}
774
775
776/// getPredicateCheck - Return a single string containing all of this
777/// pattern's predicates concatenated with "&&" operators.
778///
779std::string PatternToMatch::getPredicateCheck() const {
780  std::string PredicateCheck;
781  for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) {
782    if (DefInit *Pred = dyn_cast<DefInit>(Predicates->getElement(i))) {
783      Record *Def = Pred->getDef();
784      if (!Def->isSubClassOf("Predicate")) {
785#ifndef NDEBUG
786        Def->dump();
787#endif
788        llvm_unreachable("Unknown predicate type!");
789      }
790      if (!PredicateCheck.empty())
791        PredicateCheck += " && ";
792      PredicateCheck += "(" + Def->getValueAsString("CondString") + ")";
793    }
794  }
795
796  return PredicateCheck;
797}
798
799//===----------------------------------------------------------------------===//
800// SDTypeConstraint implementation
801//
802
803SDTypeConstraint::SDTypeConstraint(Record *R) {
804  OperandNo = R->getValueAsInt("OperandNum");
805
806  if (R->isSubClassOf("SDTCisVT")) {
807    ConstraintType = SDTCisVT;
808    x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
809    if (x.SDTCisVT_Info.VT == MVT::isVoid)
810      PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
811
812  } else if (R->isSubClassOf("SDTCisPtrTy")) {
813    ConstraintType = SDTCisPtrTy;
814  } else if (R->isSubClassOf("SDTCisInt")) {
815    ConstraintType = SDTCisInt;
816  } else if (R->isSubClassOf("SDTCisFP")) {
817    ConstraintType = SDTCisFP;
818  } else if (R->isSubClassOf("SDTCisVec")) {
819    ConstraintType = SDTCisVec;
820  } else if (R->isSubClassOf("SDTCisSameAs")) {
821    ConstraintType = SDTCisSameAs;
822    x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
823  } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
824    ConstraintType = SDTCisVTSmallerThanOp;
825    x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
826      R->getValueAsInt("OtherOperandNum");
827  } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
828    ConstraintType = SDTCisOpSmallerThanOp;
829    x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
830      R->getValueAsInt("BigOperandNum");
831  } else if (R->isSubClassOf("SDTCisEltOfVec")) {
832    ConstraintType = SDTCisEltOfVec;
833    x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
834  } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
835    ConstraintType = SDTCisSubVecOfVec;
836    x.SDTCisSubVecOfVec_Info.OtherOperandNum =
837      R->getValueAsInt("OtherOpNum");
838  } else {
839    errs() << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n";
840    exit(1);
841  }
842}
843
844/// getOperandNum - Return the node corresponding to operand #OpNo in tree
845/// N, and the result number in ResNo.
846static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
847                                      const SDNodeInfo &NodeInfo,
848                                      unsigned &ResNo) {
849  unsigned NumResults = NodeInfo.getNumResults();
850  if (OpNo < NumResults) {
851    ResNo = OpNo;
852    return N;
853  }
854
855  OpNo -= NumResults;
856
857  if (OpNo >= N->getNumChildren()) {
858    errs() << "Invalid operand number in type constraint "
859           << (OpNo+NumResults) << " ";
860    N->dump();
861    errs() << '\n';
862    exit(1);
863  }
864
865  return N->getChild(OpNo);
866}
867
868/// ApplyTypeConstraint - Given a node in a pattern, apply this type
869/// constraint to the nodes operands.  This returns true if it makes a
870/// change, false otherwise.  If a type contradiction is found, flag an error.
871bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
872                                           const SDNodeInfo &NodeInfo,
873                                           TreePattern &TP) const {
874  if (TP.hasError())
875    return false;
876
877  unsigned ResNo = 0; // The result number being referenced.
878  TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
879
880  switch (ConstraintType) {
881  case SDTCisVT:
882    // Operand must be a particular type.
883    return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP);
884  case SDTCisPtrTy:
885    // Operand must be same as target pointer type.
886    return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
887  case SDTCisInt:
888    // Require it to be one of the legal integer VTs.
889    return NodeToApply->getExtType(ResNo).EnforceInteger(TP);
890  case SDTCisFP:
891    // Require it to be one of the legal fp VTs.
892    return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP);
893  case SDTCisVec:
894    // Require it to be one of the legal vector VTs.
895    return NodeToApply->getExtType(ResNo).EnforceVector(TP);
896  case SDTCisSameAs: {
897    unsigned OResNo = 0;
898    TreePatternNode *OtherNode =
899      getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
900    return NodeToApply->UpdateNodeType(OResNo, OtherNode->getExtType(ResNo),TP)|
901           OtherNode->UpdateNodeType(ResNo,NodeToApply->getExtType(OResNo),TP);
902  }
903  case SDTCisVTSmallerThanOp: {
904    // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
905    // have an integer type that is smaller than the VT.
906    if (!NodeToApply->isLeaf() ||
907        !isa<DefInit>(NodeToApply->getLeafValue()) ||
908        !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
909               ->isSubClassOf("ValueType")) {
910      TP.error(N->getOperator()->getName() + " expects a VT operand!");
911      return false;
912    }
913    MVT::SimpleValueType VT =
914     getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
915
916    EEVT::TypeSet TypeListTmp(VT, TP);
917
918    unsigned OResNo = 0;
919    TreePatternNode *OtherNode =
920      getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
921                    OResNo);
922
923    return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP);
924  }
925  case SDTCisOpSmallerThanOp: {
926    unsigned BResNo = 0;
927    TreePatternNode *BigOperand =
928      getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
929                    BResNo);
930    return NodeToApply->getExtType(ResNo).
931                  EnforceSmallerThan(BigOperand->getExtType(BResNo), TP);
932  }
933  case SDTCisEltOfVec: {
934    unsigned VResNo = 0;
935    TreePatternNode *VecOperand =
936      getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
937                    VResNo);
938
939    // Filter vector types out of VecOperand that don't have the right element
940    // type.
941    return VecOperand->getExtType(VResNo).
942      EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP);
943  }
944  case SDTCisSubVecOfVec: {
945    unsigned VResNo = 0;
946    TreePatternNode *BigVecOperand =
947      getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
948                    VResNo);
949
950    // Filter vector types out of BigVecOperand that don't have the
951    // right subvector type.
952    return BigVecOperand->getExtType(VResNo).
953      EnforceVectorSubVectorTypeIs(NodeToApply->getExtType(ResNo), TP);
954  }
955  }
956  llvm_unreachable("Invalid ConstraintType!");
957}
958
959// Update the node type to match an instruction operand or result as specified
960// in the ins or outs lists on the instruction definition. Return true if the
961// type was actually changed.
962bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
963                                             Record *Operand,
964                                             TreePattern &TP) {
965  // The 'unknown' operand indicates that types should be inferred from the
966  // context.
967  if (Operand->isSubClassOf("unknown_class"))
968    return false;
969
970  // The Operand class specifies a type directly.
971  if (Operand->isSubClassOf("Operand"))
972    return UpdateNodeType(ResNo, getValueType(Operand->getValueAsDef("Type")),
973                          TP);
974
975  // PointerLikeRegClass has a type that is determined at runtime.
976  if (Operand->isSubClassOf("PointerLikeRegClass"))
977    return UpdateNodeType(ResNo, MVT::iPTR, TP);
978
979  // Both RegisterClass and RegisterOperand operands derive their types from a
980  // register class def.
981  Record *RC = 0;
982  if (Operand->isSubClassOf("RegisterClass"))
983    RC = Operand;
984  else if (Operand->isSubClassOf("RegisterOperand"))
985    RC = Operand->getValueAsDef("RegClass");
986
987  assert(RC && "Unknown operand type");
988  CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
989  return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
990}
991
992
993//===----------------------------------------------------------------------===//
994// SDNodeInfo implementation
995//
996SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
997  EnumName    = R->getValueAsString("Opcode");
998  SDClassName = R->getValueAsString("SDClass");
999  Record *TypeProfile = R->getValueAsDef("TypeProfile");
1000  NumResults = TypeProfile->getValueAsInt("NumResults");
1001  NumOperands = TypeProfile->getValueAsInt("NumOperands");
1002
1003  // Parse the properties.
1004  Properties = 0;
1005  std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
1006  for (unsigned i = 0, e = PropList.size(); i != e; ++i) {
1007    if (PropList[i]->getName() == "SDNPCommutative") {
1008      Properties |= 1 << SDNPCommutative;
1009    } else if (PropList[i]->getName() == "SDNPAssociative") {
1010      Properties |= 1 << SDNPAssociative;
1011    } else if (PropList[i]->getName() == "SDNPHasChain") {
1012      Properties |= 1 << SDNPHasChain;
1013    } else if (PropList[i]->getName() == "SDNPOutGlue") {
1014      Properties |= 1 << SDNPOutGlue;
1015    } else if (PropList[i]->getName() == "SDNPInGlue") {
1016      Properties |= 1 << SDNPInGlue;
1017    } else if (PropList[i]->getName() == "SDNPOptInGlue") {
1018      Properties |= 1 << SDNPOptInGlue;
1019    } else if (PropList[i]->getName() == "SDNPMayStore") {
1020      Properties |= 1 << SDNPMayStore;
1021    } else if (PropList[i]->getName() == "SDNPMayLoad") {
1022      Properties |= 1 << SDNPMayLoad;
1023    } else if (PropList[i]->getName() == "SDNPSideEffect") {
1024      Properties |= 1 << SDNPSideEffect;
1025    } else if (PropList[i]->getName() == "SDNPMemOperand") {
1026      Properties |= 1 << SDNPMemOperand;
1027    } else if (PropList[i]->getName() == "SDNPVariadic") {
1028      Properties |= 1 << SDNPVariadic;
1029    } else {
1030      errs() << "Unknown SD Node property '" << PropList[i]->getName()
1031             << "' on node '" << R->getName() << "'!\n";
1032      exit(1);
1033    }
1034  }
1035
1036
1037  // Parse the type constraints.
1038  std::vector<Record*> ConstraintList =
1039    TypeProfile->getValueAsListOfDefs("Constraints");
1040  TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
1041}
1042
1043/// getKnownType - If the type constraints on this node imply a fixed type
1044/// (e.g. all stores return void, etc), then return it as an
1045/// MVT::SimpleValueType.  Otherwise, return EEVT::Other.
1046MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1047  unsigned NumResults = getNumResults();
1048  assert(NumResults <= 1 &&
1049         "We only work with nodes with zero or one result so far!");
1050  assert(ResNo == 0 && "Only handles single result nodes so far");
1051
1052  for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) {
1053    // Make sure that this applies to the correct node result.
1054    if (TypeConstraints[i].OperandNo >= NumResults)  // FIXME: need value #
1055      continue;
1056
1057    switch (TypeConstraints[i].ConstraintType) {
1058    default: break;
1059    case SDTypeConstraint::SDTCisVT:
1060      return TypeConstraints[i].x.SDTCisVT_Info.VT;
1061    case SDTypeConstraint::SDTCisPtrTy:
1062      return MVT::iPTR;
1063    }
1064  }
1065  return MVT::Other;
1066}
1067
1068//===----------------------------------------------------------------------===//
1069// TreePatternNode implementation
1070//
1071
1072TreePatternNode::~TreePatternNode() {
1073#if 0 // FIXME: implement refcounted tree nodes!
1074  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1075    delete getChild(i);
1076#endif
1077}
1078
1079static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1080  if (Operator->getName() == "set" ||
1081      Operator->getName() == "implicit")
1082    return 0;  // All return nothing.
1083
1084  if (Operator->isSubClassOf("Intrinsic"))
1085    return CDP.getIntrinsic(Operator).IS.RetVTs.size();
1086
1087  if (Operator->isSubClassOf("SDNode"))
1088    return CDP.getSDNodeInfo(Operator).getNumResults();
1089
1090  if (Operator->isSubClassOf("PatFrag")) {
1091    // If we've already parsed this pattern fragment, get it.  Otherwise, handle
1092    // the forward reference case where one pattern fragment references another
1093    // before it is processed.
1094    if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator))
1095      return PFRec->getOnlyTree()->getNumTypes();
1096
1097    // Get the result tree.
1098    DagInit *Tree = Operator->getValueAsDag("Fragment");
1099    Record *Op = 0;
1100    if (Tree)
1101      if (DefInit *DI = dyn_cast<DefInit>(Tree->getOperator()))
1102        Op = DI->getDef();
1103    assert(Op && "Invalid Fragment");
1104    return GetNumNodeResults(Op, CDP);
1105  }
1106
1107  if (Operator->isSubClassOf("Instruction")) {
1108    CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1109
1110    // FIXME: Should allow access to all the results here.
