1/*
2 * Copyright 2011 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#ifndef GrDrawState_DEFINED
9#define GrDrawState_DEFINED
10
11#include "GrBackendEffectFactory.h"
12#include "GrBlend.h"
13#include "GrColor.h"
14#include "GrEffectStage.h"
15#include "GrPaint.h"
16#include "GrPoint.h"
17#include "GrRenderTarget.h"
18#include "GrStencil.h"
19#include "GrTemplates.h"
20#include "GrTexture.h"
21#include "GrTypesPriv.h"
22#include "effects/GrSimpleTextureEffect.h"
23
24#include "SkMatrix.h"
25#include "SkTypes.h"
26#include "SkXfermode.h"
27
28class GrDrawState : public SkRefCnt {
29public:
30    SK_DECLARE_INST_COUNT(GrDrawState)
31
32    GrDrawState() {
33        SkDEBUGCODE(fBlockEffectRemovalCnt = 0;)
34        this->reset();
35    }
36
37    GrDrawState(const SkMatrix& initialViewMatrix) {
38        SkDEBUGCODE(fBlockEffectRemovalCnt = 0;)
39        this->reset(initialViewMatrix);
40    }
41
42    /**
43     * Copies another draw state.
44     **/
45    GrDrawState(const GrDrawState& state) : INHERITED() {
46        SkDEBUGCODE(fBlockEffectRemovalCnt = 0;)
47        *this = state;
48    }
49
50    /**
51     * Copies another draw state with a preconcat to the view matrix.
52     **/
53    GrDrawState(const GrDrawState& state, const SkMatrix& preConcatMatrix) {
54        SkDEBUGCODE(fBlockEffectRemovalCnt = 0;)
55        *this = state;
56        if (!preConcatMatrix.isIdentity()) {
57            for (int i = 0; i < fColorStages.count(); ++i) {
58                fColorStages[i].localCoordChange(preConcatMatrix);
59            }
60            for (int i = 0; i < fCoverageStages.count(); ++i) {
61                fCoverageStages[i].localCoordChange(preConcatMatrix);
62            }
63        }
64    }
65
66    virtual ~GrDrawState() { SkASSERT(0 == fBlockEffectRemovalCnt); }
67
68    /**
69     * Resets to the default state. GrEffects will be removed from all stages.
70     */
71    void reset() { this->onReset(NULL); }
72
73    void reset(const SkMatrix& initialViewMatrix) { this->onReset(&initialViewMatrix); }
74
75    /**
76     * Initializes the GrDrawState based on a GrPaint, view matrix and render target. Note that
77     * GrDrawState encompasses more than GrPaint. Aspects of GrDrawState that have no GrPaint
78     * equivalents are set to default values. Clipping will be enabled.
79     */
80    void setFromPaint(const GrPaint& , const SkMatrix& viewMatrix, GrRenderTarget*);
81
82    ///////////////////////////////////////////////////////////////////////////
83    /// @name Vertex Attributes
84    ////
85
86    enum {
87        kMaxVertexAttribCnt = kLast_GrVertexAttribBinding + 4,
88    };
89
90   /**
91     * The format of vertices is represented as an array of GrVertexAttribs, with each representing
92     * the type of the attribute, its offset, and semantic binding (see GrVertexAttrib in
93     * GrTypesPriv.h).
94     *
95     * The mapping of attributes with kEffect bindings to GrEffect inputs is specified when
96     * setEffect is called.
97     */
98
99    /**
100     *  Sets vertex attributes for next draw. The object driving the templatization
101     *  should be a global GrVertexAttrib array that is never changed.
102     */
103    template <const GrVertexAttrib A[]> void setVertexAttribs(int count) {
104        this->setVertexAttribs(A, count);
105    }
106
107    const GrVertexAttrib* getVertexAttribs() const { return fCommon.fVAPtr; }
108    int getVertexAttribCount() const { return fCommon.fVACount; }
109
110    size_t getVertexSize() const;
111
112    /**
113     *  Sets default vertex attributes for next draw. The default is a single attribute:
114     *  {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribType}
115     */
116    void setDefaultVertexAttribs();
117
118    /**
119     * Getters for index into getVertexAttribs() for particular bindings. -1 is returned if the
120     * binding does not appear in the current attribs. These bindings should appear only once in
121     * the attrib array.
