1// Copyright 2009, Google Inc.
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8//     * Redistributions of source code must retain the above copyright
9// notice, this list of conditions and the following disclaimer.
10//     * Redistributions in binary form must reproduce the above
11// copyright notice, this list of conditions and the following disclaimer
12// in the documentation and/or other materials provided with the
13// distribution.
14//     * Neither the name of Google Inc. nor the names of its
15// contributors may be used to endorse or promote products derived from
16// this software without specific prior written permission.
17//
18// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
30#include "googleurl/src/url_canon_ip.h"
31
32#include <stdlib.h>
33
34#include "base/basictypes.h"
35#include "base/logging.h"
36#include "googleurl/src/url_canon_internal.h"
37
38namespace url_canon {
39
40namespace {
41
42// Converts one of the character types that represent a numerical base to the
43// corresponding base.
44int BaseForType(SharedCharTypes type) {
45  switch (type) {
46    case CHAR_HEX:
47      return 16;
48    case CHAR_DEC:
49      return 10;
50    case CHAR_OCT:
51      return 8;
52    default:
53      return 0;
54  }
55}
56
57template<typename CHAR, typename UCHAR>
58bool DoFindIPv4Components(const CHAR* spec,
59                          const url_parse::Component& host,
60                          url_parse::Component components[4]) {
61  if (!host.is_nonempty())
62    return false;
63
64  int cur_component = 0;  // Index of the component we're working on.
65  int cur_component_begin = host.begin;  // Start of the current component.
66  int end = host.end();
67  for (int i = host.begin; /* nothing */; i++) {
68    if (i >= end || spec[i] == '.') {
69      // Found the end of the current component.
70      int component_len = i - cur_component_begin;
71      components[cur_component] =
72          url_parse::Component(cur_component_begin, component_len);
73
74      // The next component starts after the dot.
75      cur_component_begin = i + 1;
76      cur_component++;
77
78      // Don't allow empty components (two dots in a row), except we may
79      // allow an empty component at the end (this would indicate that the
80      // input ends in a dot). We also want to error if the component is
81      // empty and it's the only component (cur_component == 1).
82      if (component_len == 0 && (i < end || cur_component == 1))
83        return false;
84
85      if (i >= end)
86        break;  // End of the input.
87
88      if (cur_component == 4) {
89        // Anything else after the 4th component is an error unless it is a
90        // dot that would otherwise be treated as the end of input.
91        if (spec[i] == '.' && i + 1 == end)
92          break;
93        return false;
94      }
95    } else if (static_cast<UCHAR>(spec[i]) >= 0x80 ||
96               !IsIPv4Char(static_cast<unsigned char>(spec[i]))) {
97      // Invalid character for an IPv4 address.
98      return false;
99    }
100  }
101
102  // Fill in any unused components.
103  while (cur_component < 4)
104    components[cur_component++] = url_parse::Component();
105  return true;
106}
107
108// Converts an IPv4 component to a 32-bit number, while checking for overflow.
109//
110// Possible return values:
111// - IPV4    - The number was valid, and did not overflow.
112// - BROKEN  - The input was numeric, but too large for a 32-bit field.
113// - NEUTRAL - Input was not numeric.
114//
115// The input is assumed to be ASCII. FindIPv4Components should have stripped
116// out any input that is greater than 7 bits. The components are assumed
117// to be non-empty.
118template<typename CHAR>
119CanonHostInfo::Family IPv4ComponentToNumber(
120    const CHAR* spec,
121    const url_parse::Component& component,
122    uint32* number) {
123  // Figure out the base
124  SharedCharTypes base;
125  int base_prefix_len = 0;  // Size of the prefix for this base.
126  if (spec[component.begin] == '0') {
127    // Either hex or dec, or a standalone zero.
128    if (component.len == 1) {
129      base = CHAR_DEC;
130    } else if (spec[component.begin + 1] == 'X' ||
131               spec[component.begin + 1] == 'x') {
132      base = CHAR_HEX;
133      base_prefix_len = 2;
134    } else {
135      base = CHAR_OCT;
136      base_prefix_len = 1;
137    }
138  } else {
139    base = CHAR_DEC;
140  }
141
142  // Extend the prefix to consume all leading zeros.
143  while (base_prefix_len < component.len &&
144         spec[component.begin + base_prefix_len] == '0')
145    base_prefix_len++;
146
147  // Put the component, minus any base prefix, into a NULL-terminated buffer so
148  // we can call the standard library.  Because leading zeros have already been
149  // discarded, filling the entire buffer is guaranteed to trigger the 32-bit
150  // overflow check.