1111    unsigned NumDefsToAdd = InstInfo.Operands.NumDefs ? 1 : 0;
1112
1113    // Add on one implicit def if it has a resolvable type.
1114    if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1115      ++NumDefsToAdd;
1116    return NumDefsToAdd;
1117  }
1118
1119  if (Operator->isSubClassOf("SDNodeXForm"))
1120    return 1;  // FIXME: Generalize SDNodeXForm
1121
1122  Operator->dump();
1123  errs() << "Unhandled node in GetNumNodeResults\n";
1124  exit(1);
1125}
1126
1127void TreePatternNode::print(raw_ostream &OS) const {
1128  if (isLeaf())
1129    OS << *getLeafValue();
1130  else
1131    OS << '(' << getOperator()->getName();
1132
1133  for (unsigned i = 0, e = Types.size(); i != e; ++i)
1134    OS << ':' << getExtType(i).getName();
1135
1136  if (!isLeaf()) {
1137    if (getNumChildren() != 0) {
1138      OS << " ";
1139      getChild(0)->print(OS);
1140      for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
1141        OS << ", ";
1142        getChild(i)->print(OS);
1143      }
1144    }
1145    OS << ")";
1146  }
1147
1148  for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i)
1149    OS << "<<P:" << PredicateFns[i].getFnName() << ">>";
1150  if (TransformFn)
1151    OS << "<<X:" << TransformFn->getName() << ">>";
1152  if (!getName().empty())
1153    OS << ":$" << getName();
1154
1155}
1156void TreePatternNode::dump() const {
1157  print(errs());
1158}
1159
1160/// isIsomorphicTo - Return true if this node is recursively
1161/// isomorphic to the specified node.  For this comparison, the node's
1162/// entire state is considered. The assigned name is ignored, since
1163/// nodes with differing names are considered isomorphic. However, if
1164/// the assigned name is present in the dependent variable set, then
1165/// the assigned name is considered significant and the node is
1166/// isomorphic if the names match.
1167bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1168                                     const MultipleUseVarSet &DepVars) const {
1169  if (N == this) return true;
1170  if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
1171      getPredicateFns() != N->getPredicateFns() ||
1172      getTransformFn() != N->getTransformFn())
1173    return false;
1174
1175  if (isLeaf()) {
1176    if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1177      if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
1178        return ((DI->getDef() == NDI->getDef())
1179                && (DepVars.find(getName()) == DepVars.end()
1180                    || getName() == N->getName()));
1181      }
1182    }
1183    return getLeafValue() == N->getLeafValue();
1184  }
1185
1186  if (N->getOperator() != getOperator() ||
1187      N->getNumChildren() != getNumChildren()) return false;
1188  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1189    if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
1190      return false;
1191  return true;
1192}
1193
1194/// clone - Make a copy of this tree and all of its children.
1195///
1196TreePatternNode *TreePatternNode::clone() const {
1197  TreePatternNode *New;
1198  if (isLeaf()) {
1199    New = new TreePatternNode(getLeafValue(), getNumTypes());
1200  } else {
1201    std::vector<TreePatternNode*> CChildren;
1202    CChildren.reserve(Children.size());
1203    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1204      CChildren.push_back(getChild(i)->clone());
1205    New = new TreePatternNode(getOperator(), CChildren, getNumTypes());
1206  }
1207  New->setName(getName());
1208  New->Types = Types;
1209  New->setPredicateFns(getPredicateFns());
1210  New->setTransformFn(getTransformFn());
1211  return New;
1212}
1213
1214/// RemoveAllTypes - Recursively strip all the types of this tree.
1215void TreePatternNode::RemoveAllTypes() {
1216  for (unsigned i = 0, e = Types.size(); i != e; ++i)
1217    Types[i] = EEVT::TypeSet();  // Reset to unknown type.
1218  if (isLeaf()) return;
1219  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1220    getChild(i)->RemoveAllTypes();
1221}
1222
1223
1224/// SubstituteFormalArguments - Replace the formal arguments in this tree
1225/// with actual values specified by ArgMap.
1226void TreePatternNode::
1227SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
1228  if (isLeaf()) return;
1229
1230  for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1231    TreePatternNode *Child = getChild(i);
1232    if (Child->isLeaf()) {
1233      Init *Val = Child->getLeafValue();
1234      if (isa<DefInit>(Val) &&
1235          cast<DefInit>(Val)->getDef()->getName() == "node") {
1236        // We found a use of a formal argument, replace it with its value.
1237        TreePatternNode *NewChild = ArgMap[Child->getName()];
1238        assert(NewChild && "Couldn't find formal argument!");
1239        assert((Child->getPredicateFns().empty() ||
1240                NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1241               "Non-empty child predicate clobbered!");
1242        setChild(i, NewChild);
1243      }
1244    } else {
1245      getChild(i)->SubstituteFormalArguments(ArgMap);
1246    }
1247  }
1248}
1249
1250
1251/// InlinePatternFragments - If this pattern refers to any pattern
1252/// fragments, inline them into place, giving us a pattern without any
1253/// PatFrag references.
1254TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
1255  if (TP.hasError())
1256    return 0;
1257
1258  if (isLeaf())
1259     return this;  // nothing to do.
1260  Record *Op = getOperator();
1261
1262  if (!Op->isSubClassOf("PatFrag")) {
1263    // Just recursively inline children nodes.
1264    for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1265      TreePatternNode *Child = getChild(i);
1266      TreePatternNode *NewChild = Child->InlinePatternFragments(TP);
1267
1268      assert((Child->getPredicateFns().empty() ||
1269              NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1270             "Non-empty child predicate clobbered!");
1271
1272      setChild(i, NewChild);
1273    }
1274    return this;
1275  }
1276
1277  // Otherwise, we found a reference to a fragment.  First, look up its
1278  // TreePattern record.
1279  TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
1280
1281  // Verify that we are passing the right number of operands.
1282  if (Frag->getNumArgs() != Children.size()) {
1283    TP.error("'" + Op->getName() + "' fragment requires " +
1284             utostr(Frag->getNumArgs()) + " operands!");
1285    return 0;
1286  }
1287
1288  TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
1289
1290  TreePredicateFn PredFn(Frag);
1291  if (!PredFn.isAlwaysTrue())
1292    FragTree->addPredicateFn(PredFn);
1293
1294  // Resolve formal arguments to their actual value.
1295  if (Frag->getNumArgs()) {
1296    // Compute the map of formal to actual arguments.
1297    std::map<std::string, TreePatternNode*> ArgMap;
1298    for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
1299      ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
1300
1301    FragTree->SubstituteFormalArguments(ArgMap);
1302  }
1303
1304  FragTree->setName(getName());
1305  for (unsigned i = 0, e = Types.size(); i != e; ++i)
1306    FragTree->UpdateNodeType(i, getExtType(i), TP);
1307
1308  // Transfer in the old predicates.
1309  for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i)
1310    FragTree->addPredicateFn(getPredicateFns()[i]);
1311
1312  // Get a new copy of this fragment to stitch into here.
1313  //delete this;    // FIXME: implement refcounting!
1314
1315  // The fragment we inlined could have recursive inlining that is needed.  See
1316  // if there are any pattern fragments in it and inline them as needed.
1317  return FragTree->InlinePatternFragments(TP);
1318}
1319
1320/// getImplicitType - Check to see if the specified record has an implicit
1321/// type which should be applied to it.  This will infer the type of register
1322/// references from the register file information, for example.
1323///
1324/// When Unnamed is set, return the type of a DAG operand with no name, such as
1325/// the F8RC register class argument in:
1326///
1327///   (COPY_TO_REGCLASS GPR:$src, F8RC)
1328///
1329/// When Unnamed is false, return the type of a named DAG operand such as the
1330/// GPR:$src operand above.
1331///
1332static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo,
1333                                     bool NotRegisters,
1334                                     bool Unnamed,
1335                                     TreePattern &TP) {
1336  // Check to see if this is a register operand.
1337  if (R->isSubClassOf("RegisterOperand")) {
1338    assert(ResNo == 0 && "Regoperand ref only has one result!");
1339    if (NotRegisters)
1340      return EEVT::TypeSet(); // Unknown.
1341    Record *RegClass = R->getValueAsDef("RegClass");
1342    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1343    return EEVT::TypeSet(T.getRegisterClass(RegClass).getValueTypes());
1344  }
1345
1346  // Check to see if this is a register or a register class.
1347  if (R->isSubClassOf("RegisterClass")) {
1348    assert(ResNo == 0 && "Regclass ref only has one result!");
1349    // An unnamed register class represents itself as an i32 immediate, for
1350    // example on a COPY_TO_REGCLASS instruction.
1351    if (Unnamed)
1352      return EEVT::TypeSet(MVT::i32, TP);
1353
1354    // In a named operand, the register class provides the possible set of
1355    // types.
1356    if (NotRegisters)
1357      return EEVT::TypeSet(); // Unknown.
1358    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1359    return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes());
1360  }
1361
1362  if (R->isSubClassOf("PatFrag")) {
1363    assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
1364    // Pattern fragment types will be resolved when they are inlined.
1365    return EEVT::TypeSet(); // Unknown.
1366  }
1367
1368  if (R->isSubClassOf("Register")) {
1369    assert(ResNo == 0 && "Registers only produce one result!");
1370    if (NotRegisters)
1371      return EEVT::TypeSet(); // Unknown.
1372    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1373    return EEVT::TypeSet(T.getRegisterVTs(R));
1374  }
1375
1376  if (R->isSubClassOf("SubRegIndex")) {
1377    assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
1378    return EEVT::TypeSet();
1379  }
1380
1381  if (R->isSubClassOf("ValueType")) {
1382    assert(ResNo == 0 && "This node only has one result!");
1383    // An unnamed VTSDNode represents itself as an MVT::Other immediate.
1384    //
1385    //   (sext_inreg GPR:$src, i16)
1386    //                         ~~~
1387    if (Unnamed)
1388      return EEVT::TypeSet(MVT::Other, TP);
1389    // With a name, the ValueType simply provides the type of the named
1390    // variable.
1391    //
1392    //   (sext_inreg i32:$src, i16)
1393    //               ~~~~~~~~
1394    if (NotRegisters)
1395      return EEVT::TypeSet(); // Unknown.
1396    return EEVT::TypeSet(getValueType(R), TP);
1397  }
1398
1399  if (R->isSubClassOf("CondCode")) {
1400    assert(ResNo == 0 && "This node only has one result!");
1401    // Using a CondCodeSDNode.
1402    return EEVT::TypeSet(MVT::Other, TP);
1403  }
1404
1405  if (R->isSubClassOf("ComplexPattern")) {
1406    assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
1407    if (NotRegisters)
1408      return EEVT::TypeSet(); // Unknown.
1409   return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(),
1410                         TP);
1411  }
1412  if (R->isSubClassOf("PointerLikeRegClass")) {
1413    assert(ResNo == 0 && "Regclass can only have one result!");
1414    return EEVT::TypeSet(MVT::iPTR, TP);
1415  }
1416
1417  if (R->getName() == "node" || R->getName() == "srcvalue" ||
1418      R->getName() == "zero_reg") {
1419    // Placeholder.
1420    return EEVT::TypeSet(); // Unknown.
1421  }
1422
1423  TP.error("Unknown node flavor used in pattern: " + R->getName());
1424  return EEVT::TypeSet(MVT::Other, TP);
1425}
1426
1427
1428/// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
1429/// CodeGenIntrinsic information for it, otherwise return a null pointer.
1430const CodeGenIntrinsic *TreePatternNode::
1431getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
1432  if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
1433      getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
1434      getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
1435    return 0;
1436
1437  unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
1438  return &CDP.getIntrinsicInfo(IID);
1439}
1440
1441/// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
1442/// return the ComplexPattern information, otherwise return null.
1443const ComplexPattern *
1444TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
1445  if (!isLeaf()) return 0;
1446
1447  DefInit *DI = dyn_cast<DefInit>(getLeafValue());
1448  if (DI && DI->getDef()->isSubClassOf("ComplexPattern"))
1449    return &CGP.getComplexPattern(DI->getDef());
1450  return 0;
1451}
1452
1453/// NodeHasProperty - Return true if this node has the specified property.
1454bool TreePatternNode::NodeHasProperty(SDNP Property,
1455                                      const CodeGenDAGPatterns &CGP) const {
1456  if (isLeaf()) {
1457    if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
1458      return CP->hasProperty(Property);
1459    return false;
1460  }
1461
1462  Record *Operator = getOperator();
1463  if (!Operator->isSubClassOf("SDNode")) return false;
1464
1465  return CGP.getSDNodeInfo(Operator).hasProperty(Property);
1466}
1467
1468
1469
1470
1471/// TreeHasProperty - Return true if any node in this tree has the specified
1472/// property.
