1/*
2 * Copyright (C) 2008 The Android Open Source Project
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *  * Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 *  * Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in
12 *    the documentation and/or other materials provided with the
13 *    distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29#include <pthread.h>
30
31#include <errno.h>
32#include <limits.h>
33#include <sys/atomics.h>
34#include <sys/mman.h>
35#include <unistd.h>
36
37#include "bionic_atomic_inline.h"
38#include "bionic_futex.h"
39#include "bionic_pthread.h"
40#include "bionic_tls.h"
41#include "pthread_internal.h"
42#include "thread_private.h"
43
44extern void pthread_debug_mutex_lock_check(pthread_mutex_t *mutex);
45extern void pthread_debug_mutex_unlock_check(pthread_mutex_t *mutex);
46
47extern void _exit_with_stack_teardown(void * stackBase, int stackSize, int retCode);
48extern void _exit_thread(int  retCode);
49
50int  __futex_wake_ex(volatile void *ftx, int pshared, int val)
51{
52    return __futex_syscall3(ftx, pshared ? FUTEX_WAKE : FUTEX_WAKE_PRIVATE, val);
53}
54
55int  __futex_wait_ex(volatile void *ftx, int pshared, int val, const struct timespec *timeout)
56{
57    return __futex_syscall4(ftx, pshared ? FUTEX_WAIT : FUTEX_WAIT_PRIVATE, val, timeout);
58}
59
60/* CAVEAT: our implementation of pthread_cleanup_push/pop doesn't support C++ exceptions
61 *         and thread cancelation
62 */
63
64void __pthread_cleanup_push( __pthread_cleanup_t*      c,
65                             __pthread_cleanup_func_t  routine,
66                             void*                     arg )
67{
68    pthread_internal_t*  thread = __get_thread();
69
70    c->__cleanup_routine  = routine;
71    c->__cleanup_arg      = arg;
72    c->__cleanup_prev     = thread->cleanup_stack;
73    thread->cleanup_stack = c;
74}
75
76void __pthread_cleanup_pop( __pthread_cleanup_t*  c, int  execute )
77{
78    pthread_internal_t*  thread = __get_thread();
79
80    thread->cleanup_stack = c->__cleanup_prev;
81    if (execute)
82        c->__cleanup_routine(c->__cleanup_arg);
83}
84
85void pthread_exit(void * retval)
86{
87    pthread_internal_t*  thread     = __get_thread();
88    void*                stack_base = thread->attr.stack_base;
89    int                  stack_size = thread->attr.stack_size;
90    int                  user_stack = (thread->attr.flags & PTHREAD_ATTR_FLAG_USER_STACK) != 0;
91    sigset_t mask;
92
93    // call the cleanup handlers first
94    while (thread->cleanup_stack) {
95        __pthread_cleanup_t*  c = thread->cleanup_stack;
96        thread->cleanup_stack   = c->__cleanup_prev;
97        c->__cleanup_routine(c->__cleanup_arg);
98    }
99
100    // call the TLS destructors, it is important to do that before removing this
101    // thread from the global list. this will ensure that if someone else deletes
102    // a TLS key, the corresponding value will be set to NULL in this thread's TLS
103    // space (see pthread_key_delete)
104    pthread_key_clean_all();
105
106    if (thread->alternate_signal_stack != NULL) {
107      // Tell the kernel to stop using the alternate signal stack.
108      stack_t ss;
109      ss.ss_sp = NULL;
110      ss.ss_flags = SS_DISABLE;
111      sigaltstack(&ss, NULL);
112
113      // Free it.
114      munmap(thread->alternate_signal_stack, SIGSTKSZ);
115      thread->alternate_signal_stack = NULL;
116    }
117
118    // if the thread is detached, destroy the pthread_internal_t
119    // otherwise, keep it in memory and signal any joiners.
120    pthread_mutex_lock(&gThreadListLock);
121    if (thread->attr.flags & PTHREAD_ATTR_FLAG_DETACHED) {
122        _pthread_internal_remove_locked(thread);
123    } else {
124       /* make sure that the thread struct doesn't have stale pointers to a stack that
125        * will be unmapped after the exit call below.
126        */
127        if (!user_stack) {
128            thread->attr.stack_base = NULL;
129            thread->attr.stack_size = 0;
130            thread->tls = NULL;
131        }
132
133       /* Indicate that the thread has exited for joining threads. */
134        thread->attr.flags |= PTHREAD_ATTR_FLAG_ZOMBIE;
135        thread->return_value = retval;
136
137       /* Signal the joining thread if present. */
138        if (thread->attr.flags & PTHREAD_ATTR_FLAG_JOINED) {
139            pthread_cond_signal(&thread->join_cond);
140        }
141    }
142    pthread_mutex_unlock(&gThreadListLock);
143
144    sigfillset(&mask);
145    sigdelset(&mask, SIGSEGV);
146    (void)sigprocmask(SIG_SETMASK, &mask, (sigset_t *)NULL);
147
148    // destroy the thread stack
149    if (user_stack)
150        _exit_thread((int)retval);
151    else
152        _exit_with_stack_teardown(stack_base, stack_size, (int)retval);
153}
154
155/* a mutex is implemented as a 32-bit integer holding the following fields
156 *
157 * bits:     name     description
158 * 31-16     tid      owner thread's tid (recursive and errorcheck only)
159 * 15-14     type     mutex type
160 * 13        shared   process-shared flag
161 * 12-2      counter  counter of recursive mutexes
162 * 1-0       state    lock state (0, 1 or 2)
163 */
164
165/* Convenience macro, creates a mask of 'bits' bits that starts from
166 * the 'shift'-th least significant bit in a 32-bit word.
