1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "codegen_x86.h"
18#include "dex/quick/mir_to_lir-inl.h"
19#include "x86_lir.h"
20
21namespace art {
22
23#define MAX_ASSEMBLER_RETRIES 50
24
25const X86EncodingMap X86Mir2Lir::EncodingMap[kX86Last] = {
26  { kX8632BitData, kData,    IS_UNARY_OP,            { 0, 0, 0x00, 0, 0, 0, 0, 4 }, "data",  "0x!0d" },
27  { kX86Bkpt,      kNullary, NO_OPERAND | IS_BRANCH, { 0, 0, 0xCC, 0, 0, 0, 0, 0 }, "int 3", "" },
28  { kX86Nop,       kNop,     IS_UNARY_OP,            { 0, 0, 0x90, 0, 0, 0, 0, 0 }, "nop",   "" },
29
30#define ENCODING_MAP(opname, mem_use, reg_def, uses_ccodes, \
31                     rm8_r8, rm32_r32, \
32                     r8_rm8, r32_rm32, \
33                     ax8_i8, ax32_i32, \
34                     rm8_i8, rm8_i8_modrm, \
35                     rm32_i32, rm32_i32_modrm, \
36                     rm32_i8, rm32_i8_modrm) \
37{ kX86 ## opname ## 8MR, kMemReg,    mem_use | IS_TERTIARY_OP |           REG_USE02  | SETS_CCODES | uses_ccodes, { 0,             0, rm8_r8, 0, 0, 0,            0,      0 }, #opname "8MR", "[!0r+!1d],!2r" }, \
38{ kX86 ## opname ## 8AR, kArrayReg,  mem_use | IS_QUIN_OP     |           REG_USE014 | SETS_CCODES | uses_ccodes, { 0,             0, rm8_r8, 0, 0, 0,            0,      0 }, #opname "8AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
39{ kX86 ## opname ## 8TR, kThreadReg, mem_use | IS_BINARY_OP   |           REG_USE1   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_r8, 0, 0, 0,            0,      0 }, #opname "8TR", "fs:[!0d],!1r" }, \
40{ kX86 ## opname ## 8RR, kRegReg,              IS_BINARY_OP   | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, r8_rm8, 0, 0, 0,            0,      0 }, #opname "8RR", "!0r,!1r" }, \
41{ kX86 ## opname ## 8RM, kRegMem,    IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, r8_rm8, 0, 0, 0,            0,      0 }, #opname "8RM", "!0r,[!1r+!2d]" }, \
42{ kX86 ## opname ## 8RA, kRegArray,  IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0,             0, r8_rm8, 0, 0, 0,            0,      0 }, #opname "8RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
43{ kX86 ## opname ## 8RT, kRegThread, IS_LOAD | IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r8_rm8, 0, 0, 0,            0,      0 }, #opname "8RT", "!0r,fs:[!1d]" }, \
44{ kX86 ## opname ## 8RI, kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm8_i8, 0, 0, rm8_i8_modrm, ax8_i8, 1 }, #opname "8RI", "!0r,!1d" }, \
45{ kX86 ## opname ## 8MI, kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm8_i8, 0, 0, rm8_i8_modrm, 0,      1 }, #opname "8MI", "[!0r+!1d],!2d" }, \
46{ kX86 ## opname ## 8AI, kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, rm8_i8, 0, 0, rm8_i8_modrm, 0,      1 }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
47{ kX86 ## opname ## 8TI, kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0,      1 }, #opname "8TI", "fs:[!0d],!1d" }, \
48  \
49{ kX86 ## opname ## 16MR,  kMemReg,    mem_use | IS_TERTIARY_OP |           REG_USE02  | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_r32, 0, 0, 0,              0,        0 }, #opname "16MR", "[!0r+!1d],!2r" }, \
50{ kX86 ## opname ## 16AR,  kArrayReg,  mem_use | IS_QUIN_OP     |           REG_USE014 | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_r32, 0, 0, 0,              0,        0 }, #opname "16AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
51{ kX86 ## opname ## 16TR,  kThreadReg, mem_use | IS_BINARY_OP   |           REG_USE1   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_r32, 0, 0, 0,              0,        0 }, #opname "16TR", "fs:[!0d],!1r" }, \
52{ kX86 ## opname ## 16RR,  kRegReg,              IS_BINARY_OP   | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0x66,          0,    r32_rm32, 0, 0, 0,              0,        0 }, #opname "16RR", "!0r,!1r" }, \
53{ kX86 ## opname ## 16RM,  kRegMem,    IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0x66,          0,    r32_rm32, 0, 0, 0,              0,        0 }, #opname "16RM", "!0r,[!1r+!2d]" }, \
54{ kX86 ## opname ## 16RA,  kRegArray,  IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0x66,          0,    r32_rm32, 0, 0, 0,              0,        0 }, #opname "16RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
55{ kX86 ## opname ## 16RT,  kRegThread, IS_LOAD | IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, r32_rm32, 0, 0, 0,              0,        0 }, #opname "16RT", "!0r,fs:[!1d]" }, \
56{ kX86 ## opname ## 16RI,  kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 2 }, #opname "16RI", "!0r,!1d" }, \
57{ kX86 ## opname ## 16MI,  kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i32, 0, 0, rm32_i32_modrm, 0,        2 }, #opname "16MI", "[!0r+!1d],!2d" }, \
58{ kX86 ## opname ## 16AI,  kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i32, 0, 0, rm32_i32_modrm, 0,        2 }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
59{ kX86 ## opname ## 16TI,  kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i32, 0, 0, rm32_i32_modrm, 0,        2 }, #opname "16TI", "fs:[!0d],!1d" }, \
60{ kX86 ## opname ## 16RI8, kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "16RI8", "!0r,!1d" }, \
61{ kX86 ## opname ## 16MI8, kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "16MI8", "[!0r+!1d],!2d" }, \
62{ kX86 ## opname ## 16AI8, kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "16AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
63{ kX86 ## opname ## 16TI8, kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "16TI8", "fs:[!0d],!1d" }, \
64  \
65{ kX86 ## opname ## 32MR,  kMemReg,    mem_use | IS_TERTIARY_OP |           REG_USE02  | SETS_CCODES | uses_ccodes, { 0,             0, rm32_r32, 0, 0, 0,              0,        0 }, #opname "32MR", "[!0r+!1d],!2r" }, \
66{ kX86 ## opname ## 32AR,  kArrayReg,  mem_use | IS_QUIN_OP     |           REG_USE014 | SETS_CCODES | uses_ccodes, { 0,             0, rm32_r32, 0, 0, 0,              0,        0 }, #opname "32AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
67{ kX86 ## opname ## 32TR,  kThreadReg, mem_use | IS_BINARY_OP   |           REG_USE1   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_r32, 0, 0, 0,              0,        0 }, #opname "32TR", "fs:[!0d],!1r" }, \
68{ kX86 ## opname ## 32RR,  kRegReg,              IS_BINARY_OP   | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, r32_rm32, 0, 0, 0,              0,        0 }, #opname "32RR", "!0r,!1r" }, \
69{ kX86 ## opname ## 32RM,  kRegMem,    IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, r32_rm32, 0, 0, 0,              0,        0 }, #opname "32RM", "!0r,[!1r+!2d]" }, \
70{ kX86 ## opname ## 32RA,  kRegArray,  IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0,             0, r32_rm32, 0, 0, 0,              0,        0 }, #opname "32RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
71{ kX86 ## opname ## 32RT,  kRegThread, IS_LOAD | IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r32_rm32, 0, 0, 0,              0,        0 }, #opname "32RT", "!0r,fs:[!1d]" }, \
72{ kX86 ## opname ## 32RI,  kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 4 }, #opname "32RI", "!0r,!1d" }, \
73{ kX86 ## opname ## 32MI,  kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i32, 0, 0, rm32_i32_modrm, 0,        4 }, #opname "32MI", "[!0r+!1d],!2d" }, \
74{ kX86 ## opname ## 32AI,  kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i32, 0, 0, rm32_i32_modrm, 0,        4 }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
75{ kX86 ## opname ## 32TI,  kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0,        4 }, #opname "32TI", "fs:[!0d],!1d" }, \
76{ kX86 ## opname ## 32RI8, kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "32RI8", "!0r,!1d" }, \
77{ kX86 ## opname ## 32MI8, kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "32MI8", "[!0r+!1d],!2d" }, \
78{ kX86 ## opname ## 32AI8, kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "32AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
79{ kX86 ## opname ## 32TI8, kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "32TI8", "fs:[!0d],!1d" }
80
81ENCODING_MAP(Add, IS_LOAD | IS_STORE, REG_DEF0, 0,
82  0x00 /* RegMem8/Reg8 */,     0x01 /* RegMem32/Reg32 */,
83  0x02 /* Reg8/RegMem8 */,     0x03 /* Reg32/RegMem32 */,
84  0x04 /* Rax8/imm8 opcode */, 0x05 /* Rax32/imm32 */,
85  0x80, 0x0 /* RegMem8/imm8 */,
86  0x81, 0x0 /* RegMem32/imm32 */, 0x83, 0x0 /* RegMem32/imm8 */),
87ENCODING_MAP(Or, IS_LOAD | IS_STORE, REG_DEF0, 0,
88  0x08 /* RegMem8/Reg8 */,     0x09 /* RegMem32/Reg32 */,
89  0x0A /* Reg8/RegMem8 */,     0x0B /* Reg32/RegMem32 */,
90  0x0C /* Rax8/imm8 opcode */, 0x0D /* Rax32/imm32 */,
91  0x80, 0x1 /* RegMem8/imm8 */,
92  0x81, 0x1 /* RegMem32/imm32 */, 0x83, 0x1 /* RegMem32/imm8 */),
93ENCODING_MAP(Adc, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES,
