1/*
2 * MD4 hash implementation
3 * Copyright (c) 2006, Jouni Malinen <j@w1.fi>
4 *
5 * This software may be distributed under the terms of the BSD license.
6 * See README for more details.
7 */
8
9#include "includes.h"
10
11#include "common.h"
12#include "crypto.h"
13
14#define	MD4_BLOCK_LENGTH		64
15#define	MD4_DIGEST_LENGTH		16
16
17typedef struct MD4Context {
18	u32 state[4];			/* state */
19	u64 count;			/* number of bits, mod 2^64 */
20	u8 buffer[MD4_BLOCK_LENGTH];	/* input buffer */
21} MD4_CTX;
22
23
24static void MD4Init(MD4_CTX *ctx);
25static void MD4Update(MD4_CTX *ctx, const unsigned char *input, size_t len);
26static void MD4Final(unsigned char digest[MD4_DIGEST_LENGTH], MD4_CTX *ctx);
27
28
29int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
30{
31	MD4_CTX ctx;
32	size_t i;
33
34	MD4Init(&ctx);
35	for (i = 0; i < num_elem; i++)
36		MD4Update(&ctx, addr[i], len[i]);
37	MD4Final(mac, &ctx);
38	return 0;
39}
40
41
42/* ===== start - public domain MD4 implementation ===== */
43/*	$OpenBSD: md4.c,v 1.7 2005/08/08 08:05:35 espie Exp $	*/
44
45/*
46 * This code implements the MD4 message-digest algorithm.
47 * The algorithm is due to Ron Rivest.	This code was
48 * written by Colin Plumb in 1993, no copyright is claimed.
49 * This code is in the public domain; do with it what you wish.
50 * Todd C. Miller modified the MD5 code to do MD4 based on RFC 1186.
51 *
52 * Equivalent code is available from RSA Data Security, Inc.
53 * This code has been tested against that, and is equivalent,
54 * except that you don't need to include two pages of legalese
55 * with every copy.
56 *
57 * To compute the message digest of a chunk of bytes, declare an
58 * MD4Context structure, pass it to MD4Init, call MD4Update as
59 * needed on buffers full of bytes, and then call MD4Final, which
60 * will fill a supplied 16-byte array with the digest.
61 */
62
63#define	MD4_DIGEST_STRING_LENGTH	(MD4_DIGEST_LENGTH * 2 + 1)
64
65
66static void
67MD4Transform(u32 state[4], const u8 block[MD4_BLOCK_LENGTH]);
68
69#define PUT_64BIT_LE(cp, value) do {					\
70	(cp)[7] = (value) >> 56;					\
71	(cp)[6] = (value) >> 48;					\
72	(cp)[5] = (value) >> 40;					\
73	(cp)[4] = (value) >> 32;					\
74	(cp)[3] = (value) >> 24;					\
75	(cp)[2] = (value) >> 16;					\
76	(cp)[1] = (value) >> 8;						\
77	(cp)[0] = (value); } while (0)
78
79#define PUT_32BIT_LE(cp, value) do {					\
80	(cp)[3] = (value) >> 24;					\
81	(cp)[2] = (value) >> 16;					\
82	(cp)[1] = (value) >> 8;						\
83	(cp)[0] = (value); } while (0)
84
85static u8 PADDING[MD4_BLOCK_LENGTH] = {
86	0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
87	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
88	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
89};
90
91/*
92 * Start MD4 accumulation.
93 * Set bit count to 0 and buffer to mysterious initialization constants.
94 */
95static void MD4Init(MD4_CTX *ctx)
96{
97	ctx->count = 0;
98	ctx->state[0] = 0x67452301;
99	ctx->state[1] = 0xefcdab89;
100	ctx->state[2] = 0x98badcfe;
101	ctx->state[3] = 0x10325476;
102}
103
104/*
105 * Update context to reflect the concatenation of another buffer full
106 * of bytes.
