1/*M///////////////////////////////////////////////////////////////////////////////////////
2//
3//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4//
5//  By downloading, copying, installing or using the software you agree to this license.
6//  If you do not agree to this license, do not download, install,
7//  copy or use the software.
8//
9//
10//                        Intel License Agreement
11//                For Open Source Computer Vision Library
12//
13// Copyright (C) 2000, Intel Corporation, all rights reserved.
14// Third party copyrights are property of their respective owners.
15//
16// Redistribution and use in source and binary forms, with or without modification,
17// are permitted provided that the following conditions are met:
18//
19//   * Redistribution's of source code must retain the above copyright notice,
20//     this list of conditions and the following disclaimer.
21//
22//   * Redistribution's in binary form must reproduce the above copyright notice,
23//     this list of conditions and the following disclaimer in the documentation
24//     and/or other materials provided with the distribution.
25//
26//   * The name of Intel Corporation may not be used to endorse or promote products
27//     derived from this software without specific prior written permission.
28//
29// This software is provided by the copyright holders and contributors "as is" and
30// any express or implied warranties, including, but not limited to, the implied
31// warranties of merchantability and fitness for a particular purpose are disclaimed.
32// In no event shall the Intel Corporation or contributors be liable for any direct,
33// indirect, incidental, special, exemplary, or consequential damages
34// (including, but not limited to, procurement of substitute goods or services;
35// loss of use, data, or profits; or business interruption) however caused
36// and on any theory of liability, whether in contract, strict liability,
37// or tort (including negligence or otherwise) arising in any way out of
38// the use of this software, even if advised of the possibility of such damage.
39//
40//M*/
41
42#ifndef _CVTYPES_H_
43#define _CVTYPES_H_
44
45#ifndef SKIP_INCLUDES
46  #include <assert.h>
47  #include <stdlib.h>
48#endif
49
50/* spatial and central moments */
51typedef struct CvMoments
52{
53    double  m00, m10, m01, m20, m11, m02, m30, m21, m12, m03; /* spatial moments */
54    double  mu20, mu11, mu02, mu30, mu21, mu12, mu03; /* central moments */
55    double  inv_sqrt_m00; /* m00 != 0 ? 1/sqrt(m00) : 0 */
56}
57CvMoments;
58
59/* Hu invariants */
60typedef struct CvHuMoments
61{
62    double hu1, hu2, hu3, hu4, hu5, hu6, hu7; /* Hu invariants */
63}
64CvHuMoments;
65
66/**************************** Connected Component  **************************************/
67
68typedef struct CvConnectedComp
69{
70    double area;    /* area of the connected component  */
71    CvScalar value; /* average color of the connected component */
72    CvRect rect;    /* ROI of the component  */
73    CvSeq* contour; /* optional component boundary
74                      (the contour might have child contours corresponding to the holes)*/
75}
76CvConnectedComp;
77
78/*
79Internal structure that is used for sequental retrieving contours from the image.
80It supports both hierarchical and plane variants of Suzuki algorithm.
81*/
82typedef struct _CvContourScanner* CvContourScanner;
83
84/* contour retrieval mode */
85#define CV_RETR_EXTERNAL 0
86#define CV_RETR_LIST     1
87#define CV_RETR_CCOMP    2
88#define CV_RETR_TREE     3
89
90/* contour approximation method */
91#define CV_CHAIN_CODE               0
92#define CV_CHAIN_APPROX_NONE        1
93#define CV_CHAIN_APPROX_SIMPLE      2
94#define CV_CHAIN_APPROX_TC89_L1     3
95#define CV_CHAIN_APPROX_TC89_KCOS   4
96#define CV_LINK_RUNS                5
97
98/* Freeman chain reader state */
99typedef struct CvChainPtReader
100{
101    CV_SEQ_READER_FIELDS()
102    char      code;
103    CvPoint   pt;
104    schar     deltas[8][2];
105}
106CvChainPtReader;
107
108/* initializes 8-element array for fast access to 3x3 neighborhood of a pixel */
109#define  CV_INIT_3X3_DELTAS( deltas, step, nch )            \
110    ((deltas)[0] =  (nch),  (deltas)[1] = -(step) + (nch),  \
111     (deltas)[2] = -(step), (deltas)[3] = -(step) - (nch),  \
112     (deltas)[4] = -(nch),  (deltas)[5] =  (step) - (nch),  \
113     (deltas)[6] =  (step), (deltas)[7] =  (step) + (nch))
114
115/* Contour tree header */