167 *
168 * Examples: FIELD_MASK(0,4)  -> 0xf
169 *           FIELD_MASK(16,9) -> 0x1ff0000
170 */
171#define  FIELD_MASK(shift,bits)           (((1 << (bits))-1) << (shift))
172
173/* This one is used to create a bit pattern from a given field value */
174#define  FIELD_TO_BITS(val,shift,bits)    (((val) & ((1 << (bits))-1)) << (shift))
175
176/* And this one does the opposite, i.e. extract a field's value from a bit pattern */
177#define  FIELD_FROM_BITS(val,shift,bits)  (((val) >> (shift)) & ((1 << (bits))-1))
178
179/* Mutex state:
180 *
181 * 0 for unlocked
182 * 1 for locked, no waiters
183 * 2 for locked, maybe waiters
184 */
185#define  MUTEX_STATE_SHIFT      0
186#define  MUTEX_STATE_LEN        2
187
188#define  MUTEX_STATE_MASK           FIELD_MASK(MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
189#define  MUTEX_STATE_FROM_BITS(v)   FIELD_FROM_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
190#define  MUTEX_STATE_TO_BITS(v)     FIELD_TO_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
191
192#define  MUTEX_STATE_UNLOCKED            0   /* must be 0 to match __PTHREAD_MUTEX_INIT_VALUE */
193#define  MUTEX_STATE_LOCKED_UNCONTENDED  1   /* must be 1 due to atomic dec in unlock operation */
194#define  MUTEX_STATE_LOCKED_CONTENDED    2   /* must be 1 + LOCKED_UNCONTENDED due to atomic dec */
195
196#define  MUTEX_STATE_FROM_BITS(v)    FIELD_FROM_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
197#define  MUTEX_STATE_TO_BITS(v)      FIELD_TO_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
198
199#define  MUTEX_STATE_BITS_UNLOCKED            MUTEX_STATE_TO_BITS(MUTEX_STATE_UNLOCKED)
200#define  MUTEX_STATE_BITS_LOCKED_UNCONTENDED  MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_UNCONTENDED)
201#define  MUTEX_STATE_BITS_LOCKED_CONTENDED    MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_CONTENDED)
202
203/* return true iff the mutex if locked with no waiters */
204#define  MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(v)  (((v) & MUTEX_STATE_MASK) == MUTEX_STATE_BITS_LOCKED_UNCONTENDED)
205
206/* return true iff the mutex if locked with maybe waiters */
207#define  MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(v)   (((v) & MUTEX_STATE_MASK) == MUTEX_STATE_BITS_LOCKED_CONTENDED)
208
209/* used to flip from LOCKED_UNCONTENDED to LOCKED_CONTENDED */
210#define  MUTEX_STATE_BITS_FLIP_CONTENTION(v)      ((v) ^ (MUTEX_STATE_BITS_LOCKED_CONTENDED ^ MUTEX_STATE_BITS_LOCKED_UNCONTENDED))
211
212/* Mutex counter:
213 *
214 * We need to check for overflow before incrementing, and we also need to
215 * detect when the counter is 0
216 */
217#define  MUTEX_COUNTER_SHIFT         2
218#define  MUTEX_COUNTER_LEN           11
219#define  MUTEX_COUNTER_MASK          FIELD_MASK(MUTEX_COUNTER_SHIFT, MUTEX_COUNTER_LEN)
220
221#define  MUTEX_COUNTER_BITS_WILL_OVERFLOW(v)    (((v) & MUTEX_COUNTER_MASK) == MUTEX_COUNTER_MASK)
222#define  MUTEX_COUNTER_BITS_IS_ZERO(v)          (((v) & MUTEX_COUNTER_MASK) == 0)
223
224/* Used to increment the counter directly after overflow has been checked */
225#define  MUTEX_COUNTER_BITS_ONE      FIELD_TO_BITS(1,MUTEX_COUNTER_SHIFT,MUTEX_COUNTER_LEN)
226
227/* Returns true iff the counter is 0 */
228#define  MUTEX_COUNTER_BITS_ARE_ZERO(v)  (((v) & MUTEX_COUNTER_MASK) == 0)
229
230/* Mutex shared bit flag
231 *
232 * This flag is set to indicate that the mutex is shared among processes.
233 * This changes the futex opcode we use for futex wait/wake operations
234 * (non-shared operations are much faster).
235 */
236#define  MUTEX_SHARED_SHIFT    13
237#define  MUTEX_SHARED_MASK     FIELD_MASK(MUTEX_SHARED_SHIFT,1)
238
239/* Mutex type:
240 *
241 * We support normal, recursive and errorcheck mutexes.
242 *
243 * The constants defined here *cannot* be changed because they must match
244 * the C library ABI which defines the following initialization values in
245 * <pthread.h>:
246 *
247 *   __PTHREAD_MUTEX_INIT_VALUE
248 *   __PTHREAD_RECURSIVE_MUTEX_VALUE
249 *   __PTHREAD_ERRORCHECK_MUTEX_INIT_VALUE
250 */
251#define  MUTEX_TYPE_SHIFT      14
252#define  MUTEX_TYPE_LEN        2
253#define  MUTEX_TYPE_MASK       FIELD_MASK(MUTEX_TYPE_SHIFT,MUTEX_TYPE_LEN)
254
255#define  MUTEX_TYPE_NORMAL          0  /* Must be 0 to match __PTHREAD_MUTEX_INIT_VALUE */
256#define  MUTEX_TYPE_RECURSIVE       1
257#define  MUTEX_TYPE_ERRORCHECK      2
258
259#define  MUTEX_TYPE_TO_BITS(t)       FIELD_TO_BITS(t, MUTEX_TYPE_SHIFT, MUTEX_TYPE_LEN)
260
261#define  MUTEX_TYPE_BITS_NORMAL      MUTEX_TYPE_TO_BITS(MUTEX_TYPE_NORMAL)
262#define  MUTEX_TYPE_BITS_RECURSIVE   MUTEX_TYPE_TO_BITS(MUTEX_TYPE_RECURSIVE)
263#define  MUTEX_TYPE_BITS_ERRORCHECK  MUTEX_TYPE_TO_BITS(MUTEX_TYPE_ERRORCHECK)
264
265/* Mutex owner field:
266 *
267 * This is only used for recursive and errorcheck mutexes. It holds the
268 * tid of the owning thread. Note that this works because the Linux
269 * kernel _only_ uses 16-bit values for tids.