94  0x10 /* RegMem8/Reg8 */,     0x11 /* RegMem32/Reg32 */,
95  0x12 /* Reg8/RegMem8 */,     0x13 /* Reg32/RegMem32 */,
96  0x14 /* Rax8/imm8 opcode */, 0x15 /* Rax32/imm32 */,
97  0x80, 0x2 /* RegMem8/imm8 */,
98  0x81, 0x2 /* RegMem32/imm32 */, 0x83, 0x2 /* RegMem32/imm8 */),
99ENCODING_MAP(Sbb, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES,
100  0x18 /* RegMem8/Reg8 */,     0x19 /* RegMem32/Reg32 */,
101  0x1A /* Reg8/RegMem8 */,     0x1B /* Reg32/RegMem32 */,
102  0x1C /* Rax8/imm8 opcode */, 0x1D /* Rax32/imm32 */,
103  0x80, 0x3 /* RegMem8/imm8 */,
104  0x81, 0x3 /* RegMem32/imm32 */, 0x83, 0x3 /* RegMem32/imm8 */),
105ENCODING_MAP(And, IS_LOAD | IS_STORE, REG_DEF0, 0,
106  0x20 /* RegMem8/Reg8 */,     0x21 /* RegMem32/Reg32 */,
107  0x22 /* Reg8/RegMem8 */,     0x23 /* Reg32/RegMem32 */,
108  0x24 /* Rax8/imm8 opcode */, 0x25 /* Rax32/imm32 */,
109  0x80, 0x4 /* RegMem8/imm8 */,
110  0x81, 0x4 /* RegMem32/imm32 */, 0x83, 0x4 /* RegMem32/imm8 */),
111ENCODING_MAP(Sub, IS_LOAD | IS_STORE, REG_DEF0, 0,
112  0x28 /* RegMem8/Reg8 */,     0x29 /* RegMem32/Reg32 */,
113  0x2A /* Reg8/RegMem8 */,     0x2B /* Reg32/RegMem32 */,
114  0x2C /* Rax8/imm8 opcode */, 0x2D /* Rax32/imm32 */,
115  0x80, 0x5 /* RegMem8/imm8 */,
116  0x81, 0x5 /* RegMem32/imm32 */, 0x83, 0x5 /* RegMem32/imm8 */),
117ENCODING_MAP(Xor, IS_LOAD | IS_STORE, REG_DEF0, 0,
118  0x30 /* RegMem8/Reg8 */,     0x31 /* RegMem32/Reg32 */,
119  0x32 /* Reg8/RegMem8 */,     0x33 /* Reg32/RegMem32 */,
120  0x34 /* Rax8/imm8 opcode */, 0x35 /* Rax32/imm32 */,
121  0x80, 0x6 /* RegMem8/imm8 */,
122  0x81, 0x6 /* RegMem32/imm32 */, 0x83, 0x6 /* RegMem32/imm8 */),
123ENCODING_MAP(Cmp, IS_LOAD, 0, 0,
124  0x38 /* RegMem8/Reg8 */,     0x39 /* RegMem32/Reg32 */,
125  0x3A /* Reg8/RegMem8 */,     0x3B /* Reg32/RegMem32 */,
126  0x3C /* Rax8/imm8 opcode */, 0x3D /* Rax32/imm32 */,
127  0x80, 0x7 /* RegMem8/imm8 */,
128  0x81, 0x7 /* RegMem32/imm32 */, 0x83, 0x7 /* RegMem32/imm8 */),
129#undef ENCODING_MAP
130
131  { kX86Imul16RRI,   kRegRegImm,             IS_TERTIARY_OP | REG_DEF0_USE1  | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RRI", "!0r,!1r,!2d" },
132  { kX86Imul16RMI,   kRegMemImm,   IS_LOAD | IS_QUAD_OP     | REG_DEF0_USE1  | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RMI", "!0r,[!1r+!2d],!3d" },
133  { kX86Imul16RAI,   kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
134
135  { kX86Imul32RRI,   kRegRegImm,             IS_TERTIARY_OP | REG_DEF0_USE1  | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RRI", "!0r,!1r,!2d" },
136  { kX86Imul32RMI,   kRegMemImm,   IS_LOAD | IS_QUAD_OP     | REG_DEF0_USE1  | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RMI", "!0r,[!1r+!2d],!3d" },
137  { kX86Imul32RAI,   kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
138  { kX86Imul32RRI8,  kRegRegImm,             IS_TERTIARY_OP | REG_DEF0_USE1  | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RRI8", "!0r,!1r,!2d" },
139  { kX86Imul32RMI8,  kRegMemImm,   IS_LOAD | IS_QUAD_OP     | REG_DEF0_USE1  | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RMI8", "!0r,[!1r+!2d],!3d" },
140  { kX86Imul32RAI8,  kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RAI8", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
141
142  { kX86Mov8MR, kMemReg,    IS_STORE | IS_TERTIARY_OP | REG_USE02,      { 0,             0, 0x88, 0, 0, 0, 0, 0 }, "Mov8MR", "[!0r+!1d],!2r" },
143  { kX86Mov8AR, kArrayReg,  IS_STORE | IS_QUIN_OP     | REG_USE014,     { 0,             0, 0x88, 0, 0, 0, 0, 0 }, "Mov8AR", "[!0r+!1r<<!2d+!3d],!4r" },
144  { kX86Mov8TR, kThreadReg, IS_STORE | IS_BINARY_OP   | REG_USE1,       { THREAD_PREFIX, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8TR", "fs:[!0d],!1r" },
145  { kX86Mov8RR, kRegReg,               IS_BINARY_OP   | REG_DEF0_USE1,  { 0,             0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RR", "!0r,!1r" },
146  { kX86Mov8RM, kRegMem,    IS_LOAD  | IS_TERTIARY_OP | REG_DEF0_USE1,  { 0,             0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RM", "!0r,[!1r+!2d]" },
147  { kX86Mov8RA, kRegArray,  IS_LOAD  | IS_QUIN_OP     | REG_DEF0_USE12, { 0,             0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RA", "!0r,[!1r+!2r<<!3d+!4d]" },
148  { kX86Mov8RT, kRegThread, IS_LOAD  | IS_BINARY_OP   | REG_DEF0,       { THREAD_PREFIX, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RT", "!0r,fs:[!1d]" },
149  { kX86Mov8RI, kMovRegImm,            IS_BINARY_OP   | REG_DEF0,       { 0,             0, 0xB0, 0, 0, 0, 0, 1 }, "Mov8RI", "!0r,!1d" },
150  { kX86Mov8MI, kMemImm,    IS_STORE | IS_TERTIARY_OP | REG_USE0,       { 0,             0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8MI", "[!0r+!1d],!2d" },
151  { kX86Mov8AI, kArrayImm,  IS_STORE | IS_QUIN_OP     | REG_USE01,      { 0,             0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8AI", "[!0r+!1r<<!2d+!3d],!4d" },
152  { kX86Mov8TI, kThreadImm, IS_STORE | IS_BINARY_OP,                    { THREAD_PREFIX, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8TI", "fs:[!0d],!1d" },
153
154  { kX86Mov16MR, kMemReg,    IS_STORE | IS_TERTIARY_OP | REG_USE02,      { 0x66,          0,    0x89, 0, 0, 0, 0, 0 }, "Mov16MR", "[!0r+!1d],!2r" },
155  { kX86Mov16AR, kArrayReg,  IS_STORE | IS_QUIN_OP     | REG_USE014,     { 0x66,          0,    0x89, 0, 0, 0, 0, 0 }, "Mov16AR", "[!0r+!1r<<!2d+!3d],!4r" },
156  { kX86Mov16TR, kThreadReg, IS_STORE | IS_BINARY_OP   | REG_USE1,       { THREAD_PREFIX, 0x66, 0x89, 0, 0, 0, 0, 0 }, "Mov16TR", "fs:[!0d],!1r" },
157  { kX86Mov16RR, kRegReg,               IS_BINARY_OP   | REG_DEF0_USE1,  { 0x66,          0,    0x8B, 0, 0, 0, 0, 0 }, "Mov16RR", "!0r,!1r" },
158  { kX86Mov16RM, kRegMem,    IS_LOAD  | IS_TERTIARY_OP | REG_DEF0_USE1,  { 0x66,          0,    0x8B, 0, 0, 0, 0, 0 }, "Mov16RM", "!0r,[!1r+!2d]" },
159  { kX86Mov16RA, kRegArray,  IS_LOAD  | IS_QUIN_OP     | REG_DEF0_USE12, { 0x66,          0,    0x8B, 0, 0, 0, 0, 0 }, "Mov16RA", "!0r,[!1r+!2r<<!3d+!4d]" },
160  { kX86Mov16RT, kRegThread, IS_LOAD  | IS_BINARY_OP   | REG_DEF0,       { THREAD_PREFIX, 0x66, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RT", "!0r,fs:[!1d]" },
161  { kX86Mov16RI, kMovRegImm,            IS_BINARY_OP   | REG_DEF0,       { 0x66,          0,    0xB8, 0, 0, 0, 0, 2 }, "Mov16RI", "!0r,!1d" },
162  { kX86Mov16MI, kMemImm,    IS_STORE | IS_TERTIARY_OP | REG_USE0,       { 0x66,          0,    0xC7, 0, 0, 0, 0, 2 }, "Mov16MI", "[!0r+!1d],!2d" },
163  { kX86Mov16AI, kArrayImm,  IS_STORE | IS_QUIN_OP     | REG_USE01,      { 0x66,          0,    0xC7, 0, 0, 0, 0, 2 }, "Mov16AI", "[!0r+!1r<<!2d+!3d],!4d" },
164  { kX86Mov16TI, kThreadImm, IS_STORE | IS_BINARY_OP,                    { THREAD_PREFIX, 0x66, 0xC7, 0, 0, 0, 0, 2 }, "Mov16TI", "fs:[!0d],!1d" },
165
166  { kX86Mov32MR, kMemReg,    IS_STORE | IS_TERTIARY_OP | REG_USE02,      { 0,             0, 0x89, 0, 0, 0, 0, 0 }, "Mov32MR", "[!0r+!1d],!2r" },
167  { kX86Mov32AR, kArrayReg,  IS_STORE | IS_QUIN_OP     | REG_USE014,     { 0,             0, 0x89, 0, 0, 0, 0, 0 }, "Mov32AR", "[!0r+!1r<<!2d+!3d],!4r" },
168  { kX86Mov32TR, kThreadReg, IS_STORE | IS_BINARY_OP   | REG_USE1,       { THREAD_PREFIX, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32TR", "fs:[!0d],!1r" },
169  { kX86Mov32RR, kRegReg,               IS_BINARY_OP   | REG_DEF0_USE1,  { 0,             0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RR", "!0r,!1r" },
170  { kX86Mov32RM, kRegMem,    IS_LOAD  | IS_TERTIARY_OP | REG_DEF0_USE1,  { 0,             0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RM", "!0r,[!1r+!2d]" },
171  { kX86Mov32RA, kRegArray,  IS_LOAD  | IS_QUIN_OP     | REG_DEF0_USE12, { 0,             0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
172  { kX86Mov32RT, kRegThread, IS_LOAD  | IS_BINARY_OP   | REG_DEF0,       { THREAD_PREFIX, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RT", "!0r,fs:[!1d]" },
173  { kX86Mov32RI, kMovRegImm,            IS_BINARY_OP   | REG_DEF0,       { 0,             0, 0xB8, 0, 0, 0, 0, 4 }, "Mov32RI", "!0r,!1d" },
174  { kX86Mov32MI, kMemImm,    IS_STORE | IS_TERTIARY_OP | REG_USE0,       { 0,             0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32MI", "[!0r+!1d],!2d" },
175  { kX86Mov32AI, kArrayImm,  IS_STORE | IS_QUIN_OP     | REG_USE01,      { 0,             0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32AI", "[!0r+!1r<<!2d+!3d],!4d" },
176  { kX86Mov32TI, kThreadImm, IS_STORE | IS_BINARY_OP,                    { THREAD_PREFIX, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32TI", "fs:[!0d],!1d" },
177
178  { kX86Lea32RA, kRegArray, IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8D, 0, 0, 0, 0, 0 }, "Lea32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
179
180#define SHIFT_ENCODING_MAP(opname, modrm_opcode) \