107 */
108static void MD4Update(MD4_CTX *ctx, const unsigned char *input, size_t len)
109{
110	size_t have, need;
111
112	/* Check how many bytes we already have and how many more we need. */
113	have = (size_t)((ctx->count >> 3) & (MD4_BLOCK_LENGTH - 1));
114	need = MD4_BLOCK_LENGTH - have;
115
116	/* Update bitcount */
117	ctx->count += (u64)len << 3;
118
119	if (len >= need) {
120		if (have != 0) {
121			os_memcpy(ctx->buffer + have, input, need);
122			MD4Transform(ctx->state, ctx->buffer);
123			input += need;
124			len -= need;
125			have = 0;
126		}
127
128		/* Process data in MD4_BLOCK_LENGTH-byte chunks. */
129		while (len >= MD4_BLOCK_LENGTH) {
130			MD4Transform(ctx->state, input);
131			input += MD4_BLOCK_LENGTH;
132			len -= MD4_BLOCK_LENGTH;
133		}
134	}
135
136	/* Handle any remaining bytes of data. */
137	if (len != 0)
138		os_memcpy(ctx->buffer + have, input, len);
139}
140
141/*
142 * Pad pad to 64-byte boundary with the bit pattern
143 * 1 0* (64-bit count of bits processed, MSB-first)
144 */
145static void MD4Pad(MD4_CTX *ctx)
146{
147	u8 count[8];
148	size_t padlen;
149
150	/* Convert count to 8 bytes in little endian order. */
151	PUT_64BIT_LE(count, ctx->count);
152
153	/* Pad out to 56 mod 64. */
154	padlen = MD4_BLOCK_LENGTH -
155	    ((ctx->count >> 3) & (MD4_BLOCK_LENGTH - 1));
156	if (padlen < 1 + 8)
157		padlen += MD4_BLOCK_LENGTH;
158	MD4Update(ctx, PADDING, padlen - 8);		/* padlen - 8 <= 64 */
159	MD4Update(ctx, count, 8);
160}
161
162/*
163 * Final wrapup--call MD4Pad, fill in digest and zero out ctx.
164 */
165static void MD4Final(unsigned char digest[MD4_DIGEST_LENGTH], MD4_CTX *ctx)
166{
167	int i;
168
169	MD4Pad(ctx);
170	if (digest != NULL) {
171		for (i = 0; i < 4; i++)
172			PUT_32BIT_LE(digest + i * 4, ctx->state[i]);
173		os_memset(ctx, 0, sizeof(*ctx));
174	}
175}
176
177
178/* The three core functions - F1 is optimized somewhat */
179
180/* #define F1(x, y, z) (x & y | ~x & z) */
181#define F1(x, y, z) (z ^ (x & (y ^ z)))
182#define F2(x, y, z) ((x & y) | (x & z) | (y & z))
183#define F3(x, y, z) (x ^ y ^ z)
184
185/* This is the central step in the MD4 algorithm. */
186#define MD4STEP(f, w, x, y, z, data, s) \
187	( w += f(x, y, z) + data,  w = w<<s | w>>(32-s) )
188
189/*
190 * The core of the MD4 algorithm, this alters an existing MD4 hash to
191 * reflect the addition of 16 longwords of new data.  MD4Update blocks
192 * the data and converts bytes into longwords for this routine.
