1/*
2 * Copyright 2006 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8
9#ifndef SkShader_DEFINED
10#define SkShader_DEFINED
11
12#include "SkBitmap.h"
13#include "SkFlattenable.h"
14#include "SkMask.h"
15#include "SkMatrix.h"
16#include "SkPaint.h"
17
18class SkPath;
19class GrContext;
20class GrEffectRef;
21
22/** \class SkShader
23 *
24 *  Shaders specify the source color(s) for what is being drawn. If a paint
25 *  has no shader, then the paint's color is used. If the paint has a
26 *  shader, then the shader's color(s) are use instead, but they are
27 *  modulated by the paint's alpha. This makes it easy to create a shader
28 *  once (e.g. bitmap tiling or gradient) and then change its transparency
29 *  w/o having to modify the original shader... only the paint's alpha needs
30 *  to be modified.
31 */
32class SK_API SkShader : public SkFlattenable {
33public:
34    SK_DECLARE_INST_COUNT(SkShader)
35
36    SkShader();
37    virtual ~SkShader();
38
39    /**
40     * Returns true if the local matrix is not an identity matrix.
41     */
42    bool hasLocalMatrix() const { return !fLocalMatrix.isIdentity(); }
43
44    /**
45     *  Returns the local matrix.
46     */
47    const SkMatrix& getLocalMatrix() const { return fLocalMatrix; }
48
49    /**
50     *  Set the shader's local matrix.
51     *  @param localM   The shader's new local matrix.
52     */
53    void setLocalMatrix(const SkMatrix& localM) { fLocalMatrix = localM; }
54
55    /**
56     *  Reset the shader's local matrix to identity.
57     */
58    void resetLocalMatrix() { fLocalMatrix.reset(); }
59
60    enum TileMode {
61        /** replicate the edge color if the shader draws outside of its
62         *  original bounds
63         */
64        kClamp_TileMode,
65
66        /** repeat the shader's image horizontally and vertically */
67        kRepeat_TileMode,
68
69        /** repeat the shader's image horizontally and vertically, alternating
70         *  mirror images so that adjacent images always seam
71         */
72        kMirror_TileMode,
73
74#if 0
75        /** only draw within the original domain, return 0 everywhere else */
76        kDecal_TileMode,
77#endif
78
79        kTileModeCount
80    };
81
82    // override these in your subclass
83
84    enum Flags {
85        //!< set if all of the colors will be opaque
86        kOpaqueAlpha_Flag  = 0x01,
87
88        //! set if this shader's shadeSpan16() method can be called
89        kHasSpan16_Flag = 0x02,
90
91        /** Set this bit if the shader's native data type is instrinsically 16
92            bit, meaning that calling the 32bit shadeSpan() entry point will
93            mean the the impl has to up-sample 16bit data into 32bit. Used as a
94            a means of clearing a dither request if the it will have no effect
95        */
96        kIntrinsicly16_Flag = 0x04,
97
98        /** set (after setContext) if the spans only vary in X (const in Y).
99            e.g. an Nx1 bitmap that is being tiled in Y, or a linear-gradient
100            that varies from left-to-right. This flag specifies this for
101            shadeSpan().
102         */
103        kConstInY32_Flag = 0x08,
104
105        /** same as kConstInY32_Flag, but is set if this is true for shadeSpan16
106            which may not always be the case, since shadeSpan16 may be
107            predithered, which would mean it was not const in Y, even though
108            the 32bit shadeSpan() would be const.
109         */
110        kConstInY16_Flag = 0x10
111    };
112
113    /**
114     *  Called sometimes before drawing with this shader. Return the type of
115     *  alpha your shader will return. The default implementation returns 0.
116     *  Your subclass should override if it can (even sometimes) report a
117     *  non-zero value, since that will enable various blitters to perform
118     *  faster.