270 *
271 * More specifically, it will wrap to 10000 when it reaches over 32768 for
272 * application processes. You can check this by running the following inside
273 * an adb shell session:
274 *
275    OLDPID=$$;
276    while true; do
277    NEWPID=$(sh -c 'echo $$')
278    if [ "$NEWPID" -gt 32768 ]; then
279        echo "AARGH: new PID $NEWPID is too high!"
280        exit 1
281    fi
282    if [ "$NEWPID" -lt "$OLDPID" ]; then
283        echo "****** Wrapping from PID $OLDPID to $NEWPID. *******"
284    else
285        echo -n "$NEWPID!"
286    fi
287    OLDPID=$NEWPID
288    done
289
290 * Note that you can run the same example on a desktop Linux system,
291 * the wrapping will also happen at 32768, but will go back to 300 instead.
292 */
293#define  MUTEX_OWNER_SHIFT     16
294#define  MUTEX_OWNER_LEN       16
295
296#define  MUTEX_OWNER_FROM_BITS(v)    FIELD_FROM_BITS(v,MUTEX_OWNER_SHIFT,MUTEX_OWNER_LEN)
297#define  MUTEX_OWNER_TO_BITS(v)      FIELD_TO_BITS(v,MUTEX_OWNER_SHIFT,MUTEX_OWNER_LEN)
298
299/* Convenience macros.
300 *
301 * These are used to form or modify the bit pattern of a given mutex value
302 */
303
304
305
306/* a mutex attribute holds the following fields
307 *
308 * bits:     name       description
309 * 0-3       type       type of mutex
310 * 4         shared     process-shared flag
311 */
312#define  MUTEXATTR_TYPE_MASK   0x000f
313#define  MUTEXATTR_SHARED_MASK 0x0010
314
315
316int pthread_mutexattr_init(pthread_mutexattr_t *attr)
317{
318    if (attr) {
319        *attr = PTHREAD_MUTEX_DEFAULT;
320        return 0;
321    } else {
322        return EINVAL;
323    }
324}
325
326int pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
327{
328    if (attr) {
329        *attr = -1;
330        return 0;
331    } else {
332        return EINVAL;
333    }
334}
335
336int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *type)
337{
338    if (attr) {
339        int  atype = (*attr & MUTEXATTR_TYPE_MASK);
340
341         if (atype >= PTHREAD_MUTEX_NORMAL &&
342             atype <= PTHREAD_MUTEX_ERRORCHECK) {
343            *type = atype;
344            return 0;
345        }
346    }
347    return EINVAL;
348}
349
350int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
351{
352    if (attr && type >= PTHREAD_MUTEX_NORMAL &&
353                type <= PTHREAD_MUTEX_ERRORCHECK ) {
354        *attr = (*attr & ~MUTEXATTR_TYPE_MASK) | type;
355        return 0;
356    }
357    return EINVAL;
358}
359
360/* process-shared mutexes are not supported at the moment */
361
362int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int  pshared)
363{
364    if (!attr)
365        return EINVAL;
366
367    switch (pshared) {
368    case PTHREAD_PROCESS_PRIVATE:
369        *attr &= ~MUTEXATTR_SHARED_MASK;
370        return 0;
371
372    case PTHREAD_PROCESS_SHARED:
373        /* our current implementation of pthread actually supports shared
374         * mutexes but won't cleanup if a process dies with the mutex held.
375         * Nevertheless, it's better than nothing. Shared mutexes are used
376         * by surfaceflinger and audioflinger.
377         */
378        *attr |= MUTEXATTR_SHARED_MASK;
379        return 0;
380    }
381    return EINVAL;
382}
383
384int pthread_mutexattr_getpshared(pthread_mutexattr_t *attr, int *pshared)
385{
386    if (!attr || !pshared)
387        return EINVAL;
388
389    *pshared = (*attr & MUTEXATTR_SHARED_MASK) ? PTHREAD_PROCESS_SHARED
390                                               : PTHREAD_PROCESS_PRIVATE;
391    return 0;
392}
393
394int pthread_mutex_init(pthread_mutex_t *mutex,
395                       const pthread_mutexattr_t *attr)
396{
397    int value = 0;
398
399    if (mutex == NULL)
400        return EINVAL;
401
402    if (__predict_true(attr == NULL)) {
403        mutex->value = MUTEX_TYPE_BITS_NORMAL;
404        return 0;
405    }
406
407    if ((*attr & MUTEXATTR_SHARED_MASK) != 0)
408        value |= MUTEX_SHARED_MASK;
409
410    switch (*attr & MUTEXATTR_TYPE_MASK) {
411    case PTHREAD_MUTEX_NORMAL:
412        value |= MUTEX_TYPE_BITS_NORMAL;
413        break;
414    case PTHREAD_MUTEX_RECURSIVE:
415        value |= MUTEX_TYPE_BITS_RECURSIVE;
416        break;
417    case PTHREAD_MUTEX_ERRORCHECK:
418        value |= MUTEX_TYPE_BITS_ERRORCHECK;
419        break;
420    default:
421        return EINVAL;
422    }
423
424    mutex->value = value;
425    return 0;
426}
427
428
429/*
430 * Lock a non-recursive mutex.
431 *
432 * As noted above, there are three states:
433 *   0 (unlocked, no contention)
434 *   1 (locked, no contention)
435 *   2 (locked, contention)
436 *
437 * Non-recursive mutexes don't use the thread-id or counter fields, and the
438 * "type" value is zero, so the only bits that will be set are the ones in
439 * the lock state field.
440 */
441static __inline__ void
442_normal_lock(pthread_mutex_t*  mutex, int shared)
443{
444    /* convenience shortcuts */
445    const int unlocked           = shared | MUTEX_STATE_BITS_UNLOCKED;
446    const int locked_uncontended = shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
447    /*
448     * The common case is an unlocked mutex, so we begin by trying to
449     * change the lock's state from 0 (UNLOCKED) to 1 (LOCKED).
