1// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3// http://code.google.com/p/ceres-solver/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9//   this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11//   this list of conditions and the following disclaimer in the documentation
12//   and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14//   used to endorse or promote products derived from this software without
15//   specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: keir@google.com (Keir Mierle)
30//
31// Computation of the Jacobian matrix for vector-valued functions of multiple
32// variables, using automatic differentiation based on the implementation of
33// dual numbers in jet.h. Before reading the rest of this file, it is adivsable
34// to read jet.h's header comment in detail.
35//
36// The helper wrapper AutoDiff::Differentiate() computes the jacobian of
37// functors with templated operator() taking this form:
38//
39//   struct F {
40//     template<typename T>
41//     bool operator()(const T *x, const T *y, ..., T *z) {
42//       // Compute z[] based on x[], y[], ...
43//       // return true if computation succeeded, false otherwise.
44//     }
45//   };
46//
47// All inputs and outputs may be vector-valued.
48//
49// To understand how jets are used to compute the jacobian, a
50// picture may help. Consider a vector-valued function, F, returning 3
51// dimensions and taking a vector-valued parameter of 4 dimensions:
52//
53//     y            x
54//   [ * ]    F   [ * ]
55//   [ * ]  <---  [ * ]
56//   [ * ]        [ * ]
57//                [ * ]
58//
59// Similar to the 2-parameter example for f described in jet.h, computing the
60// jacobian dy/dx is done by substutiting a suitable jet object for x and all
61// intermediate steps of the computation of F. Since x is has 4 dimensions, use
62// a Jet<double, 4>.
63//
64// Before substituting a jet object for x, the dual components are set
65// appropriately for each dimension of x:
66//
67//          y                       x
68//   [ * | * * * * ]    f   [ * | 1 0 0 0 ]   x0
69//   [ * | * * * * ]  <---  [ * | 0 1 0 0 ]   x1
70//   [ * | * * * * ]        [ * | 0 0 1 0 ]   x2
71//         ---+---          [ * | 0 0 0 1 ]   x3
72//            |                   ^ ^ ^ ^
73//          dy/dx                 | | | +----- infinitesimal for x3
74//                                | | +------- infinitesimal for x2
75//                                | +--------- infinitesimal for x1
76//                                +----------- infinitesimal for x0
77//
78// The reason to set the internal 4x4 submatrix to the identity is that we wish
79// to take the derivative of y separately with respect to each dimension of x.
80// Each column of the 4x4 identity is therefore for a single component of the
81// independent variable x.
82//
83// Then the jacobian of the mapping, dy/dx, is the 3x4 sub-matrix of the
84// extended y vector, indicated in the above diagram.
85//
86// Functors with multiple parameters
87// ---------------------------------
88// In practice, it is often convenient to use a function f of two or more
89// vector-valued parameters, for example, x[3] and z[6]. Unfortunately, the jet
90// framework is designed for a single-parameter vector-valued input. The wrapper
91// in this file addresses this issue adding support for functions with one or
92// more parameter vectors.
93//
94// To support multiple parameters, all the parameter vectors are concatenated
95// into one and treated as a single parameter vector, except that since the
96// functor expects different inputs, we need to construct the jets as if they
97// were part of a single parameter vector. The extended jets are passed
98// separately for each parameter.
99//
100// For example, consider a functor F taking two vector parameters, p[2] and
101// q[3], and producing an output y[4]:
102//
103//   struct F {
104//     template<typename T>
105//     bool operator()(const T *p, const T *q, T *z) {
106//       // ...
107//     }
108//   };
109//
110// In this case, the necessary jet type is Jet<double, 5>. Here is a
111// visualization of the jet objects in this case:
112//
113//          Dual components for p ----+
114//                                    |
115//                                   -+-
116//           y                 [ * | 1 0 | 0 0 0 ]    --- p[0]
117//                             [ * | 0 1 | 0 0 0 ]    --- p[1]
118//   [ * | . . | + + + ]         |
119//   [ * | . . | + + + ]         v
120//   [ * | . . | + + + ]  <--- F(p, q)
121//   [ * | . . | + + + ]            ^
122//         ^^^   ^^^^^              |
123//        dy/dp  dy/dq            [ * | 0 0 | 1 0 0 ] --- q[0]
124//                                [ * | 0 0 | 0 1 0 ] --- q[1]
125//                                [ * | 0 0 | 0 0 1 ] --- q[2]
126//                                            --+--
127//                                              |
128//          Dual components for q --------------+
129//
130// where the 4x2 submatrix (marked with ".") and 4x3 submatrix (marked with "+"
131// of y in the above diagram are the derivatives of y with respect to p and q
132// respectively. This is how autodiff works for functors taking multiple vector
133// valued arguments (up to 6).
