1 2/* 3 * Copyright 2006 The Android Open Source Project 4 * 5 * Use of this source code is governed by a BSD-style license that can be 6 * found in the LICENSE file. 7 */ 8 9 10#include "SkDashPathEffect.h" 11#include "SkFlattenableBuffers.h" 12#include "SkPathMeasure.h" 13 14static inline int is_even(int x) { 15 return (~x) << 31; 16} 17 18static SkScalar FindFirstInterval(const SkScalar intervals[], SkScalar phase, 19 int32_t* index, int count) { 20 for (int i = 0; i < count; ++i) { 21 if (phase > intervals[i]) { 22 phase -= intervals[i]; 23 } else { 24 *index = i; 25 return intervals[i] - phase; 26 } 27 } 28 // If we get here, phase "appears" to be larger than our length. This 29 // shouldn't happen with perfect precision, but we can accumulate errors 30 // during the initial length computation (rounding can make our sum be too 31 // big or too small. In that event, we just have to eat the error here. 32 *index = 0; 33 return intervals[0]; 34} 35 36SkDashPathEffect::SkDashPathEffect(const SkScalar intervals[], int count, 37 SkScalar phase, bool scaleToFit) 38 : fScaleToFit(scaleToFit) { 39 SkASSERT(intervals); 40 SkASSERT(count > 1 && SkAlign2(count) == count); 41 42 fIntervals = (SkScalar*)sk_malloc_throw(sizeof(SkScalar) * count); 43 fCount = count; 44 45 SkScalar len = 0; 46 for (int i = 0; i < count; i++) { 47 SkASSERT(intervals[i] >= 0); 48 fIntervals[i] = intervals[i]; 49 len += intervals[i]; 50 } 51 fIntervalLength = len; 52 53 // watch out for values that might make us go out of bounds 54 if ((len > 0) && SkScalarIsFinite(phase) && SkScalarIsFinite(len)) { 55 56 // Adjust phase to be between 0 and len, "flipping" phase if negative. 57 // e.g., if len is 100, then phase of -20 (or -120) is equivalent to 80 58 if (phase < 0) { 59 phase = -phase; 60 if (phase > len) { 61 phase = SkScalarMod(phase, len); 62 } 63 phase = len - phase; 64 65 // Due to finite precision, it's possible that phase == len, 66 // even after the subtract (if len >>> phase), so fix that here. 67 // This fixes http://crbug.com/124652 . 68 SkASSERT(phase <= len); 69 if (phase == len) { 70 phase = 0; 71 } 72 } else if (phase >= len) { 73 phase = SkScalarMod(phase, len); 74 } 75 SkASSERT(phase >= 0 && phase < len); 76 77 fInitialDashLength = FindFirstInterval(intervals, phase, 78 &fInitialDashIndex, count); 79 80 SkASSERT(fInitialDashLength >= 0); 81 SkASSERT(fInitialDashIndex >= 0 && fInitialDashIndex < fCount); 82 } else { 83 fInitialDashLength = -1; // signal bad dash intervals 84 } 85} 86 87SkDashPathEffect::~SkDashPathEffect() { 88 sk_free(fIntervals); 89} 90 91static void outset_for_stroke(SkRect* rect, const SkStrokeRec& rec) { 92 SkScalar radius = SkScalarHalf(rec.getWidth()); 93 if (0 == radius) { 94 radius = SK_Scalar1; // hairlines 95 } 96 if (SkPaint::kMiter_Join == rec.getJoin()) { 97 radius = SkScalarMul(radius, rec.getMiter()); 98 } 99 rect->outset(radius, radius); 100} 101 102// Only handles lines for now. If returns true, dstPath is the new (smaller) 103// path. If returns false, then dstPath parameter is ignored. 