122     */
123
124    int positionAttributeIndex() const {
125        return fCommon.fFixedFunctionVertexAttribIndices[kPosition_GrVertexAttribBinding];
126    }
127    int localCoordAttributeIndex() const {
128        return fCommon.fFixedFunctionVertexAttribIndices[kLocalCoord_GrVertexAttribBinding];
129    }
130    int colorVertexAttributeIndex() const {
131        return fCommon.fFixedFunctionVertexAttribIndices[kColor_GrVertexAttribBinding];
132    }
133    int coverageVertexAttributeIndex() const {
134        return fCommon.fFixedFunctionVertexAttribIndices[kCoverage_GrVertexAttribBinding];
135    }
136
137    bool hasLocalCoordAttribute() const {
138        return -1 != fCommon.fFixedFunctionVertexAttribIndices[kLocalCoord_GrVertexAttribBinding];
139    }
140    bool hasColorVertexAttribute() const {
141        return -1 != fCommon.fFixedFunctionVertexAttribIndices[kColor_GrVertexAttribBinding];
142    }
143    bool hasCoverageVertexAttribute() const {
144        return -1 != fCommon.fFixedFunctionVertexAttribIndices[kCoverage_GrVertexAttribBinding];
145    }
146
147    bool validateVertexAttribs() const;
148
149    /**
150     * Helper to save/restore vertex attribs
151     */
152     class AutoVertexAttribRestore {
153     public:
154         AutoVertexAttribRestore(GrDrawState* drawState) {
155             SkASSERT(NULL != drawState);
156             fDrawState = drawState;
157             fVAPtr = drawState->fCommon.fVAPtr;
158             fVACount = drawState->fCommon.fVACount;
159             fDrawState->setDefaultVertexAttribs();
160         }
161
162         ~AutoVertexAttribRestore(){
163             fDrawState->setVertexAttribs(fVAPtr, fVACount);
164         }
165
166     private:
167         GrDrawState*          fDrawState;
168         const GrVertexAttrib* fVAPtr;
169         int                   fVACount;
170     };
171
172    /**
173     * Accessing positions, local coords, or colors, of a vertex within an array is a hassle
174     * involving casts and simple math. These helpers exist to keep GrDrawTarget clients' code a bit
175     * nicer looking.
176     */
177
178    /**
179     * Gets a pointer to a GrPoint of a vertex's position or texture
180     * coordinate.
181     * @param vertices      the vertex array
182     * @param vertexIndex   the index of the vertex in the array
183     * @param vertexSize    the size of each vertex in the array
184     * @param offset        the offset in bytes of the vertex component.
185     *                      Defaults to zero (corresponding to vertex position)
186     * @return pointer to the vertex component as a GrPoint
187     */
188    static GrPoint* GetVertexPoint(void* vertices,
189                                   int vertexIndex,
190                                   int vertexSize,
191                                   int offset = 0) {
192        intptr_t start = GrTCast<intptr_t>(vertices);
193        return GrTCast<GrPoint*>(start + offset +
194                                 vertexIndex * vertexSize);
195    }
196    static const GrPoint* GetVertexPoint(const void* vertices,
197                                         int vertexIndex,
198                                         int vertexSize,
199                                         int offset = 0) {
200        intptr_t start = GrTCast<intptr_t>(vertices);
201        return GrTCast<const GrPoint*>(start + offset +
202                                       vertexIndex * vertexSize);
203    }
204
205    /**
206     * Gets a pointer to a GrColor inside a vertex within a vertex array.
207     * @param vertices      the vetex array
208     * @param vertexIndex   the index of the vertex in the array
209     * @param vertexSize    the size of each vertex in the array
210     * @param offset        the offset in bytes of the vertex color
211     * @return pointer to the vertex component as a GrColor
212     */
213    static GrColor* GetVertexColor(void* vertices,
214                                   int vertexIndex,
215                                   int vertexSize,
216                                   int offset) {
217        intptr_t start = GrTCast<intptr_t>(vertices);
218        return GrTCast<GrColor*>(start + offset +
219                                 vertexIndex * vertexSize);
220    }
221    static const GrColor* GetVertexColor(const void* vertices,
222                                         int vertexIndex,
223                                         int vertexSize,
224                                         int offset) {
225        const intptr_t start = GrTCast<intptr_t>(vertices);
226        return GrTCast<const GrColor*>(start + offset +
227                                       vertexIndex * vertexSize);
228    }
229
230    /// @}
231
232    /**
233     * Determines whether src alpha is guaranteed to be one for all src pixels
234     */
235    bool srcAlphaWillBeOne() const;
236
237    /**
238     * Determines whether the output coverage is guaranteed to be one for all pixels hit by a draw.
