1// Copyright 2013 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "base/strings/safe_sprintf.h"
6
7#include <limits>
8
9#if !defined(NDEBUG)
10// In debug builds, we use RAW_CHECK() to print useful error messages, if
11// SafeSPrintf() is called with broken arguments.
12// As our contract promises that SafeSPrintf() can be called from any
13// restricted run-time context, it is not actually safe to call logging
14// functions from it; and we only ever do so for debug builds and hope for the
15// best. We should _never_ call any logging function other than RAW_CHECK(),
16// and we should _never_ include any logging code that is active in production
17// builds. Most notably, we should not include these logging functions in
18// unofficial release builds, even though those builds would otherwise have
19// DCHECKS() enabled.
20// In other words; please do not remove the #ifdef around this #include.
21// Instead, in production builds we opt for returning a degraded result,
22// whenever an error is encountered.
23// E.g. The broken function call
24//        SafeSPrintf("errno = %d (%x)", errno, strerror(errno))
25//      will print something like
26//        errno = 13, (%x)
27//      instead of
28//        errno = 13 (Access denied)
29//      In most of the anticipated use cases, that's probably the preferred
30//      behavior.
31#include "base/logging.h"
32#define DEBUG_CHECK RAW_CHECK
33#else
34#define DEBUG_CHECK(x) do { if (x) { } } while (0)
35#endif
36
37namespace base {
38namespace strings {
39
40// The code in this file is extremely careful to be async-signal-safe.
41//
42// Most obviously, we avoid calling any code that could dynamically allocate
43// memory. Doing so would almost certainly result in bugs and dead-locks.
44// We also avoid calling any other STL functions that could have unintended
45// side-effects involving memory allocation or access to other shared
46// resources.
47//
48// But on top of that, we also avoid calling other library functions, as many
49// of them have the side-effect of calling getenv() (in order to deal with
50// localization) or accessing errno. The latter sounds benign, but there are
51// several execution contexts where it isn't even possible to safely read let
52// alone write errno.
53//
54// The stated design goal of the SafeSPrintf() function is that it can be
55// called from any context that can safely call C or C++ code (i.e. anything
56// that doesn't require assembly code).
57//
58// For a brief overview of some but not all of the issues with async-signal-
59// safety, refer to:
60// http://pubs.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html
61
62namespace {
63const size_t kSSizeMaxConst = ((size_t)(ssize_t)-1) >> 1;
64
65const char kUpCaseHexDigits[]   = "0123456789ABCDEF";
66const char kDownCaseHexDigits[] = "0123456789abcdef";
67}
68
69#if defined(NDEBUG)
70// We would like to define kSSizeMax as std::numeric_limits<ssize_t>::max(),
71// but C++ doesn't allow us to do that for constants. Instead, we have to
72// use careful casting and shifting. We later use a COMPILE_ASSERT to
73// verify that this worked correctly.
74namespace {
75const size_t kSSizeMax = kSSizeMaxConst;
76}
77#else  // defined(NDEBUG)
78// For efficiency, we really need kSSizeMax to be a constant. But for unit
79// tests, it should be adjustable. This allows us to verify edge cases without
80// having to fill the entire available address space. As a compromise, we make
81// kSSizeMax adjustable in debug builds, and then only compile that particular
82// part of the unit test in debug builds.
83namespace {
84static size_t kSSizeMax = kSSizeMaxConst;
85}
86
87namespace internal {
88void SetSafeSPrintfSSizeMaxForTest(size_t max) {
89  kSSizeMax = max;
90}
91
92size_t GetSafeSPrintfSSizeMaxForTest() {
93  return kSSizeMax;
94}
95}
96#endif  // defined(NDEBUG)
97
98namespace {
99class Buffer {
100 public:
101  // |buffer| is caller-allocated storage that SafeSPrintf() writes to. It
102  // has |size| bytes of writable storage. It is the caller's responsibility
103  // to ensure that the buffer is at least one byte in size, so that it fits
104  // the trailing NUL that will be added by the destructor. The buffer also
105  // must be smaller or equal to kSSizeMax in size.
106  Buffer(char* buffer, size_t size)
107      : buffer_(buffer),
108        size_(size - 1),  // Account for trailing NUL byte
109        count_(0) {
110// The following assertion does not build on Mac and Android. This is because
111// static_assert only works with compile-time constants, but mac uses
112// libstdc++4.2 and android uses stlport, which both don't mark
113// numeric_limits::max() as constexp.