119     */
120    virtual uint32_t getFlags() { return 0; }
121
122    /**
123     *  Returns true if the shader is guaranteed to produce only opaque
124     *  colors, subject to the SkPaint using the shader to apply an opaque
125     *  alpha value. Subclasses should override this to allow some
126     *  optimizations.  isOpaque() can be called at any time, unlike getFlags,
127     *  which only works properly when the context is set.
128     */
129    virtual bool isOpaque() const { return false; }
130
131    /**
132     *  Return the alpha associated with the data returned by shadeSpan16(). If
133     *  kHasSpan16_Flag is not set, this value is meaningless.
134     */
135    virtual uint8_t getSpan16Alpha() const { return fPaintAlpha; }
136
137    /**
138     *  Called once before drawing, with the current paint and device matrix.
139     *  Return true if your shader supports these parameters, or false if not.
140     *  If false is returned, nothing will be drawn. If true is returned, then
141     *  a balancing call to endContext() will be made before the next call to
142     *  setContext.
143     *
144     *  Subclasses should be sure to call their INHERITED::setContext() if they
145     *  override this method.
146     */
147    virtual bool setContext(const SkBitmap& device, const SkPaint& paint,
148                            const SkMatrix& matrix);
149
150    /**
151     *  Assuming setContext returned true, endContext() will be called when
152     *  the draw using the shader has completed. It is an error for setContext
153     *  to be called twice w/o an intervening call to endContext().
154     *
155     *  Subclasses should be sure to call their INHERITED::endContext() if they
156     *  override this method.
157     */
158    virtual void endContext();
159
160    SkDEBUGCODE(bool setContextHasBeenCalled() const { return SkToBool(fInSetContext); })
161
162    /**
163     *  Called for each span of the object being drawn. Your subclass should
164     *  set the appropriate colors (with premultiplied alpha) that correspond
165     *  to the specified device coordinates.
166     */
167    virtual void shadeSpan(int x, int y, SkPMColor[], int count) = 0;
168
169    typedef void (*ShadeProc)(void* ctx, int x, int y, SkPMColor[], int count);
170    virtual ShadeProc asAShadeProc(void** ctx);
171
172    /**
173     *  Called only for 16bit devices when getFlags() returns
174     *  kOpaqueAlphaFlag | kHasSpan16_Flag
175     */
176    virtual void shadeSpan16(int x, int y, uint16_t[], int count);
177
178    /**
179     *  Similar to shadeSpan, but only returns the alpha-channel for a span.
180     *  The default implementation calls shadeSpan() and then extracts the alpha
181     *  values from the returned colors.
182     */
183    virtual void shadeSpanAlpha(int x, int y, uint8_t alpha[], int count);
184
185    /**
186     *  Helper function that returns true if this shader's shadeSpan16() method
187     *  can be called.
188     */
189    bool canCallShadeSpan16() {
190        return SkShader::CanCallShadeSpan16(this->getFlags());
191    }
192
193    /**
194     *  Helper to check the flags to know if it is legal to call shadeSpan16()
195     */
196    static bool CanCallShadeSpan16(uint32_t flags) {
197        return (flags & kHasSpan16_Flag) != 0;
198    }
199
200    /**
201     Gives method bitmap should be read to implement a shader.
202     Also determines number and interpretation of "extra" parameters returned
203     by asABitmap
204     */
205    enum BitmapType {
206        kNone_BitmapType,   //<! Shader is not represented as a bitmap
207        kDefault_BitmapType,//<! Access bitmap using local coords transformed
208                            //   by matrix. No extras
209        kRadial_BitmapType, //<! Access bitmap by transforming local coordinates
210                            //   by the matrix and taking the distance of result
211                            //   from  (0,0) as bitmap column. Bitmap is 1 pixel
212                            //   tall. No extras
213        kSweep_BitmapType,  //<! Access bitmap by transforming local coordinates
214                            //   by the matrix and taking the angle of result
215                            //   to (0,0) as bitmap x coord, where angle = 0 is
216                            //   bitmap left edge of bitmap = 2pi is the
217                            //   right edge. Bitmap is 1 pixel tall. No extras
218        kTwoPointRadial_BitmapType,
219                            //<! Matrix transforms to space where (0,0) is
220                            //   the center of the starting circle.  The second
221                            //   circle will be centered (x, 0) where x  may be
222                            //   0. The post-matrix space is normalized such
223                            //   that 1 is the second radius - first radius.