239     */
240    bool hasSolidCoverage() const;
241
242    /// @}
243
244    ///////////////////////////////////////////////////////////////////////////
245    /// @name Color
246    ////
247
248    /**
249     *  Sets color for next draw to a premultiplied-alpha color.
250     *
251     *  @param color    the color to set.
252     */
253    void setColor(GrColor color) { fCommon.fColor = color; }
254
255    GrColor getColor() const { return fCommon.fColor; }
256
257    /**
258     *  Sets the color to be used for the next draw to be
259     *  (r,g,b,a) = (alpha, alpha, alpha, alpha).
260     *
261     *  @param alpha The alpha value to set as the color.
262     */
263    void setAlpha(uint8_t a) {
264        this->setColor((a << 24) | (a << 16) | (a << 8) | a);
265    }
266
267    /**
268     * Constructor sets the color to be 'color' which is undone by the destructor.
269     */
270    class AutoColorRestore : public ::SkNoncopyable {
271    public:
272        AutoColorRestore() : fDrawState(NULL), fOldColor(0) {}
273
274        AutoColorRestore(GrDrawState* drawState, GrColor color) {
275            fDrawState = NULL;
276            this->set(drawState, color);
277        }
278
279        void reset() {
280            if (NULL != fDrawState) {
281                fDrawState->setColor(fOldColor);
282                fDrawState = NULL;
283            }
284        }
285
286        void set(GrDrawState* drawState, GrColor color) {
287            this->reset();
288            fDrawState = drawState;
289            fOldColor = fDrawState->getColor();
290            fDrawState->setColor(color);
291        }
292
293        ~AutoColorRestore() { this->reset(); }
294    private:
295        GrDrawState*    fDrawState;
296        GrColor         fOldColor;
297    };
298
299    /// @}
300
301    ///////////////////////////////////////////////////////////////////////////
302    /// @name Coverage
303    ////
304
305    /**
306     * Sets a constant fractional coverage to be applied to the draw. The
307     * initial value (after construction or reset()) is 0xff. The constant
308     * coverage is ignored when per-vertex coverage is provided.
309     */
310    void setCoverage(uint8_t coverage) {
311        fCommon.fCoverage = GrColorPackRGBA(coverage, coverage, coverage, coverage);
312    }
313
314    uint8_t getCoverage() const {
315        return GrColorUnpackR(fCommon.fCoverage);
316    }
317
318    GrColor getCoverageColor() const {
319        return fCommon.fCoverage;
320    }
321
322    /// @}
323
324    ///////////////////////////////////////////////////////////////////////////
325    /// @name Effect Stages
326    /// Each stage hosts a GrEffect. The effect produces an output color or coverage in the fragment
327    /// shader. Its inputs are the output from the previous stage as well as some variables
328    /// available to it in the fragment and vertex shader (e.g. the vertex position, the dst color,
329    /// the fragment position, local coordinates).
330    ///
331    /// The stages are divided into two sets, color-computing and coverage-computing. The final
332    /// color stage produces the final pixel color. The coverage-computing stages function exactly
333    /// as the color-computing but the output of the final coverage stage is treated as a fractional
334    /// pixel coverage rather than as input to the src/dst color blend step.
335    ///
336    /// The input color to the first color-stage is either the constant color or interpolated
337    /// per-vertex colors. The input to the first coverage stage is either a constant coverage
338    /// (usually full-coverage) or interpolated per-vertex coverage.
339    ///
340    /// See the documentation of kCoverageDrawing_StateBit for information about disabling the
341    /// the color / coverage distinction.
342    ////
343
344    const GrEffectRef* addColorEffect(const GrEffectRef* effect, int attr0 = -1, int attr1 = -1) {
345        SkASSERT(NULL != effect);
346        SkNEW_APPEND_TO_TARRAY(&fColorStages, GrEffectStage, (effect, attr0, attr1));
347        return effect;
348    }
349
350    const GrEffectRef* addCoverageEffect(const GrEffectRef* effect, int attr0 = -1, int attr1 = -1) {
351        SkASSERT(NULL != effect);
352        SkNEW_APPEND_TO_TARRAY(&fCoverageStages, GrEffectStage, (effect, attr0, attr1));
353        return effect;
354    }
355
356    /**
357     * Creates a GrSimpleTextureEffect that uses local coords as texture coordinates.
