1// Copyright (c) 2011 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5// Weak pointers help in cases where you have many objects referring back to a
6// shared object and you wish for the lifetime of the shared object to not be
7// bound to the lifetime of the referrers.  In other words, this is useful when
8// reference counting is not a good fit.
9//
10// A common alternative to weak pointers is to have the shared object hold a
11// list of all referrers, and then when the shared object is destroyed, it
12// calls a method on the referrers to tell them to drop their references.  This
13// approach also requires the referrers to tell the shared object when they get
14// destroyed so that the shared object can remove the referrer from its list of
15// referrers.  Such a solution works, but it is a bit complex.
16//
17// EXAMPLE:
18//
19//  class Controller : public SupportsWeakPtr<Controller> {
20//   public:
21//    void SpawnWorker() { Worker::StartNew(AsWeakPtr()); }
22//    void WorkComplete(const Result& result) { ... }
23//  };
24//
25//  class Worker {
26//   public:
27//    static void StartNew(const WeakPtr<Controller>& controller) {
28//      Worker* worker = new Worker(controller);
29//      // Kick off asynchronous processing...
30//    }
31//   private:
32//    Worker(const WeakPtr<Controller>& controller)
33//        : controller_(controller) {}
34//    void DidCompleteAsynchronousProcessing(const Result& result) {
35//      if (controller_)
36//        controller_->WorkComplete(result);
37//    }
38//    WeakPtr<Controller> controller_;
39//  };
40//
41// Given the above classes, a consumer may allocate a Controller object, call
42// SpawnWorker several times, and then destroy the Controller object before all
43// of the workers have completed.  Because the Worker class only holds a weak
44// pointer to the Controller, we don't have to worry about the Worker
45// dereferencing the Controller back pointer after the Controller has been
46// destroyed.
47//
48// WARNING: weak pointers are not threadsafe!!!  You must only use a WeakPtr
49// instance on thread where it was created.
50
51#ifndef BASE_MEMORY_WEAK_PTR_H_
52#define BASE_MEMORY_WEAK_PTR_H_
53#pragma once
54
55#include "base/base_api.h"
56#include "base/logging.h"
57#include "base/memory/ref_counted.h"
58#include "base/threading/thread_checker.h"
59
60namespace base {
61
62namespace internal {
63// These classes are part of the WeakPtr implementation.
64// DO NOT USE THESE CLASSES DIRECTLY YOURSELF.
65
66class BASE_API WeakReference {
67 public:
68  // While Flag is bound to a specific thread, it may be deleted from another
69  // via base::WeakPtr::~WeakPtr().
70  class Flag : public RefCountedThreadSafe<Flag> {
71   public:
72    explicit Flag(Flag** handle);
73
74    void Invalidate();
75    bool IsValid() const;
76
77    void DetachFromThread() { thread_checker_.DetachFromThread(); }
78
79   private:
80    friend class base::RefCountedThreadSafe<Flag>;
81
82    ~Flag();
83
84    ThreadChecker thread_checker_;
85    Flag** handle_;
86  };
87
88  WeakReference();
89  WeakReference(Flag* flag);
90  ~WeakReference();
91
92  bool is_valid() const;
93
94 private:
95  scoped_refptr<Flag> flag_;
96};
97
98class BASE_API WeakReferenceOwner {
99 public:
100  WeakReferenceOwner();
101  ~WeakReferenceOwner();
102
103  WeakReference GetRef() const;
104
105  bool HasRefs() const {
106    return flag_ != NULL;
107  }
108
109  void Invalidate();
110
111  // Indicates that this object will be used on another thread from now on.
112  void DetachFromThread() {
113    if (flag_) flag_->DetachFromThread();
114  }
115
116 private:
117  mutable WeakReference::Flag* flag_;
118};
119
120// This class simplifies the implementation of WeakPtr's type conversion
121// constructor by avoiding the need for a public accessor for ref_.  A
122// WeakPtr<T> cannot access the private members of WeakPtr<U>, so this
123// base class gives us a way to access ref_ in a protected fashion.