134//
135// Jacobian NULL pointers
136// ----------------------
137// In general, the functions below will accept NULL pointers for all or some of
138// the Jacobian parameters, meaning that those Jacobians will not be computed.
139
140#ifndef CERES_PUBLIC_INTERNAL_AUTODIFF_H_
141#define CERES_PUBLIC_INTERNAL_AUTODIFF_H_
142
143#include <stddef.h>
144
145#include "ceres/jet.h"
146#include "ceres/internal/eigen.h"
147#include "ceres/internal/fixed_array.h"
148#include "ceres/internal/variadic_evaluate.h"
149#include "glog/logging.h"
150
151namespace ceres {
152namespace internal {
153
154// Extends src by a 1st order pertubation for every dimension and puts it in
155// dst. The size of src is N. Since this is also used for perturbations in
156// blocked arrays, offset is used to shift which part of the jet the
157// perturbation occurs. This is used to set up the extended x augmented by an
158// identity matrix. The JetT type should be a Jet type, and T should be a
159// numeric type (e.g. double). For example,
160//
161//             0   1 2   3 4 5   6 7 8
162//   dst[0]  [ * | . . | 1 0 0 | . . . ]
163//   dst[1]  [ * | . . | 0 1 0 | . . . ]
164//   dst[2]  [ * | . . | 0 0 1 | . . . ]
165//
166// is what would get put in dst if N was 3, offset was 3, and the jet type JetT
167// was 8-dimensional.
168template <typename JetT, typename T, int N>
169inline void Make1stOrderPerturbation(int offset, const T* src, JetT* dst) {
170  DCHECK(src);
171  DCHECK(dst);
172  for (int j = 0; j < N; ++j) {
173    dst[j].a = src[j];
174    dst[j].v.setZero();
175    dst[j].v[offset + j] = 1.0;
176  }
177}
178
179// Takes the 0th order part of src, assumed to be a Jet type, and puts it in
180// dst. This is used to pick out the "vector" part of the extended y.
181template <typename JetT, typename T>
182inline void Take0thOrderPart(int M, const JetT *src, T dst) {
183  DCHECK(src);
184  for (int i = 0; i < M; ++i) {
185    dst[i] = src[i].a;
186  }
187}
188
189// Takes N 1st order parts, starting at index N0, and puts them in the M x N
190// matrix 'dst'. This is used to pick out the "matrix" parts of the extended y.
191template <typename JetT, typename T, int N0, int N>
192inline void Take1stOrderPart(const int M, const JetT *src, T *dst) {
193  DCHECK(src);
194  DCHECK(dst);
195  for (int i = 0; i < M; ++i) {
196    Eigen::Map<Eigen::Matrix<T, N, 1> >(dst + N * i, N) =
197        src[i].v.template segment<N>(N0);
198  }
199}
200
201// This is in a struct because default template parameters on a
202// function are not supported in C++03 (though it is available in
203// C++0x). N0 through N5 are the dimension of the input arguments to
204// the user supplied functor.
205template <typename Functor, typename T,
206          int N0 = 0, int N1 = 0, int N2 = 0, int N3 = 0, int N4 = 0,
207          int N5 = 0, int N6 = 0, int N7 = 0, int N8 = 0, int N9 = 0>
208struct AutoDiff {
209  static bool Differentiate(const Functor& functor,
210                            T const *const *parameters,
211                            int num_outputs,
212                            T *function_value,
213                            T **jacobians) {
214    // This block breaks the 80 column rule to keep it somewhat readable.
215    DCHECK_GT(num_outputs, 0);
216    DCHECK((!N1 && !N2 && !N3 && !N4 && !N5 && !N6 && !N7 && !N8 && !N9) ||
217          ((N1 > 0) && !N2 && !N3 && !N4 && !N5 && !N6 && !N7 && !N8 && !N9) ||
218          ((N1 > 0) && (N2 > 0) && !N3 && !N4 && !N5 && !N6 && !N7 && !N8 && !N9) ||
219          ((N1 > 0) && (N2 > 0) && (N3 > 0) && !N4 && !N5 && !N6 && !N7 && !N8 && !N9) ||
220          ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && !N5 && !N6 && !N7 && !N8 && !N9) ||
221          ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && !N6 && !N7 && !N8 && !N9) ||
222          ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && (N6 > 0) && !N7 && !N8 && !N9) ||
223          ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && (N6 > 0) && (N7 > 0) && !N8 && !N9) ||
224          ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && (N6 > 0) && (N7 > 0) && (N8 > 0) && !N9) ||
225          ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && (N6 > 0) && (N7 > 0) && (N8 > 0) && (N9 > 0)))
226        << "Zero block cannot precede a non-zero block. Block sizes are "
227        << "(ignore trailing 0s): " << N0 << ", " << N1 << ", " << N2 << ", "
228        << N3 << ", " << N4 << ", " << N5 << ", " << N6 << ", " << N7 << ", "
229        << N8 << ", " << N9;
230
231    typedef Jet<T, N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 + N9> JetT;
232    FixedArray<JetT, (256 * 7) / sizeof(JetT)> x(
233        N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 + N9 + num_outputs);
234
235    // These are the positions of the respective jets in the fixed array x.