450     * __bionic_cmpxchg() returns 0 if it made the swap successfully.
451     * If the result is nonzero, this lock is already held by another thread.
452     */
453    if (__bionic_cmpxchg(unlocked, locked_uncontended, &mutex->value) != 0) {
454        const int locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED;
455        /*
456         * We want to go to sleep until the mutex is available, which
457         * requires promoting it to state 2 (CONTENDED). We need to
458         * swap in the new state value and then wait until somebody wakes us up.
459         *
460         * __bionic_swap() returns the previous value.  We swap 2 in and
461         * see if we got zero back; if so, we have acquired the lock.  If
462         * not, another thread still holds the lock and we wait again.
463         *
464         * The second argument to the __futex_wait() call is compared
465         * against the current value.  If it doesn't match, __futex_wait()
466         * returns immediately (otherwise, it sleeps for a time specified
467         * by the third argument; 0 means sleep forever).  This ensures
468         * that the mutex is in state 2 when we go to sleep on it, which
469         * guarantees a wake-up call.
470         */
471        while (__bionic_swap(locked_contended, &mutex->value) != unlocked)
472            __futex_wait_ex(&mutex->value, shared, locked_contended, 0);
473    }
474    ANDROID_MEMBAR_FULL();
475}
476
477/*
478 * Release a non-recursive mutex.  The caller is responsible for determining
479 * that we are in fact the owner of this lock.
480 */
481static __inline__ void
482_normal_unlock(pthread_mutex_t*  mutex, int shared)
483{
484    ANDROID_MEMBAR_FULL();
485
486    /*
487     * The mutex state will be 1 or (rarely) 2.  We use an atomic decrement
488     * to release the lock.  __bionic_atomic_dec() returns the previous value;
489     * if it wasn't 1 we have to do some additional work.
490     */
491    if (__bionic_atomic_dec(&mutex->value) != (shared|MUTEX_STATE_BITS_LOCKED_UNCONTENDED)) {
492        /*
493         * Start by releasing the lock.  The decrement changed it from
494         * "contended lock" to "uncontended lock", which means we still
495         * hold it, and anybody who tries to sneak in will push it back
496         * to state 2.
497         *
498         * Once we set it to zero the lock is up for grabs.  We follow
499         * this with a __futex_wake() to ensure that one of the waiting
500         * threads has a chance to grab it.
501         *
502         * This doesn't cause a race with the swap/wait pair in
503         * _normal_lock(), because the __futex_wait() call there will
504         * return immediately if the mutex value isn't 2.
505         */
506        mutex->value = shared;
507
508        /*
509         * Wake up one waiting thread.  We don't know which thread will be
510         * woken or when it'll start executing -- futexes make no guarantees
511         * here.  There may not even be a thread waiting.
512         *
513         * The newly-woken thread will replace the 0 we just set above
514         * with 2, which means that when it eventually releases the mutex
515         * it will also call FUTEX_WAKE.  This results in one extra wake
516         * call whenever a lock is contended, but lets us avoid forgetting
517         * anyone without requiring us to track the number of sleepers.
518         *
519         * It's possible for another thread to sneak in and grab the lock
520         * between the zero assignment above and the wake call below.  If
521         * the new thread is "slow" and holds the lock for a while, we'll
522         * wake up a sleeper, which will swap in a 2 and then go back to
523         * sleep since the lock is still held.  If the new thread is "fast",
524         * running to completion before we call wake, the thread we
525         * eventually wake will find an unlocked mutex and will execute.
526         * Either way we have correct behavior and nobody is orphaned on
527         * the wait queue.
528         */
529        __futex_wake_ex(&mutex->value, shared, 1);
530    }
531}
532
533/* This common inlined function is used to increment the counter of an
534 * errorcheck or recursive mutex.
535 *
536 * For errorcheck mutexes, it will return EDEADLK
537 * If the counter overflows, it will return EAGAIN
538 * Otherwise, it atomically increments the counter and returns 0
539 * after providing an acquire barrier.
540 *
541 * mtype is the current mutex type
542 * mvalue is the current mutex value (already loaded)
543 * mutex pointers to the mutex.
544 */
545static __inline__ __attribute__((always_inline)) int
546_recursive_increment(pthread_mutex_t* mutex, int mvalue, int mtype)
547{
548    if (mtype == MUTEX_TYPE_BITS_ERRORCHECK) {
549        /* trying to re-lock a mutex we already acquired */
550        return EDEADLK;
551    }
552
553    /* Detect recursive lock overflow and return EAGAIN.
554     * This is safe because only the owner thread can modify the
555     * counter bits in the mutex value.
556     */
557    if (MUTEX_COUNTER_BITS_WILL_OVERFLOW(mvalue)) {
558        return EAGAIN;
559    }
560
561    /* We own the mutex, but other threads are able to change
562     * the lower bits (e.g. promoting it to "contended"), so we
563     * need to use an atomic cmpxchg loop to update the counter.
564     */
565    for (;;) {
566        /* increment counter, overflow was already checked */
567        int newval = mvalue + MUTEX_COUNTER_BITS_ONE;
568        if (__predict_true(__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0)) {
569            /* mutex is still locked, not need for a memory barrier */
570            return 0;
571        }
572        /* the value was changed, this happens when another thread changes
573         * the lower state bits from 1 to 2 to indicate contention. This
574         * cannot change the counter, so simply reload and try again.