104static bool cull_path(const SkPath& srcPath, const SkStrokeRec& rec, 105 const SkRect* cullRect, SkScalar intervalLength, 106 SkPath* dstPath) { 107 if (NULL == cullRect) { 108 return false; 109 } 110 111 SkPoint pts[2]; 112 if (!srcPath.isLine(pts)) { 113 return false; 114 } 115 116 SkRect bounds = *cullRect; 117 outset_for_stroke(&bounds, rec); 118 119 SkScalar dx = pts[1].x() - pts[0].x(); 120 SkScalar dy = pts[1].y() - pts[0].y(); 121 122 // just do horizontal lines for now (lazy) 123 if (dy) { 124 return false; 125 } 126 127 SkScalar minX = pts[0].fX; 128 SkScalar maxX = pts[1].fX; 129 130 if (maxX < bounds.fLeft || minX > bounds.fRight) { 131 return false; 132 } 133 134 if (dx < 0) { 135 SkTSwap(minX, maxX); 136 } 137 138 // Now we actually perform the chop, removing the excess to the left and 139 // right of the bounds (keeping our new line "in phase" with the dash, 140 // hence the (mod intervalLength). 141 142 if (minX < bounds.fLeft) { 143 minX = bounds.fLeft - SkScalarMod(bounds.fLeft - minX, 144 intervalLength); 145 } 146 if (maxX > bounds.fRight) { 147 maxX = bounds.fRight + SkScalarMod(maxX - bounds.fRight, 148 intervalLength); 149 } 150 151 SkASSERT(maxX >= minX); 152 if (dx < 0) { 153 SkTSwap(minX, maxX); 154 } 155 pts[0].fX = minX; 156 pts[1].fX = maxX; 157 158 dstPath->moveTo(pts[0]); 159 dstPath->lineTo(pts[1]); 160 return true; 161} 162 163class SpecialLineRec { 164public: 165 bool init(const SkPath& src, SkPath* dst, SkStrokeRec* rec, 166 int intervalCount, SkScalar intervalLength) { 167 if (rec->isHairlineStyle() || !src.isLine(fPts)) { 168 return false; 169 } 170 171 // can relax this in the future, if we handle square and round caps 172 if (SkPaint::kButt_Cap != rec->getCap()) { 173 return false; 174 } 175 176 SkScalar pathLength = SkPoint::Distance(fPts[0], fPts[1]); 177 178 fTangent = fPts[1] - fPts[0]; 179 if (fTangent.isZero()) { 180 return false; 181 } 182 183 fPathLength = pathLength; 184 fTangent.scale(SkScalarInvert(pathLength)); 185 fTangent.rotateCCW(&fNormal); 186 fNormal.scale(SkScalarHalf(rec->getWidth())); 187 188 // now estimate how many quads will be added to the path 189 // resulting segments = pathLen * intervalCount / intervalLen 190 // resulting points = 4 * segments 191 192 SkScalar ptCount = SkScalarMulDiv(pathLength, 193 SkIntToScalar(intervalCount), 194 intervalLength); 195 int n = SkScalarCeilToInt(ptCount) << 2; 196 dst->incReserve(n); 197 198 // we will take care of the stroking 199 rec->setFillStyle(); 200 return true; 201 } 202 203 void addSegment(SkScalar d0, SkScalar d1, SkPath* path) const { 204 SkASSERT(d0 < fPathLength); 205 // clamp the segment to our length 206 if (d1 > fPathLength) { 207 d1 = fPathLength; 208 } 209 210 SkScalar x0 = fPts[0].fX + SkScalarMul(fTangent.fX, d0); 211 SkScalar x1 = fPts[0].fX + SkScalarMul(fTangent.fX, d1); 212 SkScalar y0 = fPts[0].fY + SkScalarMul(fTangent.fY, d0); 213 SkScalar y1 = fPts[0].fY + SkScalarMul(fTangent.fY, d1); 214 215 SkPoint pts[4]; 216 pts[0].set(x0 + fNormal.fX, y0 + fNormal.fY); // moveTo 217 pts[1].set(x1 + fNormal.fX, y1 + fNormal.fY); // lineTo 218 pts[2].set(x1 - fNormal.fX, y1 - fNormal.fY); // lineTo 219 pts[3].set(x0 - fNormal.fX, y0 - fNormal.fY); // lineTo 220 221 path->addPoly(pts, SK_ARRAY_COUNT(pts), false); 222 } 223 224private: 225 SkPoint fPts[2]; 226 SkVector fTangent; 227 SkVector fNormal; 228 SkScalar fPathLength; 229}; 230 231bool SkDashPathEffect::filterPath(SkPath* dst, const SkPath& src, 232 SkStrokeRec* rec, const SkRect* cullRect) const { 233 // we do nothing if the src wants to be filled, or if our dashlength is 0 234 if (rec->isFillStyle() || fInitialDashLength < 0) { 235 return false; 236 } 237 238 const SkScalar* intervals = fIntervals; 239 SkScalar dashCount = 0; 240 int segCount = 0; 241 242 SkPath cullPathStorage; 243 const SkPath* srcPtr = &src; 244 if (cull_path(src, *rec, cullRect, fIntervalLength, &cullPathStorage)) { 245 srcPtr = &cullPathStorage; 246 } 247 248 SpecialLineRec lineRec; 249 bool specialLine = lineRec.init(*srcPtr, dst, rec, fCount >> 1, fIntervalLength); 250 251 SkPathMeasure meas(*srcPtr, false); 252 253 do { 254 bool skipFirstSegment = meas.isClosed(); 255 bool addedSegment = false; 256 SkScalar length = meas.getLength(); 257 int index = fInitialDashIndex; 258 SkScalar scale = SK_Scalar1; 259 260 // Since the path length / dash length ratio may be arbitrarily large, we can exert 261 // significant memory pressure while attempting to build the filtered path. To avoid this, 262 // we simply give up dashing beyond a certain threshold. 263 // 264 // The original bug report (http://crbug.com/165432) is based on a path yielding more than 265 // 90 million dash segments and crashing the memory allocator. A limit of 1 million 266 // segments seems reasonable: at 2 verbs per segment * 9 bytes per verb, this caps the 267 // maximum dash memory overhead at roughly 17MB per path. 268 static const SkScalar kMaxDashCount = 1000000; 269 dashCount += length * (fCount >> 1) / fIntervalLength; 270 if (dashCount > kMaxDashCount) { 271 dst->reset(); 272 return false; 273 } 274 275 if (fScaleToFit) { 276 if (fIntervalLength >= length) { 277 scale = SkScalarDiv(length, fIntervalLength); 278 } else { 279 SkScalar div = SkScalarDiv(length, fIntervalLength); 280 int n = SkScalarFloor(div); 281 scale = SkScalarDiv(length, n * fIntervalLength); 282 } 283 } 284 285 // Using double precision to avoid looping indefinitely due to single precision rounding 286 // (for extreme path_length/dash_length ratios). See test_infinite_dash() unittest. 287 double distance = 0; 288 double dlen = SkScalarMul(fInitialDashLength, scale); 289 290 while (distance < length) { 291 SkASSERT(dlen >= 0); 292 addedSegment = false; 293 if (is_even(index) && dlen > 0 && !skipFirstSegment) { 294 addedSegment = true; 295 ++segCount; 296 297 if (specialLine) { 298 lineRec.addSegment(SkDoubleToScalar(distance), 299 SkDoubleToScalar(distance + dlen), 300 dst); 301 } else { 302 meas.getSegment(SkDoubleToScalar(distance), 303 SkDoubleToScalar(distance + dlen), 304 dst, true); 305 } 306 } 307 distance += dlen; 308 309 // clear this so we only respect it the first time around 310 skipFirstSegment = false; 311 312 // wrap around our intervals array if necessary 313 index += 1; 314 SkASSERT(index <= fCount); 315 if (index == fCount) { 316 index = 0; 317 } 318 319 // fetch our next dlen 320 dlen = SkScalarMul(intervals[index], scale); 321 } 322 323 // extend if we ended on a segment and we need to join up with the (skipped) initial segment 324 if (meas.isClosed() && is_even(fInitialDashIndex) && 325 fInitialDashLength > 0) { 326 meas.getSegment(0, SkScalarMul(fInitialDashLength, scale), dst, !addedSegment); 327 ++segCount; 328 } 329 } while (meas.nextContour()); 330 331 if (segCount > 1) { 332 dst->setConvexity(SkPath::kConcave_Convexity); 333 } 334 335 return true; 336} 337 338// Currently asPoints is more restrictive then it needs to be. In the future 339// we need to: 340// allow kRound_Cap capping (could allow rotations in the matrix with this) 341// allow paths to be returned 342bool SkDashPathEffect::asPoints(PointData* results, 343 const SkPath& src, 344 const SkStrokeRec& rec, 345 const SkMatrix& matrix, 346 const SkRect* cullRect) const { 347 // width < 0 -> fill && width == 0 -> hairline so requiring width > 0 rules both out 348 if (fInitialDashLength < 0 || 0 >= rec.getWidth()) { 349 return false; 350 } 351 352 // TODO: this next test could be eased up. We could allow any number of 353 // intervals as long as all the ons match and all the offs match. 