114#if __cplusplus >= 201103 && !defined(OS_ANDROID) && !defined(OS_MACOSX) && !defined(OS_IOS)
115    COMPILE_ASSERT(kSSizeMaxConst == \
116                   static_cast<size_t>(std::numeric_limits<ssize_t>::max()),
117                   kSSizeMax_is_the_max_value_of_an_ssize_t);
118#endif
119    DEBUG_CHECK(size > 0);
120    DEBUG_CHECK(size <= kSSizeMax);
121  }
122
123  ~Buffer() {
124    // The code calling the constructor guaranteed that there was enough space
125    // to store a trailing NUL -- and in debug builds, we are actually
126    // verifying this with DEBUG_CHECK()s in the constructor. So, we can
127    // always unconditionally write the NUL byte in the destructor.  We do not
128    // need to adjust the count_, as SafeSPrintf() copies snprintf() in not
129    // including the NUL byte in its return code.
130    *GetInsertionPoint() = '\000';
131  }
132
133  // Returns true, iff the buffer is filled all the way to |kSSizeMax-1|. The
134  // caller can now stop adding more data, as GetCount() has reached its
135  // maximum possible value.
136  inline bool OutOfAddressableSpace() const {
137    return count_ == static_cast<size_t>(kSSizeMax - 1);
138  }
139
140  // Returns the number of bytes that would have been emitted to |buffer_|
141  // if it was sized sufficiently large. This number can be larger than
142  // |size_|, if the caller provided an insufficiently large output buffer.
143  // But it will never be bigger than |kSSizeMax-1|.
144  inline ssize_t GetCount() const {
145    DEBUG_CHECK(count_ < kSSizeMax);
146    return static_cast<ssize_t>(count_);
147  }
148
149  // Emits one |ch| character into the |buffer_| and updates the |count_| of
150  // characters that are currently supposed to be in the buffer.
151  // Returns "false", iff the buffer was already full.
152  // N.B. |count_| increases even if no characters have been written. This is
153  // needed so that GetCount() can return the number of bytes that should
154  // have been allocated for the |buffer_|.
155  inline bool Out(char ch) {
156    if (size_ >= 1 && count_ < size_) {
157      buffer_[count_] = ch;
158      return IncrementCountByOne();
159    }
160    // |count_| still needs to be updated, even if the buffer has been
161    // filled completely. This allows SafeSPrintf() to return the number of
162    // bytes that should have been emitted.
163    IncrementCountByOne();
164    return false;
165  }
166
167  // Inserts |padding|-|len| bytes worth of padding into the |buffer_|.
168  // |count_| will also be incremented by the number of bytes that were meant
169  // to be emitted. The |pad| character is typically either a ' ' space
170  // or a '0' zero, but other non-NUL values are legal.
171  // Returns "false", iff the the |buffer_| filled up (i.e. |count_|
172  // overflowed |size_|) at any time during padding.
173  inline bool Pad(char pad, size_t padding, size_t len) {
174    DEBUG_CHECK(pad);
175    DEBUG_CHECK(padding >= 0 && padding <= kSSizeMax);
176    DEBUG_CHECK(len >= 0);
177    for (; padding > len; --padding) {
178      if (!Out(pad)) {
179        if (--padding) {
180          IncrementCount(padding-len);
181        }
182        return false;
183      }
184    }
185    return true;
186  }
187
188  // POSIX doesn't define any async-signal-safe function for converting
189  // an integer to ASCII. Define our own version.
190  //
191  // This also gives us the ability to make the function a little more
192  // powerful and have it deal with |padding|, with truncation, and with
193  // predicting the length of the untruncated output.
194  //
195  // IToASCII() converts an integer |i| to ASCII.
196  //
197  // Unlike similar functions in the standard C library, it never appends a
198  // NUL character. This is left for the caller to do.
199  //
200  // While the function signature takes a signed int64_t, the code decides at
201  // run-time whether to treat the argument as signed (int64_t) or as unsigned
202  // (uint64_t) based on the value of |sign|.
203  //
204  // It supports |base|s 2 through 16. Only a |base| of 10 is allowed to have
205  // a |sign|. Otherwise, |i| is treated as unsigned.
206  //
207  // For bases larger than 10, |upcase| decides whether lower-case or upper-
208  // case letters should be used to designate digits greater than 10.
209  //
210  // Padding can be done with either '0' zeros or ' ' spaces. Padding has to
211  // be positive and will always be applied to the left of the output.