575         */
576        mvalue = mutex->value;
577    }
578}
579
580__LIBC_HIDDEN__
581int pthread_mutex_lock_impl(pthread_mutex_t *mutex)
582{
583    int mvalue, mtype, tid, shared;
584
585    if (__predict_false(mutex == NULL))
586        return EINVAL;
587
588    mvalue = mutex->value;
589    mtype = (mvalue & MUTEX_TYPE_MASK);
590    shared = (mvalue & MUTEX_SHARED_MASK);
591
592    /* Handle normal case first */
593    if ( __predict_true(mtype == MUTEX_TYPE_BITS_NORMAL) ) {
594        _normal_lock(mutex, shared);
595        return 0;
596    }
597
598    /* Do we already own this recursive or error-check mutex ? */
599    tid = __get_thread()->tid;
600    if ( tid == MUTEX_OWNER_FROM_BITS(mvalue) )
601        return _recursive_increment(mutex, mvalue, mtype);
602
603    /* Add in shared state to avoid extra 'or' operations below */
604    mtype |= shared;
605
606    /* First, if the mutex is unlocked, try to quickly acquire it.
607     * In the optimistic case where this works, set the state to 1 to
608     * indicate locked with no contention */
609    if (mvalue == mtype) {
610        int newval = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
611        if (__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0) {
612            ANDROID_MEMBAR_FULL();
613            return 0;
614        }
615        /* argh, the value changed, reload before entering the loop */
616        mvalue = mutex->value;
617    }
618
619    for (;;) {
620        int newval;
621
622        /* if the mutex is unlocked, its value should be 'mtype' and
623         * we try to acquire it by setting its owner and state atomically.
624         * NOTE: We put the state to 2 since we _know_ there is contention
625         * when we are in this loop. This ensures all waiters will be
626         * unlocked.
627         */
628        if (mvalue == mtype) {
629            newval = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_CONTENDED;
630            /* TODO: Change this to __bionic_cmpxchg_acquire when we
631             *        implement it to get rid of the explicit memory
632             *        barrier below.
633             */
634            if (__predict_false(__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0)) {
635                mvalue = mutex->value;
636                continue;
637            }
638            ANDROID_MEMBAR_FULL();
639            return 0;
640        }
641
642        /* the mutex is already locked by another thread, if its state is 1
643         * we will change it to 2 to indicate contention. */
644        if (MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(mvalue)) {
645            newval = MUTEX_STATE_BITS_FLIP_CONTENTION(mvalue); /* locked state 1 => state 2 */
646            if (__predict_false(__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0)) {
647                mvalue = mutex->value;
648                continue;
649            }
650            mvalue = newval;
651        }
652
653        /* wait until the mutex is unlocked */
654        __futex_wait_ex(&mutex->value, shared, mvalue, NULL);
655
656        mvalue = mutex->value;
657    }
658    /* NOTREACHED */
659}
660
661int pthread_mutex_lock(pthread_mutex_t *mutex)
662{
663    int err = pthread_mutex_lock_impl(mutex);
664#ifdef PTHREAD_DEBUG
665    if (PTHREAD_DEBUG_ENABLED) {
666        if (!err) {
667            pthread_debug_mutex_lock_check(mutex);
668        }
669    }
670#endif
671    return err;
672}
673
674__LIBC_HIDDEN__
675int pthread_mutex_unlock_impl(pthread_mutex_t *mutex)
676{
677    int mvalue, mtype, tid, shared;
678
679    if (__predict_false(mutex == NULL))
680        return EINVAL;
681
682    mvalue = mutex->value;
683    mtype  = (mvalue & MUTEX_TYPE_MASK);
684    shared = (mvalue & MUTEX_SHARED_MASK);
685
686    /* Handle common case first */
687    if (__predict_true(mtype == MUTEX_TYPE_BITS_NORMAL)) {
688        _normal_unlock(mutex, shared);
689        return 0;
690    }
691
692    /* Do we already own this recursive or error-check mutex ? */
693    tid = __get_thread()->tid;
694    if ( tid != MUTEX_OWNER_FROM_BITS(mvalue) )
695        return EPERM;
696
697    /* If the counter is > 0, we can simply decrement it atomically.
698     * Since other threads can mutate the lower state bits (and only the
699     * lower state bits), use a cmpxchg to do it.
700     */
701    if (!MUTEX_COUNTER_BITS_IS_ZERO(mvalue)) {
702        for (;;) {
703            int newval = mvalue - MUTEX_COUNTER_BITS_ONE;
704            if (__predict_true(__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0)) {
705                /* success: we still own the mutex, so no memory barrier */
706                return 0;
707            }
708            /* the value changed, so reload and loop */
709            mvalue = mutex->value;
710        }
711    }
712
713    /* the counter is 0, so we're going to unlock the mutex by resetting
714     * its value to 'unlocked'. We need to perform a swap in order
715     * to read the current state, which will be 2 if there are waiters
716     * to awake.
717     *
718     * TODO: Change this to __bionic_swap_release when we implement it
719     *        to get rid of the explicit memory barrier below.
720     */
721    ANDROID_MEMBAR_FULL();  /* RELEASE BARRIER */
722    mvalue = __bionic_swap(mtype | shared | MUTEX_STATE_BITS_UNLOCKED, &mutex->value);
723
724    /* Wake one waiting thread, if any */
725    if (MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(mvalue)) {
726        __futex_wake_ex(&mutex->value, shared, 1);
727    }
728    return 0;
729}
730
731int pthread_mutex_unlock(pthread_mutex_t *mutex)
732{
733#ifdef PTHREAD_DEBUG
734    if (PTHREAD_DEBUG_ENABLED) {
735        pthread_debug_mutex_unlock_check(mutex);
736    }
737#endif
738    return pthread_mutex_unlock_impl(mutex);
739}
740
741__LIBC_HIDDEN__
742int pthread_mutex_trylock_impl(pthread_mutex_t *mutex)
743{
744    int mvalue, mtype, tid, shared;
745
746    if (__predict_false(mutex == NULL))
747        return EINVAL;
748
749    mvalue = mutex->value;
750    mtype  = (mvalue & MUTEX_TYPE_MASK);
751    shared = (mvalue & MUTEX_SHARED_MASK);
752
753    /* Handle common case first */
754    if ( __predict_true(mtype == MUTEX_TYPE_BITS_NORMAL) )
755    {
756        if (__bionic_cmpxchg(shared|MUTEX_STATE_BITS_UNLOCKED,
757                             shared|MUTEX_STATE_BITS_LOCKED_UNCONTENDED,
758                             &mutex->value) == 0) {
759            ANDROID_MEMBAR_FULL();
760            return 0;
761        }
762
763        return EBUSY;
764    }
765
766    /* Do we already own this recursive or error-check mutex ? */
767    tid = __get_thread()->tid;
768    if ( tid == MUTEX_OWNER_FROM_BITS(mvalue) )
769        return _recursive_increment(mutex, mvalue, mtype);
770
771    /* Same as pthread_mutex_lock, except that we don't want to wait, and
772     * the only operation that can succeed is a single cmpxchg to acquire the
773     * lock if it is released / not owned by anyone. No need for a complex loop.