1473bool TreePatternNode::TreeHasProperty(SDNP Property,
1474                                      const CodeGenDAGPatterns &CGP) const {
1475  if (NodeHasProperty(Property, CGP))
1476    return true;
1477  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1478    if (getChild(i)->TreeHasProperty(Property, CGP))
1479      return true;
1480  return false;
1481}
1482
1483/// isCommutativeIntrinsic - Return true if the node corresponds to a
1484/// commutative intrinsic.
1485bool
1486TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
1487  if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
1488    return Int->isCommutative;
1489  return false;
1490}
1491
1492
1493/// ApplyTypeConstraints - Apply all of the type constraints relevant to
1494/// this node and its children in the tree.  This returns true if it makes a
1495/// change, false otherwise.  If a type contradiction is found, flag an error.
1496bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
1497  if (TP.hasError())
1498    return false;
1499
1500  CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
1501  if (isLeaf()) {
1502    if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1503      // If it's a regclass or something else known, include the type.
1504      bool MadeChange = false;
1505      for (unsigned i = 0, e = Types.size(); i != e; ++i)
1506        MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
1507                                                        NotRegisters,
1508                                                        !hasName(), TP), TP);
1509      return MadeChange;
1510    }
1511
1512    if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
1513      assert(Types.size() == 1 && "Invalid IntInit");
1514
1515      // Int inits are always integers. :)
1516      bool MadeChange = Types[0].EnforceInteger(TP);
1517
1518      if (!Types[0].isConcrete())
1519        return MadeChange;
1520
1521      MVT::SimpleValueType VT = getType(0);
1522      if (VT == MVT::iPTR || VT == MVT::iPTRAny)
1523        return MadeChange;
1524
1525      unsigned Size = EVT(VT).getSizeInBits();
1526      // Make sure that the value is representable for this type.
1527      if (Size >= 32) return MadeChange;
1528
1529      // Check that the value doesn't use more bits than we have. It must either
1530      // be a sign- or zero-extended equivalent of the original.
1531      int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
1532      if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || SignBitAndAbove == 1)
1533        return MadeChange;
1534
1535      TP.error("Integer value '" + itostr(II->getValue()) +
1536               "' is out of range for type '" + getEnumName(getType(0)) + "'!");
1537      return false;
1538    }
1539    return false;
1540  }
1541
1542  // special handling for set, which isn't really an SDNode.
1543  if (getOperator()->getName() == "set") {
1544    assert(getNumTypes() == 0 && "Set doesn't produce a value");
1545    assert(getNumChildren() >= 2 && "Missing RHS of a set?");
1546    unsigned NC = getNumChildren();
1547
1548    TreePatternNode *SetVal = getChild(NC-1);
1549    bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters);
1550
1551    for (unsigned i = 0; i < NC-1; ++i) {
1552      TreePatternNode *Child = getChild(i);
1553      MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
1554
1555      // Types of operands must match.
1556      MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP);
1557      MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP);
1558    }
1559    return MadeChange;
1560  }
1561
1562  if (getOperator()->getName() == "implicit") {
1563    assert(getNumTypes() == 0 && "Node doesn't produce a value");
1564
1565    bool MadeChange = false;
1566    for (unsigned i = 0; i < getNumChildren(); ++i)
1567      MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1568    return MadeChange;
1569  }
1570
1571  if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
1572    bool MadeChange = false;
1573
1574    // Apply the result type to the node.
1575    unsigned NumRetVTs = Int->IS.RetVTs.size();
1576    unsigned NumParamVTs = Int->IS.ParamVTs.size();
1577
1578    for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
1579      MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
1580
1581    if (getNumChildren() != NumParamVTs + 1) {
1582      TP.error("Intrinsic '" + Int->Name + "' expects " +
1583               utostr(NumParamVTs) + " operands, not " +
1584               utostr(getNumChildren() - 1) + " operands!");
1585      return false;
1586    }
1587
1588    // Apply type info to the intrinsic ID.
1589    MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
1590
1591    for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
1592      MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
1593
1594      MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
1595      assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
1596      MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
1597    }
1598    return MadeChange;
1599  }
1600
1601  if (getOperator()->isSubClassOf("SDNode")) {
1602    const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
1603
1604    // Check that the number of operands is sane.  Negative operands -> varargs.
1605    if (NI.getNumOperands() >= 0 &&
1606        getNumChildren() != (unsigned)NI.getNumOperands()) {
1607      TP.error(getOperator()->getName() + " node requires exactly " +
1608               itostr(NI.getNumOperands()) + " operands!");
1609      return false;
1610    }
1611
1612    bool MadeChange = NI.ApplyTypeConstraints(this, TP);
1613    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1614      MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1615    return MadeChange;
1616  }
1617
1618  if (getOperator()->isSubClassOf("Instruction")) {
1619    const DAGInstruction &Inst = CDP.getInstruction(getOperator());
1620    CodeGenInstruction &InstInfo =
1621      CDP.getTargetInfo().getInstruction(getOperator());
1622
1623    bool MadeChange = false;
1624
1625    // Apply the result types to the node, these come from the things in the
1626    // (outs) list of the instruction.
1627    // FIXME: Cap at one result so far.
1628    unsigned NumResultsToAdd = InstInfo.Operands.NumDefs ? 1 : 0;
1629    for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
1630      MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
1631
1632    // If the instruction has implicit defs, we apply the first one as a result.
1633    // FIXME: This sucks, it should apply all implicit defs.
1634    if (!InstInfo.ImplicitDefs.empty()) {
1635      unsigned ResNo = NumResultsToAdd;
1636
1637      // FIXME: Generalize to multiple possible types and multiple possible
1638      // ImplicitDefs.
1639      MVT::SimpleValueType VT =
1640        InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
1641
1642      if (VT != MVT::Other)
1643        MadeChange |= UpdateNodeType(ResNo, VT, TP);
1644    }
1645
1646    // If this is an INSERT_SUBREG, constrain the source and destination VTs to
1647    // be the same.
1648    if (getOperator()->getName() == "INSERT_SUBREG") {
1649      assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
1650      MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
1651      MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
1652    }
1653
1654    unsigned ChildNo = 0;
1655    for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
1656      Record *OperandNode = Inst.getOperand(i);
1657
1658      // If the instruction expects a predicate or optional def operand, we
1659      // codegen this by setting the operand to it's default value if it has a
1660      // non-empty DefaultOps field.
1661      if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1662          !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1663        continue;
1664
1665      // Verify that we didn't run out of provided operands.
1666      if (ChildNo >= getNumChildren()) {
1667        TP.error("Instruction '" + getOperator()->getName() +
1668                 "' expects more operands than were provided.");
1669        return false;
1670      }
1671
1672      TreePatternNode *Child = getChild(ChildNo++);
1673      unsigned ChildResNo = 0;  // Instructions always use res #0 of their op.
1674
1675      // If the operand has sub-operands, they may be provided by distinct
1676      // child patterns, so attempt to match each sub-operand separately.
1677      if (OperandNode->isSubClassOf("Operand")) {
1678        DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
1679        if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
1680          // But don't do that if the whole operand is being provided by
1681          // a single ComplexPattern.
1682          const ComplexPattern *AM = Child->getComplexPatternInfo(CDP);
1683          if (!AM || AM->getNumOperands() < NumArgs) {
1684            // Match first sub-operand against the child we already have.
1685            Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
1686            MadeChange |=
1687              Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
1688
1689            // And the remaining sub-operands against subsequent children.
1690            for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
1691              if (ChildNo >= getNumChildren()) {
1692                TP.error("Instruction '" + getOperator()->getName() +
1693                         "' expects more operands than were provided.");
1694                return false;
1695              }
1696              Child = getChild(ChildNo++);
1697
1698              SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
1699              MadeChange |=
1700                Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
1701            }
1702            continue;
1703          }
1704        }
1705      }
1706
1707      // If we didn't match by pieces above, attempt to match the whole
1708      // operand now.
1709      MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
1710    }
1711
1712    if (ChildNo != getNumChildren()) {
1713      TP.error("Instruction '" + getOperator()->getName() +
1714               "' was provided too many operands!");
1715      return false;
1716    }
1717
1718    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1719      MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1720    return MadeChange;
1721  }
1722
1723  assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
1724
1725  // Node transforms always take one operand.
1726  if (getNumChildren() != 1) {
1727    TP.error("Node transform '" + getOperator()->getName() +
1728             "' requires one operand!");
1729    return false;
1730  }
1731
1732  bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
1733
1734
1735  // If either the output or input of the xform does not have exact
1736  // type info. We assume they must be the same. Otherwise, it is perfectly
1737  // legal to transform from one type to a completely different type.
1738#if 0
1739  if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
1740    bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP);
1741    MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP);
1742    return MadeChange;
1743  }
1744#endif
1745  return MadeChange;
1746}
1747
1748/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
1749/// RHS of a commutative operation, not the on LHS.
1750static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
1751  if (!N->isLeaf() && N->getOperator()->getName() == "imm")
1752    return true;
1753  if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
1754    return true;
1755  return false;
1756}
1757
1758
1759/// canPatternMatch - If it is impossible for this pattern to match on this
1760/// target, fill in Reason and return false.  Otherwise, return true.  This is
1761/// used as a sanity check for .td files (to prevent people from writing stuff
1762/// that can never possibly work), and to prevent the pattern permuter from
1763/// generating stuff that is useless.
1764bool TreePatternNode::canPatternMatch(std::string &Reason,
1765                                      const CodeGenDAGPatterns &CDP) {
1766  if (isLeaf()) return true;
1767
1768  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1769    if (!getChild(i)->canPatternMatch(Reason, CDP))
1770      return false;
1771
1772  // If this is an intrinsic, handle cases that would make it not match.  For
1773  // example, if an operand is required to be an immediate.
1774  if (getOperator()->isSubClassOf("Intrinsic")) {
1775    // TODO:
1776    return true;
1777  }
1778
1779  // If this node is a commutative operator, check that the LHS isn't an
1780  // immediate.
1781  const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
1782  bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
1783  if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
1784    // Scan all of the operands of the node and make sure that only the last one
1785    // is a constant node, unless the RHS also is.
1786    if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
1787      bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
1788      for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
1789        if (OnlyOnRHSOfCommutative(getChild(i))) {
1790          Reason="Immediate value must be on the RHS of commutative operators!";
1791          return false;
1792        }
1793    }
1794  }
1795
1796  return true;
1797}
1798
1799//===----------------------------------------------------------------------===//
1800// TreePattern implementation
1801//
1802
1803TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
1804                         CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
1805                         isInputPattern(isInput), HasError(false) {
1806  for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i)
1807    Trees.push_back(ParseTreePattern(RawPat->getElement(i), ""));
1808}
1809
1810TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
1811                         CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
1812                         isInputPattern(isInput), HasError(false) {
1813  Trees.push_back(ParseTreePattern(Pat, ""));
1814}
1815
1816TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
1817                         CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
1818                         isInputPattern(isInput), HasError(false) {
1819  Trees.push_back(Pat);
1820}
1821
1822void TreePattern::error(const std::string &Msg) {
1823  if (HasError)
1824    return;
1825  dump();
1826  PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
1827  HasError = true;
1828}
1829
1830void TreePattern::ComputeNamedNodes() {
1831  for (unsigned i = 0, e = Trees.size(); i != e; ++i)
1832    ComputeNamedNodes(Trees[i]);
1833}
1834
1835void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
1836  if (!N->getName().empty())
1837    NamedNodes[N->getName()].push_back(N);
1838
1839  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
1840    ComputeNamedNodes(N->getChild(i));
1841}
1842
1843
1844TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){
1845  if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
1846    Record *R = DI->getDef();
1847
1848    // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
1849    // TreePatternNode of its own.  For example:
1850    ///   (foo GPR, imm) -> (foo GPR, (imm))
1851    if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag"))
1852      return ParseTreePattern(
1853        DagInit::get(DI, "",
1854                     std::vector<std::pair<Init*, std::string> >()),
1855        OpName);
1856
1857    // Input argument?
1858    TreePatternNode *Res = new TreePatternNode(DI, 1);
1859    if (R->getName() == "node" && !OpName.empty()) {
1860      if (OpName.empty())
1861        error("'node' argument requires a name to match with operand list");
1862      Args.push_back(OpName);
1863    }
1864
1865    Res->setName(OpName);
1866    return Res;
1867  }
1868
1869  // ?:$name or just $name.