181{ kX86 ## opname ## 8RI, kShiftRegImm,                        IS_BINARY_OP   | REG_DEF0_USE0 |            SETS_CCODES, { 0,    0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8RI", "!0r,!1d" }, \
182{ kX86 ## opname ## 8MI, kShiftMemImm,   IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      |            SETS_CCODES, { 0,    0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8MI", "[!0r+!1d],!2d" }, \
183{ kX86 ## opname ## 8AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     |            SETS_CCODES, { 0,    0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
184{ kX86 ## opname ## 8RC, kShiftRegCl,                         IS_BINARY_OP   | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0,    0, 0xD2, 0, 0, modrm_opcode, 0,    1 }, #opname "8RC", "!0r,cl" }, \
185{ kX86 ## opname ## 8MC, kShiftMemCl,    IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      | REG_USEC | SETS_CCODES, { 0,    0, 0xD2, 0, 0, modrm_opcode, 0,    1 }, #opname "8MC", "[!0r+!1d],cl" }, \
186{ kX86 ## opname ## 8AC, kShiftArrayCl,  IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     | REG_USEC | SETS_CCODES, { 0,    0, 0xD2, 0, 0, modrm_opcode, 0,    1 }, #opname "8AC", "[!0r+!1r<<!2d+!3d],cl" }, \
187  \
188{ kX86 ## opname ## 16RI, kShiftRegImm,                        IS_BINARY_OP   | REG_DEF0_USE0 |            SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16RI", "!0r,!1d" }, \
189{ kX86 ## opname ## 16MI, kShiftMemImm,   IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      |            SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16MI", "[!0r+!1d],!2d" }, \
190{ kX86 ## opname ## 16AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     |            SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
191{ kX86 ## opname ## 16RC, kShiftRegCl,                         IS_BINARY_OP   | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0,    1 }, #opname "16RC", "!0r,cl" }, \
192{ kX86 ## opname ## 16MC, kShiftMemCl,    IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0,    1 }, #opname "16MC", "[!0r+!1d],cl" }, \
193{ kX86 ## opname ## 16AC, kShiftArrayCl,  IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0,    1 }, #opname "16AC", "[!0r+!1r<<!2d+!3d],cl" }, \
194  \
195{ kX86 ## opname ## 32RI, kShiftRegImm,                        IS_BINARY_OP   | REG_DEF0_USE0 |            SETS_CCODES, { 0,    0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32RI", "!0r,!1d" }, \
196{ kX86 ## opname ## 32MI, kShiftMemImm,   IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      |            SETS_CCODES, { 0,    0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32MI", "[!0r+!1d],!2d" }, \
197{ kX86 ## opname ## 32AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     |            SETS_CCODES, { 0,    0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
198{ kX86 ## opname ## 32RC, kShiftRegCl,                         IS_BINARY_OP   | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0,    0, 0xD3, 0, 0, modrm_opcode, 0,    0 }, #opname "32RC", "!0r,cl" }, \
199{ kX86 ## opname ## 32MC, kShiftMemCl,    IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      | REG_USEC | SETS_CCODES, { 0,    0, 0xD3, 0, 0, modrm_opcode, 0,    0 }, #opname "32MC", "[!0r+!1d],cl" }, \
200{ kX86 ## opname ## 32AC, kShiftArrayCl,  IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     | REG_USEC | SETS_CCODES, { 0,    0, 0xD3, 0, 0, modrm_opcode, 0,    0 }, #opname "32AC", "[!0r+!1r<<!2d+!3d],cl" }
201
202  SHIFT_ENCODING_MAP(Rol, 0x0),
203  SHIFT_ENCODING_MAP(Ror, 0x1),
204  SHIFT_ENCODING_MAP(Rcl, 0x2),
205  SHIFT_ENCODING_MAP(Rcr, 0x3),
206  SHIFT_ENCODING_MAP(Sal, 0x4),
207  SHIFT_ENCODING_MAP(Shr, 0x5),
208  SHIFT_ENCODING_MAP(Sar, 0x7),
209#undef SHIFT_ENCODING_MAP
210
211  { kX86Cmc, kNullary, NO_OPERAND, { 0, 0, 0xF5, 0, 0, 0, 0, 0}, "Cmc", "" },
212
213  { kX86Test8RI,  kRegImm,             IS_BINARY_OP   | REG_USE0  | SETS_CCODES, { 0,    0, 0xF6, 0, 0, 0, 0, 1}, "Test8RI", "!0r,!1d" },
214  { kX86Test8MI,  kMemImm,   IS_LOAD | IS_TERTIARY_OP | REG_USE0  | SETS_CCODES, { 0,    0, 0xF6, 0, 0, 0, 0, 1}, "Test8MI", "[!0r+!1d],!2d" },
215  { kX86Test8AI,  kArrayImm, IS_LOAD | IS_QUIN_OP     | REG_USE01 | SETS_CCODES, { 0,    0, 0xF6, 0, 0, 0, 0, 1}, "Test8AI", "[!0r+!1r<<!2d+!3d],!4d" },
216  { kX86Test16RI, kRegImm,             IS_BINARY_OP   | REG_USE0  | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16RI", "!0r,!1d" },
217  { kX86Test16MI, kMemImm,   IS_LOAD | IS_TERTIARY_OP | REG_USE0  | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16MI", "[!0r+!1d],!2d" },
218  { kX86Test16AI, kArrayImm, IS_LOAD | IS_QUIN_OP     | REG_USE01 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16AI", "[!0r+!1r<<!2d+!3d],!4d" },
219  { kX86Test32RI, kRegImm,             IS_BINARY_OP   | REG_USE0  | SETS_CCODES, { 0,    0, 0xF7, 0, 0, 0, 0, 4}, "Test32RI", "!0r,!1d" },
220  { kX86Test32MI, kMemImm,   IS_LOAD | IS_TERTIARY_OP | REG_USE0  | SETS_CCODES, { 0,    0, 0xF7, 0, 0, 0, 0, 4}, "Test32MI", "[!0r+!1d],!2d" },
221  { kX86Test32AI, kArrayImm, IS_LOAD | IS_QUIN_OP     | REG_USE01 | SETS_CCODES, { 0,    0, 0xF7, 0, 0, 0, 0, 4}, "Test32AI", "[!0r+!1r<<!2d+!3d],!4d" },
222  { kX86Test32RR, kRegReg,             IS_BINARY_OP   | REG_USE01 | SETS_CCODES, { 0,    0, 0x85, 0, 0, 0, 0, 0}, "Test32RR", "!0r,!1r" },
223
224#define UNARY_ENCODING_MAP(opname, modrm, is_store, sets_ccodes, \
225                           reg, reg_kind, reg_flags, \
226                           mem, mem_kind, mem_flags, \
227                           arr, arr_kind, arr_flags, imm, \
228                           b_flags, hw_flags, w_flags, \
229                           b_format, hw_format, w_format) \
230{ kX86 ## opname ## 8 ## reg,  reg_kind,                      reg_flags | b_flags  | sets_ccodes, { 0,    0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #reg, #b_format "!0r" }, \
231{ kX86 ## opname ## 8 ## mem,  mem_kind, IS_LOAD | is_store | mem_flags | b_flags  | sets_ccodes, { 0,    0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #mem, #b_format "[!0r+!1d]" }, \
232{ kX86 ## opname ## 8 ## arr,  arr_kind, IS_LOAD | is_store | arr_flags | b_flags  | sets_ccodes, { 0,    0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #arr, #b_format "[!0r+!1r<<!2d+!3d]" }, \
233{ kX86 ## opname ## 16 ## reg, reg_kind,                      reg_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #reg, #hw_format "!0r" }, \
234{ kX86 ## opname ## 16 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #mem, #hw_format "[!0r+!1d]" }, \
235{ kX86 ## opname ## 16 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #arr, #hw_format "[!0r+!1r<<!2d+!3d]" }, \
236{ kX86 ## opname ## 32 ## reg, reg_kind,                      reg_flags | w_flags  | sets_ccodes, { 0,    0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #reg, #w_format "!0r" }, \
237{ kX86 ## opname ## 32 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | w_flags  | sets_ccodes, { 0,    0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #mem, #w_format "[!0r+!1d]" }, \
238{ kX86 ## opname ## 32 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | w_flags  | sets_ccodes, { 0,    0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #arr, #w_format "[!0r+!1r<<!2d+!3d]" }
239
240  UNARY_ENCODING_MAP(Not, 0x2, IS_STORE, 0,           R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
241  UNARY_ENCODING_MAP(Neg, 0x3, IS_STORE, SETS_CCODES, R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
242
243  UNARY_ENCODING_MAP(Mul,     0x4, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA,  REG_DEFAD_USEA,  "ax,al,", "dx:ax,ax,", "edx:eax,eax,"),
244  UNARY_ENCODING_MAP(Imul,    0x5, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA,  REG_DEFAD_USEA,  "ax,al,", "dx:ax,ax,", "edx:eax,eax,"),
245  UNARY_ENCODING_MAP(Divmod,  0x6, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
246  UNARY_ENCODING_MAP(Idivmod, 0x7, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
247#undef UNARY_ENCODING_MAP
248
249#define EXT_0F_ENCODING_MAP(opname, prefix, opcode, reg_def) \
250{ kX86 ## opname ## RR, kRegReg,             IS_BINARY_OP   | reg_def | REG_USE01,  { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RR", "!0r,!1r" }, \
251{ kX86 ## opname ## RM, kRegMem,   IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01,  { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RM", "!0r,[!1r+!2d]" }, \
252{ kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE012, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" }
253
254  EXT_0F_ENCODING_MAP(Movsd, 0xF2, 0x10, REG_DEF0),
255  { kX86MovsdMR, kMemReg,   IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovsdMR", "[!0r+!1d],!2r" },
256  { kX86MovsdAR, kArrayReg, IS_STORE | IS_QUIN_OP     | REG_USE014, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovsdAR", "[!0r+!1r<<!2d+!3d],!4r" },
257