774     */
775    mtype |= shared | MUTEX_STATE_BITS_UNLOCKED;
776    mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
777
778    if (__predict_true(__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0)) {
779        ANDROID_MEMBAR_FULL();
780        return 0;
781    }
782
783    return EBUSY;
784}
785
786int pthread_mutex_trylock(pthread_mutex_t *mutex)
787{
788    int err = pthread_mutex_trylock_impl(mutex);
789#ifdef PTHREAD_DEBUG
790    if (PTHREAD_DEBUG_ENABLED) {
791        if (!err) {
792            pthread_debug_mutex_lock_check(mutex);
793        }
794    }
795#endif
796    return err;
797}
798
799/* initialize 'ts' with the difference between 'abstime' and the current time
800 * according to 'clock'. Returns -1 if abstime already expired, or 0 otherwise.
801 */
802static int
803__timespec_to_absolute(struct timespec*  ts, const struct timespec*  abstime, clockid_t  clock)
804{
805    clock_gettime(clock, ts);
806    ts->tv_sec  = abstime->tv_sec - ts->tv_sec;
807    ts->tv_nsec = abstime->tv_nsec - ts->tv_nsec;
808    if (ts->tv_nsec < 0) {
809        ts->tv_sec--;
810        ts->tv_nsec += 1000000000;
811    }
812    if ((ts->tv_nsec < 0) || (ts->tv_sec < 0))
813        return -1;
814
815    return 0;
816}
817
818/* initialize 'abstime' to the current time according to 'clock' plus 'msecs'
819 * milliseconds.
820 */
821static void
822__timespec_to_relative_msec(struct timespec*  abstime, unsigned  msecs, clockid_t  clock)
823{
824    clock_gettime(clock, abstime);
825    abstime->tv_sec  += msecs/1000;
826    abstime->tv_nsec += (msecs%1000)*1000000;
827    if (abstime->tv_nsec >= 1000000000) {
828        abstime->tv_sec++;
829        abstime->tv_nsec -= 1000000000;
830    }
831}
832
833__LIBC_HIDDEN__
834int pthread_mutex_lock_timeout_np_impl(pthread_mutex_t *mutex, unsigned msecs)
835{
836    clockid_t        clock = CLOCK_MONOTONIC;
837    struct timespec  abstime;
838    struct timespec  ts;
839    int               mvalue, mtype, tid, shared;
840
841    /* compute absolute expiration time */
842    __timespec_to_relative_msec(&abstime, msecs, clock);
843
844    if (__predict_false(mutex == NULL))
845        return EINVAL;
846
847    mvalue = mutex->value;
848    mtype  = (mvalue & MUTEX_TYPE_MASK);
849    shared = (mvalue & MUTEX_SHARED_MASK);
850
851    /* Handle common case first */
852    if ( __predict_true(mtype == MUTEX_TYPE_BITS_NORMAL) )
853    {
854        const int unlocked           = shared | MUTEX_STATE_BITS_UNLOCKED;
855        const int locked_uncontended = shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
856        const int locked_contended   = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED;
857
858        /* fast path for uncontended lock. Note: MUTEX_TYPE_BITS_NORMAL is 0 */
859        if (__bionic_cmpxchg(unlocked, locked_uncontended, &mutex->value) == 0) {
860            ANDROID_MEMBAR_FULL();
861            return 0;
862        }
863
864        /* loop while needed */
865        while (__bionic_swap(locked_contended, &mutex->value) != unlocked) {
866            if (__timespec_to_absolute(&ts, &abstime, clock) < 0)
867                return EBUSY;
868
869            __futex_wait_ex(&mutex->value, shared, locked_contended, &ts);
870        }
871        ANDROID_MEMBAR_FULL();
872        return 0;
873    }
874
875    /* Do we already own this recursive or error-check mutex ? */
876    tid = __get_thread()->tid;
877    if ( tid == MUTEX_OWNER_FROM_BITS(mvalue) )
878        return _recursive_increment(mutex, mvalue, mtype);
879
880    /* the following implements the same loop than pthread_mutex_lock_impl
881     * but adds checks to ensure that the operation never exceeds the
882     * absolute expiration time.
883     */
884    mtype |= shared;
885
886    /* first try a quick lock */
887    if (mvalue == mtype) {
888        mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
889        if (__predict_true(__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0)) {
890            ANDROID_MEMBAR_FULL();
891            return 0;
892        }
893        mvalue = mutex->value;
894    }
895
896    for (;;) {
897        struct timespec ts;
898
899        /* if the value is 'unlocked', try to acquire it directly */
900        /* NOTE: put state to 2 since we know there is contention */
901        if (mvalue == mtype) /* unlocked */ {
902            mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_CONTENDED;
903            if (__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0) {
904                ANDROID_MEMBAR_FULL();
905                return 0;
906            }
907            /* the value changed before we could lock it. We need to check
908             * the time to avoid livelocks, reload the value, then loop again. */
909            if (__timespec_to_absolute(&ts, &abstime, clock) < 0)
910                return EBUSY;
911
912            mvalue = mutex->value;
913            continue;
914        }
915
916        /* The value is locked. If 'uncontended', try to switch its state
917         * to 'contented' to ensure we get woken up later. */
918        if (MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(mvalue)) {
919            int newval = MUTEX_STATE_BITS_FLIP_CONTENTION(mvalue);
920            if (__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0) {
921                /* this failed because the value changed, reload it */
922                mvalue = mutex->value;
923            } else {
924                /* this succeeded, update mvalue */
925                mvalue = newval;
926            }
927        }
928
929        /* check time and update 'ts' */
930        if (__timespec_to_absolute(&ts, &abstime, clock) < 0)
931            return EBUSY;
932
933        /* Only wait to be woken up if the state is '2', otherwise we'll
934         * simply loop right now. This can happen when the second cmpxchg
935         * in our loop failed because the mutex was unlocked by another
936         * thread.