116typedef struct CvContourTree
117{
118    CV_SEQUENCE_FIELDS()
119    CvPoint p1;            /* the first point of the binary tree root segment */
120    CvPoint p2;            /* the last point of the binary tree root segment */
121}
122CvContourTree;
123
124/* Finds a sequence of convexity defects of given contour */
125typedef struct CvConvexityDefect
126{
127    CvPoint* start; /* point of the contour where the defect begins */
128    CvPoint* end; /* point of the contour where the defect ends */
129    CvPoint* depth_point; /* the farthest from the convex hull point within the defect */
130    float depth; /* distance between the farthest point and the convex hull */
131}
132CvConvexityDefect;
133
134/************ Data structures and related enumerations for Planar Subdivisions ************/
135
136typedef size_t CvSubdiv2DEdge;
137
138#define CV_QUADEDGE2D_FIELDS()     \
139    int flags;                     \
140    struct CvSubdiv2DPoint* pt[4]; \
141    CvSubdiv2DEdge  next[4];
142
143#define CV_SUBDIV2D_POINT_FIELDS()\
144    int            flags;      \
145    CvSubdiv2DEdge first;      \
146    CvPoint2D32f   pt;
147
148#define CV_SUBDIV2D_VIRTUAL_POINT_FLAG (1 << 30)
149
150typedef struct CvQuadEdge2D
151{
152    CV_QUADEDGE2D_FIELDS()
153}
154CvQuadEdge2D;
155
156typedef struct CvSubdiv2DPoint
157{
158    CV_SUBDIV2D_POINT_FIELDS()
159}
160CvSubdiv2DPoint;
161
162#define CV_SUBDIV2D_FIELDS()    \
163    CV_GRAPH_FIELDS()           \
164    int  quad_edges;            \
165    int  is_geometry_valid;     \
166    CvSubdiv2DEdge recent_edge; \
167    CvPoint2D32f  topleft;      \
168    CvPoint2D32f  bottomright;
169
170typedef struct CvSubdiv2D
171{
172    CV_SUBDIV2D_FIELDS()
173}
174CvSubdiv2D;
175
176
177typedef enum CvSubdiv2DPointLocation
178{
179    CV_PTLOC_ERROR = -2,
180    CV_PTLOC_OUTSIDE_RECT = -1,
181    CV_PTLOC_INSIDE = 0,
182    CV_PTLOC_VERTEX = 1,
183    CV_PTLOC_ON_EDGE = 2
184}
185CvSubdiv2DPointLocation;
186
187typedef enum CvNextEdgeType
188{
189    CV_NEXT_AROUND_ORG   = 0x00,
190    CV_NEXT_AROUND_DST   = 0x22,
191    CV_PREV_AROUND_ORG   = 0x11,
192    CV_PREV_AROUND_DST   = 0x33,
193    CV_NEXT_AROUND_LEFT  = 0x13,
194    CV_NEXT_AROUND_RIGHT = 0x31,
195    CV_PREV_AROUND_LEFT  = 0x20,
196    CV_PREV_AROUND_RIGHT = 0x02
197}
198CvNextEdgeType;
199
200/* get the next edge with the same origin point (counterwise) */
201#define  CV_SUBDIV2D_NEXT_EDGE( edge )  (((CvQuadEdge2D*)((edge) & ~3))->next[(edge)&3])
202
203
204/* Defines for Distance Transform */
205#define CV_DIST_USER    -1  /* User defined distance */
206#define CV_DIST_L1      1   /* distance = |x1-x2| + |y1-y2| */
207#define CV_DIST_L2      2   /* the simple euclidean distance */
208#define CV_DIST_C       3   /* distance = max(|x1-x2|,|y1-y2|) */
209#define CV_DIST_L12     4   /* L1-L2 metric: distance = 2(sqrt(1+x*x/2) - 1)) */
210#define CV_DIST_FAIR    5   /* distance = c^2(|x|/c-log(1+|x|/c)), c = 1.3998 */
211#define CV_DIST_WELSCH  6   /* distance = c^2/2(1-exp(-(x/c)^2)), c = 2.9846 */
212#define CV_DIST_HUBER   7   /* distance = |x|<c ? x^2/2 : c(|x|-c/2), c=1.345 */
213
214
215/* Filters used in pyramid decomposition */
216typedef enum CvFilter
217{
218    CV_GAUSSIAN_5x5 = 7
219}
220CvFilter;
221
222/****************************************************************************************/
223/*                                    Older definitions                                 */
224/****************************************************************************************/
225
226typedef float*   CvVect32f;
227typedef float*   CvMatr32f;
228typedef double*  CvVect64d;
229typedef double*  CvMatr64d;
230
231typedef struct CvMatrix3
232{
233    float m[3][3];
234}
235CvMatrix3;
236
237
238#ifdef __cplusplus
239extern "C" {
240#endif
241
242typedef float (CV_CDECL * CvDistanceFunction)( const float* a, const float* b, void* user_param );
243
244#ifdef __cplusplus
245}
246#endif
247
248typedef struct CvConDensation
249{
250    int MP;
251    int DP;
252    float* DynamMatr;       /* Matrix of the linear Dynamics system  */
253    float* State;           /* Vector of State                       */
254    int SamplesNum;         /* Number of the Samples                 */
255    float** flSamples;      /* arr of the Sample Vectors             */
256    float** flNewSamples;   /* temporary array of the Sample Vectors */
257    float* flConfidence;    /* Confidence for each Sample            */
258    float* flCumulative;    /* Cumulative confidence                 */