124class BASE_API WeakPtrBase {
125 public:
126  WeakPtrBase();
127  ~WeakPtrBase();
128
129 protected:
130  WeakPtrBase(const WeakReference& ref);
131
132  WeakReference ref_;
133};
134
135}  // namespace internal
136
137template <typename T> class SupportsWeakPtr;
138template <typename T> class WeakPtrFactory;
139
140// The WeakPtr class holds a weak reference to |T*|.
141//
142// This class is designed to be used like a normal pointer.  You should always
143// null-test an object of this class before using it or invoking a method that
144// may result in the underlying object being destroyed.
145//
146// EXAMPLE:
147//
148//   class Foo { ... };
149//   WeakPtr<Foo> foo;
150//   if (foo)
151//     foo->method();
152//
153template <typename T>
154class WeakPtr : public internal::WeakPtrBase {
155 public:
156  WeakPtr() : ptr_(NULL) {
157  }
158
159  // Allow conversion from U to T provided U "is a" T.
160  template <typename U>
161  WeakPtr(const WeakPtr<U>& other) : WeakPtrBase(other), ptr_(other.get()) {
162  }
163
164  T* get() const { return ref_.is_valid() ? ptr_ : NULL; }
165  operator T*() const { return get(); }
166
167  T* operator*() const {
168    DCHECK(get() != NULL);
169    return *get();
170  }
171  T* operator->() const {
172    DCHECK(get() != NULL);
173    return get();
174  }
175
176  void reset() {
177    ref_ = internal::WeakReference();
178    ptr_ = NULL;
179  }
180
181 private:
182  friend class SupportsWeakPtr<T>;
183  friend class WeakPtrFactory<T>;
184
185  WeakPtr(const internal::WeakReference& ref, T* ptr)
186      : WeakPtrBase(ref), ptr_(ptr) {
187  }
188
189  // This pointer is only valid when ref_.is_valid() is true.  Otherwise, its
190  // value is undefined (as opposed to NULL).
191  T* ptr_;
192};
193
194// A class may extend from SupportsWeakPtr to expose weak pointers to itself.
195// This is useful in cases where you want others to be able to get a weak
196// pointer to your class.  It also has the property that you don't need to
197// initialize it from your constructor.
198template <class T>
199class SupportsWeakPtr {
200 public:
201  SupportsWeakPtr() {}
202
203  WeakPtr<T> AsWeakPtr() {
204    return WeakPtr<T>(weak_reference_owner_.GetRef(), static_cast<T*>(this));
205  }
206
207  // Indicates that this object will be used on another thread from now on.
208  void DetachFromThread() {
209    weak_reference_owner_.DetachFromThread();
210  }
211
212 private:
213  internal::WeakReferenceOwner weak_reference_owner_;
214  DISALLOW_COPY_AND_ASSIGN(SupportsWeakPtr);
215};
216
217// A class may alternatively be composed of a WeakPtrFactory and thereby
218// control how it exposes weak pointers to itself.  This is helpful if you only
219// need weak pointers within the implementation of a class.  This class is also
220// useful when working with primitive types.  For example, you could have a
221// WeakPtrFactory<bool> that is used to pass around a weak reference to a bool.
222template <class T>
223class WeakPtrFactory {
224 public:
225  explicit WeakPtrFactory(T* ptr) : ptr_(ptr) {
226  }
227
228  WeakPtr<T> GetWeakPtr() {
229    return WeakPtr<T>(weak_reference_owner_.GetRef(), ptr_);
230  }
231
232  // Call this method to invalidate all existing weak pointers.
233  void InvalidateWeakPtrs() {
234    weak_reference_owner_.Invalidate();
235  }
236
237  // Call this method to determine if any weak pointers exist.
238  bool HasWeakPtrs() const {
239    return weak_reference_owner_.HasRefs();
240  }
241
242  // Indicates that this object will be used on another thread from now on.
243  void DetachFromThread() {
244    weak_reference_owner_.DetachFromThread();
245  }
246
247 private:
248  internal::WeakReferenceOwner weak_reference_owner_;
249  T* ptr_;
250  DISALLOW_IMPLICIT_CONSTRUCTORS(WeakPtrFactory);
251};
252
253}  // namespace base
254
255#endif  // BASE_MEMORY_WEAK_PTR_H_
256