1/* 2 * Copyright 2011 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8#include "Test.h" 9#include "TestClassDef.h" 10#include "SkMath.h" 11#include "SkMatrix.h" 12#include "SkMatrixUtils.h" 13#include "SkRandom.h" 14 15static bool nearly_equal_scalar(SkScalar a, SkScalar b) { 16 // Note that we get more compounded error for multiple operations when 17 // SK_SCALAR_IS_FIXED. 18#ifdef SK_SCALAR_IS_FLOAT 19 const SkScalar tolerance = SK_Scalar1 / 200000; 20#else 21 const SkScalar tolerance = SK_Scalar1 / 1024; 22#endif 23 24 return SkScalarAbs(a - b) <= tolerance; 25} 26 27static bool nearly_equal(const SkMatrix& a, const SkMatrix& b) { 28 for (int i = 0; i < 9; i++) { 29 if (!nearly_equal_scalar(a[i], b[i])) { 30 SkDebugf("not equal %g %g\n", (float)a[i], (float)b[i]); 31 return false; 32 } 33 } 34 return true; 35} 36 37static bool are_equal(skiatest::Reporter* reporter, 38 const SkMatrix& a, 39 const SkMatrix& b) { 40 bool equal = a == b; 41 bool cheapEqual = a.cheapEqualTo(b); 42 if (equal != cheapEqual) { 43#ifdef SK_SCALAR_IS_FLOAT 44 if (equal) { 45 bool foundZeroSignDiff = false; 46 for (int i = 0; i < 9; ++i) { 47 float aVal = a.get(i); 48 float bVal = b.get(i); 49 int aValI = *SkTCast<int*>(&aVal); 50 int bValI = *SkTCast<int*>(&bVal); 51 if (0 == aVal && 0 == bVal && aValI != bValI) { 52 foundZeroSignDiff = true; 53 } else { 54 REPORTER_ASSERT(reporter, aVal == bVal && aValI == aValI); 55 } 56 } 57 REPORTER_ASSERT(reporter, foundZeroSignDiff); 58 } else { 59 bool foundNaN = false; 60 for (int i = 0; i < 9; ++i) { 61 float aVal = a.get(i); 62 float bVal = b.get(i); 63 int aValI = *SkTCast<int*>(&aVal); 64 int bValI = *SkTCast<int*>(&bVal); 65 if (sk_float_isnan(aVal) && aValI == bValI) { 66 foundNaN = true; 67 } else { 68 REPORTER_ASSERT(reporter, aVal == bVal && aValI == bValI); 69 } 70 } 71 REPORTER_ASSERT(reporter, foundNaN); 72 } 73#else 74 REPORTER_ASSERT(reporter, false); 75#endif 76 } 77 return equal; 78} 79 80static bool is_identity(const SkMatrix& m) { 81 SkMatrix identity; 82 identity.reset(); 83 return nearly_equal(m, identity); 84} 85 86static void test_matrix_recttorect(skiatest::Reporter* reporter) { 87 SkRect src, dst; 88 SkMatrix matrix; 89 90 src.set(0, 0, SK_Scalar1*10, SK_Scalar1*10); 91 dst = src; 92 matrix.setRectToRect(src, dst, SkMatrix::kFill_ScaleToFit); 93 REPORTER_ASSERT(reporter, SkMatrix::kIdentity_Mask == matrix.getType()); 94 REPORTER_ASSERT(reporter, matrix.rectStaysRect()); 95 96 dst.offset(SK_Scalar1, SK_Scalar1); 97 matrix.setRectToRect(src, dst, SkMatrix::kFill_ScaleToFit); 98 REPORTER_ASSERT(reporter, SkMatrix::kTranslate_Mask == matrix.getType()); 99 REPORTER_ASSERT(reporter, matrix.rectStaysRect()); 100 101 dst.fRight += SK_Scalar1; 102 matrix.setRectToRect(src, dst, SkMatrix::kFill_ScaleToFit); 103 REPORTER_ASSERT(reporter, 104 (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask) == matrix.getType()); 105 REPORTER_ASSERT(reporter, matrix.rectStaysRect()); 106 107 dst = src; 108 dst.fRight = src.fRight * 2; 109 matrix.setRectToRect(src, dst, SkMatrix::kFill_ScaleToFit); 110 REPORTER_ASSERT(reporter, SkMatrix::kScale_Mask == matrix.getType()); 111 REPORTER_ASSERT(reporter, matrix.rectStaysRect()); 112} 113 114static void test_flatten(skiatest::Reporter* reporter, const SkMatrix& m) { 115 // add 100 in case we have a bug, I don't want to kill my stack in the test 116 static const size_t kBufferSize = SkMatrix::kMaxFlattenSize + 100; 117 char buffer[kBufferSize]; 118 size_t size1 = m.writeToMemory(NULL); 119 size_t