193 */
194static void
195MD4Transform(u32 state[4], const u8 block[MD4_BLOCK_LENGTH])
196{
197	u32 a, b, c, d, in[MD4_BLOCK_LENGTH / 4];
198
199#if BYTE_ORDER == LITTLE_ENDIAN
200	os_memcpy(in, block, sizeof(in));
201#else
202	for (a = 0; a < MD4_BLOCK_LENGTH / 4; a++) {
203		in[a] = (u32)(
204		    (u32)(block[a * 4 + 0]) |
205		    (u32)(block[a * 4 + 1]) <<  8 |
206		    (u32)(block[a * 4 + 2]) << 16 |
207		    (u32)(block[a * 4 + 3]) << 24);
208	}
209#endif
210
211	a = state[0];
212	b = state[1];
213	c = state[2];
214	d = state[3];
215
216	MD4STEP(F1, a, b, c, d, in[ 0],  3);
217	MD4STEP(F1, d, a, b, c, in[ 1],  7);
218	MD4STEP(F1, c, d, a, b, in[ 2], 11);
219	MD4STEP(F1, b, c, d, a, in[ 3], 19);
220	MD4STEP(F1, a, b, c, d, in[ 4],  3);
221	MD4STEP(F1, d, a, b, c, in[ 5],  7);
222	MD4STEP(F1, c, d, a, b, in[ 6], 11);
223	MD4STEP(F1, b, c, d, a, in[ 7], 19);
224	MD4STEP(F1, a, b, c, d, in[ 8],  3);
225	MD4STEP(F1, d, a, b, c, in[ 9],  7);
226	MD4STEP(F1, c, d, a, b, in[10], 11);
227	MD4STEP(F1, b, c, d, a, in[11], 19);
228	MD4STEP(F1, a, b, c, d, in[12],  3);
229	MD4STEP(F1, d, a, b, c, in[13],  7);
230	MD4STEP(F1, c, d, a, b, in[14], 11);
231	MD4STEP(F1, b, c, d, a, in[15], 19);
232
233	MD4STEP(F2, a, b, c, d, in[ 0] + 0x5a827999,  3);
234	MD4STEP(F2, d, a, b, c, in[ 4] + 0x5a827999,  5);
235	MD4STEP(F2, c, d, a, b, in[ 8] + 0x5a827999,  9);
236	MD4STEP(F2, b, c, d, a, in[12] + 0x5a827999, 13);
237	MD4STEP(F2, a, b, c, d, in[ 1] + 0x5a827999,  3);
238	MD4STEP(F2, d, a, b, c, in[ 5] + 0x5a827999,  5);
239	MD4STEP(F2, c, d, a, b, in[ 9] + 0x5a827999,  9);
240	MD4STEP(F2, b, c, d, a, in[13] + 0x5a827999, 13);
241	MD4STEP(F2, a, b, c, d, in[ 2] + 0x5a827999,  3);
242	MD4STEP(F2, d, a, b, c, in[ 6] + 0x5a827999,  5);
243	MD4STEP(F2, c, d, a, b, in[10] + 0x5a827999,  9);
244	MD4STEP(F2, b, c, d, a, in[14] + 0x5a827999, 13);
245	MD4STEP(F2, a, b, c, d, in[ 3] + 0x5a827999,  3);
246	MD4STEP(F2, d, a, b, c, in[ 7] + 0x5a827999,  5);
247	MD4STEP(F2, c, d, a, b, in[11] + 0x5a827999,  9);
248	MD4STEP(F2, b, c, d, a, in[15] + 0x5a827999, 13);
249
250	MD4STEP(F3, a, b, c, d, in[ 0] + 0x6ed9eba1,  3);
251	MD4STEP(F3, d, a, b, c, in[ 8] + 0x6ed9eba1,  9);
252	MD4STEP(F3, c, d, a, b, in[ 4] + 0x6ed9eba1, 11);
253	MD4STEP(F3, b, c, d, a, in[12] + 0x6ed9eba1, 15);
254	MD4STEP(F3, a, b, c, d, in[ 2] + 0x6ed9eba1,  3);
255	MD4STEP(F3, d, a, b, c, in[10] + 0x6ed9eba1,  9);
256	MD4STEP(F3, c, d, a, b, in[ 6] + 0x6ed9eba1, 11);
257	MD4STEP(F3, b, c, d, a, in[14] + 0x6ed9eba1, 15);
258	MD4STEP(F3, a, b, c, d, in[ 1] + 0x6ed9eba1,  3);
259	MD4STEP(F3, d, a, b, c, in[ 9] + 0x6ed9eba1,  9);
260	MD4STEP(F3, c, d, a, b, in[ 5] + 0x6ed9eba1, 11);
261	MD4STEP(F3, b, c, d, a, in[13] + 0x6ed9eba1, 15);
262	MD4STEP(F3, a, b, c, d, in[ 3] + 0x6ed9eba1,  3);
263	MD4STEP(F3, d, a, b, c, in[11] + 0x6ed9eba1,  9);
264	MD4STEP(F3, c, d, a, b, in[ 7] + 0x6ed9eba1, 11);
265	MD4STEP(F3, b, c, d, a, in[15] + 0x6ed9eba1, 15);
266
267	state[0] += a;
268	state[1] += b;
269	state[2] += c;
270	state[3] += d;
271}
272/* ===== end - public domain MD4 implementation ===== */
273