236    const int jet0  = 0;
237    const int jet1  = N0;
238    const int jet2  = N0 + N1;
239    const int jet3  = N0 + N1 + N2;
240    const int jet4  = N0 + N1 + N2 + N3;
241    const int jet5  = N0 + N1 + N2 + N3 + N4;
242    const int jet6  = N0 + N1 + N2 + N3 + N4 + N5;
243    const int jet7  = N0 + N1 + N2 + N3 + N4 + N5 + N6;
244    const int jet8  = N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7;
245    const int jet9  = N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8;
246
247    const JetT *unpacked_parameters[10] = {
248        x.get() + jet0,
249        x.get() + jet1,
250        x.get() + jet2,
251        x.get() + jet3,
252        x.get() + jet4,
253        x.get() + jet5,
254        x.get() + jet6,
255        x.get() + jet7,
256        x.get() + jet8,
257        x.get() + jet9,
258    };
259
260    JetT* output = x.get() + N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 + N9;
261
262#define CERES_MAKE_1ST_ORDER_PERTURBATION(i)                            \
263    if (N ## i) {                                                       \
264      internal::Make1stOrderPerturbation<JetT, T, N ## i>(              \
265          jet ## i,                                                     \
266          parameters[i],                                                \
267          x.get() + jet ## i);                                          \
268    }
269    CERES_MAKE_1ST_ORDER_PERTURBATION(0);
270    CERES_MAKE_1ST_ORDER_PERTURBATION(1);
271    CERES_MAKE_1ST_ORDER_PERTURBATION(2);
272    CERES_MAKE_1ST_ORDER_PERTURBATION(3);
273    CERES_MAKE_1ST_ORDER_PERTURBATION(4);
274    CERES_MAKE_1ST_ORDER_PERTURBATION(5);
275    CERES_MAKE_1ST_ORDER_PERTURBATION(6);
276    CERES_MAKE_1ST_ORDER_PERTURBATION(7);
277    CERES_MAKE_1ST_ORDER_PERTURBATION(8);
278    CERES_MAKE_1ST_ORDER_PERTURBATION(9);
279#undef CERES_MAKE_1ST_ORDER_PERTURBATION
280
281    if (!VariadicEvaluate<Functor, JetT,
282                          N0, N1, N2, N3, N4, N5, N6, N7, N8, N9>::Call(
283        functor, unpacked_parameters, output)) {
284      return false;
285    }
286
287    internal::Take0thOrderPart(num_outputs, output, function_value);
288
289#define CERES_TAKE_1ST_ORDER_PERTURBATION(i) \
290    if (N ## i) { \
291      if (jacobians[i]) { \
292        internal::Take1stOrderPart<JetT, T, \
293                                   jet ## i, \
294                                   N ## i>(num_outputs, \
295                                           output, \
296                                           jacobians[i]); \
297      } \
298    }
299    CERES_TAKE_1ST_ORDER_PERTURBATION(0);
300    CERES_TAKE_1ST_ORDER_PERTURBATION(1);
301    CERES_TAKE_1ST_ORDER_PERTURBATION(2);
302    CERES_TAKE_1ST_ORDER_PERTURBATION(3);
303    CERES_TAKE_1ST_ORDER_PERTURBATION(4);
304    CERES_TAKE_1ST_ORDER_PERTURBATION(5);
305    CERES_TAKE_1ST_ORDER_PERTURBATION(6);
306    CERES_TAKE_1ST_ORDER_PERTURBATION(7);
307    CERES_TAKE_1ST_ORDER_PERTURBATION(8);
308    CERES_TAKE_1ST_ORDER_PERTURBATION(9);
309#undef CERES_TAKE_1ST_ORDER_PERTURBATION
310    return true;
311  }
312};
313
314}  // namespace internal
315}  // namespace ceres
316
317#endif  // CERES_PUBLIC_INTERNAL_AUTODIFF_H_
318