151  const int kMaxComponentLen = 16;
152  char buf[kMaxComponentLen + 1];  // digits + '\0'
153  int dest_i = 0;
154  for (int i = component.begin + base_prefix_len; i < component.end(); i++) {
155    // We know the input is 7-bit, so convert to narrow (if this is the wide
156    // version of the template) by casting.
157    char input = static_cast<char>(spec[i]);
158
159    // Validate that this character is OK for the given base.
160    if (!IsCharOfType(input, base))
161      return CanonHostInfo::NEUTRAL;
162
163    // Fill the buffer, if there's space remaining.  This check allows us to
164    // verify that all characters are numeric, even those that don't fit.
165    if (dest_i < kMaxComponentLen)
166      buf[dest_i++] = input;
167  }
168
169  buf[dest_i] = '\0';
170
171  // Use the 64-bit strtoi so we get a big number (no hex, decimal, or octal
172  // number can overflow a 64-bit number in <= 16 characters).
173  uint64 num = _strtoui64(buf, NULL, BaseForType(base));
174
175  // Check for 32-bit overflow.
176  if (num > kuint32max)
177    return CanonHostInfo::BROKEN;
178
179  // No overflow.  Success!
180  *number = static_cast<uint32>(num);
181  return CanonHostInfo::IPV4;
182}
183
184// Writes the given address (with each character representing one dotted
185// part of an IPv4 address) to the output, and updating |*out_host| to
186// identify the added portion.
187void AppendIPv4Address(const unsigned char address[4],
188                       CanonOutput* output,
189                       url_parse::Component* out_host) {
190  out_host->begin = output->length();
191  for (int i = 0; i < 4; i++) {
192    char str[16];
193    _itoa_s(address[i], str, 10);
194
195    for (int ch = 0; str[ch] != 0; ch++)
196      output->push_back(str[ch]);
197
198    if (i != 3)
199      output->push_back('.');
200  }
201  out_host->len = output->length() - out_host->begin;
202}
203
204// See declaration of IPv4AddressToNumber for documentation.
205template<typename CHAR>
206CanonHostInfo::Family DoIPv4AddressToNumber(const CHAR* spec,
207                                            const url_parse::Component& host,
208                                            unsigned char address[4],
209                                            int* num_ipv4_components) {
210  // The identified components. Not all may exist.
211  url_parse::Component components[4];
212  if (!FindIPv4Components(spec, host, components))
213    return CanonHostInfo::NEUTRAL;
214
215  // Convert existing components to digits. Values up to
216  // |existing_components| will be valid.
217  uint32 component_values[4];
218  int existing_components = 0;
219  for (int i = 0; i < 4; i++) {
220    if (components[i].len <= 0)
221      continue;
222    CanonHostInfo::Family family = IPv4ComponentToNumber(
223        spec, components[i], &component_values[existing_components]);
224
225    // Stop if we hit an invalid non-empty component.
226    if (family != CanonHostInfo::IPV4)
227      return family;
228
229    existing_components++;
230  }
231
232  // Use that sequence of numbers to fill out the 4-component IP address.
233
234  // First, process all components but the last, while making sure each fits
235  // within an 8-bit field.
236  for (int i = 0; i < existing_components - 1; i++) {
237    if (component_values[i] > kuint8max)
238      return CanonHostInfo::BROKEN;
239    address[i] = static_cast<unsigned char>(component_values[i]);
240  }
241
242  // Next, consume the last component to fill in the remaining bytes.
243  uint32 last_value = component_values[existing_components - 1];
244  for (int i = 3; i >= existing_components - 1; i--) {
245    address[i] = static_cast<unsigned char>(last_value);
246    last_value >>= 8;
247  }
248
249  // If the last component has residual bits, report overflow.
250  if (last_value != 0)
251    return CanonHostInfo::BROKEN;
252
253  // Tell the caller how many components we saw.
254  *num_ipv4_components = existing_components;
255
256  // Success!
257  return CanonHostInfo::IPV4;
258}
259
260// Return true if we've made a final IPV4/BROKEN decision, false if the result
261// is NEUTRAL, and we could use a second opinion.
262template<typename CHAR, typename UCHAR>
263bool DoCanonicalizeIPv4Address(const CHAR* spec,
264                               const url_parse::Component& host,
265                               CanonOutput* output,
266                               CanonHostInfo* host_info) {
267  unsigned char address[4];
268  host_info->family = IPv4AddressToNumber(
269      spec, host, address, &host_info->num_ipv4_components);
270
271  switch (host_info->family) {
272    case CanonHostInfo::IPV4:
273      // Definitely an IPv4 address.