size2 = m.writeToMemory(buffer); 120 REPORTER_ASSERT(reporter, size1 == size2); 121 REPORTER_ASSERT(reporter, size1 <= SkMatrix::kMaxFlattenSize); 122 123 SkMatrix m2; 124 size_t size3 = m2.readFromMemory(buffer, kBufferSize); 125 REPORTER_ASSERT(reporter, size1 == size3); 126 REPORTER_ASSERT(reporter, are_equal(reporter, m, m2)); 127 128 char buffer2[kBufferSize]; 129 size3 = m2.writeToMemory(buffer2); 130 REPORTER_ASSERT(reporter, size1 == size3); 131 REPORTER_ASSERT(reporter, memcmp(buffer, buffer2, size1) == 0); 132} 133 134static void test_matrix_min_max_stretch(skiatest::Reporter* reporter) { 135 SkMatrix identity; 136 identity.reset(); 137 REPORTER_ASSERT(reporter, SK_Scalar1 == identity.getMinStretch()); 138 REPORTER_ASSERT(reporter, SK_Scalar1 == identity.getMaxStretch()); 139 140 SkMatrix scale; 141 scale.setScale(SK_Scalar1 * 2, SK_Scalar1 * 4); 142 REPORTER_ASSERT(reporter, SK_Scalar1 * 2 == scale.getMinStretch()); 143 REPORTER_ASSERT(reporter, SK_Scalar1 * 4 == scale.getMaxStretch()); 144 145 SkMatrix rot90Scale; 146 rot90Scale.setRotate(90 * SK_Scalar1); 147 rot90Scale.postScale(SK_Scalar1 / 4, SK_Scalar1 / 2); 148 REPORTER_ASSERT(reporter, SK_Scalar1 / 4 == rot90Scale.getMinStretch()); 149 REPORTER_ASSERT(reporter, SK_Scalar1 / 2 == rot90Scale.getMaxStretch()); 150 151 SkMatrix rotate; 152 rotate.setRotate(128 * SK_Scalar1); 153 REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SK_Scalar1, rotate.getMinStretch() ,SK_ScalarNearlyZero)); 154 REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SK_Scalar1, rotate.getMaxStretch(), SK_ScalarNearlyZero)); 155 156 SkMatrix translate; 157 translate.setTranslate(10 * SK_Scalar1, -5 * SK_Scalar1); 158 REPORTER_ASSERT(reporter, SK_Scalar1 == translate.getMinStretch()); 159 REPORTER_ASSERT(reporter, SK_Scalar1 == translate.getMaxStretch()); 160 161 SkMatrix perspX; 162 perspX.reset(); 163 perspX.setPerspX(SkScalarToPersp(SK_Scalar1 / 1000)); 164 REPORTER_ASSERT(reporter, -SK_Scalar1 == perspX.getMinStretch()); 165 REPORTER_ASSERT(reporter, -SK_Scalar1 == perspX.getMaxStretch()); 166 167 SkMatrix perspY; 168 perspY.reset(); 169 perspY.setPerspY(SkScalarToPersp(-SK_Scalar1 / 500)); 170 REPORTER_ASSERT(reporter, -SK_Scalar1 == perspY.getMinStretch()); 171 REPORTER_ASSERT(reporter, -SK_Scalar1 == perspY.getMaxStretch()); 172 173 SkMatrix baseMats[] = {scale, rot90Scale, rotate, 174 translate, perspX, perspY}; 175 SkMatrix mats[2*SK_ARRAY_COUNT(baseMats)]; 176 for (size_t i = 0; i < SK_ARRAY_COUNT(baseMats); ++i) { 177 mats[i] = baseMats[i]; 178 bool invertable = mats[i].invert(&mats[i + SK_ARRAY_COUNT(baseMats)]); 179 REPORTER_ASSERT(reporter, invertable); 180 } 181 SkRandom rand; 182 for (int m = 0; m < 1000; ++m) { 183 SkMatrix mat; 184 mat.reset(); 185 for (int i = 0; i < 4; ++i) { 186 int x = rand.nextU() % SK_ARRAY_COUNT(mats); 187 mat.postConcat(mats[x]); 188 } 189 190 SkScalar minStretch = mat.getMinStretch(); 191 SkScalar maxStretch = mat.getMaxStretch(); 192 REPORTER_ASSERT(reporter, (minStretch < 0) == (maxStretch < 0)); 193 REPORTER_ASSERT(reporter, (maxStretch < 0) == mat.hasPerspective()); 194 195 if (mat.hasPerspective()) { 196 m -= 1; // try another non-persp matrix 197 continue; 198 } 199 200 // test a bunch of vectors. All should be scaled by between minStretch and maxStretch 201 // (modulo some error) and we should find a vector that is scaled by almost each. 202 static const SkScalar gVectorStretchTol = (105 * SK_Scalar1) / 100; 203 static const SkScalar gClosestStretchTol = (97 * SK_Scalar1) / 