212  //
213  // Prepends a |prefix| to the number (e.g. "0x"). This prefix goes to
214  // the left of |padding|, if |pad| is '0'; and to the right of |padding|
215  // if |pad| is ' '.
216  //
217  // Returns "false", if the |buffer_| overflowed at any time.
218  bool IToASCII(bool sign, bool upcase, int64_t i, int base,
219                char pad, size_t padding, const char* prefix);
220
221 private:
222  // Increments |count_| by |inc| unless this would cause |count_| to
223  // overflow |kSSizeMax-1|. Returns "false", iff an overflow was detected;
224  // it then clamps |count_| to |kSSizeMax-1|.
225  inline bool IncrementCount(size_t inc) {
226    // "inc" is either 1 or a "padding" value. Padding is clamped at
227    // run-time to at most kSSizeMax-1. So, we know that "inc" is always in
228    // the range 1..kSSizeMax-1.
229    // This allows us to compute "kSSizeMax - 1 - inc" without incurring any
230    // integer overflows.
231    DEBUG_CHECK(inc <= kSSizeMax - 1);
232    if (count_ > kSSizeMax - 1 - inc) {
233      count_ = kSSizeMax - 1;
234      return false;
235    } else {
236      count_ += inc;
237      return true;
238    }
239  }
240
241  // Convenience method for the common case of incrementing |count_| by one.
242  inline bool IncrementCountByOne() {
243    return IncrementCount(1);
244  }
245
246  // Return the current insertion point into the buffer. This is typically
247  // at |buffer_| + |count_|, but could be before that if truncation
248  // happened. It always points to one byte past the last byte that was
249  // successfully placed into the |buffer_|.
250  inline char* GetInsertionPoint() const {
251    size_t idx = count_;
252    if (idx > size_) {
253      idx = size_;
254    }
255    return buffer_ + idx;
256  }
257
258  // User-provided buffer that will receive the fully formatted output string.
259  char* buffer_;
260
261  // Number of bytes that are available in the buffer excluding the trailing
262  // NUL byte that will be added by the destructor.
263  const size_t size_;
264
265  // Number of bytes that would have been emitted to the buffer, if the buffer
266  // was sufficiently big. This number always excludes the trailing NUL byte
267  // and it is guaranteed to never grow bigger than kSSizeMax-1.
268  size_t count_;
269
270  DISALLOW_COPY_AND_ASSIGN(Buffer);
271};
272
273
274bool Buffer::IToASCII(bool sign, bool upcase, int64_t i, int base,
275                      char pad, size_t padding, const char* prefix) {
276  // Sanity check for parameters. None of these should ever fail, but see
277  // above for the rationale why we can't call CHECK().
278  DEBUG_CHECK(base >= 2);
279  DEBUG_CHECK(base <= 16);
280  DEBUG_CHECK(!sign || base == 10);
281  DEBUG_CHECK(pad == '0' || pad == ' ');
282  DEBUG_CHECK(padding >= 0);
283  DEBUG_CHECK(padding <= kSSizeMax);
284  DEBUG_CHECK(!(sign && prefix && *prefix));
285
286  // Handle negative numbers, if the caller indicated that |i| should be
287  // treated as a signed number; otherwise treat |i| as unsigned (even if the
288  // MSB is set!)
289  // Details are tricky, because of limited data-types, but equivalent pseudo-
290  // code would look like:
291  //   if (sign && i < 0)
292  //     prefix = "-";
293  //   num = abs(i);
294  int minint = 0;
295  uint64_t num;
296  if (sign && i < 0) {
297    prefix = "-";
298
299    // Turn our number positive.
300    if (i == std::numeric_limits<int64_t>::min()) {
301      // The most negative integer needs special treatment.
302      minint = 1;
303      num = static_cast<uint64_t>(-(i + 1));
304    } else {
305      // "Normal" negative numbers are easy.
306      num = static_cast<uint64_t>(-i);
307    }
308  } else {
309    num = static_cast<uint64_t>(i);
310  }
311
312  // If padding with '0' zero, emit the prefix or '-' character now. Otherwise,
313  // make the prefix accessible in reverse order, so that we can later output
314  // it right between padding and the number.
315  // We cannot choose the easier approach of just reversing the number, as that
316  // fails in situations where we need to truncate numbers that have padding
317  // and/or prefixes.