274      AppendIPv4Address(address, output, &host_info->out_host);
275      return true;
276    case CanonHostInfo::BROKEN:
277      // Definitely broken.
278      return true;
279    default:
280      // Could be IPv6 or a hostname.
281      return false;
282  }
283}
284
285// Helper class that describes the main components of an IPv6 input string.
286// See the following examples to understand how it breaks up an input string:
287//
288// [Example 1]: input = "[::aa:bb]"
289//  ==> num_hex_components = 2
290//  ==> hex_components[0] = Component(3,2) "aa"
291//  ==> hex_components[1] = Component(6,2) "bb"
292//  ==> index_of_contraction = 0
293//  ==> ipv4_component = Component(0, -1)
294//
295// [Example 2]: input = "[1:2::3:4:5]"
296//  ==> num_hex_components = 5
297//  ==> hex_components[0] = Component(1,1) "1"
298//  ==> hex_components[1] = Component(3,1) "2"
299//  ==> hex_components[2] = Component(6,1) "3"
300//  ==> hex_components[3] = Component(8,1) "4"
301//  ==> hex_components[4] = Component(10,1) "5"
302//  ==> index_of_contraction = 2
303//  ==> ipv4_component = Component(0, -1)
304//
305// [Example 3]: input = "[::ffff:192.168.0.1]"
306//  ==> num_hex_components = 1
307//  ==> hex_components[0] = Component(3,4) "ffff"
308//  ==> index_of_contraction = 0
309//  ==> ipv4_component = Component(8, 11) "192.168.0.1"
310//
311// [Example 4]: input = "[1::]"
312//  ==> num_hex_components = 1
313//  ==> hex_components[0] = Component(1,1) "1"
314//  ==> index_of_contraction = 1
315//  ==> ipv4_component = Component(0, -1)
316//
317// [Example 5]: input = "[::192.168.0.1]"
318//  ==> num_hex_components = 0
319//  ==> index_of_contraction = 0
320//  ==> ipv4_component = Component(8, 11) "192.168.0.1"
321//
322struct IPv6Parsed {
323  // Zero-out the parse information.
324  void reset() {
325    num_hex_components = 0;
326    index_of_contraction = -1;
327    ipv4_component.reset();
328  }
329
330  // There can be up to 8 hex components (colon separated) in the literal.
331  url_parse::Component hex_components[8];
332
333  // The count of hex components present. Ranges from [0,8].
334  int num_hex_components;
335
336  // The index of the hex component that the "::" contraction precedes, or
337  // -1 if there is no contraction.
338  int index_of_contraction;
339
340  // The range of characters which are an IPv4 literal.
341  url_parse::Component ipv4_component;
342};
343
344// Parse the IPv6 input string. If parsing succeeded returns true and fills
345// |parsed| with the information. If parsing failed (because the input is
346// invalid) returns false.
347template<typename CHAR, typename UCHAR>
348bool DoParseIPv6(const CHAR* spec,
349                 const url_parse::Component& host,
350                 IPv6Parsed* parsed) {
351  // Zero-out the info.
352  parsed->reset();
353
354  if (!host.is_nonempty())
355    return false;
356
357  // The index for start and end of address range (no brackets).
358  int begin = host.begin;
359  int end = host.end();
360
361  int cur_component_begin = begin;  // Start of the current component.
362
363  // Scan through the input, searching for hex components, "::" contractions,
364  // and IPv4 components.
365  for (int i = begin; /* i <= end */; i++) {
366    bool is_colon = spec[i] == ':';
367    bool is_contraction = is_colon && i < end - 1 && spec[i + 1] == ':';
368
369    // We reached the end of the current component if we encounter a colon
370    // (separator between hex components, or start of a contraction), or end of
371    // input.
372    if (is_colon || i == end) {
373      int component_len = i - cur_component_begin;
374
375      // A component should not have more than 4 hex digits.
376      if (component_len > 4)
377        return false;
378
379      // Don't allow empty components.
380      if (component_len == 0) {
381        // The exception is when contractions appear at beginning of the
382        // input or at the end of the input.
383        if (!((is_contraction && i == begin) || (i == end &&
384            parsed->index_of_contraction == parsed->num_hex_components)))
385          return false;
386      }
387
388      // Add the hex component we just found to running list.