1870  if (TheInit == UnsetInit::get()) {
1871    if (OpName.empty())
1872      error("'?' argument requires a name to match with operand list");
1873    TreePatternNode *Res = new TreePatternNode(TheInit, 1);
1874    Args.push_back(OpName);
1875    Res->setName(OpName);
1876    return Res;
1877  }
1878
1879  if (IntInit *II = dyn_cast<IntInit>(TheInit)) {
1880    if (!OpName.empty())
1881      error("Constant int argument should not have a name!");
1882    return new TreePatternNode(II, 1);
1883  }
1884
1885  if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
1886    // Turn this into an IntInit.
1887    Init *II = BI->convertInitializerTo(IntRecTy::get());
1888    if (II == 0 || !isa<IntInit>(II))
1889      error("Bits value must be constants!");
1890    return ParseTreePattern(II, OpName);
1891  }
1892
1893  DagInit *Dag = dyn_cast<DagInit>(TheInit);
1894  if (!Dag) {
1895    TheInit->dump();
1896    error("Pattern has unexpected init kind!");
1897  }
1898  DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
1899  if (!OpDef) error("Pattern has unexpected operator type!");
1900  Record *Operator = OpDef->getDef();
1901
1902  if (Operator->isSubClassOf("ValueType")) {
1903    // If the operator is a ValueType, then this must be "type cast" of a leaf
1904    // node.
1905    if (Dag->getNumArgs() != 1)
1906      error("Type cast only takes one operand!");
1907
1908    TreePatternNode *New = ParseTreePattern(Dag->getArg(0), Dag->getArgName(0));
1909
1910    // Apply the type cast.
1911    assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
1912    New->UpdateNodeType(0, getValueType(Operator), *this);
1913
1914    if (!OpName.empty())
1915      error("ValueType cast should not have a name!");
1916    return New;
1917  }
1918
1919  // Verify that this is something that makes sense for an operator.
1920  if (!Operator->isSubClassOf("PatFrag") &&
1921      !Operator->isSubClassOf("SDNode") &&
1922      !Operator->isSubClassOf("Instruction") &&
1923      !Operator->isSubClassOf("SDNodeXForm") &&
1924      !Operator->isSubClassOf("Intrinsic") &&
1925      Operator->getName() != "set" &&
1926      Operator->getName() != "implicit")
1927    error("Unrecognized node '" + Operator->getName() + "'!");
1928
1929  //  Check to see if this is something that is illegal in an input pattern.
1930  if (isInputPattern) {
1931    if (Operator->isSubClassOf("Instruction") ||
1932        Operator->isSubClassOf("SDNodeXForm"))
1933      error("Cannot use '" + Operator->getName() + "' in an input pattern!");
1934  } else {
1935    if (Operator->isSubClassOf("Intrinsic"))
1936      error("Cannot use '" + Operator->getName() + "' in an output pattern!");
1937
1938    if (Operator->isSubClassOf("SDNode") &&
1939        Operator->getName() != "imm" &&
1940        Operator->getName() != "fpimm" &&
1941        Operator->getName() != "tglobaltlsaddr" &&
1942        Operator->getName() != "tconstpool" &&
1943        Operator->getName() != "tjumptable" &&
1944        Operator->getName() != "tframeindex" &&
1945        Operator->getName() != "texternalsym" &&
1946        Operator->getName() != "tblockaddress" &&
1947        Operator->getName() != "tglobaladdr" &&
1948        Operator->getName() != "bb" &&
1949        Operator->getName() != "vt")
1950      error("Cannot use '" + Operator->getName() + "' in an output pattern!");
1951  }
1952
1953  std::vector<TreePatternNode*> Children;
1954
1955  // Parse all the operands.
1956  for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
1957    Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgName(i)));
1958
1959  // If the operator is an intrinsic, then this is just syntactic sugar for for
1960  // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
1961  // convert the intrinsic name to a number.
1962  if (Operator->isSubClassOf("Intrinsic")) {
1963    const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
1964    unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
1965
1966    // If this intrinsic returns void, it must have side-effects and thus a
1967    // chain.
1968    if (Int.IS.RetVTs.empty())
1969      Operator = getDAGPatterns().get_intrinsic_void_sdnode();
1970    else if (Int.ModRef != CodeGenIntrinsic::NoMem)
1971      // Has side-effects, requires chain.
1972      Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
1973    else // Otherwise, no chain.
1974      Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
1975
1976    TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1);
1977    Children.insert(Children.begin(), IIDNode);
1978  }
1979
1980  unsigned NumResults = GetNumNodeResults(Operator, CDP);
1981  TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults);
1982  Result->setName(OpName);
1983
1984  if (!Dag->getName().empty()) {
1985    assert(Result->getName().empty());
1986    Result->setName(Dag->getName());
1987  }
1988  return Result;
1989}
1990
1991/// SimplifyTree - See if we can simplify this tree to eliminate something that
1992/// will never match in favor of something obvious that will.  This is here
1993/// strictly as a convenience to target authors because it allows them to write
1994/// more type generic things and have useless type casts fold away.
1995///
1996/// This returns true if any change is made.
1997static bool SimplifyTree(TreePatternNode *&N) {
1998  if (N->isLeaf())
1999    return false;
2000
2001  // If we have a bitconvert with a resolved type and if the source and
2002  // destination types are the same, then the bitconvert is useless, remove it.
2003  if (N->getOperator()->getName() == "bitconvert" &&
2004      N->getExtType(0).isConcrete() &&
2005      N->getExtType(0) == N->getChild(0)->getExtType(0) &&
2006      N->getName().empty()) {
2007    N = N->getChild(0);
2008    SimplifyTree(N);
2009    return true;
2010  }
2011
2012  // Walk all children.
2013  bool MadeChange = false;
2014  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2015    TreePatternNode *Child = N->getChild(i);
2016    MadeChange |= SimplifyTree(Child);
2017    N->setChild(i, Child);
2018  }
2019  return MadeChange;
2020}
2021
2022
2023
2024/// InferAllTypes - Infer/propagate as many types throughout the expression
2025/// patterns as possible.  Return true if all types are inferred, false
2026/// otherwise.  Flags an error if a type contradiction is found.
2027bool TreePattern::
2028InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
2029  if (NamedNodes.empty())
2030    ComputeNamedNodes();
2031
2032  bool MadeChange = true;
2033  while (MadeChange) {
2034    MadeChange = false;
2035    for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
2036      MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false);
2037      MadeChange |= SimplifyTree(Trees[i]);
2038    }
2039
2040    // If there are constraints on our named nodes, apply them.
2041    for (StringMap<SmallVector<TreePatternNode*,1> >::iterator
2042         I = NamedNodes.begin(), E = NamedNodes.end(); I != E; ++I) {
2043      SmallVectorImpl<TreePatternNode*> &Nodes = I->second;
2044
2045      // If we have input named node types, propagate their types to the named
2046      // values here.
2047      if (InNamedTypes) {
2048        // FIXME: Should be error?
2049        assert(InNamedTypes->count(I->getKey()) &&
2050               "Named node in output pattern but not input pattern?");
2051
2052        const SmallVectorImpl<TreePatternNode*> &InNodes =
2053          InNamedTypes->find(I->getKey())->second;
2054
2055        // The input types should be fully resolved by now.
2056        for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2057          // If this node is a register class, and it is the root of the pattern
2058          // then we're mapping something onto an input register.  We allow
2059          // changing the type of the input register in this case.  This allows
2060          // us to match things like:
2061          //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
2062          if (Nodes[i] == Trees[0] && Nodes[i]->isLeaf()) {
2063            DefInit *DI = dyn_cast<DefInit>(Nodes[i]->getLeafValue());
2064            if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2065                       DI->getDef()->isSubClassOf("RegisterOperand")))
2066              continue;
2067          }
2068
2069          assert(Nodes[i]->getNumTypes() == 1 &&
2070                 InNodes[0]->getNumTypes() == 1 &&
2071                 "FIXME: cannot name multiple result nodes yet");
2072          MadeChange |= Nodes[i]->UpdateNodeType(0, InNodes[0]->getExtType(0),
2073                                                 *this);
2074        }
2075      }
2076
2077      // If there are multiple nodes with the same name, they must all have the
2078      // same type.
2079      if (I->second.size() > 1) {
2080        for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
2081          TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
2082          assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
2083                 "FIXME: cannot name multiple result nodes yet");
2084
2085          MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
2086          MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
2087        }
2088      }
2089    }
2090  }
2091
2092  bool HasUnresolvedTypes = false;
2093  for (unsigned i = 0, e = Trees.size(); i != e; ++i)
2094    HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType();
2095  return !HasUnresolvedTypes;
2096}
2097
2098void TreePattern::print(raw_ostream &OS) const {
2099  OS << getRecord()->getName();
2100  if (!Args.empty()) {
2101    OS << "(" << Args[0];
2102    for (unsigned i = 1, e = Args.size(); i != e; ++i)
2103      OS << ", " << Args[i];
2104    OS << ")";
2105  }
2106  OS << ": ";
2107
2108  if (Trees.size() > 1)
2109    OS << "[\n";
2110  for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
2111    OS << "\t";
2112    Trees[i]->print(OS);
2113    OS << "\n";
2114  }
2115
2116  if (Trees.size() > 1)
2117    OS << "]\n";
2118}
2119
2120void TreePattern::dump() const { print(errs()); }
2121
2122//===----------------------------------------------------------------------===//
2123// CodeGenDAGPatterns implementation
2124//
2125
2126CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) :
2127  Records(R), Target(R) {
2128
2129  Intrinsics = LoadIntrinsics(Records, false);
2130  TgtIntrinsics = LoadIntrinsics(Records, true);
2131  ParseNodeInfo();
2132  ParseNodeTransforms();
2133  ParseComplexPatterns();
2134  ParsePatternFragments();
2135  ParseDefaultOperands();
2136  ParseInstructions();
2137  ParsePatterns();
2138
2139  // Generate variants.  For example, commutative patterns can match
2140  // multiple ways.  Add them to PatternsToMatch as well.
2141  GenerateVariants();
2142
2143  // Infer instruction flags.  For example, we can detect loads,
2144  // stores, and side effects in many cases by examining an
2145  // instruction's pattern.
2146  InferInstructionFlags();
2147
2148  // Verify that instruction flags match the patterns.
2149  VerifyInstructionFlags();
2150}
2151
2152CodeGenDAGPatterns::~CodeGenDAGPatterns() {
2153  for (pf_iterator I = PatternFragments.begin(),
2154       E = PatternFragments.end(); I != E; ++I)
2155    delete I->second;
2156}
2157
2158
2159Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
2160  Record *N = Records.getDef(Name);
2161  if (!N || !N->isSubClassOf("SDNode")) {
2162    errs() << "Error getting SDNode '" << Name << "'!\n";
2163    exit(1);
2164  }
2165  return N;
2166}
2167
2168// Parse all of the SDNode definitions for the target, populating SDNodes.
2169void CodeGenDAGPatterns::ParseNodeInfo() {
2170  std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
2171  while (!Nodes.empty()) {
2172    SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
2173    Nodes.pop_back();
2174  }
2175
2176  // Get the builtin intrinsic nodes.
2177  intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
2178  intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
2179  intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
2180}
2181
2182/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
2183/// map, and emit them to the file as functions.
2184void CodeGenDAGPatterns::ParseNodeTransforms() {
2185  std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
2186  while (!Xforms.empty()) {
2187    Record *XFormNode = Xforms.back();
2188    Record *SDNode = XFormNode->getValueAsDef("Opcode");
2189    std::string Code = XFormNode->getValueAsString("XFormFunction");
2190    SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
2191
2192    Xforms.pop_back();
2193  }
2194}
2195
2196void CodeGenDAGPatterns::ParseComplexPatterns() {
2197  std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
2198  while (!AMs.empty()) {
2199    ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
2200    AMs.pop_back();
2201  }
2202}
2203
2204
2205/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
2206/// file, building up the PatternFragments map.  After we've collected them all,
2207/// inline fragments together as necessary, so that there are no references left
2208/// inside a pattern fragment to a pattern fragment.
2209///
2210void CodeGenDAGPatterns::ParsePatternFragments() {
2211  std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
2212
2213  // First step, parse all of the fragments.
2214  for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
2215    DagInit *Tree = Fragments[i]->getValueAsDag("Fragment");
2216    TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this);
2217    PatternFragments[Fragments[i]] = P;
2218
2219    // Validate the argument list, converting it to set, to discard duplicates.
2220    std::vector<std::string> &Args = P->getArgList();
2221    std::set<std::string> OperandsSet(Args.begin(), Args.end());
2222
2223    if (OperandsSet.count(""))
2224      P->error("Cannot have unnamed 'node' values in pattern fragment!");
2225
2226    // Parse the operands list.
2227    DagInit *OpsList = Fragments[i]->getValueAsDag("Operands");
2228    DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
2229    // Special cases: ops == outs == ins. Different names are used to
2230    // improve readability.