318  const char* reverse_prefix = NULL;
319  if (prefix && *prefix) {
320    if (pad == '0') {
321      while (*prefix) {
322        if (padding) {
323          --padding;
324        }
325        Out(*prefix++);
326      }
327      prefix = NULL;
328    } else {
329      for (reverse_prefix = prefix; *reverse_prefix; ++reverse_prefix) {
330      }
331    }
332  } else
333    prefix = NULL;
334  const size_t prefix_length = reverse_prefix - prefix;
335
336  // Loop until we have converted the entire number. Output at least one
337  // character (i.e. '0').
338  size_t start = count_;
339  size_t discarded = 0;
340  bool started = false;
341  do {
342    // Make sure there is still enough space left in our output buffer.
343    if (count_ >= size_) {
344      if (start < size_) {
345        // It is rare that we need to output a partial number. But if asked
346        // to do so, we will still make sure we output the correct number of
347        // leading digits.
348        // Since we are generating the digits in reverse order, we actually
349        // have to discard digits in the order that we have already emitted
350        // them. This is essentially equivalent to:
351        //   memmove(buffer_ + start, buffer_ + start + 1, size_ - start - 1)
352        for (char* move = buffer_ + start, *end = buffer_ + size_ - 1;
353             move < end;
354             ++move) {
355          *move = move[1];
356        }
357        ++discarded;
358        --count_;
359      } else if (count_ - size_ > 1) {
360        // Need to increment either |count_| or |discarded| to make progress.
361        // The latter is more efficient, as it eventually triggers fast
362        // handling of padding. But we have to ensure we don't accidentally
363        // change the overall state (i.e. switch the state-machine from
364        // discarding to non-discarding). |count_| needs to always stay
365        // bigger than |size_|.
366        --count_;
367        ++discarded;
368      }
369    }
370
371    // Output the next digit and (if necessary) compensate for the most
372    // negative integer needing special treatment. This works because,
373    // no matter the bit width of the integer, the lowest-most decimal
374    // integer always ends in 2, 4, 6, or 8.
375    if (!num && started) {
376      if (reverse_prefix > prefix) {
377        Out(*--reverse_prefix);
378      } else {
379        Out(pad);
380      }
381    } else {
382      started = true;
383      Out((upcase ? kUpCaseHexDigits : kDownCaseHexDigits)[num%base + minint]);
384    }
385
386    minint = 0;
387    num /= base;
388
389    // Add padding, if requested.
390    if (padding > 0) {
391      --padding;
392
393      // Performance optimization for when we are asked to output excessive
394      // padding, but our output buffer is limited in size.  Even if we output
395      // a 64bit number in binary, we would never write more than 64 plus
396      // prefix non-padding characters. So, once this limit has been passed,
397      // any further state change can be computed arithmetically; we know that
398      // by this time, our entire final output consists of padding characters
399      // that have all already been output.
400      if (discarded > 8*sizeof(num) + prefix_length) {
401        IncrementCount(padding);
402        padding = 0;
403      }
404    }
405  } while (num || padding || (reverse_prefix > prefix));
406
407  // Conversion to ASCII actually resulted in the digits being in reverse
408  // order. We can't easily generate them in forward order, as we can't tell
409  // the number of characters needed until we are done converting.
410  // So, now, we reverse the string (except for the possible '-' sign).
411  char* front = buffer_ + start;
412  char* back = GetInsertionPoint();
413  while (--back > front) {
414    char ch = *back;
415    *back = *front;
416    *front++ = ch;
417  }
418
419  IncrementCount(discarded);
420  return !discarded;
421}
422
423}  // anonymous namespace
424
425namespace internal {
426
427ssize_t SafeSNPrintf(char* buf, size_t sz, const char* fmt, const Arg* args,
428                     const size_t max_args) {
429  // Make sure that at least one NUL byte can be written, and that the buffer
430  // never overflows kSSizeMax. Not only does that use up most or all of the
431  // address space, it also would result in a return code that cannot be
432  // represented.
433  if (static_cast<ssize_t>(sz) < 1) {
434    return -1;
435  } else if (sz > kSSizeMax) {
436    sz = kSSizeMax;
437  }
438
439  // Iterate over format string and interpret '%' arguments as they are
440  // encountered.
441  Buffer buffer(buf, sz);
442  size_t padding;
443  char pad;
444  for (unsigned int cur_arg = 0; *fmt && !buffer.OutOfAddressableSpace(); ) {
445    if (*fmt++ == '%') {
446      padding = 0;
447      pad = ' ';
448      char ch = *fmt++;
449    format_character_found:
450      switch (ch) {
451      case '0': case '1': case '2': case '3': case '4':
452      case '5': case '6': case '7': case '8': case '9':
453        // Found a width parameter. Convert to an integer value and store in
454        // "padding". If the leading digit is a zero, change the padding
455        // character from a space ' ' to a zero '0'.