358     */
359    void addColorTextureEffect(GrTexture* texture, const SkMatrix& matrix) {
360        GrEffectRef* effect = GrSimpleTextureEffect::Create(texture, matrix);
361        this->addColorEffect(effect)->unref();
362    }
363
364    void addCoverageTextureEffect(GrTexture* texture, const SkMatrix& matrix) {
365        GrEffectRef* effect = GrSimpleTextureEffect::Create(texture, matrix);
366        this->addCoverageEffect(effect)->unref();
367    }
368
369    void addColorTextureEffect(GrTexture* texture,
370                               const SkMatrix& matrix,
371                               const GrTextureParams& params) {
372        GrEffectRef* effect = GrSimpleTextureEffect::Create(texture, matrix, params);
373        this->addColorEffect(effect)->unref();
374    }
375
376    void addCoverageTextureEffect(GrTexture* texture,
377                                  const SkMatrix& matrix,
378                                  const GrTextureParams& params) {
379        GrEffectRef* effect = GrSimpleTextureEffect::Create(texture, matrix, params);
380        this->addCoverageEffect(effect)->unref();
381    }
382
383    /**
384     * When this object is destroyed it will remove any effects from the draw state that were added
385     * after its constructor.
386     */
387    class AutoRestoreEffects : public ::SkNoncopyable {
388    public:
389        AutoRestoreEffects() : fDrawState(NULL), fColorEffectCnt(0), fCoverageEffectCnt(0) {}
390
391        AutoRestoreEffects(GrDrawState* ds) : fDrawState(NULL), fColorEffectCnt(0), fCoverageEffectCnt(0) {
392            this->set(ds);
393        }
394
395        ~AutoRestoreEffects() { this->set(NULL); }
396
397        void set(GrDrawState* ds) {
398            if (NULL != fDrawState) {
399                int n = fDrawState->fColorStages.count() - fColorEffectCnt;
400                SkASSERT(n >= 0);
401                fDrawState->fColorStages.pop_back_n(n);
402                n = fDrawState->fCoverageStages.count() - fCoverageEffectCnt;
403                SkASSERT(n >= 0);
404                fDrawState->fCoverageStages.pop_back_n(n);
405                SkDEBUGCODE(--fDrawState->fBlockEffectRemovalCnt;)
406            }
407            fDrawState = ds;
408            if (NULL != ds) {
409                fColorEffectCnt = ds->fColorStages.count();
410                fCoverageEffectCnt = ds->fCoverageStages.count();
411                SkDEBUGCODE(++ds->fBlockEffectRemovalCnt;)
412            }
413        }
414
415    private:
416        GrDrawState* fDrawState;
417        int fColorEffectCnt;
418        int fCoverageEffectCnt;
419    };
420
421    int numColorStages() const { return fColorStages.count(); }
422    int numCoverageStages() const { return fCoverageStages.count(); }
423    int numTotalStages() const { return this->numColorStages() + this->numCoverageStages(); }
424
425    const GrEffectStage& getColorStage(int stageIdx) const { return fColorStages[stageIdx]; }
426    const GrEffectStage& getCoverageStage(int stageIdx) const { return fCoverageStages[stageIdx]; }
427
428    /**
429     * Checks whether any of the effects will read the dst pixel color.
430     */
431    bool willEffectReadDstColor() const;
432
433    /// @}
434
435    ///////////////////////////////////////////////////////////////////////////
436    /// @name Blending
437    ////
438
439    /**
440     * Sets the blending function coefficients.
441     *
442     * The blend function will be:
443     *    D' = sat(S*srcCoef + D*dstCoef)
444     *
445     *   where D is the existing destination color, S is the incoming source
446     *   color, and D' is the new destination color that will be written. sat()
447     *   is the saturation function.
448     *
449     * @param srcCoef coefficient applied to the src color.
450     * @param dstCoef coefficient applied to the dst color.