2231    if (!OpsOp ||
2232        (OpsOp->getDef()->getName() != "ops" &&
2233         OpsOp->getDef()->getName() != "outs" &&
2234         OpsOp->getDef()->getName() != "ins"))
2235      P->error("Operands list should start with '(ops ... '!");
2236
2237    // Copy over the arguments.
2238    Args.clear();
2239    for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
2240      if (!isa<DefInit>(OpsList->getArg(j)) ||
2241          cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
2242        P->error("Operands list should all be 'node' values.");
2243      if (OpsList->getArgName(j).empty())
2244        P->error("Operands list should have names for each operand!");
2245      if (!OperandsSet.count(OpsList->getArgName(j)))
2246        P->error("'" + OpsList->getArgName(j) +
2247                 "' does not occur in pattern or was multiply specified!");
2248      OperandsSet.erase(OpsList->getArgName(j));
2249      Args.push_back(OpsList->getArgName(j));
2250    }
2251
2252    if (!OperandsSet.empty())
2253      P->error("Operands list does not contain an entry for operand '" +
2254               *OperandsSet.begin() + "'!");
2255
2256    // If there is a code init for this fragment, keep track of the fact that
2257    // this fragment uses it.
2258    TreePredicateFn PredFn(P);
2259    if (!PredFn.isAlwaysTrue())
2260      P->getOnlyTree()->addPredicateFn(PredFn);
2261
2262    // If there is a node transformation corresponding to this, keep track of
2263    // it.
2264    Record *Transform = Fragments[i]->getValueAsDef("OperandTransform");
2265    if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
2266      P->getOnlyTree()->setTransformFn(Transform);
2267  }
2268
2269  // Now that we've parsed all of the tree fragments, do a closure on them so
2270  // that there are not references to PatFrags left inside of them.
2271  for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
2272    TreePattern *ThePat = PatternFragments[Fragments[i]];
2273    ThePat->InlinePatternFragments();
2274
2275    // Infer as many types as possible.  Don't worry about it if we don't infer
2276    // all of them, some may depend on the inputs of the pattern.
2277    ThePat->InferAllTypes();
2278    ThePat->resetError();
2279
2280    // If debugging, print out the pattern fragment result.
2281    DEBUG(ThePat->dump());
2282  }
2283}
2284
2285void CodeGenDAGPatterns::ParseDefaultOperands() {
2286  std::vector<Record*> DefaultOps;
2287  DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
2288
2289  // Find some SDNode.
2290  assert(!SDNodes.empty() && "No SDNodes parsed?");
2291  Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
2292
2293  for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
2294    DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
2295
2296    // Clone the DefaultInfo dag node, changing the operator from 'ops' to
2297    // SomeSDnode so that we can parse this.
2298    std::vector<std::pair<Init*, std::string> > Ops;
2299    for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
2300      Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
2301                                   DefaultInfo->getArgName(op)));
2302    DagInit *DI = DagInit::get(SomeSDNode, "", Ops);
2303
2304    // Create a TreePattern to parse this.
2305    TreePattern P(DefaultOps[i], DI, false, *this);
2306    assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
2307
2308    // Copy the operands over into a DAGDefaultOperand.
2309    DAGDefaultOperand DefaultOpInfo;
2310
2311    TreePatternNode *T = P.getTree(0);
2312    for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
2313      TreePatternNode *TPN = T->getChild(op);
2314      while (TPN->ApplyTypeConstraints(P, false))
2315        /* Resolve all types */;
2316
2317      if (TPN->ContainsUnresolvedType()) {
2318        PrintFatalError("Value #" + utostr(i) + " of OperandWithDefaultOps '" +
2319          DefaultOps[i]->getName() +"' doesn't have a concrete type!");
2320      }
2321      DefaultOpInfo.DefaultOps.push_back(TPN);
2322    }
2323
2324    // Insert it into the DefaultOperands map so we can find it later.
2325    DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
2326  }
2327}
2328
2329/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
2330/// instruction input.  Return true if this is a real use.
2331static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
2332                      std::map<std::string, TreePatternNode*> &InstInputs) {
2333  // No name -> not interesting.
2334  if (Pat->getName().empty()) {
2335    if (Pat->isLeaf()) {
2336      DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
2337      if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2338                 DI->getDef()->isSubClassOf("RegisterOperand")))
2339        I->error("Input " + DI->getDef()->getName() + " must be named!");
2340    }
2341    return false;
2342  }
2343
2344  Record *Rec;
2345  if (Pat->isLeaf()) {
2346    DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
2347    if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
2348    Rec = DI->getDef();
2349  } else {
2350    Rec = Pat->getOperator();
2351  }
2352
2353  // SRCVALUE nodes are ignored.
2354  if (Rec->getName() == "srcvalue")
2355    return false;
2356
2357  TreePatternNode *&Slot = InstInputs[Pat->getName()];
2358  if (!Slot) {
2359    Slot = Pat;
2360    return true;
2361  }
2362  Record *SlotRec;
2363  if (Slot->isLeaf()) {
2364    SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
2365  } else {
2366    assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
2367    SlotRec = Slot->getOperator();
2368  }
2369
2370  // Ensure that the inputs agree if we've already seen this input.
2371  if (Rec != SlotRec)
2372    I->error("All $" + Pat->getName() + " inputs must agree with each other");
2373  if (Slot->getExtTypes() != Pat->getExtTypes())
2374    I->error("All $" + Pat->getName() + " inputs must agree with each other");
2375  return true;
2376}
2377
2378/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
2379/// part of "I", the instruction), computing the set of inputs and outputs of
2380/// the pattern.  Report errors if we see anything naughty.
2381void CodeGenDAGPatterns::
2382FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
2383                            std::map<std::string, TreePatternNode*> &InstInputs,
2384                            std::map<std::string, TreePatternNode*>&InstResults,
2385                            std::vector<Record*> &InstImpResults) {
2386  if (Pat->isLeaf()) {
2387    bool isUse = HandleUse(I, Pat, InstInputs);
2388    if (!isUse && Pat->getTransformFn())
2389      I->error("Cannot specify a transform function for a non-input value!");
2390    return;
2391  }
2392
2393  if (Pat->getOperator()->getName() == "implicit") {
2394    for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
2395      TreePatternNode *Dest = Pat->getChild(i);
2396      if (!Dest->isLeaf())
2397        I->error("implicitly defined value should be a register!");
2398
2399      DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
2400      if (!Val || !Val->getDef()->isSubClassOf("Register"))
2401        I->error("implicitly defined value should be a register!");
2402      InstImpResults.push_back(Val->getDef());
2403    }
2404    return;
2405  }
2406
2407  if (Pat->getOperator()->getName() != "set") {
2408    // If this is not a set, verify that the children nodes are not void typed,
2409    // and recurse.
2410    for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
2411      if (Pat->getChild(i)->getNumTypes() == 0)
2412        I->error("Cannot have void nodes inside of patterns!");
2413      FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
2414                                  InstImpResults);
2415    }
2416
2417    // If this is a non-leaf node with no children, treat it basically as if
2418    // it were a leaf.  This handles nodes like (imm).
2419    bool isUse = HandleUse(I, Pat, InstInputs);
2420
2421    if (!isUse && Pat->getTransformFn())
2422      I->error("Cannot specify a transform function for a non-input value!");
2423    return;
2424  }
2425
2426  // Otherwise, this is a set, validate and collect instruction results.
2427  if (Pat->getNumChildren() == 0)
2428    I->error("set requires operands!");
2429
2430  if (Pat->getTransformFn())
2431    I->error("Cannot specify a transform function on a set node!");
2432
2433  // Check the set destinations.
2434  unsigned NumDests = Pat->getNumChildren()-1;
2435  for (unsigned i = 0; i != NumDests; ++i) {
2436    TreePatternNode *Dest = Pat->getChild(i);
2437    if (!Dest->isLeaf())
2438      I->error("set destination should be a register!");
2439
2440    DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
2441    if (!Val)
2442      I->error("set destination should be a register!");
2443
2444    if (Val->getDef()->isSubClassOf("RegisterClass") ||
2445        Val->getDef()->isSubClassOf("ValueType") ||
2446        Val->getDef()->isSubClassOf("RegisterOperand") ||
2447        Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
2448      if (Dest->getName().empty())
2449        I->error("set destination must have a name!");
2450      if (InstResults.count(Dest->getName()))
2451        I->error("cannot set '" + Dest->getName() +"' multiple times");
2452      InstResults[Dest->getName()] = Dest;
2453    } else if (Val->getDef()->isSubClassOf("Register")) {
2454      InstImpResults.push_back(Val->getDef());
2455    } else {
2456      I->error("set destination should be a register!");
2457    }
2458  }
2459
2460  // Verify and collect info from the computation.
2461  FindPatternInputsAndOutputs(I, Pat->getChild(NumDests),
2462                              InstInputs, InstResults, InstImpResults);
2463}
2464
2465//===----------------------------------------------------------------------===//
2466// Instruction Analysis
2467//===----------------------------------------------------------------------===//
2468
2469class InstAnalyzer {
2470  const CodeGenDAGPatterns &CDP;
2471public:
2472  bool hasSideEffects;
2473  bool mayStore;
2474  bool mayLoad;
2475  bool isBitcast;
2476  bool isVariadic;
2477
2478  InstAnalyzer(const CodeGenDAGPatterns &cdp)
2479    : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
2480      isBitcast(false), isVariadic(false) {}
2481
2482  void Analyze(const TreePattern *Pat) {
2483    // Assume only the first tree is the pattern. The others are clobber nodes.
2484    AnalyzeNode(Pat->getTree(0));
2485  }
2486
2487  void Analyze(const PatternToMatch *Pat) {
2488    AnalyzeNode(Pat->getSrcPattern());
2489  }
2490
2491private:
2492  bool IsNodeBitcast(const TreePatternNode *N) const {
2493    if (hasSideEffects || mayLoad || mayStore || isVariadic)
2494      return false;
2495
2496    if (N->getNumChildren() != 2)
2497      return false;
2498
2499    const TreePatternNode *N0 = N->getChild(0);
2500    if (!N0->isLeaf() || !isa<DefInit>(N0->getLeafValue()))
2501      return false;
2502
2503    const TreePatternNode *N1 = N->getChild(1);
2504    if (N1->isLeaf())
2505      return false;
2506    if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf())
2507      return false;
2508
2509    const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator());
2510    if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
2511      return false;
2512    return OpInfo.getEnumName() == "ISD::BITCAST";
2513  }
2514
2515public:
2516  void AnalyzeNode(const TreePatternNode *N) {
2517    if (N->isLeaf()) {
2518      if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
2519        Record *LeafRec = DI->getDef();
2520        // Handle ComplexPattern leaves.
2521        if (LeafRec->isSubClassOf("ComplexPattern")) {
2522          const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
2523          if (CP.hasProperty(SDNPMayStore)) mayStore = true;
2524          if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
2525          if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
2526        }
2527      }
2528      return;
2529    }
2530
2531    // Analyze children.
2532    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2533      AnalyzeNode(N->getChild(i));
2534
2535    // Ignore set nodes, which are not SDNodes.
2536    if (N->getOperator()->getName() == "set") {
2537      isBitcast = IsNodeBitcast(N);
2538      return;
2539    }
2540
2541    // Get information about the SDNode for the operator.
2542    const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
2543
2544    // Notice properties of the node.
2545    if (OpInfo.hasProperty(SDNPMayStore)) mayStore = true;
2546    if (OpInfo.hasProperty(SDNPMayLoad)) mayLoad = true;
2547    if (OpInfo.hasProperty(SDNPSideEffect)) hasSideEffects = true;
2548    if (OpInfo.hasProperty(SDNPVariadic)) isVariadic = true;
2549
2550    if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
2551      // If this is an intrinsic, analyze it.
2552      if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem)
2553        mayLoad = true;// These may load memory.
2554
2555      if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteArgMem)
2556        mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
2557
2558      if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem)
2559        // WriteMem intrinsics can have other strange effects.
2560        hasSideEffects = true;
2561    }
2562  }
2563
2564};
2565
2566static bool InferFromPattern(CodeGenInstruction &InstInfo,
2567                             const InstAnalyzer &PatInfo,
2568                             Record *PatDef) {
2569  bool Error = false;
2570
2571  // Remember where InstInfo got its flags.
2572  if (InstInfo.hasUndefFlags())
2573      InstInfo.InferredFrom = PatDef;
2574
2575  // Check explicitly set flags for consistency.
2576  if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
2577      !InstInfo.hasSideEffects_Unset) {
2578    // Allow explicitly setting hasSideEffects = 1 on instructions, even when
2579    // the pattern has no side effects. That could be useful for div/rem
2580    // instructions that may trap.