258  EXT_0F_ENCODING_MAP(Movss, 0xF3, 0x10, REG_DEF0),
259  { kX86MovssMR, kMemReg,   IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovssMR", "[!0r+!1d],!2r" },
260  { kX86MovssAR, kArrayReg, IS_STORE | IS_QUIN_OP     | REG_USE014, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovssAR", "[!0r+!1r<<!2d+!3d],!4r" },
261
262  EXT_0F_ENCODING_MAP(Cvtsi2sd,  0xF2, 0x2A, REG_DEF0),
263  EXT_0F_ENCODING_MAP(Cvtsi2ss,  0xF3, 0x2A, REG_DEF0),
264  EXT_0F_ENCODING_MAP(Cvttsd2si, 0xF2, 0x2C, REG_DEF0),
265  EXT_0F_ENCODING_MAP(Cvttss2si, 0xF3, 0x2C, REG_DEF0),
266  EXT_0F_ENCODING_MAP(Cvtsd2si,  0xF2, 0x2D, REG_DEF0),
267  EXT_0F_ENCODING_MAP(Cvtss2si,  0xF3, 0x2D, REG_DEF0),
268  EXT_0F_ENCODING_MAP(Ucomisd,   0x66, 0x2E, SETS_CCODES),
269  EXT_0F_ENCODING_MAP(Ucomiss,   0x00, 0x2E, SETS_CCODES),
270  EXT_0F_ENCODING_MAP(Comisd,    0x66, 0x2F, SETS_CCODES),
271  EXT_0F_ENCODING_MAP(Comiss,    0x00, 0x2F, SETS_CCODES),
272  EXT_0F_ENCODING_MAP(Orps,      0x00, 0x56, REG_DEF0),
273  EXT_0F_ENCODING_MAP(Xorps,     0x00, 0x57, REG_DEF0),
274  EXT_0F_ENCODING_MAP(Addsd,     0xF2, 0x58, REG_DEF0),
275  EXT_0F_ENCODING_MAP(Addss,     0xF3, 0x58, REG_DEF0),
276  EXT_0F_ENCODING_MAP(Mulsd,     0xF2, 0x59, REG_DEF0),
277  EXT_0F_ENCODING_MAP(Mulss,     0xF3, 0x59, REG_DEF0),
278  EXT_0F_ENCODING_MAP(Cvtsd2ss,  0xF2, 0x5A, REG_DEF0),
279  EXT_0F_ENCODING_MAP(Cvtss2sd,  0xF3, 0x5A, REG_DEF0),
280  EXT_0F_ENCODING_MAP(Subsd,     0xF2, 0x5C, REG_DEF0),
281  EXT_0F_ENCODING_MAP(Subss,     0xF3, 0x5C, REG_DEF0),
282  EXT_0F_ENCODING_MAP(Divsd,     0xF2, 0x5E, REG_DEF0),
283  EXT_0F_ENCODING_MAP(Divss,     0xF3, 0x5E, REG_DEF0),
284
285  { kX86PsrlqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 2, 0, 1 }, "PsrlqRI", "!0r,!1d" },
286  { kX86PsllqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 6, 0, 1 }, "PsllqRI", "!0r,!1d" },
287
288  EXT_0F_ENCODING_MAP(Movdxr,    0x66, 0x6E, REG_DEF0),
289  { kX86MovdrxRR, kRegRegStore, IS_BINARY_OP | REG_DEF0   | REG_USE01,  { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxRR", "!0r,!1r" },
290  { kX86MovdrxMR, kMemReg,      IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxMR", "[!0r+!1d],!2r" },
291  { kX86MovdrxAR, kArrayReg,    IS_STORE | IS_QUIN_OP     | REG_USE014, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxAR", "[!0r+!1r<<!2d+!3d],!4r" },
292
293  { kX86Set8R, kRegCond,              IS_BINARY_OP   | REG_DEF0  | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8R", "!1c !0r" },
294  { kX86Set8M, kMemCond,   IS_STORE | IS_TERTIARY_OP | REG_USE0  | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8M", "!2c [!0r+!1d]" },
295  { kX86Set8A, kArrayCond, IS_STORE | IS_QUIN_OP     | REG_USE01 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8A", "!4c [!0r+!1r<<!2d+!3d]" },
296
297  // TODO: load/store?
298  // Encode the modrm opcode as an extra opcode byte to avoid computation during assembly.
299  { kX86Mfence, kReg,                 NO_OPERAND,     { 0, 0, 0x0F, 0xAE, 0, 6, 0, 0 }, "Mfence", "" },
300
301  EXT_0F_ENCODING_MAP(Imul16,  0x66, 0xAF, REG_DEF0 | SETS_CCODES),
302  EXT_0F_ENCODING_MAP(Imul32,  0x00, 0xAF, REG_DEF0 | SETS_CCODES),
303
304  { kX86CmpxchgRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "!0r,!1r" },
305  { kX86CmpxchgMR, kMemReg,   IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "[!0r+!1d],!2r" },
306  { kX86CmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
307  { kX86LockCmpxchgRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "!0r,!1r" },
308  { kX86LockCmpxchgMR, kMemReg,   IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "[!0r+!1d],!2r" },
309  { kX86LockCmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
310
311  EXT_0F_ENCODING_MAP(Movzx8,  0x00, 0xB6, REG_DEF0),
312  EXT_0F_ENCODING_MAP(Movzx16, 0x00, 0xB7, REG_DEF0),
313  EXT_0F_ENCODING_MAP(Movsx8,  0x00, 0xBE, REG_DEF0),
314  EXT_0F_ENCODING_MAP(Movsx16, 0x00, 0xBF, REG_DEF0),
315#undef EXT_0F_ENCODING_MAP
316
317  { kX86Jcc8,  kJcc,  IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0,             0, 0x70, 0,    0, 0, 0, 0 }, "Jcc8",  "!1c !0t" },
318  { kX86Jcc32, kJcc,  IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0,             0, 0x0F, 0x80, 0, 0, 0, 0 }, "Jcc32", "!1c !0t" },
319  { kX86Jmp8,  kJmp,  IS_UNARY_OP  | IS_BRANCH | NEEDS_FIXUP,               { 0,             0, 0xEB, 0,    0, 0, 0, 0 }, "Jmp8",  "!0t" },
320  { kX86Jmp32, kJmp,  IS_UNARY_OP  | IS_BRANCH | NEEDS_FIXUP,               { 0,             0, 0xE9, 0,    0, 0, 0, 0 }, "Jmp32", "!0t" },
321  { kX86JmpR,  kJmp,  IS_UNARY_OP  | IS_BRANCH | REG_USE0,                  { 0,             0, 0xFF, 0,    0, 4, 0, 0 }, "JmpR",  "!0r" },
322  { kX86JmpT,  kJmp,  IS_UNARY_OP  | IS_BRANCH | IS_LOAD,                   { THREAD_PREFIX, 0, 0xFF, 0,    0, 4, 0, 0 }, "JmpT",  "fs:[!0d]" },
323  { kX86CallR, kCall, IS_UNARY_OP  | IS_BRANCH | REG_USE0,                  { 0,             0, 0xE8, 0,    0, 0, 0, 0 }, "CallR", "!0r" },
324  { kX86CallM, kCall, IS_BINARY_OP | IS_BRANCH | IS_LOAD | REG_USE0,        { 0,             0, 0xFF, 0,    0, 2, 0, 0 }, "CallM", "[!0r+!1d]" },
325  { kX86CallA, kCall, IS_QUAD_OP   | IS_BRANCH | IS_LOAD | REG_USE01,       { 0,             0, 0xFF, 0,    0, 2, 0, 0 }, "CallA", "[!0r+!1r<<!2d+!3d]" },
326  { kX86CallT, kCall, IS_UNARY_OP  | IS_BRANCH | IS_LOAD,                   { THREAD_PREFIX, 0, 0xFF, 0,    0, 2, 0, 0 }, "CallT", "fs:[!0d]" },
327  { kX86Ret,   kNullary, NO_OPERAND | IS_BRANCH,                            { 0,             0, 0xC3, 0,    0, 0, 0, 0 }, "Ret", "" },
328
329  { kX86StartOfMethod, kMacro,  IS_UNARY_OP | SETS_CCODES,             { 0, 0, 0,    0, 0, 0, 0, 0 }, "StartOfMethod", "!0r" },
330  { kX86PcRelLoadRA,   kPcRel,  IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "PcRelLoadRA",   "!0r,[!1r+!2r<<!3d+!4p]" },
331  { kX86PcRelAdr,      kPcRel,  IS_LOAD | IS_BINARY_OP | REG_DEF0,     { 0, 0, 0xB8, 0, 0, 0, 0, 4 }, "PcRelAdr",      "!0r,!1d" },
332};
333
334static size_t ComputeSize(const X86EncodingMap* entry, int base, int displacement, bool has_sib) {
335  size_t size = 0;
336  if (entry->skeleton.prefix1 > 0) {
337    ++size;
338    if (entry->skeleton.prefix2 > 0) {
339      ++size;
340    }
341  }
342  ++size;  // opcode
343  if (entry->skeleton.opcode == 0x0F) {
344    ++size;
345    if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
346      ++size;
347    }
348  }
349  ++size;  // modrm
350  if (has_sib || base == rX86_SP) {
351    // SP requires a SIB byte.
352    ++size;
353  }
354  if (displacement != 0 || base == rBP) {
355    // BP requires an explicit displacement, even when it's 0.
356    if (entry->opcode != kX86Lea32RA) {
357      DCHECK_NE(entry->flags & (IS_LOAD | IS_STORE), 0ULL) << entry->name;
358    }
359    size += IS_SIMM8(displacement) ? 1 : 4;
360  }
361  size += entry->skeleton.immediate_bytes;
362  return size;
363}
364
365int X86Mir2Lir::GetInsnSize(LIR* lir) {
366  const X86EncodingMap* entry = &X86Mir2Lir::EncodingMap[lir->opcode];
367  switch (entry->kind) {
368    case kData:
369      return 4;  // 4 bytes of data
370    case kNop:
371      return lir->operands[0];  // length of nop is sole operand
372    case kNullary:
373      return 1;  // 1 byte of opcode
374    case kReg:  // lir operands - 0: reg
375      return ComputeSize(entry, 0, 0, false);
376    case kMem:  // lir operands - 0: base, 1: disp
377      return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
378    case kArray:  // lir operands - 0: base, 1: index, 2: scale, 3: disp
379      return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
380    case kMemReg:  // lir operands - 0: base, 1: disp, 2: reg
381      return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
382    case kArrayReg:  // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
383      return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
384    case kThreadReg:  // lir operands - 0: disp, 1: reg
385      return ComputeSize(entry, 0, lir->operands[0], false);
386    case kRegReg:
387      return ComputeSize(entry, 0, 0, false);
388    case kRegRegStore:
389      return ComputeSize(entry, 0, 0, false);
390    case kRegMem:  // lir operands - 0: reg, 1: base, 2: disp
391      return ComputeSize(entry, lir->operands[1], lir->operands[2], false);
392    case kRegArray:   // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
393      return ComputeSize(entry, lir->operands[1], lir->operands[4], true);
394    case kRegThread:  // lir operands - 0: reg, 1: disp
395      return ComputeSize(entry, 0, 0x12345678, false);  // displacement size is always 32bit
396    case kRegImm: {  // lir operands - 0: reg, 1: immediate
397      size_t size = ComputeSize(entry, 0, 0, false);
398      if (entry->skeleton.ax_opcode == 0) {
399        return size;
400      } else {
401        // AX opcodes don't require the modrm byte.