389      if (component_len > 0) {
390        // Can't have more than 8 components!
391        if (parsed->num_hex_components >= 8)
392          return false;
393
394        parsed->hex_components[parsed->num_hex_components++] =
395            url_parse::Component(cur_component_begin, component_len);
396      }
397    }
398
399    if (i == end)
400      break;  // Reached the end of the input, DONE.
401
402    // We found a "::" contraction.
403    if (is_contraction) {
404      // There can be at most one contraction in the literal.
405      if (parsed->index_of_contraction != -1)
406        return false;
407      parsed->index_of_contraction = parsed->num_hex_components;
408      ++i;  // Consume the colon we peeked.
409    }
410
411    if (is_colon) {
412      // Colons are separators between components, keep track of where the
413      // current component started (after this colon).
414      cur_component_begin = i + 1;
415    } else {
416      if (static_cast<UCHAR>(spec[i]) >= 0x80)
417        return false;  // Not ASCII.
418
419      if (!IsHexChar(static_cast<unsigned char>(spec[i]))) {
420        // Regular components are hex numbers. It is also possible for
421        // a component to be an IPv4 address in dotted form.
422        if (IsIPv4Char(static_cast<unsigned char>(spec[i]))) {
423          // Since IPv4 address can only appear at the end, assume the rest
424          // of the string is an IPv4 address. (We will parse this separately
425          // later).
426          parsed->ipv4_component = url_parse::Component(
427              cur_component_begin, end - cur_component_begin);
428          break;
429        } else {
430          // The character was neither a hex digit, nor an IPv4 character.
431          return false;
432        }
433      }
434    }
435  }
436
437  return true;
438}
439
440// Verifies the parsed IPv6 information, checking that the various components
441// add up to the right number of bits (hex components are 16 bits, while
442// embedded IPv4 formats are 32 bits, and contractions are placeholdes for
443// 16 or more bits). Returns true if sizes match up, false otherwise. On
444// success writes the length of the contraction (if any) to
445// |out_num_bytes_of_contraction|.
446bool CheckIPv6ComponentsSize(const IPv6Parsed& parsed,
447                             int* out_num_bytes_of_contraction) {
448  // Each group of four hex digits contributes 16 bits.
449  int num_bytes_without_contraction = parsed.num_hex_components * 2;
450
451  // If an IPv4 address was embedded at the end, it contributes 32 bits.
452  if (parsed.ipv4_component.is_valid())
453    num_bytes_without_contraction += 4;
454
455  // If there was a "::" contraction, its size is going to be:
456  // MAX([16bits], [128bits] - num_bytes_without_contraction).
457  int num_bytes_of_contraction = 0;
458  if (parsed.index_of_contraction != -1) {
459    num_bytes_of_contraction = 16 - num_bytes_without_contraction;
460    if (num_bytes_of_contraction < 2)
461      num_bytes_of_contraction = 2;
462  }
463
464  // Check that the numbers add up.
465  if (num_bytes_without_contraction + num_bytes_of_contraction != 16)
466    return false;
467
468  *out_num_bytes_of_contraction = num_bytes_of_contraction;
469  return true;
470}
471
472// Converts a hex comonent into a number. This cannot fail since the caller has
473// already verified that each character in the string was a hex digit, and
474// that there were no more than 4 characters.
475template<typename CHAR>
476uint16 IPv6HexComponentToNumber(const CHAR* spec,
477                                const url_parse::Component& component) {
478  DCHECK(component.len <= 4);
479
480  // Copy the hex string into a C-string.
481  char buf[5];
482  for (int i = 0; i < component.len; ++i)
483    buf[i] = static_cast<char>(spec[component.begin + i]);
484  buf[component.len] = '\0';
485
486  // Convert it to a number (overflow is not possible, since with 4 hex
487  // characters we can at most have a 16 bit number).
488  return static_cast<uint16>(_strtoui64(buf, NULL, 16));
489}
490
491// Converts an IPv6 address to a 128-bit number (network byte order), returning
492// true on success. False means that the input was not a valid IPv6 address.
493template<typename CHAR, typename UCHAR>
494bool DoIPv6AddressToNumber(const CHAR* spec,
495                           const url_parse::Component& host,
496                           unsigned char address[16]) {
497  // Make sure the component is bounded by '[' and ']'.
498  int end = host.end();
499  if (!host.is_nonempty() || spec[host.begin] != '[' || spec[end - 1] != ']')
500    return false;
501
502  // Exclude the square brackets.