100; 204 SkScalar max = 0, min = SK_ScalarMax; 205 SkVector vectors[1000]; 206 for (size_t i = 0; i < SK_ARRAY_COUNT(vectors); ++i) { 207 vectors[i].fX = rand.nextSScalar1(); 208 vectors[i].fY = rand.nextSScalar1(); 209 if (!vectors[i].normalize()) { 210 i -= 1; 211 continue; 212 } 213 } 214 mat.mapVectors(vectors, SK_ARRAY_COUNT(vectors)); 215 for (size_t i = 0; i < SK_ARRAY_COUNT(vectors); ++i) { 216 SkScalar d = vectors[i].length(); 217 REPORTER_ASSERT(reporter, SkScalarDiv(d, maxStretch) < gVectorStretchTol); 218 REPORTER_ASSERT(reporter, SkScalarDiv(minStretch, d) < gVectorStretchTol); 219 if (max < d) { 220 max = d; 221 } 222 if (min > d) { 223 min = d; 224 } 225 } 226 REPORTER_ASSERT(reporter, SkScalarDiv(max, maxStretch) >= gClosestStretchTol); 227 REPORTER_ASSERT(reporter, SkScalarDiv(minStretch, min) >= gClosestStretchTol); 228 } 229} 230 231static void test_matrix_is_similarity(skiatest::Reporter* reporter) { 232 SkMatrix mat; 233 234 // identity 235 mat.setIdentity(); 236 REPORTER_ASSERT(reporter, mat.isSimilarity()); 237 238 // translation only 239 mat.reset(); 240 mat.setTranslate(SkIntToScalar(100), SkIntToScalar(100)); 241 REPORTER_ASSERT(reporter, mat.isSimilarity()); 242 243 // scale with same size 244 mat.reset(); 245 mat.setScale(SkIntToScalar(15), SkIntToScalar(15)); 246 REPORTER_ASSERT(reporter, mat.isSimilarity()); 247 248 // scale with one negative 249 mat.reset(); 250 mat.setScale(SkIntToScalar(-15), SkIntToScalar(15)); 251 REPORTER_ASSERT(reporter, mat.isSimilarity()); 252 253 // scale with different size 254 mat.reset(); 255 mat.setScale(SkIntToScalar(15), SkIntToScalar(20)); 256 REPORTER_ASSERT(reporter, !mat.isSimilarity()); 257 258 // scale with same size at a pivot point 259 mat.reset(); 260 mat.setScale(SkIntToScalar(15), SkIntToScalar(15), 261 SkIntToScalar(2), SkIntToScalar(2)); 262 REPORTER_ASSERT(reporter, mat.isSimilarity()); 263 264 // scale with different size at a pivot point 265 mat.reset(); 266 mat.setScale(SkIntToScalar(15), SkIntToScalar(20), 267 SkIntToScalar(2), SkIntToScalar(2)); 268 REPORTER_ASSERT(reporter, !mat.isSimilarity()); 269 270 // skew with same size 271 mat.reset(); 272 mat.setSkew(SkIntToScalar(15), SkIntToScalar(15)); 273 REPORTER_ASSERT(reporter, !mat.isSimilarity()); 274 275 // skew with different size 276 mat.reset(); 277 mat.setSkew(SkIntToScalar(15), SkIntToScalar(20)); 278 REPORTER_ASSERT(reporter, !mat.isSimilarity()); 279 280 // skew with same size at a pivot point 281 mat.reset(); 282 mat.setSkew(SkIntToScalar(15), SkIntToScalar(15), 283 SkIntToScalar(2), SkIntToScalar(2)); 284 REPORTER_ASSERT(reporter, !mat.isSimilarity()); 285 286 // skew with different size at a pivot point 287 mat.reset(); 288 mat.setSkew(SkIntToScalar(15), SkIntToScalar(20), 289 SkIntToScalar(2), SkIntToScalar(2)); 290 REPORTER_ASSERT(reporter, !mat.isSimilarity()); 291 292 // perspective x 293 mat.reset(); 294 mat.setPerspX(SkScalarToPersp(SK_Scalar1 / 2)); 295 REPORTER_ASSERT(reporter, !mat.isSimilarity()); 296 297 // perspective y 298 mat.reset(); 299 mat.setPerspY(SkScalarToPersp(SK_Scalar1 / 2)); 300 REPORTER_ASSERT(reporter, !mat.isSimilarity()); 301 302#ifdef SK_SCALAR_IS_FLOAT 303 /* We bypass the following tests for SK_SCALAR_IS_FIXED build. 304 * The long discussion can be found in this issue: 305 * http://codereview.appspot.com/5999050/ 306 * In short, we haven't found a perfect way to fix the precision 307 * issue, i.e. the way we use tolerance in isSimilarityTransformation 308 * is incorrect. The situation becomes worse in fixed build, so 309 * we disabled rotation related tests for fixed build. 