402        int reg = lir->operands[0];
403        return size - (reg == rAX ? 1 : 0);
404      }
405    }
406    case kMemImm:  // lir operands - 0: base, 1: disp, 2: immediate
407      return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
408    case kArrayImm:  // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
409      return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
410    case kThreadImm:  // lir operands - 0: disp, 1: imm
411      return ComputeSize(entry, 0, 0x12345678, false);  // displacement size is always 32bit
412    case kRegRegImm:  // lir operands - 0: reg, 1: reg, 2: imm
413      return ComputeSize(entry, 0, 0, false);
414    case kRegMemImm:  // lir operands - 0: reg, 1: base, 2: disp, 3: imm
415      return ComputeSize(entry, lir->operands[1], lir->operands[2], false);
416    case kRegArrayImm:  // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp, 5: imm
417      return ComputeSize(entry, lir->operands[1], lir->operands[4], true);
418    case kMovRegImm:  // lir operands - 0: reg, 1: immediate
419      return 1 + entry->skeleton.immediate_bytes;
420    case kShiftRegImm:  // lir operands - 0: reg, 1: immediate
421      // Shift by immediate one has a shorter opcode.
422      return ComputeSize(entry, 0, 0, false) - (lir->operands[1] == 1 ? 1 : 0);
423    case kShiftMemImm:  // lir operands - 0: base, 1: disp, 2: immediate
424      // Shift by immediate one has a shorter opcode.
425      return ComputeSize(entry, lir->operands[0], lir->operands[1], false) -
426             (lir->operands[2] == 1 ? 1 : 0);
427    case kShiftArrayImm:  // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
428      // Shift by immediate one has a shorter opcode.
429      return ComputeSize(entry, lir->operands[0], lir->operands[3], true) -
430             (lir->operands[4] == 1 ? 1 : 0);
431    case kShiftRegCl:
432      return ComputeSize(entry, 0, 0, false);
433    case kShiftMemCl:  // lir operands - 0: base, 1: disp, 2: cl
434      return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
435    case kShiftArrayCl:  // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
436      return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
437    case kRegCond:  // lir operands - 0: reg, 1: cond
438      return ComputeSize(entry, 0, 0, false);
439    case kMemCond:  // lir operands - 0: base, 1: disp, 2: cond
440      return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
441    case kArrayCond:  // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: cond
442      return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
443    case kJcc:
444      if (lir->opcode == kX86Jcc8) {
445        return 2;  // opcode + rel8
446      } else {
447        DCHECK(lir->opcode == kX86Jcc32);
448        return 6;  // 2 byte opcode + rel32
449      }
450    case kJmp:
451      if (lir->opcode == kX86Jmp8) {
452        return 2;  // opcode + rel8
453      } else if (lir->opcode == kX86Jmp32) {
454        return 5;  // opcode + rel32
455      } else if (lir->opcode == kX86JmpT) {
456        return ComputeSize(entry, 0, 0x12345678, false);  // displacement size is always 32bit
457      } else {
458        DCHECK(lir->opcode == kX86JmpR);
459        return 2;  // opcode + modrm
460      }
461    case kCall:
462      switch (lir->opcode) {
463        case kX86CallR: return 2;  // opcode modrm
464        case kX86CallM:  // lir operands - 0: base, 1: disp
465          return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
466        case kX86CallA:  // lir operands - 0: base, 1: index, 2: scale, 3: disp
467          return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
468        case kX86CallT:  // lir operands - 0: disp
469          return ComputeSize(entry, 0, 0x12345678, false);  // displacement size is always 32bit
470        default:
471          break;
472      }
473      break;
474    case kPcRel:
475      if (entry->opcode == kX86PcRelLoadRA) {
476        // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
477        return ComputeSize(entry, lir->operands[1], 0x12345678, true);
478      } else {
479        DCHECK(entry->opcode == kX86PcRelAdr);
480        return 5;  // opcode with reg + 4 byte immediate
481      }
482    case kMacro:
483      DCHECK_EQ(lir->opcode, static_cast<int>(kX86StartOfMethod));
484      return 5 /* call opcode + 4 byte displacement */ + 1 /* pop reg */ +
485          ComputeSize(&X86Mir2Lir::EncodingMap[kX86Sub32RI], 0, 0, false) -
486          (lir->operands[0] == rAX  ? 1 : 0);  // shorter ax encoding
487    default:
488      break;
489  }
490  UNIMPLEMENTED(FATAL) << "Unimplemented size encoding for: " << entry->name;
491  return 0;
492}
493
494static uint8_t ModrmForDisp(int base, int disp) {
495  // BP requires an explicit disp, so do not omit it in the 0 case
496  if (disp == 0 && base != rBP) {
497    return 0;
498  } else if (IS_SIMM8(disp)) {
499    return 1;
500  } else {
501    return 2;
502  }
503}
504
505void X86Mir2Lir::EmitDisp(int base, int disp) {
506  // BP requires an explicit disp, so do not omit it in the 0 case
507  if (disp == 0 && base != rBP) {
508    return;
509  } else if (IS_SIMM8(disp)) {
510    code_buffer_.push_back(disp & 0xFF);
511  } else {
512    code_buffer_.push_back(disp & 0xFF);
513    code_buffer_.push_back((disp >> 8) & 0xFF);
514    code_buffer_.push_back((disp >> 16) & 0xFF);
515    code_buffer_.push_back((disp >> 24) & 0xFF);
516  }
517}
518
519void X86Mir2Lir::EmitOpReg(const X86EncodingMap* entry, uint8_t reg) {
520  if (entry->skeleton.prefix1 != 0) {
521    code_buffer_.push_back(entry->skeleton.prefix1);
522    if (entry->skeleton.prefix2 != 0) {
523      code_buffer_.push_back(entry->skeleton.prefix2);
524    }
525  } else {
526    DCHECK_EQ(0, entry->skeleton.prefix2);
527  }
528  code_buffer_.push_back(entry->skeleton.opcode);
529  if (entry->skeleton.opcode == 0x0F) {
530    code_buffer_.push_back(entry->skeleton.extra_opcode1);
531    if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
532      code_buffer_.push_back(entry->skeleton.extra_opcode2);
533    } else {
534      DCHECK_EQ(0, entry->skeleton.extra_opcode2);
535    }
536  } else {
537    DCHECK_EQ(0, entry->skeleton.extra_opcode1);
538    DCHECK_EQ(0, entry->skeleton.extra_opcode2);
539  }
540  if (X86_FPREG(reg)) {
541    reg = reg & X86_FP_REG_MASK;
542  }
543  if (reg >= 4) {
544    DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
545        << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
546  }
547  DCHECK_LT(reg, 8);
548  uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
549  code_buffer_.push_back(modrm);
550  DCHECK_EQ(0, entry->skeleton.ax_opcode);
551  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
552}
553
554void X86Mir2Lir::EmitOpMem(const X86EncodingMap* entry, uint8_t base, int disp) {
555  if (entry->skeleton.prefix1 != 0) {
556    code_buffer_.push_back(entry->skeleton.prefix1);
557    if (entry->skeleton.prefix2 != 0) {
558      code_buffer_.push_back(entry->skeleton.prefix2);
559    }
560  } else {
561    DCHECK_EQ(0, entry->skeleton.prefix2);
562  }
563  code_buffer_.push_back(entry->skeleton.opcode);
564  DCHECK_EQ(0, entry->skeleton.extra_opcode1);
565  DCHECK_EQ(0, entry->skeleton.extra_opcode2);
566  DCHECK_LT(entry->skeleton.modrm_opcode, 8);
567  DCHECK_LT(base, 8);
568  uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (entry->skeleton.modrm_opcode << 3) | base;
569  code_buffer_.push_back(modrm);
570  EmitDisp(base, disp);
571  DCHECK_EQ(0, entry->skeleton.ax_opcode);
572  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
573}
574
575void X86Mir2Lir::EmitMemReg(const X86EncodingMap* entry,
576                       uint8_t base, int disp, uint8_t reg) {
577  if (entry->skeleton.prefix1 != 0) {
578    code_buffer_.push_back(entry->skeleton.prefix1);
579    if (entry->skeleton.prefix2 != 0) {
580      code_buffer_.push_back(entry->skeleton.prefix2);
581    }
582  } else {
583    DCHECK_EQ(0, entry->skeleton.prefix2);
584  }
585  code_buffer_.push_back(entry->skeleton.opcode);
586  if (entry->skeleton.opcode == 0x0F) {
587    code_buffer_.push_back(entry->skeleton.extra_opcode1);
588    if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
589      code_buffer_.push_back(entry->skeleton.extra_opcode2);
590    } else {
591      DCHECK_EQ(0, entry->skeleton.extra_opcode2);
592    }
593  } else {
594    DCHECK_EQ(0, entry->skeleton.extra_opcode1);
595    DCHECK_EQ(0, entry->skeleton.extra_opcode2);
596  }
597  if (X86_FPREG(reg)) {
598    reg = reg & X86_FP_REG_MASK;
599  }
600  if (reg >= 4) {
601    DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
602        << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
603  }
604  DCHECK_LT(reg, 8);
605  DCHECK_LT(base, 8);
606  uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg << 3) | base;
607  code_buffer_.push_back(modrm);
608  if (base == rX86_SP) {
609    // Special SIB for SP base
610    code_buffer_.push_back(0 << 6 | (rX86_SP << 3) | rX86_SP);
611  }
612  EmitDisp(base, disp);
613  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
614  DCHECK_EQ(0, entry->skeleton.ax_opcode);
615  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
616}
617
618void X86Mir2Lir::EmitRegMem(const X86EncodingMap* entry,
619                       uint8_t reg, uint8_t base, int disp) {
620  // Opcode will flip operands.
621  EmitMemReg(entry, base, disp, reg);
622}
623
624void X86Mir2Lir::EmitRegArray(const X86EncodingMap* entry, uint8_t reg, uint8_t base, uint8_t index,
625                  int scale, int disp) {
626  if (entry->skeleton.prefix1 != 0) {
627    code_buffer_.push_back(entry->skeleton.prefix1);
628    if (entry->skeleton.prefix2 != 0) {
629      code_buffer_.push_back(entry->skeleton.prefix2);
630    }
631  } else {
632    DCHECK_EQ(0, entry->skeleton.prefix2);
633  }
634  code_buffer_.push_back(entry->skeleton.opcode);
635  if (entry->skeleton.opcode == 0x0F) {
636    code_buffer_.push_back(entry->skeleton.extra_opcode1);
637    if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
638      code_buffer_.push_back(entry->skeleton.extra_opcode2);
639    } else {
640      DCHECK_EQ(0, entry->skeleton.extra_opcode2);
641    }
642  } else {
643    DCHECK_EQ(0, entry->skeleton.extra_opcode1);
644    DCHECK_EQ(0, entry->skeleton.extra_opcode2);
645  }
646  if (X86_FPREG(reg)) {
647    reg = reg & X86_FP_REG_MASK;
648  }
649  DCHECK_LT(reg, 8);
650  uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg << 3) | rX86_SP;
651  code_buffer_.push_back(modrm);
652  DCHECK_LT(scale, 4);
653  DCHECK_LT(index, 8);
654  DCHECK_LT(base, 8);
655  uint8_t sib = (scale << 6) | (index << 3) | base;
656  code_buffer_.push_back(sib);
657  EmitDisp(base, disp);
658  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
659  DCHECK_EQ(0, entry->skeleton.ax_opcode);
660  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
661}
662
663void X86Mir2Lir::EmitArrayReg(const X86EncodingMap* entry, uint8_t base, uint8_t index, int scale, int disp,
664                  uint8_t reg) {
665  // Opcode will flip operands.