2581    if (!InstInfo.hasSideEffects) {
2582      Error = true;
2583      PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
2584                 Twine(InstInfo.hasSideEffects));
2585    }
2586  }
2587
2588  if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
2589    Error = true;
2590    PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
2591               Twine(InstInfo.mayStore));
2592  }
2593
2594  if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
2595    // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
2596    // Some targets translate imediates to loads.
2597    if (!InstInfo.mayLoad) {
2598      Error = true;
2599      PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
2600                 Twine(InstInfo.mayLoad));
2601    }
2602  }
2603
2604  // Transfer inferred flags.
2605  InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
2606  InstInfo.mayStore |= PatInfo.mayStore;
2607  InstInfo.mayLoad |= PatInfo.mayLoad;
2608
2609  // These flags are silently added without any verification.
2610  InstInfo.isBitcast |= PatInfo.isBitcast;
2611
2612  // Don't infer isVariadic. This flag means something different on SDNodes and
2613  // instructions. For example, a CALL SDNode is variadic because it has the
2614  // call arguments as operands, but a CALL instruction is not variadic - it
2615  // has argument registers as implicit, not explicit uses.
2616
2617  return Error;
2618}
2619
2620/// hasNullFragReference - Return true if the DAG has any reference to the
2621/// null_frag operator.
2622static bool hasNullFragReference(DagInit *DI) {
2623  DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
2624  if (!OpDef) return false;
2625  Record *Operator = OpDef->getDef();
2626
2627  // If this is the null fragment, return true.
2628  if (Operator->getName() == "null_frag") return true;
2629  // If any of the arguments reference the null fragment, return true.
2630  for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
2631    DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
2632    if (Arg && hasNullFragReference(Arg))
2633      return true;
2634  }
2635
2636  return false;
2637}
2638
2639/// hasNullFragReference - Return true if any DAG in the list references
2640/// the null_frag operator.
2641static bool hasNullFragReference(ListInit *LI) {
2642  for (unsigned i = 0, e = LI->getSize(); i != e; ++i) {
2643    DagInit *DI = dyn_cast<DagInit>(LI->getElement(i));
2644    assert(DI && "non-dag in an instruction Pattern list?!");
2645    if (hasNullFragReference(DI))
2646      return true;
2647  }
2648  return false;
2649}
2650
2651/// Get all the instructions in a tree.
2652static void
2653getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
2654  if (Tree->isLeaf())
2655    return;
2656  if (Tree->getOperator()->isSubClassOf("Instruction"))
2657    Instrs.push_back(Tree->getOperator());
2658  for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
2659    getInstructionsInTree(Tree->getChild(i), Instrs);
2660}
2661
2662/// Check the class of a pattern leaf node against the instruction operand it
2663/// represents.
2664static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
2665                              Record *Leaf) {
2666  if (OI.Rec == Leaf)
2667    return true;
2668
2669  // Allow direct value types to be used in instruction set patterns.
2670  // The type will be checked later.
2671  if (Leaf->isSubClassOf("ValueType"))
2672    return true;
2673
2674  // Patterns can also be ComplexPattern instances.
2675  if (Leaf->isSubClassOf("ComplexPattern"))
2676    return true;
2677
2678  return false;
2679}
2680
2681/// ParseInstructions - Parse all of the instructions, inlining and resolving
2682/// any fragments involved.  This populates the Instructions list with fully
2683/// resolved instructions.
2684void CodeGenDAGPatterns::ParseInstructions() {
2685  std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
2686
2687  for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
2688    ListInit *LI = 0;
2689
2690    if (isa<ListInit>(Instrs[i]->getValueInit("Pattern")))
2691      LI = Instrs[i]->getValueAsListInit("Pattern");
2692
2693    // If there is no pattern, only collect minimal information about the
2694    // instruction for its operand list.  We have to assume that there is one
2695    // result, as we have no detailed info. A pattern which references the
2696    // null_frag operator is as-if no pattern were specified. Normally this
2697    // is from a multiclass expansion w/ a SDPatternOperator passed in as
2698    // null_frag.
2699    if (!LI || LI->getSize() == 0 || hasNullFragReference(LI)) {
2700      std::vector<Record*> Results;
2701      std::vector<Record*> Operands;
2702
2703      CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]);
2704
2705      if (InstInfo.Operands.size() != 0) {
2706        if (InstInfo.Operands.NumDefs == 0) {
2707          // These produce no results
2708          for (unsigned j = 0, e = InstInfo.Operands.size(); j < e; ++j)
2709            Operands.push_back(InstInfo.Operands[j].Rec);
2710        } else {
2711          // Assume the first operand is the result.
2712          Results.push_back(InstInfo.Operands[0].Rec);
2713
2714          // The rest are inputs.
2715          for (unsigned j = 1, e = InstInfo.Operands.size(); j < e; ++j)
2716            Operands.push_back(InstInfo.Operands[j].Rec);
2717        }
2718      }
2719
2720      // Create and insert the instruction.
2721      std::vector<Record*> ImpResults;
2722      Instructions.insert(std::make_pair(Instrs[i],
2723                          DAGInstruction(0, Results, Operands, ImpResults)));
2724      continue;  // no pattern.
2725    }
2726
2727    // Parse the instruction.
2728    TreePattern *I = new TreePattern(Instrs[i], LI, true, *this);
2729    // Inline pattern fragments into it.
2730    I->InlinePatternFragments();
2731
2732    // Infer as many types as possible.  If we cannot infer all of them, we can
2733    // never do anything with this instruction pattern: report it to the user.
2734    if (!I->InferAllTypes())
2735      I->error("Could not infer all types in pattern!");
2736
2737    // InstInputs - Keep track of all of the inputs of the instruction, along
2738    // with the record they are declared as.
2739    std::map<std::string, TreePatternNode*> InstInputs;
2740
2741    // InstResults - Keep track of all the virtual registers that are 'set'
2742    // in the instruction, including what reg class they are.
2743    std::map<std::string, TreePatternNode*> InstResults;
2744
2745    std::vector<Record*> InstImpResults;
2746
2747    // Verify that the top-level forms in the instruction are of void type, and
2748    // fill in the InstResults map.
2749    for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
2750      TreePatternNode *Pat = I->getTree(j);
2751      if (Pat->getNumTypes() != 0)
2752        I->error("Top-level forms in instruction pattern should have"
2753                 " void types");
2754
2755      // Find inputs and outputs, and verify the structure of the uses/defs.
2756      FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
2757                                  InstImpResults);
2758    }
2759
2760    // Now that we have inputs and outputs of the pattern, inspect the operands
2761    // list for the instruction.  This determines the order that operands are
2762    // added to the machine instruction the node corresponds to.
2763    unsigned NumResults = InstResults.size();
2764
2765    // Parse the operands list from the (ops) list, validating it.
2766    assert(I->getArgList().empty() && "Args list should still be empty here!");
2767    CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]);
2768
2769    // Check that all of the results occur first in the list.
2770    std::vector<Record*> Results;
2771    TreePatternNode *Res0Node = 0;
2772    for (unsigned i = 0; i != NumResults; ++i) {
2773      if (i == CGI.Operands.size())
2774        I->error("'" + InstResults.begin()->first +
2775                 "' set but does not appear in operand list!");
2776      const std::string &OpName = CGI.Operands[i].Name;
2777
2778      // Check that it exists in InstResults.
2779      TreePatternNode *RNode = InstResults[OpName];
2780      if (RNode == 0)
2781        I->error("Operand $" + OpName + " does not exist in operand list!");
2782
2783      if (i == 0)
2784        Res0Node = RNode;
2785      Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
2786      if (R == 0)
2787        I->error("Operand $" + OpName + " should be a set destination: all "
2788                 "outputs must occur before inputs in operand list!");
2789
2790      if (!checkOperandClass(CGI.Operands[i], R))
2791        I->error("Operand $" + OpName + " class mismatch!");
2792
2793      // Remember the return type.
2794      Results.push_back(CGI.Operands[i].Rec);
2795
2796      // Okay, this one checks out.
2797      InstResults.erase(OpName);
2798    }
2799
2800    // Loop over the inputs next.  Make a copy of InstInputs so we can destroy
2801    // the copy while we're checking the inputs.
2802    std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
2803
2804    std::vector<TreePatternNode*> ResultNodeOperands;
2805    std::vector<Record*> Operands;
2806    for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
2807      CGIOperandList::OperandInfo &Op = CGI.Operands[i];
2808      const std::string &OpName = Op.Name;
2809      if (OpName.empty())
2810        I->error("Operand #" + utostr(i) + " in operands list has no name!");
2811
2812      if (!InstInputsCheck.count(OpName)) {
2813        // If this is an operand with a DefaultOps set filled in, we can ignore
2814        // this.  When we codegen it, we will do so as always executed.
2815        if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
2816          // Does it have a non-empty DefaultOps field?  If so, ignore this
2817          // operand.
2818          if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
2819            continue;
2820        }
2821        I->error("Operand $" + OpName +
2822                 " does not appear in the instruction pattern");
2823      }
2824      TreePatternNode *InVal = InstInputsCheck[OpName];
2825      InstInputsCheck.erase(OpName);   // It occurred, remove from map.
2826
2827      if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
2828        Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
2829        if (!checkOperandClass(Op, InRec))
2830          I->error("Operand $" + OpName + "'s register class disagrees"
2831                   " between the operand and pattern");
2832      }
2833      Operands.push_back(Op.Rec);
2834
2835      // Construct the result for the dest-pattern operand list.
2836      TreePatternNode *OpNode = InVal->clone();
2837
2838      // No predicate is useful on the result.
2839      OpNode->clearPredicateFns();
2840
2841      // Promote the xform function to be an explicit node if set.
2842      if (Record *Xform = OpNode->getTransformFn()) {
2843        OpNode->setTransformFn(0);
2844        std::vector<TreePatternNode*> Children;
2845        Children.push_back(OpNode);
2846        OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
2847      }
2848
2849      ResultNodeOperands.push_back(OpNode);
2850    }
2851
2852    if (!InstInputsCheck.empty())
2853      I->error("Input operand $" + InstInputsCheck.begin()->first +
2854               " occurs in pattern but not in operands list!");
2855
2856    TreePatternNode *ResultPattern =
2857      new TreePatternNode(I->getRecord(), ResultNodeOperands,
2858                          GetNumNodeResults(I->getRecord(), *this));
2859    // Copy fully inferred output node type to instruction result pattern.
2860    for (unsigned i = 0; i != NumResults; ++i)
2861      ResultPattern->setType(i, Res0Node->getExtType(i));
2862
2863    // Create and insert the instruction.
2864    // FIXME: InstImpResults should not be part of DAGInstruction.
2865    DAGInstruction TheInst(I, Results, Operands, InstImpResults);
2866    Instructions.insert(std::make_pair(I->getRecord(), TheInst));
2867
2868    // Use a temporary tree pattern to infer all types and make sure that the
2869    // constructed result is correct.  This depends on the instruction already
2870    // being inserted into the Instructions map.
2871    TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
2872    Temp.InferAllTypes(&I->getNamedNodesMap());
2873
2874    DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second;
2875    TheInsertedInst.setResultPattern(Temp.getOnlyTree());
2876
2877    DEBUG(I->dump());
2878  }
2879
2880  // If we can, convert the instructions to be patterns that are matched!
2881  for (std::map<Record*, DAGInstruction, LessRecordByID>::iterator II =
2882        Instructions.begin(),
2883       E = Instructions.end(); II != E; ++II) {
2884    DAGInstruction &TheInst = II->second;
2885    TreePattern *I = TheInst.getPattern();
2886    if (I == 0) continue;  // No pattern.
2887
2888    // FIXME: Assume only the first tree is the pattern. The others are clobber
2889    // nodes.
2890    TreePatternNode *Pattern = I->getTree(0);
2891    TreePatternNode *SrcPattern;
2892    if (Pattern->getOperator()->getName() == "set") {
2893      SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
2894    } else{
2895      // Not a set (store or something?)
2896      SrcPattern = Pattern;
2897    }
2898
2899    Record *Instr = II->first;
2900    AddPatternToMatch(I,
2901                      PatternToMatch(Instr,
2902                                     Instr->getValueAsListInit("Predicates"),
2903                                     SrcPattern,
2904                                     TheInst.getResultPattern(),
2905                                     TheInst.getImpResults(),
2906                                     Instr->getValueAsInt("AddedComplexity"),
2907                                     Instr->getID()));
2908  }
2909}
2910
2911
2912typedef std::pair<const TreePatternNode*, unsigned> NameRecord;
2913
2914static void FindNames(const TreePatternNode *P,
2915                      std::map<std::string, NameRecord> &Names,
2916                      TreePattern *PatternTop) {
2917  if (!P->getName().empty()) {
2918    NameRecord &Rec = Names[P->getName()];
2919    // If this is the first instance of the name, remember the node.