310 */ 311 312 // rotate 313 for (int angle = 0; angle < 360; ++angle) { 314 mat.reset(); 315 mat.setRotate(SkIntToScalar(angle)); 316 REPORTER_ASSERT(reporter, mat.isSimilarity()); 317 } 318 319 // see if there are any accumulated precision issues 320 mat.reset(); 321 for (int i = 1; i < 360; i++) { 322 mat.postRotate(SkIntToScalar(1)); 323 } 324 REPORTER_ASSERT(reporter, mat.isSimilarity()); 325 326 // rotate + translate 327 mat.reset(); 328 mat.setRotate(SkIntToScalar(30)); 329 mat.postTranslate(SkIntToScalar(10), SkIntToScalar(20)); 330 REPORTER_ASSERT(reporter, mat.isSimilarity()); 331 332 // rotate + uniform scale 333 mat.reset(); 334 mat.setRotate(SkIntToScalar(30)); 335 mat.postScale(SkIntToScalar(2), SkIntToScalar(2)); 336 REPORTER_ASSERT(reporter, mat.isSimilarity()); 337 338 // rotate + non-uniform scale 339 mat.reset(); 340 mat.setRotate(SkIntToScalar(30)); 341 mat.postScale(SkIntToScalar(3), SkIntToScalar(2)); 342 REPORTER_ASSERT(reporter, !mat.isSimilarity()); 343#endif 344 345 // all zero 346 mat.setAll(0, 0, 0, 0, 0, 0, 0, 0, 0); 347 REPORTER_ASSERT(reporter, !mat.isSimilarity()); 348 349 // all zero except perspective 350 mat.setAll(0, 0, 0, 0, 0, 0, 0, 0, SK_Scalar1); 351 REPORTER_ASSERT(reporter, !mat.isSimilarity()); 352 353 // scales zero, only skews 354 mat.setAll(0, SK_Scalar1, 0, 355 SK_Scalar1, 0, 0, 356 0, 0, SkMatrix::I()[8]); 357 REPORTER_ASSERT(reporter, mat.isSimilarity()); 358} 359 360// For test_matrix_decomposition, below. 361static bool scalar_nearly_equal_relative(SkScalar a, SkScalar b, 362 SkScalar tolerance = SK_ScalarNearlyZero) { 363 // from Bruce Dawson 364 // absolute check 365 SkScalar diff = SkScalarAbs(a - b); 366 if (diff < tolerance) { 367 return true; 368 } 369 370 // relative check 371 a = SkScalarAbs(a); 372 b = SkScalarAbs(b); 373 SkScalar largest = (b > a) ? b : a; 374 375 if (diff <= largest*tolerance) { 376 return true; 377 } 378 379 return false; 380} 381 382static bool check_matrix_recomposition(const SkMatrix& mat, 383 const SkPoint& rotation1, 384 const SkPoint& scale, 385 const SkPoint& rotation2) { 386 SkScalar c1 = rotation1.fX; 387 SkScalar s1 = rotation1.fY; 388 SkScalar scaleX = scale.fX; 389 SkScalar scaleY = scale.fY; 390 SkScalar c2 = rotation2.fX; 391 SkScalar s2 = rotation2.fY; 392 393 // We do a relative check here because large scale factors cause problems with an absolute check 394 bool result = scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX], 395 scaleX*c1*c2 - scaleY*s1*s2) && 396 scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX], 397 -scaleX*s1*c2 - scaleY*c1*s2) && 398 scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY], 399 scaleX*c1*s2 + scaleY*s1*c2) && 400 scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY], 401 -scaleX*s1*s2 + scaleY*c1*c2); 402 return result; 403} 404 405static void test_matrix_decomposition(skiatest::Reporter* reporter) { 406 SkMatrix mat; 407 SkPoint rotation1, scale, rotation2; 408 409 const float kRotation0 = 15.5f; 410 const float kRotation1 = -50.f; 411 const float kScale0 = 5000.f; 412 const float kScale1 = 0.001f; 413 414 // identity 415 mat.reset(); 416 REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); 417 REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); 418 // make sure it doesn't crash if we pass in NULLs 419 REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, NULL, NULL, NULL)); 420 421 // rotation only 422 mat.setRotate(kRotation0); 