937         */
938        if (MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(mvalue)) {
939            if (__futex_wait_ex(&mutex->value, shared, mvalue, &ts) == ETIMEDOUT) {
940                return EBUSY;
941            }
942            mvalue = mutex->value;
943        }
944    }
945    /* NOTREACHED */
946}
947
948int pthread_mutex_lock_timeout_np(pthread_mutex_t *mutex, unsigned msecs)
949{
950    int err = pthread_mutex_lock_timeout_np_impl(mutex, msecs);
951#ifdef PTHREAD_DEBUG
952    if (PTHREAD_DEBUG_ENABLED) {
953        if (!err) {
954            pthread_debug_mutex_lock_check(mutex);
955        }
956    }
957#endif
958    return err;
959}
960
961int pthread_mutex_destroy(pthread_mutex_t *mutex)
962{
963    int ret;
964
965    /* use trylock to ensure that the mutex value is
966     * valid and is not already locked. */
967    ret = pthread_mutex_trylock_impl(mutex);
968    if (ret != 0)
969        return ret;
970
971    mutex->value = 0xdead10cc;
972    return 0;
973}
974
975
976
977int pthread_condattr_init(pthread_condattr_t *attr)
978{
979    if (attr == NULL)
980        return EINVAL;
981
982    *attr = PTHREAD_PROCESS_PRIVATE;
983    return 0;
984}
985
986int pthread_condattr_getpshared(pthread_condattr_t *attr, int *pshared)
987{
988    if (attr == NULL || pshared == NULL)
989        return EINVAL;
990
991    *pshared = *attr;
992    return 0;
993}
994
995int pthread_condattr_setpshared(pthread_condattr_t *attr, int pshared)
996{
997    if (attr == NULL)
998        return EINVAL;
999
1000    if (pshared != PTHREAD_PROCESS_SHARED &&
1001        pshared != PTHREAD_PROCESS_PRIVATE)
1002        return EINVAL;
1003
1004    *attr = pshared;
1005    return 0;
1006}
1007
1008int pthread_condattr_destroy(pthread_condattr_t *attr)
1009{
1010    if (attr == NULL)
1011        return EINVAL;
1012
1013    *attr = 0xdeada11d;
1014    return 0;
1015}
1016
1017/* We use one bit in condition variable values as the 'shared' flag
1018 * The rest is a counter.
1019 */
1020#define COND_SHARED_MASK        0x0001
1021#define COND_COUNTER_INCREMENT  0x0002
1022#define COND_COUNTER_MASK       (~COND_SHARED_MASK)
1023
1024#define COND_IS_SHARED(c)  (((c)->value & COND_SHARED_MASK) != 0)
1025
1026/* XXX *technically* there is a race condition that could allow
1027 * XXX a signal to be missed.  If thread A is preempted in _wait()
1028 * XXX after unlocking the mutex and before waiting, and if other
1029 * XXX threads call signal or broadcast UINT_MAX/2 times (exactly),
1030 * XXX before thread A is scheduled again and calls futex_wait(),
1031 * XXX then the signal will be lost.
1032 */
1033
1034int pthread_cond_init(pthread_cond_t *cond,
1035                      const pthread_condattr_t *attr)
1036{
1037    if (cond == NULL)
1038        return EINVAL;
1039
1040    cond->value = 0;
1041
1042    if (attr != NULL && *attr == PTHREAD_PROCESS_SHARED)
1043        cond->value |= COND_SHARED_MASK;
1044
1045    return 0;
1046}
1047
1048int pthread_cond_destroy(pthread_cond_t *cond)
1049{
1050    if (cond == NULL)
1051        return EINVAL;
1052
1053    cond->value = 0xdeadc04d;
1054    return 0;
1055}
1056
1057/* This function is used by pthread_cond_broadcast and
1058 * pthread_cond_signal to atomically decrement the counter
1059 * then wake-up 'counter' threads.
1060 */
1061static int
1062__pthread_cond_pulse(pthread_cond_t *cond, int  counter)
1063{
1064    long flags;
1065
1066    if (__predict_false(cond == NULL))
1067        return EINVAL;
1068
1069    flags = (cond->value & ~COND_COUNTER_MASK);
1070    for (;;) {
1071        long oldval = cond->value;
1072        long newval = ((oldval - COND_COUNTER_INCREMENT) & COND_COUNTER_MASK)
1073                      | flags;
1074        if (__bionic_cmpxchg(oldval, newval, &cond->value) == 0)
1075            break;
1076    }
1077
1078    /*
1079     * Ensure that all memory accesses previously made by this thread are
1080     * visible to the woken thread(s).  On the other side, the "wait"
1081     * code will issue any necessary barriers when locking the mutex.
1082     *
1083     * This may not strictly be necessary -- if the caller follows
1084     * recommended practice and holds the mutex before signaling the cond
1085     * var, the mutex ops will provide correct semantics.  If they don't
1086     * hold the mutex, they're subject to race conditions anyway.