2920    if (Rec.second++ == 0)
2921      Rec.first = P;
2922    else if (Rec.first->getExtTypes() != P->getExtTypes())
2923      PatternTop->error("repetition of value: $" + P->getName() +
2924                        " where different uses have different types!");
2925  }
2926
2927  if (!P->isLeaf()) {
2928    for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
2929      FindNames(P->getChild(i), Names, PatternTop);
2930  }
2931}
2932
2933void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
2934                                           const PatternToMatch &PTM) {
2935  // Do some sanity checking on the pattern we're about to match.
2936  std::string Reason;
2937  if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
2938    PrintWarning(Pattern->getRecord()->getLoc(),
2939      Twine("Pattern can never match: ") + Reason);
2940    return;
2941  }
2942
2943  // If the source pattern's root is a complex pattern, that complex pattern
2944  // must specify the nodes it can potentially match.
2945  if (const ComplexPattern *CP =
2946        PTM.getSrcPattern()->getComplexPatternInfo(*this))
2947    if (CP->getRootNodes().empty())
2948      Pattern->error("ComplexPattern at root must specify list of opcodes it"
2949                     " could match");
2950
2951
2952  // Find all of the named values in the input and output, ensure they have the
2953  // same type.
2954  std::map<std::string, NameRecord> SrcNames, DstNames;
2955  FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
2956  FindNames(PTM.getDstPattern(), DstNames, Pattern);
2957
2958  // Scan all of the named values in the destination pattern, rejecting them if
2959  // they don't exist in the input pattern.
2960  for (std::map<std::string, NameRecord>::iterator
2961       I = DstNames.begin(), E = DstNames.end(); I != E; ++I) {
2962    if (SrcNames[I->first].first == 0)
2963      Pattern->error("Pattern has input without matching name in output: $" +
2964                     I->first);
2965  }
2966
2967  // Scan all of the named values in the source pattern, rejecting them if the
2968  // name isn't used in the dest, and isn't used to tie two values together.
2969  for (std::map<std::string, NameRecord>::iterator
2970       I = SrcNames.begin(), E = SrcNames.end(); I != E; ++I)
2971    if (DstNames[I->first].first == 0 && SrcNames[I->first].second == 1)
2972      Pattern->error("Pattern has dead named input: $" + I->first);
2973
2974  PatternsToMatch.push_back(PTM);
2975}
2976
2977
2978
2979void CodeGenDAGPatterns::InferInstructionFlags() {
2980  const std::vector<const CodeGenInstruction*> &Instructions =
2981    Target.getInstructionsByEnumValue();
2982
2983  // First try to infer flags from the primary instruction pattern, if any.
2984  SmallVector<CodeGenInstruction*, 8> Revisit;
2985  unsigned Errors = 0;
2986  for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
2987    CodeGenInstruction &InstInfo =
2988      const_cast<CodeGenInstruction &>(*Instructions[i]);
2989
2990    // Treat neverHasSideEffects = 1 as the equivalent of hasSideEffects = 0.
2991    // This flag is obsolete and will be removed.
2992    if (InstInfo.neverHasSideEffects) {
2993      assert(!InstInfo.hasSideEffects);
2994      InstInfo.hasSideEffects_Unset = false;
2995    }
2996
2997    // Get the primary instruction pattern.
2998    const TreePattern *Pattern = getInstruction(InstInfo.TheDef).getPattern();
2999    if (!Pattern) {
3000      if (InstInfo.hasUndefFlags())
3001        Revisit.push_back(&InstInfo);
3002      continue;
3003    }
3004    InstAnalyzer PatInfo(*this);
3005    PatInfo.Analyze(Pattern);
3006    Errors += InferFromPattern(InstInfo, PatInfo, InstInfo.TheDef);
3007  }
3008
3009  // Second, look for single-instruction patterns defined outside the
3010  // instruction.
3011  for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
3012    const PatternToMatch &PTM = *I;
3013
3014    // We can only infer from single-instruction patterns, otherwise we won't
3015    // know which instruction should get the flags.
3016    SmallVector<Record*, 8> PatInstrs;
3017    getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
3018    if (PatInstrs.size() != 1)
3019      continue;
3020
3021    // Get the single instruction.
3022    CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
3023
3024    // Only infer properties from the first pattern. We'll verify the others.
3025    if (InstInfo.InferredFrom)
3026      continue;
3027
3028    InstAnalyzer PatInfo(*this);
3029    PatInfo.Analyze(&PTM);
3030    Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
3031  }
3032
3033  if (Errors)
3034    PrintFatalError("pattern conflicts");
3035
3036  // Revisit instructions with undefined flags and no pattern.
3037  if (Target.guessInstructionProperties()) {
3038    for (unsigned i = 0, e = Revisit.size(); i != e; ++i) {
3039      CodeGenInstruction &InstInfo = *Revisit[i];
3040      if (InstInfo.InferredFrom)
3041        continue;
3042      // The mayLoad and mayStore flags default to false.
3043      // Conservatively assume hasSideEffects if it wasn't explicit.
3044      if (InstInfo.hasSideEffects_Unset)
3045        InstInfo.hasSideEffects = true;
3046    }
3047    return;
3048  }
3049
3050  // Complain about any flags that are still undefined.
3051  for (unsigned i = 0, e = Revisit.size(); i != e; ++i) {
3052    CodeGenInstruction &InstInfo = *Revisit[i];
3053    if (InstInfo.InferredFrom)
3054      continue;
3055    if (InstInfo.hasSideEffects_Unset)
3056      PrintError(InstInfo.TheDef->getLoc(),
3057                 "Can't infer hasSideEffects from patterns");
3058    if (InstInfo.mayStore_Unset)
3059      PrintError(InstInfo.TheDef->getLoc(),
3060                 "Can't infer mayStore from patterns");
3061    if (InstInfo.mayLoad_Unset)
3062      PrintError(InstInfo.TheDef->getLoc(),
3063                 "Can't infer mayLoad from patterns");
3064  }
3065}
3066
3067
3068/// Verify instruction flags against pattern node properties.
3069void CodeGenDAGPatterns::VerifyInstructionFlags() {
3070  unsigned Errors = 0;
3071  for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
3072    const PatternToMatch &PTM = *I;
3073    SmallVector<Record*, 8> Instrs;
3074    getInstructionsInTree(PTM.getDstPattern(), Instrs);
3075    if (Instrs.empty())
3076      continue;
3077
3078    // Count the number of instructions with each flag set.
3079    unsigned NumSideEffects = 0;
3080    unsigned NumStores = 0;
3081    unsigned NumLoads = 0;
3082    for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
3083      const CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]);
3084      NumSideEffects += InstInfo.hasSideEffects;
3085      NumStores += InstInfo.mayStore;
3086      NumLoads += InstInfo.mayLoad;
3087    }
3088
3089    // Analyze the source pattern.
3090    InstAnalyzer PatInfo(*this);
3091    PatInfo.Analyze(&PTM);
3092
3093    // Collect error messages.
3094    SmallVector<std::string, 4> Msgs;
3095
3096    // Check for missing flags in the output.
3097    // Permit extra flags for now at least.
3098    if (PatInfo.hasSideEffects && !NumSideEffects)
3099      Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
3100
3101    // Don't verify store flags on instructions with side effects. At least for
3102    // intrinsics, side effects implies mayStore.
3103    if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
3104      Msgs.push_back("pattern may store, but mayStore isn't set");
3105
3106    // Similarly, mayStore implies mayLoad on intrinsics.
3107    if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
3108      Msgs.push_back("pattern may load, but mayLoad isn't set");
3109
3110    // Print error messages.
3111    if (Msgs.empty())
3112      continue;
3113    ++Errors;
3114
3115    for (unsigned i = 0, e = Msgs.size(); i != e; ++i)
3116      PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msgs[i]) + " on the " +
3117                 (Instrs.size() == 1 ?
3118                  "instruction" : "output instructions"));
3119    // Provide the location of the relevant instruction definitions.
3120    for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
3121      if (Instrs[i] != PTM.getSrcRecord())
3122        PrintError(Instrs[i]->getLoc(), "defined here");
3123      const CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]);
3124      if (InstInfo.InferredFrom &&
3125          InstInfo.InferredFrom != InstInfo.TheDef &&
3126          InstInfo.InferredFrom != PTM.getSrcRecord())
3127        PrintError(InstInfo.InferredFrom->getLoc(), "inferred from patttern");
3128    }
3129  }
3130  if (Errors)
3131    PrintFatalError("Errors in DAG patterns");
3132}
3133
3134/// Given a pattern result with an unresolved type, see if we can find one
3135/// instruction with an unresolved result type.  Force this result type to an
3136/// arbitrary element if it's possible types to converge results.
3137static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
3138  if (N->isLeaf())
3139    return false;
3140
3141  // Analyze children.
3142  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3143    if (ForceArbitraryInstResultType(N->getChild(i), TP))
3144      return true;
3145
3146  if (!N->getOperator()->isSubClassOf("Instruction"))
3147    return false;
3148
3149  // If this type is already concrete or completely unknown we can't do
3150  // anything.
3151  for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
3152    if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete())
3153      continue;
3154
3155    // Otherwise, force its type to the first possibility (an arbitrary choice).
3156    if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP))
3157      return true;
3158  }
3159
3160  return false;
3161}
3162
3163void CodeGenDAGPatterns::ParsePatterns() {
3164  std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
3165
3166  for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
3167    Record *CurPattern = Patterns[i];
3168    DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
3169
3170    // If the pattern references the null_frag, there's nothing to do.
3171    if (hasNullFragReference(Tree))
3172      continue;
3173
3174    TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this);
3175
3176    // Inline pattern fragments into it.
3177    Pattern->InlinePatternFragments();
3178
3179    ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
3180    if (LI->getSize() == 0) continue;  // no pattern.
3181
3182    // Parse the instruction.
3183    TreePattern *Result = new TreePattern(CurPattern, LI, false, *this);
3184
3185    // Inline pattern fragments into it.
3186    Result->InlinePatternFragments();
3187
3188    if (Result->getNumTrees() != 1)
3189      Result->error("Cannot handle instructions producing instructions "
3190                    "with temporaries yet!");
3191
3192    bool IterateInference;
3193    bool InferredAllPatternTypes, InferredAllResultTypes;
3194    do {
3195      // Infer as many types as possible.  If we cannot infer all of them, we
3196      // can never do anything with this pattern: report it to the user.
3197      InferredAllPatternTypes =
3198        Pattern->InferAllTypes(&Pattern->getNamedNodesMap());
3199
3200      // Infer as many types as possible.  If we cannot infer all of them, we
3201      // can never do anything with this pattern: report it to the user.
3202      InferredAllResultTypes =
3203        Result->InferAllTypes(&Pattern->getNamedNodesMap());
3204
3205      IterateInference = false;
3206
3207      // Apply the type of the result to the source pattern.  This helps us
3208      // resolve cases where the input type is known to be a pointer type (which
3209      // is considered resolved), but the result knows it needs to be 32- or
3210      // 64-bits.  Infer the other way for good measure.
3211      for (unsigned i = 0, e = std::min(Result->getTree(0)->getNumTypes(),
3212                                        Pattern->getTree(0)->getNumTypes());
3213           i != e; ++i) {
3214        IterateInference = Pattern->getTree(0)->
3215          UpdateNodeType(i, Result->getTree(0)->getExtType(i), *Result);
3216        IterateInference |= Result->getTree(0)->
3217          UpdateNodeType(i, Pattern->getTree(0)->getExtType(i), *Result);
3218      }
3219
3220      // If our iteration has converged and the input pattern's types are fully
3221      // resolved but the result pattern is not fully resolved, we may have a
3222      // situation where we have two instructions in the result pattern and
3223      // the instructions require a common register class, but don't care about
3224      // what actual MVT is used.  This is actually a bug in our modelling:
3225      // output patterns should have register classes, not MVTs.
3226      //
3227      // In any case, to handle this, we just go through and disambiguate some
3228      // arbitrary types to the result pattern's nodes.
3229      if (!IterateInference && InferredAllPatternTypes &&
3230          !InferredAllResultTypes)
3231        IterateInference = ForceArbitraryInstResultType(Result->getTree(0),
3232                                                        *Result);
3233    } while (IterateInference);
3234
3235    // Verify that we inferred enough types that we can do something with the
3236    // pattern and result.  If these fire the user has to add type casts.