666  EmitRegArray(entry, reg, base, index, scale, disp);
667}
668
669void X86Mir2Lir::EmitRegThread(const X86EncodingMap* entry, uint8_t reg, int disp) {
670  DCHECK_NE(entry->skeleton.prefix1, 0);
671  code_buffer_.push_back(entry->skeleton.prefix1);
672  if (entry->skeleton.prefix2 != 0) {
673    code_buffer_.push_back(entry->skeleton.prefix2);
674  }
675  code_buffer_.push_back(entry->skeleton.opcode);
676  if (entry->skeleton.opcode == 0x0F) {
677    code_buffer_.push_back(entry->skeleton.extra_opcode1);
678    if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
679      code_buffer_.push_back(entry->skeleton.extra_opcode2);
680    } else {
681      DCHECK_EQ(0, entry->skeleton.extra_opcode2);
682    }
683  } else {
684    DCHECK_EQ(0, entry->skeleton.extra_opcode1);
685    DCHECK_EQ(0, entry->skeleton.extra_opcode2);
686  }
687  if (X86_FPREG(reg)) {
688    reg = reg & X86_FP_REG_MASK;
689  }
690  if (reg >= 4) {
691    DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
692        << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
693  }
694  DCHECK_LT(reg, 8);
695  uint8_t modrm = (0 << 6) | (reg << 3) | rBP;
696  code_buffer_.push_back(modrm);
697  code_buffer_.push_back(disp & 0xFF);
698  code_buffer_.push_back((disp >> 8) & 0xFF);
699  code_buffer_.push_back((disp >> 16) & 0xFF);
700  code_buffer_.push_back((disp >> 24) & 0xFF);
701  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
702  DCHECK_EQ(0, entry->skeleton.ax_opcode);
703  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
704}
705
706void X86Mir2Lir::EmitRegReg(const X86EncodingMap* entry, uint8_t reg1, uint8_t reg2) {
707  if (entry->skeleton.prefix1 != 0) {
708    code_buffer_.push_back(entry->skeleton.prefix1);
709    if (entry->skeleton.prefix2 != 0) {
710      code_buffer_.push_back(entry->skeleton.prefix2);
711    }
712  } else {
713    DCHECK_EQ(0, entry->skeleton.prefix2);
714  }
715  code_buffer_.push_back(entry->skeleton.opcode);
716  if (entry->skeleton.opcode == 0x0F) {
717    code_buffer_.push_back(entry->skeleton.extra_opcode1);
718    if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
719      code_buffer_.push_back(entry->skeleton.extra_opcode2);
720    } else {
721      DCHECK_EQ(0, entry->skeleton.extra_opcode2);
722    }
723  } else {
724    DCHECK_EQ(0, entry->skeleton.extra_opcode1);
725    DCHECK_EQ(0, entry->skeleton.extra_opcode2);
726  }
727  if (X86_FPREG(reg1)) {
728    reg1 = reg1 & X86_FP_REG_MASK;
729  }
730  if (X86_FPREG(reg2)) {
731    reg2 = reg2 & X86_FP_REG_MASK;
732  }
733  DCHECK_LT(reg1, 8);
734  DCHECK_LT(reg2, 8);
735  uint8_t modrm = (3 << 6) | (reg1 << 3) | reg2;
736  code_buffer_.push_back(modrm);
737  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
738  DCHECK_EQ(0, entry->skeleton.ax_opcode);
739  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
740}
741
742void X86Mir2Lir::EmitRegRegImm(const X86EncodingMap* entry,
743                          uint8_t reg1, uint8_t reg2, int32_t imm) {
744  if (entry->skeleton.prefix1 != 0) {
745    code_buffer_.push_back(entry->skeleton.prefix1);
746    if (entry->skeleton.prefix2 != 0) {
747      code_buffer_.push_back(entry->skeleton.prefix2);
748    }
749  } else {
750    DCHECK_EQ(0, entry->skeleton.prefix2);
751  }
752  code_buffer_.push_back(entry->skeleton.opcode);
753  if (entry->skeleton.opcode == 0x0F) {
754    code_buffer_.push_back(entry->skeleton.extra_opcode1);
755    if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
756      code_buffer_.push_back(entry->skeleton.extra_opcode2);
757    } else {
758      DCHECK_EQ(0, entry->skeleton.extra_opcode2);
759    }
760  } else {
761    DCHECK_EQ(0, entry->skeleton.extra_opcode1);
762    DCHECK_EQ(0, entry->skeleton.extra_opcode2);
763  }
764  if (X86_FPREG(reg1)) {
765    reg1 = reg1 & X86_FP_REG_MASK;
766  }
767  if (X86_FPREG(reg2)) {
768    reg2 = reg2 & X86_FP_REG_MASK;
769  }
770  DCHECK_LT(reg1, 8);
771  DCHECK_LT(reg2, 8);
772  uint8_t modrm = (3 << 6) | (reg1 << 3) | reg2;
773  code_buffer_.push_back(modrm);
774  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
775  DCHECK_EQ(0, entry->skeleton.ax_opcode);
776  switch (entry->skeleton.immediate_bytes) {
777    case 1:
778      DCHECK(IS_SIMM8(imm));
779      code_buffer_.push_back(imm & 0xFF);
780      break;
781    case 2:
782      DCHECK(IS_SIMM16(imm));
783      code_buffer_.push_back(imm & 0xFF);
784      code_buffer_.push_back((imm >> 8) & 0xFF);
785      break;
786    case 4:
787      code_buffer_.push_back(imm & 0xFF);
788      code_buffer_.push_back((imm >> 8) & 0xFF);
789      code_buffer_.push_back((imm >> 16) & 0xFF);
790      code_buffer_.push_back((imm >> 24) & 0xFF);
791      break;
792    default:
793      LOG(FATAL) << "Unexpected immediate bytes (" << entry->skeleton.immediate_bytes
794                 << ") for instruction: " << entry->name;
795      break;
796  }
797}
798
799void X86Mir2Lir::EmitRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
800  if (entry->skeleton.prefix1 != 0) {
801    code_buffer_.push_back(entry->skeleton.prefix1);
802    if (entry->skeleton.prefix2 != 0) {
803      code_buffer_.push_back(entry->skeleton.prefix2);
804    }
805  } else {
806    DCHECK_EQ(0, entry->skeleton.prefix2);
807  }
808  if (reg == rAX && entry->skeleton.ax_opcode != 0) {
809    code_buffer_.push_back(entry->skeleton.ax_opcode);
810  } else {
811    code_buffer_.push_back(entry->skeleton.opcode);
812    if (entry->skeleton.opcode == 0x0F) {
813      code_buffer_.push_back(entry->skeleton.extra_opcode1);
814      if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
815        code_buffer_.push_back(entry->skeleton.extra_opcode2);
816      } else {
817        DCHECK_EQ(0, entry->skeleton.extra_opcode2);
818      }
819    } else {
820      DCHECK_EQ(0, entry->skeleton.extra_opcode1);
821      DCHECK_EQ(0, entry->skeleton.extra_opcode2);
822    }
823    if (X86_FPREG(reg)) {
824      reg = reg & X86_FP_REG_MASK;
825    }
826    uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
827    code_buffer_.push_back(modrm);
828  }
829  switch (entry->skeleton.immediate_bytes) {
830    case 1:
831      DCHECK(IS_SIMM8(imm));
832      code_buffer_.push_back(imm & 0xFF);
833      break;
834    case 2:
835      DCHECK(IS_SIMM16(imm));
836      code_buffer_.push_back(imm & 0xFF);
837      code_buffer_.push_back((imm >> 8) & 0xFF);
838      break;
839    case 4:
840      code_buffer_.push_back(imm & 0xFF);
841      code_buffer_.push_back((imm >> 8) & 0xFF);
842      code_buffer_.push_back((imm >> 16) & 0xFF);
843      code_buffer_.push_back((imm >> 24) & 0xFF);
844      break;
845    default:
846      LOG(FATAL) << "Unexpected immediate bytes (" << entry->skeleton.immediate_bytes
847          << ") for instruction: " << entry->name;
848      break;
849  }
850}
851
852void X86Mir2Lir::EmitThreadImm(const X86EncodingMap* entry, int disp, int imm) {
853  if (entry->skeleton.prefix1 != 0) {
854    code_buffer_.push_back(entry->skeleton.prefix1);
855    if (entry->skeleton.prefix2 != 0) {
856      code_buffer_.push_back(entry->skeleton.prefix2);
857    }
858  } else {
859    DCHECK_EQ(0, entry->skeleton.prefix2);
860  }
861  code_buffer_.push_back(entry->skeleton.opcode);
862  if (entry->skeleton.opcode == 0x0F) {
863    code_buffer_.push_back(entry->skeleton.extra_opcode1);
864    if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
865      code_buffer_.push_back(entry->skeleton.extra_opcode2);
866    } else {
867      DCHECK_EQ(0, entry->skeleton.extra_opcode2);
868    }
869  } else {
870    DCHECK_EQ(0, entry->skeleton.extra_opcode1);
871    DCHECK_EQ(0, entry->skeleton.extra_opcode2);
872  }
873  uint8_t modrm = (0 << 6) | (entry->skeleton.modrm_opcode << 3) | rBP;
874  code_buffer_.push_back(modrm);
875  code_buffer_.push_back(disp & 0xFF);
876  code_buffer_.push_back((disp >> 8) & 0xFF);
877  code_buffer_.push_back((disp >> 16) & 0xFF);
878  code_buffer_.push_back((disp >> 24) & 0xFF);
879  switch (entry->skeleton.immediate_bytes) {
880    case 1:
881      DCHECK(IS_SIMM8(imm));
882      code_buffer_.push_back(imm & 0xFF);
883      break;
884    case 2:
885      DCHECK(IS_SIMM16(imm));
886      code_buffer_.push_back(imm & 0xFF);
887      code_buffer_.push_back((imm >> 8) & 0xFF);
888      break;
889    case 4:
890      code_buffer_.push_back(imm & 0xFF);
891      code_buffer_.push_back((imm >> 8) & 0xFF);
892      code_buffer_.push_back((imm >> 16) & 0xFF);
893      code_buffer_.push_back((imm >> 24) & 0xFF);
894      break;
895    default:
896      LOG(FATAL) << "Unexpected immediate bytes (" << entry->skeleton.immediate_bytes
897          << ") for instruction: " << entry->name;
898      break;
899  }
900  DCHECK_EQ(entry->skeleton.ax_opcode, 0);
901}
902
903void X86Mir2Lir::EmitMovRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
904  DCHECK_LT(reg, 8);
905  code_buffer_.push_back(0xB8 + reg);
906  code_buffer_.push_back(imm & 0xFF);
907  code_buffer_.push_back((imm >> 8) & 0xFF);
908  code_buffer_.push_back((imm >> 16) & 0xFF);
909  code_buffer_.push_back((imm >> 24) & 0xFF);
910}
911
912void X86Mir2Lir::EmitShiftRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
913  if (entry->skeleton.prefix1 != 0) {
914    code_buffer_.push_back(entry->skeleton.prefix1);
915    if (entry->skeleton.prefix2 != 0) {
916      code_buffer_.push_back(entry->skeleton.prefix2);
917    }
918  } else {
919    DCHECK_EQ(0, entry->skeleton.prefix2);
920  }
921  if (imm != 1) {
922    code_buffer_.push_back(entry->skeleton.opcode);
923  } else {
924    // Shorter encoding for 1 bit shift
925    code_buffer_.push_back(entry->skeleton.ax_opcode);
926  }