354 // Additionally, they do not necessarily need to be integers. 355 // We cannot allow arbitrary intervals since we want the returned points 356 // to be uniformly sized. 357 if (fCount != 2 || 358 !SkScalarNearlyEqual(fIntervals[0], fIntervals[1]) || 359 !SkScalarIsInt(fIntervals[0]) || 360 !SkScalarIsInt(fIntervals[1])) { 361 return false; 362 } 363 364 // TODO: this next test could be eased up. The rescaling should not impact 365 // the equality of the ons & offs. However, we would need to remove the 366 // integer intervals restriction first 367 if (fScaleToFit) { 368 return false; 369 } 370 371 SkPoint pts[2]; 372 373 if (!src.isLine(pts)) { 374 return false; 375 } 376 377 // TODO: this test could be eased up to allow circles 378 if (SkPaint::kButt_Cap != rec.getCap()) { 379 return false; 380 } 381 382 // TODO: this test could be eased up for circles. Rotations could be allowed. 383 if (!matrix.rectStaysRect()) { 384 return false; 385 } 386 387 SkScalar length = SkPoint::Distance(pts[1], pts[0]); 388 389 SkVector tangent = pts[1] - pts[0]; 390 if (tangent.isZero()) { 391 return false; 392 } 393 394 tangent.scale(SkScalarInvert(length)); 395 396 // TODO: make this test for horizontal & vertical lines more robust 397 bool isXAxis = true; 398 if (SK_Scalar1 == tangent.fX || -SK_Scalar1 == tangent.fX) { 399 results->fSize.set(SkScalarHalf(fIntervals[0]), SkScalarHalf(rec.getWidth())); 400 } else if (SK_Scalar1 == tangent.fY || -SK_Scalar1 == tangent.fY) { 401 results->fSize.set(SkScalarHalf(rec.getWidth()), SkScalarHalf(fIntervals[0])); 402 isXAxis = false; 403 } else if (SkPaint::kRound_Cap != rec.getCap()) { 404 // Angled lines don't have axis-aligned boxes. 405 return false; 406 } 407 408 if (NULL != results) { 409 results->fFlags = 0; 410 SkScalar clampedInitialDashLength = SkMinScalar(length, fInitialDashLength); 411 412 if (SkPaint::kRound_Cap == rec.getCap()) { 413 results->fFlags |= PointData::kCircles_PointFlag; 414 } 415 416 results->fNumPoints = 0; 417 SkScalar len2 = length; 418 if (clampedInitialDashLength > 0 || 0 == fInitialDashIndex) { 419 SkASSERT(len2 >= clampedInitialDashLength); 420 if (0 == fInitialDashIndex) { 421 if (clampedInitialDashLength > 0) { 422 if (clampedInitialDashLength >= fIntervals[0]) { 423 ++results->fNumPoints; // partial first dash 424 } 425 len2 -= clampedInitialDashLength; 426 } 427 len2 -= fIntervals[1]; // also skip first space 428 if (len2 < 0) { 429 len2 = 0; 430 } 431 } else { 432 len2 -= clampedInitialDashLength; // skip initial partial empty 433 } 434 } 435 int numMidPoints = SkScalarFloorToInt(SkScalarDiv(len2, fIntervalLength)); 436 results->fNumPoints += numMidPoints; 437 len2 -= numMidPoints * fIntervalLength; 438 bool partialLast = false; 439 if (len2 > 0) { 440 if (len2 < fIntervals[0]) { 441 partialLast = true; 442 } else { 443 ++numMidPoints; 444 ++results->fNumPoints; 445 } 446 } 447 448 results->fPoints = new SkPoint[results->fNumPoints]; 449 450 SkScalar distance = 0; 451 int curPt = 0; 452 453 if (clampedInitialDashLength > 0 || 0 == fInitialDashIndex) { 454 SkASSERT(clampedInitialDashLength <= length); 455 456 if (0 == fInitialDashIndex) { 