259    float* Temp;            /* Temporary vector                      */
260    float* RandomSample;    /* RandomVector to update sample set     */
261    struct CvRandState* RandS; /* Array of structures to generate random vectors */
262}
263CvConDensation;
264
265/*
266standard Kalman filter (in G. Welch' and G. Bishop's notation):
267
268  x(k)=A*x(k-1)+B*u(k)+w(k)  p(w)~N(0,Q)
269  z(k)=H*x(k)+v(k),   p(v)~N(0,R)
270*/
271typedef struct CvKalman
272{
273    int MP;                     /* number of measurement vector dimensions */
274    int DP;                     /* number of state vector dimensions */
275    int CP;                     /* number of control vector dimensions */
276
277    /* backward compatibility fields */
278#if 1
279    float* PosterState;         /* =state_pre->data.fl */
280    float* PriorState;          /* =state_post->data.fl */
281    float* DynamMatr;           /* =transition_matrix->data.fl */
282    float* MeasurementMatr;     /* =measurement_matrix->data.fl */
283    float* MNCovariance;        /* =measurement_noise_cov->data.fl */
284    float* PNCovariance;        /* =process_noise_cov->data.fl */
285    float* KalmGainMatr;        /* =gain->data.fl */
286    float* PriorErrorCovariance;/* =error_cov_pre->data.fl */
287    float* PosterErrorCovariance;/* =error_cov_post->data.fl */
288    float* Temp1;               /* temp1->data.fl */
289    float* Temp2;               /* temp2->data.fl */
290#endif
291
292    CvMat* state_pre;           /* predicted state (x'(k)):
293                                    x(k)=A*x(k-1)+B*u(k) */
294    CvMat* state_post;          /* corrected state (x(k)):
295                                    x(k)=x'(k)+K(k)*(z(k)-H*x'(k)) */
296    CvMat* transition_matrix;   /* state transition matrix (A) */
297    CvMat* control_matrix;      /* control matrix (B)
298                                   (it is not used if there is no control)*/
299    CvMat* measurement_matrix;  /* measurement matrix (H) */
300    CvMat* process_noise_cov;   /* process noise covariance matrix (Q) */
301    CvMat* measurement_noise_cov; /* measurement noise covariance matrix (R) */
302    CvMat* error_cov_pre;       /* priori error estimate covariance matrix (P'(k)):
303                                    P'(k)=A*P(k-1)*At + Q)*/
304    CvMat* gain;                /* Kalman gain matrix (K(k)):
305                                    K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R)*/
306    CvMat* error_cov_post;      /* posteriori error estimate covariance matrix (P(k)):
307                                    P(k)=(I-K(k)*H)*P'(k) */
308    CvMat* temp1;               /* temporary matrices */
309    CvMat* temp2;
310    CvMat* temp3;
311    CvMat* temp4;
312    CvMat* temp5;
313}
314CvKalman;
315
316
317/*********************** Haar-like Object Detection structures **************************/
318#define CV_HAAR_MAGIC_VAL    0x42500000
319#define CV_TYPE_NAME_HAAR    "opencv-haar-classifier"
320
321#define CV_IS_HAAR_CLASSIFIER( haar )                                                    \
322    ((haar) != NULL &&                                                                   \
323    (((const CvHaarClassifierCascade*)(haar))->flags & CV_MAGIC_MASK)==CV_HAAR_MAGIC_VAL)
324
325#define CV_HAAR_FEATURE_MAX  3
326
327typedef struct CvHaarFeature
328{
329    int  tilted;
330    struct
331    {
332        CvRect r;
333        float weight;
334    } rect[CV_HAAR_FEATURE_MAX];
335}
336CvHaarFeature;
337
338typedef struct CvHaarClassifier
339{
340    int count;
341    CvHaarFeature* haar_feature;
342    float* threshold;
343    int* left;
344    int* right;
345    float* alpha;
346}
347CvHaarClassifier;
348
349typedef struct CvHaarStageClassifier
350{
351    int  count;
352    float threshold;
353    CvHaarClassifier* classifier;
354
355    int next;
356    int child;
357    int parent;
358}
359CvHaarStageClassifier;
360
361typedef struct CvHidHaarClassifierCascade CvHidHaarClassifierCascade;
362
363typedef struct CvHaarClassifierCascade
364{
365    int  flags;
366    int  count;
367    CvSize orig_window_size;
368    CvSize real_window_size;
369    double scale;
370    CvHaarStageClassifier* stage_classifier;
371    CvHidHaarClassifierCascade* hid_cascade;
372}
373CvHaarClassifierCascade;
374
375typedef struct CvAvgComp
376{
377    CvRect rect;
378    int neighbors;
379}
380CvAvgComp;
381
382struct CvFeatureTree;
383
384#endif /*_CVTYPES_H_*/
385
386/* End of file. */
387