423 REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); 424 REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); 425 426 // uniform scale only 427 mat.setScale(kScale0, kScale0); 428 REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); 429 REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); 430 431 // anisotropic scale only 432 mat.setScale(kScale1, kScale0); 433 REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); 434 REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); 435 436 // rotation then uniform scale 437 mat.setRotate(kRotation1); 438 mat.postScale(kScale0, kScale0); 439 REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); 440 REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); 441 442 // uniform scale then rotation 443 mat.setScale(kScale0, kScale0); 444 mat.postRotate(kRotation1); 445 REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); 446 REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); 447 448 // rotation then uniform scale+reflection 449 mat.setRotate(kRotation0); 450 mat.postScale(kScale1, -kScale1); 451 REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); 452 REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); 453 454 // uniform scale+reflection, then rotate 455 mat.setScale(kScale0, -kScale0); 456 mat.postRotate(kRotation1); 457 REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); 458 REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); 459 460 // rotation then anisotropic scale 461 mat.setRotate(kRotation1); 462 mat.postScale(kScale1, kScale0); 463 REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); 464 REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); 465 466 // rotation then anisotropic scale 467 mat.setRotate(90); 468 mat.postScale(kScale1, kScale0); 469 REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); 470 REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); 471 472 // anisotropic scale then rotation 473 mat.setScale(kScale1, kScale0); 474 mat.postRotate(kRotation0); 475 REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); 476 REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); 477 478 // anisotropic scale then rotation 479 mat.setScale(kScale1, kScale0); 480 mat.postRotate(90); 481 REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); 482 REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); 483 484 // rotation, uniform scale, then different rotation 485 mat.setRotate(kRotation1); 486 mat.postScale(kScale0, kScale0); 487 mat.postRotate(kRotation0); 488 REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); 489 REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); 490 491 // rotation, anisotropic scale, then different rotation 492 mat.setRotate(kRotation0); 493 mat.postScale(kScale1, kScale0); 494 mat.postRotate(kRotation1); 495 REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); 496 REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); 497 498 // rotation, anisotropic scale + reflection, then different rotation 499 mat.setRotate(kRotation0); 500 mat.postScale(-kScale1, kScale0); 501 mat.postRotate(kRotation1); 502 REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); 503 REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); 504 505 // try some random matrices 506 SkRandom rand; 507 for (int m = 0; m < 1000; ++m) { 508 SkScalar rot0 = rand.nextRangeF(-180, 180); 509 SkScalar sx = rand.nextRangeF(-3000.f, 3000.f); 510 SkScalar sy = rand.nextRangeF(-3000.f, 3000.f); 511 SkScalar rot1 = rand.nextRangeF(-180, 180); 512 mat.setRotate(rot0); 513 mat.postScale(sx, sy); 514 mat.postRotate(rot1); 515 516 if (SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)) { 517 REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); 518 } else { 519 // if the matrix is degenerate, the basis vectors should be near-parallel or near-zero 520 SkScalar perpdot = mat[SkMatrix::kMScaleX]*mat[SkMatrix::kMScaleY] - 521 mat[SkMatrix::kMSkewX]*mat[SkMatrix::kMSkewY]; 522 REPORTER_ASSERT(reporter, SkScalarNearlyZero(perpdot)); 523 } 524 } 525 526 // translation shouldn't affect this 527 mat.postTranslate(-1000.f, 1000.f); 528 REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); 529 REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); 530 531 // perspective shouldn't affect this 532 mat[SkMatrix::kMPersp0] = 12.f; 533 mat[SkMatrix::kMPersp1] = 4.f; 534 mat[SkMatrix::kMPersp2] = 1872.f; 535 REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); 536 REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); 537 538 // degenerate matrices 539 // mostly zero entries 540 mat.reset(); 541 mat[SkMatrix::kMScaleX] = 0.f; 542 REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); 543 mat.reset(); 544 mat[SkMatrix::kMScaleY] = 0.f; 545 REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); 546 mat.reset(); 547 // linearly dependent entries 548 mat[SkMatrix::kMScaleX] = 1.f; 549 mat[SkMatrix::kMSkewX] = 2.f; 550 mat[SkMatrix::kMSkewY] = 4.f; 551 mat[SkMatrix::kMScaleY] = 8.f; 552 REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); 553} 554 555// For test_matrix_homogeneous, below. 556static bool scalar_array_nearly_equal_relative(const SkScalar a[], const SkScalar b[], int count) { 557 for (int i = 0; i < count; ++i) { 558 if (!scalar_nearly_equal_relative(a[i], b[i])) { 559 return false; 560 } 561 } 562 return true; 563} 564 565// For test_matrix_homogeneous, below. 566// Maps a single triple in src using m and compares results to those in dst 567static bool naive_homogeneous_mapping(const SkMatrix& m, const SkScalar src[3], 568 const SkScalar dst[3]) { 569 SkScalar res[3]; 570 SkScalar ms[9] = {m[0], m[1], m[2], 571 m[3], m[4], m[5], 572 m[6], m[7], m[8]}; 573 res[0] = src[0] * ms[0] + src[1] * ms[1] + src[2] * ms[2]; 574 res[1] = src[0] * ms[3] + src[1] * ms[4] + src[2] * ms[5]; 575 res[2] = src[0] * ms[6] + src[1] * ms[7] + src[2] * ms[8]; 576 return scalar_array_nearly_equal_relative(res, dst, 3); 577} 578 579static void test_matrix_homogeneous(skiatest::Reporter* reporter) { 580 SkMatrix mat; 581 582 const float kRotation0 = 15.5f; 583 const float kRotation1 = -50.f; 584 const float kScale0 = 5000.f; 585 586 const int kTripleCount = 1000; 587 const int kMatrixCount = 1000; 588 SkRandom rand; 589 590 SkScalar randTriples[3*kTripleCount]; 591 for (int i = 0; i < 3*kTripleCount; ++i) { 592 randTriples[i] = rand.nextRangeF(-3000.f, 3000.f); 593 } 594 595 SkMatrix mats[kMatrixCount]; 596 for (int i = 0; i < kMatrixCount; ++i) { 597 for (int j = 0; j < 9; ++j) { 598 mats[i].set(j, rand.nextRangeF(-3000.f, 3000.f)); 599 } 600 } 601 602 // identity 603 { 604 mat.reset(); 605 SkScalar dst[3*kTripleCount]; 606 mat.mapHomogeneousPoints(dst, randTriples, kTripleCount); 607 REPORTER_ASSERT(reporter, scalar_array_nearly_equal_relative(randTriples, dst, kTripleCount*3)); 608 } 609 610 // zero matrix 611 { 612 mat.setAll(0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f); 613 SkScalar dst[3*kTripleCount]; 614 mat.mapHomogeneousPoints(dst, randTriples, kTripleCount); 