451     */
452    void setBlendFunc(GrBlendCoeff srcCoeff, GrBlendCoeff dstCoeff) {
453        fCommon.fSrcBlend = srcCoeff;
454        fCommon.fDstBlend = dstCoeff;
455    #ifdef SK_DEBUG
456        if (GrBlendCoeffRefsDst(dstCoeff)) {
457            GrPrintf("Unexpected dst blend coeff. Won't work correctly with coverage stages.\n");
458        }
459        if (GrBlendCoeffRefsSrc(srcCoeff)) {
460            GrPrintf("Unexpected src blend coeff. Won't work correctly with coverage stages.\n");
461        }
462    #endif
463    }
464
465    GrBlendCoeff getSrcBlendCoeff() const { return fCommon.fSrcBlend; }
466    GrBlendCoeff getDstBlendCoeff() const { return fCommon.fDstBlend; }
467
468    void getDstBlendCoeff(GrBlendCoeff* srcBlendCoeff,
469                          GrBlendCoeff* dstBlendCoeff) const {
470        *srcBlendCoeff = fCommon.fSrcBlend;
471        *dstBlendCoeff = fCommon.fDstBlend;
472    }
473
474    /**
475     * Sets the blending function constant referenced by the following blending
476     * coefficients:
477     *      kConstC_GrBlendCoeff
478     *      kIConstC_GrBlendCoeff
479     *      kConstA_GrBlendCoeff
480     *      kIConstA_GrBlendCoeff
481     *
482     * @param constant the constant to set
483     */
484    void setBlendConstant(GrColor constant) { fCommon.fBlendConstant = constant; }
485
486    /**
487     * Retrieves the last value set by setBlendConstant()
488     * @return the blending constant value
489     */
490    GrColor getBlendConstant() const { return fCommon.fBlendConstant; }
491
492    /**
493     * Determines whether multiplying the computed per-pixel color by the pixel's fractional
494     * coverage before the blend will give the correct final destination color. In general it
495     * will not as coverage is applied after blending.
496     */
497    bool canTweakAlphaForCoverage() const;
498
499    /**
500     * Optimizations for blending / coverage to that can be applied based on the current state.
501     */
502    enum BlendOptFlags {
503        /**
504         * No optimization
505         */
506        kNone_BlendOpt                  = 0,
507        /**
508         * Don't draw at all
509         */
510        kSkipDraw_BlendOptFlag          = 0x1,
511        /**
512         * Emit the src color, disable HW blending (replace dst with src)
513         */
514        kDisableBlend_BlendOptFlag      = 0x2,
515        /**
516         * The coverage value does not have to be computed separately from alpha, the the output
517         * color can be the modulation of the two.
518         */
519        kCoverageAsAlpha_BlendOptFlag   = 0x4,
520        /**
521         * Instead of emitting a src color, emit coverage in the alpha channel and r,g,b are
522         * "don't cares".
523         */
524        kEmitCoverage_BlendOptFlag      = 0x8,
525        /**
526         * Emit transparent black instead of the src color, no need to compute coverage.
527         */
528        kEmitTransBlack_BlendOptFlag    = 0x10,
529    };
530    GR_DECL_BITFIELD_OPS_FRIENDS(BlendOptFlags);
531
532    /**
533     * Determines what optimizations can be applied based on the blend. The coefficients may have
534     * to be tweaked in order for the optimization to work. srcCoeff and dstCoeff are optional
535     * params that receive the tweaked coefficients. Normally the function looks at the current
536     * state to see if coverage is enabled. By setting forceCoverage the caller can speculatively
537     * determine the blend optimizations that would be used if there was partial pixel coverage.
538     *
539     * Subclasses of GrDrawTarget that actually draw (as opposed to those that just buffer for
540     * playback) must call this function and respect the flags that replace the output color.
541     */
542    BlendOptFlags getBlendOpts(bool forceCoverage = false,
543                               GrBlendCoeff* srcCoeff = NULL,
544                               GrBlendCoeff* dstCoeff = NULL) const;
545
546    /// @}
547
548    ///////////////////////////////////////////////////////////////////////////
549    /// @name View Matrix
550    ////
551
552    /**
553     * Sets the view matrix to identity and updates any installed effects to compensate for the
554     * coord system change.
555     */
556    bool setIdentityViewMatrix();
557
558    /**
559     * Retrieves the current view matrix
560     * @return the current view matrix.
561     */
562    const SkMatrix& getViewMatrix() const { return fCommon.fViewMatrix; }
563
564    /**
565     *  Retrieves the inverse of the current view matrix.