927  if (entry->skeleton.opcode == 0x0F) {
928    code_buffer_.push_back(entry->skeleton.extra_opcode1);
929    if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
930      code_buffer_.push_back(entry->skeleton.extra_opcode2);
931    } else {
932      DCHECK_EQ(0, entry->skeleton.extra_opcode2);
933    }
934  } else {
935    DCHECK_EQ(0, entry->skeleton.extra_opcode1);
936    DCHECK_EQ(0, entry->skeleton.extra_opcode2);
937  }
938  if (reg >= 4) {
939    DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
940        << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
941  }
942  DCHECK_LT(reg, 8);
943  uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
944  code_buffer_.push_back(modrm);
945  if (imm != 1) {
946    DCHECK_EQ(entry->skeleton.immediate_bytes, 1);
947    DCHECK(IS_SIMM8(imm));
948    code_buffer_.push_back(imm & 0xFF);
949  }
950}
951
952void X86Mir2Lir::EmitShiftRegCl(const X86EncodingMap* entry, uint8_t reg, uint8_t cl) {
953  DCHECK_EQ(cl, static_cast<uint8_t>(rCX));
954  if (entry->skeleton.prefix1 != 0) {
955    code_buffer_.push_back(entry->skeleton.prefix1);
956    if (entry->skeleton.prefix2 != 0) {
957      code_buffer_.push_back(entry->skeleton.prefix2);
958    }
959  } else {
960    DCHECK_EQ(0, entry->skeleton.prefix2);
961  }
962  code_buffer_.push_back(entry->skeleton.opcode);
963  DCHECK_EQ(0, entry->skeleton.extra_opcode1);
964  DCHECK_EQ(0, entry->skeleton.extra_opcode2);
965  DCHECK_LT(reg, 8);
966  uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
967  code_buffer_.push_back(modrm);
968  DCHECK_EQ(0, entry->skeleton.ax_opcode);
969  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
970}
971
972void X86Mir2Lir::EmitRegCond(const X86EncodingMap* entry, uint8_t reg, uint8_t condition) {
973  if (entry->skeleton.prefix1 != 0) {
974    code_buffer_.push_back(entry->skeleton.prefix1);
975    if (entry->skeleton.prefix2 != 0) {
976      code_buffer_.push_back(entry->skeleton.prefix2);
977    }
978  } else {
979    DCHECK_EQ(0, entry->skeleton.prefix2);
980  }
981  DCHECK_EQ(0, entry->skeleton.ax_opcode);
982  DCHECK_EQ(0x0F, entry->skeleton.opcode);
983  code_buffer_.push_back(0x0F);
984  DCHECK_EQ(0x90, entry->skeleton.extra_opcode1);
985  code_buffer_.push_back(0x90 | condition);
986  DCHECK_EQ(0, entry->skeleton.extra_opcode2);
987  DCHECK_LT(reg, 8);
988  uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
989  code_buffer_.push_back(modrm);
990  DCHECK_EQ(entry->skeleton.immediate_bytes, 0);
991}
992
993void X86Mir2Lir::EmitJmp(const X86EncodingMap* entry, int rel) {
994  if (entry->opcode == kX86Jmp8) {
995    DCHECK(IS_SIMM8(rel));
996    code_buffer_.push_back(0xEB);
997    code_buffer_.push_back(rel & 0xFF);
998  } else if (entry->opcode == kX86Jmp32) {
999    code_buffer_.push_back(0xE9);
1000    code_buffer_.push_back(rel & 0xFF);
1001    code_buffer_.push_back((rel >> 8) & 0xFF);
1002    code_buffer_.push_back((rel >> 16) & 0xFF);
1003    code_buffer_.push_back((rel >> 24) & 0xFF);
1004  } else {
1005    DCHECK(entry->opcode == kX86JmpR);
1006    code_buffer_.push_back(entry->skeleton.opcode);
1007    uint8_t reg = static_cast<uint8_t>(rel);
1008    DCHECK_LT(reg, 8);
1009    uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
1010    code_buffer_.push_back(modrm);
1011  }
1012}
1013
1014void X86Mir2Lir::EmitJcc(const X86EncodingMap* entry, int rel, uint8_t cc) {
1015  DCHECK_LT(cc, 16);
1016  if (entry->opcode == kX86Jcc8) {
1017    DCHECK(IS_SIMM8(rel));
1018    code_buffer_.push_back(0x70 | cc);
1019    code_buffer_.push_back(rel & 0xFF);
1020  } else {
1021    DCHECK(entry->opcode == kX86Jcc32);
1022    code_buffer_.push_back(0x0F);
1023    code_buffer_.push_back(0x80 | cc);
1024    code_buffer_.push_back(rel & 0xFF);
1025    code_buffer_.push_back((rel >> 8) & 0xFF);
1026    code_buffer_.push_back((rel >> 16) & 0xFF);
1027    code_buffer_.push_back((rel >> 24) & 0xFF);
1028  }
1029}
1030
1031void X86Mir2Lir::EmitCallMem(const X86EncodingMap* entry, uint8_t base, int disp) {
1032  if (entry->skeleton.prefix1 != 0) {
1033    code_buffer_.push_back(entry->skeleton.prefix1);
1034    if (entry->skeleton.prefix2 != 0) {
1035      code_buffer_.push_back(entry->skeleton.prefix2);
1036    }
1037  } else {
1038    DCHECK_EQ(0, entry->skeleton.prefix2);
1039  }
1040  code_buffer_.push_back(entry->skeleton.opcode);
1041  if (entry->skeleton.opcode == 0x0F) {
1042    code_buffer_.push_back(entry->skeleton.extra_opcode1);
1043    if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
1044      code_buffer_.push_back(entry->skeleton.extra_opcode2);
1045    } else {
1046      DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1047    }
1048  } else {
1049    DCHECK_EQ(0, entry->skeleton.extra_opcode1);
1050    DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1051  }
1052  uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (entry->skeleton.modrm_opcode << 3) | base;
1053  code_buffer_.push_back(modrm);
1054  if (base == rX86_SP) {
1055    // Special SIB for SP base
1056    code_buffer_.push_back(0 << 6 | (rX86_SP << 3) | rX86_SP);
1057  }
1058  EmitDisp(base, disp);
1059  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1060  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1061}
1062
1063void X86Mir2Lir::EmitCallThread(const X86EncodingMap* entry, int disp) {
1064  DCHECK_NE(entry->skeleton.prefix1, 0);
1065  code_buffer_.push_back(entry->skeleton.prefix1);
1066  if (entry->skeleton.prefix2 != 0) {
1067    code_buffer_.push_back(entry->skeleton.prefix2);
1068  }
1069  code_buffer_.push_back(entry->skeleton.opcode);
1070  if (entry->skeleton.opcode == 0x0F) {
1071    code_buffer_.push_back(entry->skeleton.extra_opcode1);
1072    if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
1073      code_buffer_.push_back(entry->skeleton.extra_opcode2);
1074    } else {
1075      DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1076    }
1077  } else {
1078    DCHECK_EQ(0, entry->skeleton.extra_opcode1);
1079    DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1080  }
1081  uint8_t modrm = (0 << 6) | (entry->skeleton.modrm_opcode << 3) | rBP;
1082  code_buffer_.push_back(modrm);
1083  code_buffer_.push_back(disp & 0xFF);
1084  code_buffer_.push_back((disp >> 8) & 0xFF);
1085  code_buffer_.push_back((disp >> 16) & 0xFF);
1086  code_buffer_.push_back((disp >> 24) & 0xFF);
1087  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1088  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1089}
1090
1091void X86Mir2Lir::EmitPcRel(const X86EncodingMap* entry, uint8_t reg,
1092                      int base_or_table, uint8_t index, int scale, int table_or_disp) {
1093  int disp;
1094  if (entry->opcode == kX86PcRelLoadRA) {
1095    Mir2Lir::SwitchTable *tab_rec = reinterpret_cast<Mir2Lir::SwitchTable*>(table_or_disp);
1096    disp = tab_rec->offset;
1097  } else {
1098    DCHECK(entry->opcode == kX86PcRelAdr);
1099    Mir2Lir::FillArrayData *tab_rec = reinterpret_cast<Mir2Lir::FillArrayData*>(base_or_table);
1100    disp = tab_rec->offset;
1101  }
1102  if (entry->skeleton.prefix1 != 0) {
1103    code_buffer_.push_back(entry->skeleton.prefix1);
1104    if (entry->skeleton.prefix2 != 0) {
1105      code_buffer_.push_back(entry->skeleton.prefix2);
1106    }
1107  } else {
1108    DCHECK_EQ(0, entry->skeleton.prefix2);
1109  }
1110  if (X86_FPREG(reg)) {
1111    reg = reg & X86_FP_REG_MASK;
1112  }
1113  DCHECK_LT(reg, 8);
1114  if (entry->opcode == kX86PcRelLoadRA) {
1115    code_buffer_.push_back(entry->skeleton.opcode);
1116    DCHECK_EQ(0, entry->skeleton.extra_opcode1);
1117    DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1118    uint8_t modrm = (2 << 6) | (reg << 3) | rX86_SP;
1119    code_buffer_.push_back(modrm);
1120    DCHECK_LT(scale, 4);
1121    DCHECK_LT(index, 8);
1122    DCHECK_LT(base_or_table, 8);
1123    uint8_t base = static_cast<uint8_t>(base_or_table);
1124    uint8_t sib = (scale << 6) | (index << 3) | base;
1125    code_buffer_.push_back(sib);
1126    DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1127  } else {
1128    code_buffer_.push_back(entry->skeleton.opcode + reg);
1129  }
1130  code_buffer_.push_back(disp & 0xFF);
1131  code_buffer_.push_back((disp >> 8) & 0xFF);
1132  code_buffer_.push_back((disp >> 16) & 0xFF);
1133  code_buffer_.push_back((disp >> 24) & 0xFF);
1134  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1135  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1136}
1137
1138void X86Mir2Lir::EmitMacro(const X86EncodingMap* entry, uint8_t reg, int offset) {
1139  DCHECK(entry->opcode == kX86StartOfMethod) << entry->name;
1140  code_buffer_.push_back(0xE8);  // call +0
1141  code_buffer_.push_back(0);
1142  code_buffer_.push_back(0);
1143  code_buffer_.push_back(0);
1144  code_buffer_.push_back(0);
1145
1146  DCHECK_LT(reg, 8);
1147  code_buffer_.push_back(0x58 + reg);  // pop reg
1148
1149  EmitRegImm(&X86Mir2Lir::EncodingMap[kX86Sub32RI], reg, offset + 5 /* size of call +0 */);
1150}
1151
1152void X86Mir2Lir::EmitUnimplemented(const X86EncodingMap* entry, LIR* lir) {
1153  UNIMPLEMENTED(WARNING) << "encoding kind for " << entry->name << " "
1154                         << BuildInsnString(entry->fmt, lir, 0);
1155  for (int i = 0; i < GetInsnSize(lir); ++i) {
1156    code_buffer_.push_back(0xCC);  // push breakpoint instruction - int 3
1157  }
1158}
1159
1160/*
1161 * Assemble the LIR into binary instruction format.  Note that we may
1162 * discover that pc-relative displacements may not fit the selected
1163 * instruction.  In those cases we will try to substitute a new code
1164 * sequence or request that the trace be shortened and retried.