224                            //   Three extra parameters are returned:
225                            //      0: x-offset of second circle center
226                            //         to first.
227                            //      1: radius of first circle in post-matrix
228                            //         space
229                            //      2: the second radius minus the first radius
230                            //         in pre-transformed space.
231        kTwoPointConical_BitmapType,
232                            //<! Matrix transforms to space where (0,0) is
233                            //   the center of the starting circle.  The second
234                            //   circle will be centered (x, 0) where x  may be
235                            //   0.
236                            //   Three extra parameters are returned:
237                            //      0: x-offset of second circle center
238                            //         to first.
239                            //      1: radius of first circle
240                            //      2: the second radius minus the first radius
241        kLinear_BitmapType, //<! Access bitmap using local coords transformed
242                            //   by matrix. No extras
243
244       kLast_BitmapType = kLinear_BitmapType
245    };
246    /** Optional methods for shaders that can pretend to be a bitmap/texture
247        to play along with opengl. Default just returns kNone_BitmapType and
248        ignores the out parameters.
249
250        @param outTexture if non-NULL will be the bitmap representing the shader
251                          after return.
252        @param outMatrix  if non-NULL will be the matrix to apply to vertices
253                          to access the bitmap after return.
254        @param xy         if non-NULL will be the tile modes that should be
255                          used to access the bitmap after return.
256        @param twoPointRadialParams Two extra return values needed for two point
257                                    radial bitmaps. The first is the x-offset of
258                                    the second point and the second is the radius
259                                    about the first point.
260    */
261    virtual BitmapType asABitmap(SkBitmap* outTexture, SkMatrix* outMatrix,
262                         TileMode xy[2]) const;
263
264    /**
265     *  If the shader subclass can be represented as a gradient, asAGradient
266     *  returns the matching GradientType enum (or kNone_GradientType if it
267     *  cannot). Also, if info is not null, asAGradient populates info with
268     *  the relevant (see below) parameters for the gradient.  fColorCount
269     *  is both an input and output parameter.  On input, it indicates how
270     *  many entries in fColors and fColorOffsets can be used, if they are
271     *  non-NULL.  After asAGradient has run, fColorCount indicates how
272     *  many color-offset pairs there are in the gradient.  If there is
273     *  insufficient space to store all of the color-offset pairs, fColors
274     *  and fColorOffsets will not be altered.  fColorOffsets specifies
275     *  where on the range of 0 to 1 to transition to the given color.
276     *  The meaning of fPoint and fRadius is dependant on the type of gradient.
277     *
278     *  None:
279     *      info is ignored.
280     *  Color:
281     *      fColorOffsets[0] is meaningless.
282     *  Linear:
283     *      fPoint[0] and fPoint[1] are the end-points of the gradient
284     *  Radial:
285     *      fPoint[0] and fRadius[0] are the center and radius
286     *  Radial2:
287     *      fPoint[0] and fRadius[0] are the center and radius of the 1st circle
288     *      fPoint[1] and fRadius[1] are the center and radius of the 2nd circle
289     *  Sweep:
290     *      fPoint[0] is the center of the sweep.
291     */
292
293    enum GradientType {
294        kNone_GradientType,
295        kColor_GradientType,
296        kLinear_GradientType,
297        kRadial_GradientType,
298        kRadial2_GradientType,
299        kSweep_GradientType,
300        kConical_GradientType,
301        kLast_GradientType = kConical_GradientType
302    };
303
304    struct GradientInfo {
305        int         fColorCount;    //!< In-out parameter, specifies passed size
306                                    //   of fColors/fColorOffsets on input, and
307                                    //   actual number of colors/offsets on
308                                    //   output.