503  url_parse::Component ipv6_comp(host.begin + 1, host.len - 2);
504
505  // Parse the IPv6 address -- identify where all the colon separated hex
506  // components are, the "::" contraction, and the embedded IPv4 address.
507  IPv6Parsed ipv6_parsed;
508  if (!DoParseIPv6<CHAR, UCHAR>(spec, ipv6_comp, &ipv6_parsed))
509    return false;
510
511  // Do some basic size checks to make sure that the address doesn't
512  // specify more than 128 bits or fewer than 128 bits. This also resolves
513  // how may zero bytes the "::" contraction represents.
514  int num_bytes_of_contraction;
515  if (!CheckIPv6ComponentsSize(ipv6_parsed, &num_bytes_of_contraction))
516    return false;
517
518  int cur_index_in_address = 0;
519
520  // Loop through each hex components, and contraction in order.
521  for (int i = 0; i <= ipv6_parsed.num_hex_components; ++i) {
522    // Append the contraction if it appears before this component.
523    if (i == ipv6_parsed.index_of_contraction) {
524      for (int j = 0; j < num_bytes_of_contraction; ++j)
525        address[cur_index_in_address++] = 0;
526    }
527    // Append the hex component's value.
528    if (i != ipv6_parsed.num_hex_components) {
529      // Get the 16-bit value for this hex component.
530      uint16 number = IPv6HexComponentToNumber<CHAR>(
531          spec, ipv6_parsed.hex_components[i]);
532      // Append to |address|, in network byte order.
533      address[cur_index_in_address++] = (number & 0xFF00) >> 8;
534      address[cur_index_in_address++] = (number & 0x00FF);
535    }
536  }
537
538  // If there was an IPv4 section, convert it into a 32-bit number and append
539  // it to |address|.
540  if (ipv6_parsed.ipv4_component.is_valid()) {
541    // We only allow the embedded IPv4 syntax to be used for "compat" and
542    // "mapped" formats:
543    //     "mapped" ==>  0:0:0:0:0:ffff:<IPv4-literal>
544    //     "compat" ==>  0:0:0:0:0:0000:<IPv4-literal>
545    for (int j = 0; j < 10; ++j) {
546      if (address[j] != 0)
547        return false;
548    }
549    if (!((address[10] == 0 && address[11] == 0) ||
550          (address[10] == 0xFF && address[11] == 0xFF)))
551      return false;
552
553    // Append the 32-bit number to |address|.
554    int ignored_num_ipv4_components;
555    if (CanonHostInfo::IPV4 !=
556        IPv4AddressToNumber(spec,
557                            ipv6_parsed.ipv4_component,
558                            &address[cur_index_in_address],
559                            &ignored_num_ipv4_components))
560      return false;
561  }
562
563  return true;
564}
565
566// Searches for the longest sequence of zeros in |address|, and writes the
567// range into |contraction_range|. The run of zeros must be at least 16 bits,
568// and if there is a tie the first is chosen.
569void ChooseIPv6ContractionRange(const unsigned char address[16],
570                                url_parse::Component* contraction_range) {
571  // The longest run of zeros in |address| seen so far.
572  url_parse::Component max_range;
573
574  // The current run of zeros in |address| being iterated over.
575  url_parse::Component cur_range;
576
577  for (int i = 0; i < 16; i += 2) {
578    // Test for 16 bits worth of zero.
579    bool is_zero = (address[i] == 0 && address[i + 1] == 0);
580
581    if (is_zero) {
582      // Add the zero to the current range (or start a new one).
583      if (!cur_range.is_valid())
584        cur_range = url_parse::Component(i, 0);
585      cur_range.len += 2;
586    }
587
588    if (!is_zero || i == 14) {
589      // Just completed a run of zeros. If the run is greater than 16 bits,
590      // it is a candidate for the contraction.
591      if (cur_range.len > 2 && cur_range.len > max_range.len) {
592        max_range = cur_range;
593      }
594      cur_range.reset();
595    }
596  }
597  *contraction_range = max_range;
598}
599
600// Return true if we've made a final IPV6/BROKEN decision, false if the result
601// is NEUTRAL, and we could use a second opinion.
602template<typename CHAR, typename UCHAR>
603bool DoCanonicalizeIPv6Address(const CHAR* spec,
604                               const url_parse::Component& host,
605                               CanonOutput* output,
606                               CanonHostInfo* host_info) {
607  // Turn the IP address into a 128 bit number.