1165 */
1166AssemblerStatus X86Mir2Lir::AssembleInstructions(uintptr_t start_addr) {
1167  LIR *lir;
1168  AssemblerStatus res = kSuccess;  // Assume success
1169
1170  const bool kVerbosePcFixup = false;
1171  for (lir = first_lir_insn_; lir != NULL; lir = NEXT_LIR(lir)) {
1172    if (lir->opcode < 0) {
1173      continue;
1174    }
1175
1176    if (lir->flags.is_nop) {
1177      continue;
1178    }
1179
1180    if (lir->flags.pcRelFixup) {
1181      switch (lir->opcode) {
1182        case kX86Jcc8: {
1183          LIR *target_lir = lir->target;
1184          DCHECK(target_lir != NULL);
1185          int delta = 0;
1186          uintptr_t pc;
1187          if (IS_SIMM8(lir->operands[0])) {
1188            pc = lir->offset + 2 /* opcode + rel8 */;
1189          } else {
1190            pc = lir->offset + 6 /* 2 byte opcode + rel32 */;
1191          }
1192          uintptr_t target = target_lir->offset;
1193          delta = target - pc;
1194          if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) {
1195            if (kVerbosePcFixup) {
1196              LOG(INFO) << "Retry for JCC growth at " << lir->offset
1197                  << " delta: " << delta << " old delta: " << lir->operands[0];
1198            }
1199            lir->opcode = kX86Jcc32;
1200            SetupResourceMasks(lir);
1201            res = kRetryAll;
1202          }
1203          if (kVerbosePcFixup) {
1204            LOG(INFO) << "Source:";
1205            DumpLIRInsn(lir, 0);
1206            LOG(INFO) << "Target:";
1207            DumpLIRInsn(target_lir, 0);
1208            LOG(INFO) << "Delta " << delta;
1209          }
1210          lir->operands[0] = delta;
1211          break;
1212        }
1213        case kX86Jcc32: {
1214          LIR *target_lir = lir->target;
1215          DCHECK(target_lir != NULL);
1216          uintptr_t pc = lir->offset + 6 /* 2 byte opcode + rel32 */;
1217          uintptr_t target = target_lir->offset;
1218          int delta = target - pc;
1219          if (kVerbosePcFixup) {
1220            LOG(INFO) << "Source:";
1221            DumpLIRInsn(lir, 0);
1222            LOG(INFO) << "Target:";
1223            DumpLIRInsn(target_lir, 0);
1224            LOG(INFO) << "Delta " << delta;
1225          }
1226          lir->operands[0] = delta;
1227          break;
1228        }
1229        case kX86Jmp8: {
1230          LIR *target_lir = lir->target;
1231          DCHECK(target_lir != NULL);
1232          int delta = 0;
1233          uintptr_t pc;
1234          if (IS_SIMM8(lir->operands[0])) {
1235            pc = lir->offset + 2 /* opcode + rel8 */;
1236          } else {
1237            pc = lir->offset + 5 /* opcode + rel32 */;
1238          }
1239          uintptr_t target = target_lir->offset;
1240          delta = target - pc;
1241          if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && delta == 0) {
1242            // Useless branch
1243            lir->flags.is_nop = true;
1244            if (kVerbosePcFixup) {
1245              LOG(INFO) << "Retry for useless branch at " << lir->offset;
1246            }
1247            res = kRetryAll;
1248          } else if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) {
1249            if (kVerbosePcFixup) {
1250              LOG(INFO) << "Retry for JMP growth at " << lir->offset;
1251            }
1252            lir->opcode = kX86Jmp32;
1253            SetupResourceMasks(lir);
1254            res = kRetryAll;
1255          }
1256          lir->operands[0] = delta;
1257          break;
1258        }
1259        case kX86Jmp32: {
1260          LIR *target_lir = lir->target;
1261          DCHECK(target_lir != NULL);
1262          uintptr_t pc = lir->offset + 5 /* opcode + rel32 */;
1263          uintptr_t target = target_lir->offset;
1264          int delta = target - pc;
1265          lir->operands[0] = delta;
1266          break;
1267        }
1268        default:
1269          break;
1270      }
1271    }
1272
1273    /*
1274     * If one of the pc-relative instructions expanded we'll have
1275     * to make another pass.  Don't bother to fully assemble the
1276     * instruction.
1277     */
1278    if (res != kSuccess) {
1279      continue;
1280    }
1281    CHECK_EQ(static_cast<size_t>(lir->offset), code_buffer_.size());
1282    const X86EncodingMap *entry = &X86Mir2Lir::EncodingMap[lir->opcode];
1283    size_t starting_cbuf_size = code_buffer_.size();
1284    switch (entry->kind) {
1285      case kData:  // 4 bytes of data
1286        code_buffer_.push_back(lir->operands[0]);
1287        break;
1288      case kNullary:  // 1 byte of opcode
1289        DCHECK_EQ(0, entry->skeleton.prefix1);
1290        DCHECK_EQ(0, entry->skeleton.prefix2);
1291        code_buffer_.push_back(entry->skeleton.opcode);
1292        if (entry->skeleton.extra_opcode1 != 0) {
1293          code_buffer_.push_back(entry->skeleton.extra_opcode1);
1294          if (entry->skeleton.extra_opcode2 != 0) {
1295            code_buffer_.push_back(entry->skeleton.extra_opcode2);
1296          }
1297        } else {
1298          DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1299        }
1300        DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1301        DCHECK_EQ(0, entry->skeleton.ax_opcode);
1302        DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1303        break;
1304      case kReg:  // lir operands - 0: reg
1305        EmitOpReg(entry, lir->operands[0]);
1306        break;
1307      case kMem:  // lir operands - 0: base, 1: disp
1308        EmitOpMem(entry, lir->operands[0], lir->operands[1]);
1309        break;
1310      case kMemReg:  // lir operands - 0: base, 1: disp, 2: reg
1311        EmitMemReg(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1312        break;
1313      case kArrayReg:  // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
1314        EmitArrayReg(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1315                     lir->operands[3], lir->operands[4]);
1316        break;
1317      case kRegMem:  // lir operands - 0: reg, 1: base, 2: disp
1318        EmitRegMem(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1319        break;
1320      case kRegArray:  // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
1321        EmitRegArray(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1322                     lir->operands[3], lir->operands[4]);
1323        break;
1324      case kRegThread:  // lir operands - 0: reg, 1: disp
1325        EmitRegThread(entry, lir->operands[0], lir->operands[1]);
1326        break;
1327      case kRegReg:  // lir operands - 0: reg1, 1: reg2
1328        EmitRegReg(entry, lir->operands[0], lir->operands[1]);
1329        break;
1330      case kRegRegStore:  // lir operands - 0: reg2, 1: reg1
1331        EmitRegReg(entry, lir->operands[1], lir->operands[0]);
1332        break;
1333      case kRegRegImm:
1334        EmitRegRegImm(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1335        break;
1336      case kRegImm:  // lir operands - 0: reg, 1: immediate
1337        EmitRegImm(entry, lir->operands[0], lir->operands[1]);
1338        break;
1339      case kThreadImm:  // lir operands - 0: disp, 1: immediate
1340        EmitThreadImm(entry, lir->operands[0], lir->operands[1]);
1341        break;
1342      case kMovRegImm:  // lir operands - 0: reg, 1: immediate
1343        EmitMovRegImm(entry, lir->operands[0], lir->operands[1]);
1344        break;
1345      case kShiftRegImm:  // lir operands - 0: reg, 1: immediate
1346        EmitShiftRegImm(entry, lir->operands[0], lir->operands[1]);
1347        break;
1348      case kShiftRegCl:  // lir operands - 0: reg, 1: cl
1349        EmitShiftRegCl(entry, lir->operands[0], lir->operands[1]);
1350        break;
1351      case kRegCond:  // lir operands - 0: reg, 1: condition
1352        EmitRegCond(entry, lir->operands[0], lir->operands[1]);
1353        break;
1354      case kJmp:  // lir operands - 0: rel
1355        if (entry->opcode == kX86JmpT) {
1356          // This works since the instruction format for jmp and call is basically the same and
1357          // EmitCallThread loads opcode info.
1358          EmitCallThread(entry, lir->operands[0]);
1359        } else {
1360          EmitJmp(entry, lir->operands[0]);
1361        }
1362        break;
1363      case kJcc:  // lir operands - 0: rel, 1: CC, target assigned
1364        EmitJcc(entry, lir->operands[0], lir->operands[1]);
1365        break;
1366      case kCall:
1367        switch (entry->opcode) {
1368          case kX86CallM:  // lir operands - 0: base, 1: disp
1369            EmitCallMem(entry, lir->operands[0], lir->operands[1]);
1370            break;
1371          case kX86CallT:  // lir operands - 0: disp
1372            EmitCallThread(entry, lir->operands[0]);
1373            break;
1374          default:
1375            EmitUnimplemented(entry, lir);
1376            break;
1377        }
1378        break;
1379      case kPcRel:  // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
1380        EmitPcRel(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1381                  lir->operands[3], lir->operands[4]);
1382        break;
1383      case kMacro:
1384        EmitMacro(entry, lir->operands[0], lir->offset);
1385        break;
1386      default:
1387        EmitUnimplemented(entry, lir);
1388        break;
1389    }
1390    CHECK_EQ(static_cast<size_t>(GetInsnSize(lir)),
1391             code_buffer_.size() - starting_cbuf_size)
1392        << "Instruction size mismatch for entry: " << X86Mir2Lir::EncodingMap[lir->opcode].name;
1393  }
1394  return res;
1395}
1396
1397}  // namespace art
1398