456        pad = ch == '0' ? '0' : ' ';
457        for (;;) {
458          // The maximum allowed padding fills all the available address
459          // space and leaves just enough space to insert the trailing NUL.
460          const size_t max_padding = kSSizeMax - 1;
461          if (padding > max_padding/10 ||
462              10*padding > max_padding - (ch - '0')) {
463            DEBUG_CHECK(padding <= max_padding/10 &&
464                        10*padding <= max_padding - (ch - '0'));
465            // Integer overflow detected. Skip the rest of the width until
466            // we find the format character, then do the normal error handling.
467          padding_overflow:
468            padding = max_padding;
469            while ((ch = *fmt++) >= '0' && ch <= '9') {
470            }
471            if (cur_arg < max_args) {
472              ++cur_arg;
473            }
474            goto fail_to_expand;
475          }
476          padding = 10*padding + ch - '0';
477          if (padding > max_padding) {
478            // This doesn't happen for "sane" values of kSSizeMax. But once
479            // kSSizeMax gets smaller than about 10, our earlier range checks
480            // are incomplete. Unittests do trigger this artificial corner
481            // case.
482            DEBUG_CHECK(padding <= max_padding);
483            goto padding_overflow;
484          }
485          ch = *fmt++;
486          if (ch < '0' || ch > '9') {
487            // Reached the end of the width parameter. This is where the format
488            // character is found.
489            goto format_character_found;
490          }
491        }
492        break;
493      case 'c': {  // Output an ASCII character.
494        // Check that there are arguments left to be inserted.
495        if (cur_arg >= max_args) {
496          DEBUG_CHECK(cur_arg < max_args);
497          goto fail_to_expand;
498        }
499
500        // Check that the argument has the expected type.
501        const Arg& arg = args[cur_arg++];
502        if (arg.type != Arg::INT && arg.type != Arg::UINT) {
503          DEBUG_CHECK(arg.type == Arg::INT || arg.type == Arg::UINT);
504          goto fail_to_expand;
505        }
506
507        // Apply padding, if needed.
508        buffer.Pad(' ', padding, 1);
509
510        // Convert the argument to an ASCII character and output it.
511        char ch = static_cast<char>(arg.i);
512        if (!ch) {
513          goto end_of_output_buffer;
514        }
515        buffer.Out(ch);
516        break; }
517      case 'd':    // Output a possibly signed decimal value.
518      case 'o':    // Output an unsigned octal value.
519      case 'x':    // Output an unsigned hexadecimal value.
520      case 'X':
521      case 'p': {  // Output a pointer value.
522        // Check that there are arguments left to be inserted.
523        if (cur_arg >= max_args) {
524          DEBUG_CHECK(cur_arg < max_args);
525          goto fail_to_expand;
526        }
527
528        const Arg& arg = args[cur_arg++];
529        int64_t i;
530        const char* prefix = NULL;
531        if (ch != 'p') {
532          // Check that the argument has the expected type.
533          if (arg.type != Arg::INT && arg.type != Arg::UINT) {
534            DEBUG_CHECK(arg.type == Arg::INT || arg.type == Arg::UINT);
535            goto fail_to_expand;
536          }
537          i = arg.i;
538
539          if (ch != 'd') {
540            // The Arg() constructor automatically performed sign expansion on
541            // signed parameters. This is great when outputting a %d decimal
542            // number, but can result in unexpected leading 0xFF bytes when
543            // outputting a %x hexadecimal number. Mask bits, if necessary.
544            // We have to do this here, instead of in the Arg() constructor, as
545            // the Arg() constructor cannot tell whether we will output a %d
546            // or a %x. Only the latter should experience masking.
547            if (arg.width < sizeof(int64_t)) {
548              i &= (1LL << (8*arg.width)) - 1;
549            }
550          }
551        } else {
552          // Pointer values require an actual pointer or a string.
553          if (arg.type == Arg::POINTER) {
554            i = reinterpret_cast<uintptr_t>(arg.ptr);
555          } else if (arg.type == Arg::STRING) {
556            i = reinterpret_cast<uintptr_t>(arg.str);
557          } else if (arg.type == Arg::INT && arg.width == sizeof(NULL) &&
558                     arg.i == 0) {  // Allow C++'s version of NULL
559            i = 0;
560          } else {
561            DEBUG_CHECK(arg.type == Arg::POINTER || arg.type == Arg::STRING);
562            goto fail_to_expand;
563          }
564
565          // Pointers always include the "0x" prefix.