608  unsigned char address[16];
609  if (!IPv6AddressToNumber(spec, host, address)) {
610    // If it's not an IPv6 address, scan for characters that should *only*
611    // exist in an IPv6 address.
612    for (int i = host.begin; i < host.end(); i++) {
613      switch (spec[i]) {
614        case '[':
615        case ']':
616        case ':':
617          host_info->family = CanonHostInfo::BROKEN;
618          return true;
619      }
620    }
621
622    // No invalid characters.  Could still be IPv4 or a hostname.
623    host_info->family = CanonHostInfo::NEUTRAL;
624    return false;
625  }
626
627  host_info->out_host.begin = output->length();
628  output->push_back('[');
629
630  // We will now output the address according to the rules in:
631  // http://tools.ietf.org/html/draft-kawamura-ipv6-text-representation-01#section-4
632
633  // Start by finding where to place the "::" contraction (if any).
634  url_parse::Component contraction_range;
635  ChooseIPv6ContractionRange(address, &contraction_range);
636
637  for (int i = 0; i <= 14;) {
638    // We check 2 bytes at a time, from bytes (0, 1) to (14, 15), inclusive.
639    DCHECK(i % 2 == 0);
640    if (i == contraction_range.begin && contraction_range.len > 0) {
641      // Jump over the contraction.
642      if (i == 0)
643        output->push_back(':');
644      output->push_back(':');
645      i = contraction_range.end();
646    } else {
647      // Consume the next 16 bits from |address|.
648      int x = address[i] << 8 | address[i + 1];
649
650      i += 2;
651
652      // Stringify the 16 bit number (at most requires 4 hex digits).
653      char str[5];
654      _itoa_s(x, str, 16);
655      for (int ch = 0; str[ch] != 0; ++ch)
656        output->push_back(str[ch]);
657
658      // Put a colon after each number, except the last.
659      if (i < 16)
660        output->push_back(':');
661    }
662  }
663
664  output->push_back(']');
665  host_info->out_host.len = output->length() - host_info->out_host.begin;
666
667  host_info->family = CanonHostInfo::IPV6;
668  return true;
669}
670
671}  // namespace
672
673bool FindIPv4Components(const char* spec,
674                        const url_parse::Component& host,
675                        url_parse::Component components[4]) {
676  return DoFindIPv4Components<char, unsigned char>(spec, host, components);
677}
678
679bool FindIPv4Components(const char16* spec,
680                        const url_parse::Component& host,
681                        url_parse::Component components[4]) {
682  return DoFindIPv4Components<char16, char16>(spec, host, components);
683}
684
685void CanonicalizeIPAddress(const char* spec,
686                           const url_parse::Component& host,
687                           CanonOutput* output,
688                           CanonHostInfo* host_info) {
689  if (DoCanonicalizeIPv4Address<char, unsigned char>(
690          spec, host, output, host_info))
691    return;
692  if (DoCanonicalizeIPv6Address<char, unsigned char>(
693          spec, host, output, host_info))
694    return;
695}
696
697void CanonicalizeIPAddress(const char16* spec,
698                           const url_parse::Component& host,
699                           CanonOutput* output,
700                           CanonHostInfo* host_info) {
701  if (DoCanonicalizeIPv4Address<char16, char16>(
702          spec, host, output, host_info))
703    return;
704  if (DoCanonicalizeIPv6Address<char16, char16>(
705          spec, host, output, host_info))
706    return;
707}
708
709CanonHostInfo::Family IPv4AddressToNumber(const char* spec,
710                                          const url_parse::Component& host,
711                                          unsigned char address[4],
712                                          int* num_ipv4_components) {
713  return DoIPv4AddressToNumber<char>(spec, host, address, num_ipv4_components);
714}
715
716CanonHostInfo::Family IPv4AddressToNumber(const char16* spec,
717                                          const url_parse::Component& host,
718                                          unsigned char address[4],
719                                          int* num_ipv4_components) {
720  return DoIPv4AddressToNumber<char16>(
721      spec, host, address, num_ipv4_components);
722}
723
724bool IPv6AddressToNumber(const char* spec,
725                         const url_parse::Component& host,
726                         unsigned char address[16]) {
727  return DoIPv6AddressToNumber<char, unsigned char>(spec, host, address);
728}
729
730bool IPv6AddressToNumber(const char16* spec,
731                         const url_parse::Component& host,
732                         unsigned char address[16]) {
733  return DoIPv6AddressToNumber<char16, char16>(spec, host, address);
734}
735
736
737}  // namespace url_canon
738