3237    if (!InferredAllPatternTypes)
3238      Pattern->error("Could not infer all types in pattern!");
3239    if (!InferredAllResultTypes) {
3240      Pattern->dump();
3241      Result->error("Could not infer all types in pattern result!");
3242    }
3243
3244    // Validate that the input pattern is correct.
3245    std::map<std::string, TreePatternNode*> InstInputs;
3246    std::map<std::string, TreePatternNode*> InstResults;
3247    std::vector<Record*> InstImpResults;
3248    for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j)
3249      FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j),
3250                                  InstInputs, InstResults,
3251                                  InstImpResults);
3252
3253    // Promote the xform function to be an explicit node if set.
3254    TreePatternNode *DstPattern = Result->getOnlyTree();
3255    std::vector<TreePatternNode*> ResultNodeOperands;
3256    for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
3257      TreePatternNode *OpNode = DstPattern->getChild(ii);
3258      if (Record *Xform = OpNode->getTransformFn()) {
3259        OpNode->setTransformFn(0);
3260        std::vector<TreePatternNode*> Children;
3261        Children.push_back(OpNode);
3262        OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
3263      }
3264      ResultNodeOperands.push_back(OpNode);
3265    }
3266    DstPattern = Result->getOnlyTree();
3267    if (!DstPattern->isLeaf())
3268      DstPattern = new TreePatternNode(DstPattern->getOperator(),
3269                                       ResultNodeOperands,
3270                                       DstPattern->getNumTypes());
3271
3272    for (unsigned i = 0, e = Result->getOnlyTree()->getNumTypes(); i != e; ++i)
3273      DstPattern->setType(i, Result->getOnlyTree()->getExtType(i));
3274
3275    TreePattern Temp(Result->getRecord(), DstPattern, false, *this);
3276    Temp.InferAllTypes();
3277
3278
3279    AddPatternToMatch(Pattern,
3280                    PatternToMatch(CurPattern,
3281                                   CurPattern->getValueAsListInit("Predicates"),
3282                                   Pattern->getTree(0),
3283                                   Temp.getOnlyTree(), InstImpResults,
3284                                   CurPattern->getValueAsInt("AddedComplexity"),
3285                                   CurPattern->getID()));
3286  }
3287}
3288
3289/// CombineChildVariants - Given a bunch of permutations of each child of the
3290/// 'operator' node, put them together in all possible ways.
3291static void CombineChildVariants(TreePatternNode *Orig,
3292               const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
3293                                 std::vector<TreePatternNode*> &OutVariants,
3294                                 CodeGenDAGPatterns &CDP,
3295                                 const MultipleUseVarSet &DepVars) {
3296  // Make sure that each operand has at least one variant to choose from.
3297  for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
3298    if (ChildVariants[i].empty())
3299      return;
3300
3301  // The end result is an all-pairs construction of the resultant pattern.
3302  std::vector<unsigned> Idxs;
3303  Idxs.resize(ChildVariants.size());
3304  bool NotDone;
3305  do {
3306#ifndef NDEBUG
3307    DEBUG(if (!Idxs.empty()) {
3308            errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
3309              for (unsigned i = 0; i < Idxs.size(); ++i) {
3310                errs() << Idxs[i] << " ";
3311            }
3312            errs() << "]\n";
3313          });
3314#endif
3315    // Create the variant and add it to the output list.
3316    std::vector<TreePatternNode*> NewChildren;
3317    for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
3318      NewChildren.push_back(ChildVariants[i][Idxs[i]]);
3319    TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren,
3320                                             Orig->getNumTypes());
3321
3322    // Copy over properties.
3323    R->setName(Orig->getName());
3324    R->setPredicateFns(Orig->getPredicateFns());
3325    R->setTransformFn(Orig->getTransformFn());
3326    for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
3327      R->setType(i, Orig->getExtType(i));
3328
3329    // If this pattern cannot match, do not include it as a variant.
3330    std::string ErrString;
3331    if (!R->canPatternMatch(ErrString, CDP)) {
3332      delete R;
3333    } else {
3334      bool AlreadyExists = false;
3335
3336      // Scan to see if this pattern has already been emitted.  We can get
3337      // duplication due to things like commuting:
3338      //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
3339      // which are the same pattern.  Ignore the dups.
3340      for (unsigned i = 0, e = OutVariants.size(); i != e; ++i)
3341        if (R->isIsomorphicTo(OutVariants[i], DepVars)) {
3342          AlreadyExists = true;
3343          break;
3344        }
3345
3346      if (AlreadyExists)
3347        delete R;
3348      else
3349        OutVariants.push_back(R);
3350    }
3351
3352    // Increment indices to the next permutation by incrementing the
3353    // indicies from last index backward, e.g., generate the sequence
3354    // [0, 0], [0, 1], [1, 0], [1, 1].
3355    int IdxsIdx;
3356    for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
3357      if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
3358        Idxs[IdxsIdx] = 0;
3359      else
3360        break;
3361    }
3362    NotDone = (IdxsIdx >= 0);
3363  } while (NotDone);
3364}
3365
3366/// CombineChildVariants - A helper function for binary operators.
3367///
3368static void CombineChildVariants(TreePatternNode *Orig,
3369                                 const std::vector<TreePatternNode*> &LHS,
3370                                 const std::vector<TreePatternNode*> &RHS,
3371                                 std::vector<TreePatternNode*> &OutVariants,
3372                                 CodeGenDAGPatterns &CDP,
3373                                 const MultipleUseVarSet &DepVars) {
3374  std::vector<std::vector<TreePatternNode*> > ChildVariants;
3375  ChildVariants.push_back(LHS);
3376  ChildVariants.push_back(RHS);
3377  CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
3378}
3379
3380
3381static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
3382                                     std::vector<TreePatternNode *> &Children) {
3383  assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
3384  Record *Operator = N->getOperator();
3385
3386  // Only permit raw nodes.
3387  if (!N->getName().empty() || !N->getPredicateFns().empty() ||
3388      N->getTransformFn()) {
3389    Children.push_back(N);
3390    return;
3391  }
3392
3393  if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
3394    Children.push_back(N->getChild(0));
3395  else
3396    GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
3397
3398  if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
3399    Children.push_back(N->getChild(1));
3400  else
3401    GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
3402}
3403
3404/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
3405/// the (potentially recursive) pattern by using algebraic laws.
3406///
3407static void GenerateVariantsOf(TreePatternNode *N,
3408                               std::vector<TreePatternNode*> &OutVariants,
3409                               CodeGenDAGPatterns &CDP,
3410                               const MultipleUseVarSet &DepVars) {
3411  // We cannot permute leaves.
3412  if (N->isLeaf()) {
3413    OutVariants.push_back(N);
3414    return;
3415  }
3416
3417  // Look up interesting info about the node.
3418  const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
3419
3420  // If this node is associative, re-associate.
3421  if (NodeInfo.hasProperty(SDNPAssociative)) {
3422    // Re-associate by pulling together all of the linked operators
3423    std::vector<TreePatternNode*> MaximalChildren;
3424    GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
3425
3426    // Only handle child sizes of 3.  Otherwise we'll end up trying too many
3427    // permutations.
3428    if (MaximalChildren.size() == 3) {
3429      // Find the variants of all of our maximal children.
3430      std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
3431      GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
3432      GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
3433      GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
3434
3435      // There are only two ways we can permute the tree:
3436      //   (A op B) op C    and    A op (B op C)
3437      // Within these forms, we can also permute A/B/C.
3438
3439      // Generate legal pair permutations of A/B/C.
3440      std::vector<TreePatternNode*> ABVariants;
3441      std::vector<TreePatternNode*> BAVariants;
3442      std::vector<TreePatternNode*> ACVariants;
3443      std::vector<TreePatternNode*> CAVariants;
3444      std::vector<TreePatternNode*> BCVariants;
3445      std::vector<TreePatternNode*> CBVariants;
3446      CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
3447      CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
3448      CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
3449      CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
3450      CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
3451      CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
3452
3453      // Combine those into the result: (x op x) op x
3454      CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
3455      CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
3456      CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
3457      CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
3458      CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
3459      CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
3460
3461      // Combine those into the result: x op (x op x)
3462      CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
3463      CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
3464      CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
3465      CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
3466      CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
3467      CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
3468      return;
3469    }
3470  }
3471
3472  // Compute permutations of all children.
3473  std::vector<std::vector<TreePatternNode*> > ChildVariants;
3474  ChildVariants.resize(N->getNumChildren());
3475  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3476    GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars);
3477
3478  // Build all permutations based on how the children were formed.
3479  CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
3480
3481  // If this node is commutative, consider the commuted order.
3482  bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
3483  if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
3484    assert((N->getNumChildren()==2 || isCommIntrinsic) &&
3485           "Commutative but doesn't have 2 children!");
3486    // Don't count children which are actually register references.
3487    unsigned NC = 0;
3488    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
3489      TreePatternNode *Child = N->getChild(i);
3490      if (Child->isLeaf())
3491        if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
3492          Record *RR = DI->getDef();
3493          if (RR->isSubClassOf("Register"))
3494            continue;
3495        }
3496      NC++;
3497    }
3498    // Consider the commuted order.
3499    if (isCommIntrinsic) {
3500      // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
3501      // operands are the commutative operands, and there might be more operands
3502      // after those.
3503      assert(NC >= 3 &&
3504             "Commutative intrinsic should have at least 3 childrean!");
3505      std::vector<std::vector<TreePatternNode*> > Variants;
3506      Variants.push_back(ChildVariants[0]); // Intrinsic id.
3507      Variants.push_back(ChildVariants[2]);
3508      Variants.push_back(ChildVariants[1]);
3509      for (unsigned i = 3; i != NC; ++i)
3510        Variants.push_back(ChildVariants[i]);
3511      CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
3512    } else if (NC == 2)
3513      CombineChildVariants(N, ChildVariants[1], ChildVariants[0],
3514                           OutVariants, CDP, DepVars);
3515  }
3516}
3517
3518
3519// GenerateVariants - Generate variants.  For example, commutative patterns can
3520// match multiple ways.  Add them to PatternsToMatch as well.
3521void CodeGenDAGPatterns::GenerateVariants() {
3522  DEBUG(errs() << "Generating instruction variants.\n");
3523
3524  // Loop over all of the patterns we've collected, checking to see if we can
3525  // generate variants of the instruction, through the exploitation of
3526  // identities.  This permits the target to provide aggressive matching without
3527  // the .td file having to contain tons of variants of instructions.
3528  //
3529  // Note that this loop adds new patterns to the PatternsToMatch list, but we
3530  // intentionally do not reconsider these.  Any variants of added patterns have
3531  // already been added.
3532  //
3533  for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
3534    MultipleUseVarSet             DepVars;
3535    std::vector<TreePatternNode*> Variants;
3536    FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
3537    DEBUG(errs() << "Dependent/multiply used variables: ");
3538    DEBUG(DumpDepVars(DepVars));
3539    DEBUG(errs() << "\n");
3540    GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this,
3541                       DepVars);
3542
3543    assert(!Variants.empty() && "Must create at least original variant!");
3544    Variants.erase(Variants.begin());  // Remove the original pattern.
3545
3546    if (Variants.empty())  // No variants for this pattern.
3547      continue;
3548
3549    DEBUG(errs() << "FOUND VARIANTS OF: ";
3550          PatternsToMatch[i].getSrcPattern()->dump();
3551          errs() << "\n");
3552
3553    for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
3554      TreePatternNode *Variant = Variants[v];
3555
3556      DEBUG(errs() << "  VAR#" << v <<  ": ";
3557            Variant->dump();
3558            errs() << "\n");
3559
3560      // Scan to see if an instruction or explicit pattern already matches this.
3561      bool AlreadyExists = false;
3562      for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
3563        // Skip if the top level predicates do not match.
3564        if (PatternsToMatch[i].getPredicates() !=
3565            PatternsToMatch[p].getPredicates())
3566          continue;
3567        // Check to see if this variant already exists.
3568        if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
3569                                    DepVars)) {
3570          DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
3571          AlreadyExists = true;
3572          break;
3573        }
3574      }
3575      // If we already have it, ignore the variant.
3576      if (AlreadyExists) continue;
3577
3578      // Otherwise, add it to the list of patterns we have.
3579      PatternsToMatch.
3580        push_back(PatternToMatch(PatternsToMatch[i].getSrcRecord(),
3581                                 PatternsToMatch[i].getPredicates(),
3582                                 Variant, PatternsToMatch[i].getDstPattern(),
3583                                 PatternsToMatch[i].getDstRegs(),
3584                                 PatternsToMatch[i].getAddedComplexity(),
3585                                 Record::getNewUID()));
3586    }
3587
3588    DEBUG(errs() << "\n");
3589  }
3590}
3591