566          prefix = "0x";
567        }
568
569        // Use IToASCII() to convert to ASCII representation. For decimal
570        // numbers, optionally print a sign. For hexadecimal numbers,
571        // distinguish between upper and lower case. %p addresses are always
572        // printed as upcase. Supports base 8, 10, and 16. Prints padding
573        // and/or prefixes, if so requested.
574        buffer.IToASCII(ch == 'd' && arg.type == Arg::INT,
575                        ch != 'x', i,
576                        ch == 'o' ? 8 : ch == 'd' ? 10 : 16,
577                        pad, padding, prefix);
578        break; }
579      case 's': {
580        // Check that there are arguments left to be inserted.
581        if (cur_arg >= max_args) {
582          DEBUG_CHECK(cur_arg < max_args);
583          goto fail_to_expand;
584        }
585
586        // Check that the argument has the expected type.
587        const Arg& arg = args[cur_arg++];
588        const char *s;
589        if (arg.type == Arg::STRING) {
590          s = arg.str ? arg.str : "<NULL>";
591        } else if (arg.type == Arg::INT && arg.width == sizeof(NULL) &&
592                   arg.i == 0) {  // Allow C++'s version of NULL
593          s = "<NULL>";
594        } else {
595          DEBUG_CHECK(arg.type == Arg::STRING);
596          goto fail_to_expand;
597        }
598
599        // Apply padding, if needed. This requires us to first check the
600        // length of the string that we are outputting.
601        if (padding) {
602          size_t len = 0;
603          for (const char* src = s; *src++; ) {
604            ++len;
605          }
606          buffer.Pad(' ', padding, len);
607        }
608
609        // Printing a string involves nothing more than copying it into the
610        // output buffer and making sure we don't output more bytes than
611        // available space; Out() takes care of doing that.
612        for (const char* src = s; *src; ) {
613          buffer.Out(*src++);
614        }
615        break; }
616      case '%':
617        // Quoted percent '%' character.
618        goto copy_verbatim;
619      fail_to_expand:
620        // C++ gives us tools to do type checking -- something that snprintf()
621        // could never really do. So, whenever we see arguments that don't
622        // match up with the format string, we refuse to output them. But
623        // since we have to be extremely conservative about being async-
624        // signal-safe, we are limited in the type of error handling that we
625        // can do in production builds (in debug builds we can use
626        // DEBUG_CHECK() and hope for the best). So, all we do is pass the
627        // format string unchanged. That should eventually get the user's
628        // attention; and in the meantime, it hopefully doesn't lose too much
629        // data.
630      default:
631        // Unknown or unsupported format character. Just copy verbatim to
632        // output.
633        buffer.Out('%');
634        DEBUG_CHECK(ch);
635        if (!ch) {
636          goto end_of_format_string;
637        }
638        buffer.Out(ch);
639        break;
640      }
641    } else {
642  copy_verbatim:
643    buffer.Out(fmt[-1]);
644    }
645  }
646 end_of_format_string:
647 end_of_output_buffer:
648  return buffer.GetCount();
649}
650
651}  // namespace internal
652
653ssize_t SafeSNPrintf(char* buf, size_t sz, const char* fmt) {
654  // Make sure that at least one NUL byte can be written, and that the buffer
655  // never overflows kSSizeMax. Not only does that use up most or all of the
656  // address space, it also would result in a return code that cannot be
657  // represented.
658  if (static_cast<ssize_t>(sz) < 1) {
659    return -1;
660  } else if (sz > kSSizeMax) {
661    sz = kSSizeMax;
662  }
663
664  Buffer buffer(buf, sz);
665
666  // In the slow-path, we deal with errors by copying the contents of
667  // "fmt" unexpanded. This means, if there are no arguments passed, the
668  // SafeSPrintf() function always degenerates to a version of strncpy() that
669  // de-duplicates '%' characters.
670  const char* src = fmt;
671  for (; *src; ++src) {
672    buffer.Out(*src);
673    DEBUG_CHECK(src[0] != '%' || src[1] == '%');
674    if (src[0] == '%' && src[1] == '%') {
675      ++src;
676    }
677  }
678  return buffer.GetCount();
679}
680
681}  // namespace strings
682}  // namespace base
683