457 if (clampedInitialDashLength > 0) { 458 // partial first block 459 SkASSERT(SkPaint::kRound_Cap != rec.getCap()); // can't handle partial circles 460 SkScalar x = pts[0].fX + SkScalarMul(tangent.fX, SkScalarHalf(clampedInitialDashLength)); 461 SkScalar y = pts[0].fY + SkScalarMul(tangent.fY, SkScalarHalf(clampedInitialDashLength)); 462 SkScalar halfWidth, halfHeight; 463 if (isXAxis) { 464 halfWidth = SkScalarHalf(clampedInitialDashLength); 465 halfHeight = SkScalarHalf(rec.getWidth()); 466 } else { 467 halfWidth = SkScalarHalf(rec.getWidth()); 468 halfHeight = SkScalarHalf(clampedInitialDashLength); 469 } 470 if (clampedInitialDashLength < fIntervals[0]) { 471 // This one will not be like the others 472 results->fFirst.addRect(x - halfWidth, y - halfHeight, 473 x + halfWidth, y + halfHeight); 474 } else { 475 SkASSERT(curPt < results->fNumPoints); 476 results->fPoints[curPt].set(x, y); 477 ++curPt; 478 } 479 480 distance += clampedInitialDashLength; 481 } 482 483 distance += fIntervals[1]; // skip over the next blank block too 484 } else { 485 distance += clampedInitialDashLength; 486 } 487 } 488 489 if (0 != numMidPoints) { 490 distance += SkScalarHalf(fIntervals[0]); 491 492 for (int i = 0; i < numMidPoints; ++i) { 493 SkScalar x = pts[0].fX + SkScalarMul(tangent.fX, distance); 494 SkScalar y = pts[0].fY + SkScalarMul(tangent.fY, distance); 495 496 SkASSERT(curPt < results->fNumPoints); 497 results->fPoints[curPt].set(x, y); 498 ++curPt; 499 500 distance += fIntervalLength; 501 } 502 503 distance -= SkScalarHalf(fIntervals[0]); 504 } 505 506 if (partialLast) { 507 // partial final block 508 SkASSERT(SkPaint::kRound_Cap != rec.getCap()); // can't handle partial circles 509 SkScalar temp = length - distance; 510 SkASSERT(temp < fIntervals[0]); 511 SkScalar x = pts[0].fX + SkScalarMul(tangent.fX, distance + SkScalarHalf(temp)); 512 SkScalar y = pts[0].fY + SkScalarMul(tangent.fY, distance + SkScalarHalf(temp)); 513 SkScalar halfWidth, halfHeight; 514 if (isXAxis) { 515 halfWidth = SkScalarHalf(temp); 516 halfHeight = SkScalarHalf(rec.getWidth()); 517 } else { 518 halfWidth = SkScalarHalf(rec.getWidth()); 519 halfHeight = SkScalarHalf(temp); 520 } 521 results->fLast.addRect(x - halfWidth, y - halfHeight, 522 x + halfWidth, y + halfHeight); 523 } 524 525 SkASSERT(curPt == results->fNumPoints); 526 } 527 528 return true; 529} 530 531SkFlattenable::Factory SkDashPathEffect::getFactory() const { 532 return fInitialDashLength < 0 ? NULL : CreateProc; 533} 534 535void SkDashPathEffect::flatten(SkFlattenableWriteBuffer& buffer) const { 536 SkASSERT(fInitialDashLength >= 0); 537 538 this->INHERITED::flatten(buffer); 539 buffer.writeInt(fInitialDashIndex); 540 buffer.writeScalar(fInitialDashLength); 541 buffer.writeScalar(fIntervalLength); 542 buffer.writeBool(fScaleToFit); 543 buffer.writeScalarArray(fIntervals, fCount); 544} 545 546SkFlattenable* SkDashPathEffect::CreateProc(SkFlattenableReadBuffer& buffer) { 547 return SkNEW_ARGS(SkDashPathEffect, (buffer)); 548} 549 550SkDashPathEffect::SkDashPathEffect(SkFlattenableReadBuffer& buffer) : INHERITED(buffer) { 551 fInitialDashIndex = buffer.readInt(); 552 fInitialDashLength = buffer.readScalar(); 553 fIntervalLength = buffer.readScalar(); 554 fScaleToFit = buffer.readBool(); 555 556 fCount = buffer.getArrayCount(); 557 fIntervals = (SkScalar*)sk_malloc_throw(sizeof(SkScalar) * fCount); 558 buffer.readScalarArray(fIntervals, fCount); 559} 560