1087     */
1088    ANDROID_MEMBAR_FULL();
1089
1090    __futex_wake_ex(&cond->value, COND_IS_SHARED(cond), counter);
1091    return 0;
1092}
1093
1094int pthread_cond_broadcast(pthread_cond_t *cond)
1095{
1096    return __pthread_cond_pulse(cond, INT_MAX);
1097}
1098
1099int pthread_cond_signal(pthread_cond_t *cond)
1100{
1101    return __pthread_cond_pulse(cond, 1);
1102}
1103
1104int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex)
1105{
1106    return pthread_cond_timedwait(cond, mutex, NULL);
1107}
1108
1109int __pthread_cond_timedwait_relative(pthread_cond_t *cond,
1110                                      pthread_mutex_t * mutex,
1111                                      const struct timespec *reltime)
1112{
1113    int  status;
1114    int  oldvalue = cond->value;
1115
1116    pthread_mutex_unlock(mutex);
1117    status = __futex_wait_ex(&cond->value, COND_IS_SHARED(cond), oldvalue, reltime);
1118    pthread_mutex_lock(mutex);
1119
1120    if (status == (-ETIMEDOUT)) return ETIMEDOUT;
1121    return 0;
1122}
1123
1124int __pthread_cond_timedwait(pthread_cond_t *cond,
1125                             pthread_mutex_t * mutex,
1126                             const struct timespec *abstime,
1127                             clockid_t clock)
1128{
1129    struct timespec ts;
1130    struct timespec * tsp;
1131
1132    if (abstime != NULL) {
1133        if (__timespec_to_absolute(&ts, abstime, clock) < 0)
1134            return ETIMEDOUT;
1135        tsp = &ts;
1136    } else {
1137        tsp = NULL;
1138    }
1139
1140    return __pthread_cond_timedwait_relative(cond, mutex, tsp);
1141}
1142
1143int pthread_cond_timedwait(pthread_cond_t *cond,
1144                           pthread_mutex_t * mutex,
1145                           const struct timespec *abstime)
1146{
1147    return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_REALTIME);
1148}
1149
1150
1151/* this one exists only for backward binary compatibility */
1152int pthread_cond_timedwait_monotonic(pthread_cond_t *cond,
1153                                     pthread_mutex_t * mutex,
1154                                     const struct timespec *abstime)
1155{
1156    return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_MONOTONIC);
1157}
1158
1159int pthread_cond_timedwait_monotonic_np(pthread_cond_t *cond,
1160                                     pthread_mutex_t * mutex,
1161                                     const struct timespec *abstime)
1162{
1163    return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_MONOTONIC);
1164}
1165
1166int pthread_cond_timedwait_relative_np(pthread_cond_t *cond,
1167                                      pthread_mutex_t * mutex,
1168                                      const struct timespec *reltime)
1169{
1170    return __pthread_cond_timedwait_relative(cond, mutex, reltime);
1171}
1172
1173int pthread_cond_timeout_np(pthread_cond_t *cond,
1174                            pthread_mutex_t * mutex,
1175                            unsigned msecs)
1176{
1177    struct timespec ts;
1178
1179    ts.tv_sec = msecs / 1000;
1180    ts.tv_nsec = (msecs % 1000) * 1000000;
1181
1182    return __pthread_cond_timedwait_relative(cond, mutex, &ts);
1183}
1184
1185
1186/* NOTE: this implementation doesn't support a init function that throws a C++ exception
1187 *       or calls fork()
1188 */
1189int pthread_once( pthread_once_t*  once_control,  void (*init_routine)(void) )
1190{
1191    volatile pthread_once_t* ocptr = once_control;
1192
1193    /* PTHREAD_ONCE_INIT is 0, we use the following bit flags
1194     *
1195     *   bit 0 set  -> initialization is under way
1196     *   bit 1 set  -> initialization is complete
1197     */
1198#define ONCE_INITIALIZING           (1 << 0)
1199#define ONCE_COMPLETED              (1 << 1)
1200
1201    /* First check if the once is already initialized. This will be the common
1202    * case and we want to make this as fast as possible. Note that this still
1203    * requires a load_acquire operation here to ensure that all the
1204    * stores performed by the initialization function are observable on
1205    * this CPU after we exit.
1206    */
1207    if (__predict_true((*ocptr & ONCE_COMPLETED) != 0)) {
1208        ANDROID_MEMBAR_FULL();
1209        return 0;
1210    }
1211
1212    for (;;) {
1213        /* Try to atomically set the INITIALIZING flag.
1214         * This requires a cmpxchg loop, and we may need
1215         * to exit prematurely if we detect that
1216         * COMPLETED is now set.
1217         */
1218        int32_t  oldval, newval;
1219
1220        do {
1221            oldval = *ocptr;
1222            if ((oldval & ONCE_COMPLETED) != 0)
1223                break;
1224
1225            newval = oldval | ONCE_INITIALIZING;
1226        } while (__bionic_cmpxchg(oldval, newval, ocptr) != 0);
1227
1228        if ((oldval & ONCE_COMPLETED) != 0) {
1229            /* We detected that COMPLETED was set while in our loop */
1230            ANDROID_MEMBAR_FULL();
1231            return 0;
1232        }
1233
1234        if ((oldval & ONCE_INITIALIZING) == 0) {
1235            /* We got there first, we can jump out of the loop to
1236             * handle the initialization */
1237            break;
1238        }
1239
1240        /* Another thread is running the initialization and hasn't completed
1241         * yet, so wait for it, then try again. */
1242        __futex_wait_ex(ocptr, 0, oldval, NULL);
1243    }
1244
1245    /* call the initialization function. */
1246    (*init_routine)();
1247
1248    /* Do a store_release indicating that initialization is complete */
1249    ANDROID_MEMBAR_FULL();
1250    *ocptr = ONCE_COMPLETED;
1251
1252    /* Wake up any waiters, if any */
1253    __futex_wake_ex(ocptr, 0, INT_MAX);
1254
1255    return 0;
1256}
1257
1258pid_t __pthread_gettid(pthread_t thid) {
1259  pthread_internal_t* thread = (pthread_internal_t*) thid;
1260  return thread->tid;
1261}
1262
1263int __pthread_settid(pthread_t thid, pid_t tid) {
1264  if (thid == 0) {
1265      return EINVAL;
1266  }
1267
1268  pthread_internal_t* thread = (pthread_internal_t*) thid;
1269  thread->tid = tid;
1270
1271  return 0;
1272}
1273