615 SkScalar zeros[3] = {0.f, 0.f, 0.f}; 616 for (int i = 0; i < kTripleCount; ++i) { 617 REPORTER_ASSERT(reporter, scalar_array_nearly_equal_relative(&dst[i*3], zeros, 3)); 618 } 619 } 620 621 // zero point 622 { 623 SkScalar zeros[3] = {0.f, 0.f, 0.f}; 624 for (int i = 0; i < kMatrixCount; ++i) { 625 SkScalar dst[3]; 626 mats[i].mapHomogeneousPoints(dst, zeros, 1); 627 REPORTER_ASSERT(reporter, scalar_array_nearly_equal_relative(dst, zeros, 3)); 628 } 629 } 630 631 // doesn't crash with null dst, src, count == 0 632 { 633 mats[0].mapHomogeneousPoints(NULL, NULL, 0); 634 } 635 636 // uniform scale of point 637 { 638 mat.setScale(kScale0, kScale0); 639 SkScalar dst[3]; 640 SkScalar src[3] = {randTriples[0], randTriples[1], 1.f}; 641 SkPoint pnt; 642 pnt.set(src[0], src[1]); 643 mat.mapHomogeneousPoints(dst, src, 1); 644 mat.mapPoints(&pnt, &pnt, 1); 645 REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[0], pnt.fX)); 646 REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[1], pnt.fY)); 647 REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[2], SK_Scalar1)); 648 } 649 650 // rotation of point 651 { 652 mat.setRotate(kRotation0); 653 SkScalar dst[3]; 654 SkScalar src[3] = {randTriples[0], randTriples[1], 1.f}; 655 SkPoint pnt; 656 pnt.set(src[0], src[1]); 657 mat.mapHomogeneousPoints(dst, src, 1); 658 mat.mapPoints(&pnt, &pnt, 1); 659 REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[0], pnt.fX)); 660 REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[1], pnt.fY)); 661 REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[2], SK_Scalar1)); 662 } 663 664 // rotation, scale, rotation of point 665 { 666 mat.setRotate(kRotation1); 667 mat.postScale(kScale0, kScale0); 668 mat.postRotate(kRotation0); 669 SkScalar dst[3]; 670 SkScalar src[3] = {randTriples[0], randTriples[1], 1.f}; 671 SkPoint pnt; 672 pnt.set(src[0], src[1]); 673 mat.mapHomogeneousPoints(dst, src, 1); 674 mat.mapPoints(&pnt, &pnt, 1); 675 REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[0], pnt.fX)); 676 REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[1], pnt.fY)); 677 REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[2], SK_Scalar1)); 678 } 679 680 // compare with naive approach 681 { 682 for (int i = 0; i < kMatrixCount; ++i) { 683 for (int j = 0; j < kTripleCount; ++j) { 684 SkScalar dst[3]; 685 mats[i].mapHomogeneousPoints(dst, &randTriples[j*3], 1); 686 REPORTER_ASSERT(reporter, naive_homogeneous_mapping(mats[i], &randTriples[j*3], dst)); 687 } 688 } 689 } 690 691} 692 693DEF_TEST(Matrix, reporter) { 694 SkMatrix mat, inverse, iden1, iden2; 695 696 mat.reset(); 697 mat.setTranslate(SK_Scalar1, SK_Scalar1); 698 REPORTER_ASSERT(reporter, mat.invert(&inverse)); 699 iden1.setConcat(mat, inverse); 700 REPORTER_ASSERT(reporter, is_identity(iden1)); 701 702 mat.setScale(SkIntToScalar(2), SkIntToScalar(4)); 703 REPORTER_ASSERT(reporter, mat.invert(&inverse)); 704 iden1.setConcat(mat, inverse); 705 REPORTER_ASSERT(reporter, is_identity(iden1)); 706 test_flatten(reporter, mat); 707 708 mat.setScale(SK_Scalar1/2, SkIntToScalar(2)); 709 REPORTER_ASSERT(reporter, mat.invert(&inverse)); 710 iden1.setConcat(mat, inverse); 711 REPORTER_ASSERT(reporter, is_identity(iden1)); 712 test_flatten(reporter, mat); 713 714 mat.setScale(SkIntToScalar(3), SkIntToScalar(5), SkIntToScalar(20), 0); 715 mat.postRotate(SkIntToScalar(25)); 716 REPORTER_ASSERT(reporter, mat.invert(NULL)); 717 REPORTER_ASSERT(reporter, mat.invert(&inverse)); 718 iden1.setConcat(mat, inverse); 719 