309        SkColor*    fColors;        //!< The colors in the gradient.
310        SkScalar*   fColorOffsets;  //!< The unit offset for color transitions.
311        SkPoint     fPoint[2];      //!< Type specific, see above.
312        SkScalar    fRadius[2];     //!< Type specific, see above.
313        TileMode    fTileMode;      //!< The tile mode used.
314        uint32_t    fGradientFlags; //!< see SkGradientShader::Flags
315    };
316
317    virtual GradientType asAGradient(GradientInfo* info) const;
318
319    /**
320     *  If the shader subclass has a GrEffect implementation, this resturns the effect to install.
321     *  The incoming color to the effect has r=g=b=a all extracted from the SkPaint's alpha.
322     *  The output color should be the computed SkShader premul color modulated by the incoming
323     *  color. The GrContext may be used by the effect to create textures. The GPU device does not
324     *  call setContext. Instead we pass the SkPaint here in case the shader needs paint info.
325     */
326    virtual GrEffectRef* asNewEffect(GrContext* context, const SkPaint& paint) const;
327
328    //////////////////////////////////////////////////////////////////////////
329    //  Factory methods for stock shaders
330
331    /** Call this to create a new shader that will draw with the specified bitmap.
332     *
333     *  If the bitmap cannot be used (e.g. has no pixels, or its dimensions
334     *  exceed implementation limits (currently at 64K - 1)) then SkEmptyShader
335     *  may be returned.
336     *
337     *  If the src is kA8_Config then that mask will be colorized using the color on
338     *  the paint.
339     *
340     *  @param src  The bitmap to use inside the shader
341     *  @param tmx  The tiling mode to use when sampling the bitmap in the x-direction.
342     *  @param tmy  The tiling mode to use when sampling the bitmap in the y-direction.
343     *  @return     Returns a new shader object. Note: this function never returns null.
344    */
345    static SkShader* CreateBitmapShader(const SkBitmap& src,
346                                        TileMode tmx, TileMode tmy);
347
348    SkDEVCODE(virtual void toString(SkString* str) const;)
349
350    SK_DEFINE_FLATTENABLE_TYPE(SkShader)
351
352protected:
353    enum MatrixClass {
354        kLinear_MatrixClass,            // no perspective
355        kFixedStepInX_MatrixClass,      // fast perspective, need to call fixedStepInX() each scanline
356        kPerspective_MatrixClass        // slow perspective, need to mappoints each pixel
357    };
358    static MatrixClass ComputeMatrixClass(const SkMatrix&);
359
360    // These can be called by your subclass after setContext() has been called
361    uint8_t             getPaintAlpha() const { return fPaintAlpha; }
362    SkBitmap::Config    getDeviceConfig() const { return (SkBitmap::Config)fDeviceConfig; }
363    const SkMatrix&     getTotalInverse() const { return fTotalInverse; }
364    MatrixClass         getInverseClass() const { return (MatrixClass)fTotalInverseClass; }
365
366    SkShader(SkFlattenableReadBuffer& );
367    virtual void flatten(SkFlattenableWriteBuffer&) const SK_OVERRIDE;
368private:
369    SkMatrix            fLocalMatrix;
370    SkMatrix            fTotalInverse;
371    uint8_t             fPaintAlpha;
372    uint8_t             fDeviceConfig;
373    uint8_t             fTotalInverseClass;
374    SkDEBUGCODE(SkBool8 fInSetContext;)
375
376    static SkShader* CreateBitmapShader(const SkBitmap& src,
377                                        TileMode, TileMode,
378                                        void* storage, size_t storageSize);
379    friend class SkAutoBitmapShaderInstall;
380    typedef SkFlattenable INHERITED;
381};
382
383#endif
384