REPORTER_ASSERT(reporter, is_identity(iden1)); 720 iden2.setConcat(inverse, mat); 721 REPORTER_ASSERT(reporter, is_identity(iden2)); 722 test_flatten(reporter, mat); 723 test_flatten(reporter, iden2); 724 725 mat.setScale(0, SK_Scalar1); 726 REPORTER_ASSERT(reporter, !mat.invert(NULL)); 727 REPORTER_ASSERT(reporter, !mat.invert(&inverse)); 728 mat.setScale(SK_Scalar1, 0); 729 REPORTER_ASSERT(reporter, !mat.invert(NULL)); 730 REPORTER_ASSERT(reporter, !mat.invert(&inverse)); 731 732 // rectStaysRect test 733 { 734 static const struct { 735 SkScalar m00, m01, m10, m11; 736 bool mStaysRect; 737 } 738 gRectStaysRectSamples[] = { 739 { 0, 0, 0, 0, false }, 740 { 0, 0, 0, SK_Scalar1, false }, 741 { 0, 0, SK_Scalar1, 0, false }, 742 { 0, 0, SK_Scalar1, SK_Scalar1, false }, 743 { 0, SK_Scalar1, 0, 0, false }, 744 { 0, SK_Scalar1, 0, SK_Scalar1, false }, 745 { 0, SK_Scalar1, SK_Scalar1, 0, true }, 746 { 0, SK_Scalar1, SK_Scalar1, SK_Scalar1, false }, 747 { SK_Scalar1, 0, 0, 0, false }, 748 { SK_Scalar1, 0, 0, SK_Scalar1, true }, 749 { SK_Scalar1, 0, SK_Scalar1, 0, false }, 750 { SK_Scalar1, 0, SK_Scalar1, SK_Scalar1, false }, 751 { SK_Scalar1, SK_Scalar1, 0, 0, false }, 752 { SK_Scalar1, SK_Scalar1, 0, SK_Scalar1, false }, 753 { SK_Scalar1, SK_Scalar1, SK_Scalar1, 0, false }, 754 { SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1, false } 755 }; 756 757 for (size_t i = 0; i < SK_ARRAY_COUNT(gRectStaysRectSamples); i++) { 758 SkMatrix m; 759 760 m.reset(); 761 m.set(SkMatrix::kMScaleX, gRectStaysRectSamples[i].m00); 762 m.set(SkMatrix::kMSkewX, gRectStaysRectSamples[i].m01); 763 m.set(SkMatrix::kMSkewY, gRectStaysRectSamples[i].m10); 764 m.set(SkMatrix::kMScaleY, gRectStaysRectSamples[i].m11); 765 REPORTER_ASSERT(reporter, 766 m.rectStaysRect() == gRectStaysRectSamples[i].mStaysRect); 767 } 768 } 769 770 mat.reset(); 771 mat.set(SkMatrix::kMScaleX, SkIntToScalar(1)); 772 mat.set(SkMatrix::kMSkewX, SkIntToScalar(2)); 773 mat.set(SkMatrix::kMTransX, SkIntToScalar(3)); 774 mat.set(SkMatrix::kMSkewY, SkIntToScalar(4)); 775 mat.set(SkMatrix::kMScaleY, SkIntToScalar(5)); 776 mat.set(SkMatrix::kMTransY, SkIntToScalar(6)); 777 SkScalar affine[6]; 778 REPORTER_ASSERT(reporter, mat.asAffine(affine)); 779 780 #define affineEqual(e) affine[SkMatrix::kA##e] == mat.get(SkMatrix::kM##e) 781 REPORTER_ASSERT(reporter, affineEqual(ScaleX)); 782 REPORTER_ASSERT(reporter, affineEqual(SkewY)); 783 REPORTER_ASSERT(reporter, affineEqual(SkewX)); 784 REPORTER_ASSERT(reporter, affineEqual(ScaleY)); 785 REPORTER_ASSERT(reporter, affineEqual(TransX)); 786 REPORTER_ASSERT(reporter, affineEqual(TransY)); 787 #undef affineEqual 788 789 mat.set(SkMatrix::kMPersp1, SkScalarToPersp(SK_Scalar1 / 2)); 790 REPORTER_ASSERT(reporter, !mat.asAffine(affine)); 791 792 SkMatrix mat2; 793 mat2.reset(); 794 mat.reset(); 795 SkScalar zero = 0; 796 mat.set(SkMatrix::kMSkewX, -zero); 797 REPORTER_ASSERT(reporter, are_equal(reporter, mat, mat2)); 798 799 mat2.reset(); 800 mat.reset(); 801 mat.set(SkMatrix::kMSkewX, SK_ScalarNaN); 802 mat2.set(SkMatrix::kMSkewX, SK_ScalarNaN); 803 // fixed pt doesn't have the property that NaN does not equal itself. 804#ifdef SK_SCALAR_IS_FIXED 805 REPORTER_ASSERT(reporter, are_equal(reporter, mat, mat2)); 806#else 807 REPORTER_ASSERT(reporter, !are_equal(reporter, mat, mat2)); 808#endif 809 810 test_matrix_min_max_stretch(reporter); 811 test_matrix_is_similarity(reporter); 812 test_matrix_recttorect(reporter); 813 test_matrix_decomposition(reporter); 814 test_matrix_homogeneous(reporter); 815} 816