566     *
567     *  If the current view matrix is invertible, return true, and if matrix
568     *  is non-null, copy the inverse into it. If the current view matrix is
569     *  non-invertible, return false and ignore the matrix parameter.
570     *
571     * @param matrix if not null, will receive a copy of the current inverse.
572     */
573    bool getViewInverse(SkMatrix* matrix) const {
574        // TODO: determine whether we really need to leave matrix unmodified
575        // at call sites when inversion fails.
576        SkMatrix inverse;
577        if (fCommon.fViewMatrix.invert(&inverse)) {
578            if (matrix) {
579                *matrix = inverse;
580            }
581            return true;
582        }
583        return false;
584    }
585
586    ////////////////////////////////////////////////////////////////////////////
587
588    /**
589     * Preconcats the current view matrix and restores the previous view matrix in the destructor.
590     * Effect matrices are automatically adjusted to compensate and adjusted back in the destructor.
591     */
592    class AutoViewMatrixRestore : public ::SkNoncopyable {
593    public:
594        AutoViewMatrixRestore() : fDrawState(NULL) {}
595
596        AutoViewMatrixRestore(GrDrawState* ds, const SkMatrix& preconcatMatrix) {
597            fDrawState = NULL;
598            this->set(ds, preconcatMatrix);
599        }
600
601        ~AutoViewMatrixRestore() { this->restore(); }
602
603        /**
604         * Can be called prior to destructor to restore the original matrix.
605         */
606        void restore();
607
608        void set(GrDrawState* drawState, const SkMatrix& preconcatMatrix);
609
610        /** Sets the draw state's matrix to identity. This can fail because the current view matrix
611            is not invertible. */
612        bool setIdentity(GrDrawState* drawState);
613
614    private:
615        void doEffectCoordChanges(const SkMatrix& coordChangeMatrix);
616
617        GrDrawState*                                        fDrawState;
618        SkMatrix                                            fViewMatrix;
619        int                                                 fNumColorStages;
620        SkAutoSTArray<8, GrEffectStage::SavedCoordChange>   fSavedCoordChanges;
621    };
622
623    /// @}
624
625    ///////////////////////////////////////////////////////////////////////////
626    /// @name Render Target
627    ////
628
629    /**
630     * Sets the render-target used at the next drawing call
631     *
632     * @param target  The render target to set.
633     */
634    void setRenderTarget(GrRenderTarget* target) {
635        fRenderTarget.reset(SkSafeRef(target));
636    }
637
638    /**
639     * Retrieves the currently set render-target.
640     *
641     * @return    The currently set render target.
642     */
643    const GrRenderTarget* getRenderTarget() const { return fRenderTarget.get(); }
644    GrRenderTarget* getRenderTarget() { return fRenderTarget.get(); }
645
646    class AutoRenderTargetRestore : public ::SkNoncopyable {
647    public:
648        AutoRenderTargetRestore() : fDrawState(NULL), fSavedTarget(NULL) {}
649        AutoRenderTargetRestore(GrDrawState* ds, GrRenderTarget* newTarget) {
650            fDrawState = NULL;
651            fSavedTarget = NULL;
652            this->set(ds, newTarget);
653        }
654        ~AutoRenderTargetRestore() { this->restore(); }
655
656        void restore() {
657            if (NULL != fDrawState) {
658                fDrawState->setRenderTarget(fSavedTarget);
659                fDrawState = NULL;
660            }
661            SkSafeSetNull(fSavedTarget);
662        }
663
664        void set(GrDrawState* ds, GrRenderTarget* newTarget) {
665            this->restore();
666
667            if (NULL != ds) {
668                SkASSERT(NULL == fSavedTarget);
669                fSavedTarget = ds->getRenderTarget();
670                SkSafeRef(fSavedTarget);
671                ds->setRenderTarget(newTarget);
672                fDrawState = ds;
673            }
674        }
675    private:
676        GrDrawState* fDrawState;
677        GrRenderTarget* fSavedTarget;
678    };
679
680    /// @}
681
682    ///////////////////////////////////////////////////////////////////////////
683    /// @name Stencil
684    ////
685
686    /**
687     * Sets the stencil settings to use for the next draw.
688     * Changing the clip has the side-effect of possibly zeroing
689     * out the client settable stencil bits. So multipass algorithms
690     * using stencil should not change the clip between passes.
691     * @param settings  the stencil settings to use.
692     */
693    void setStencil(const GrStencilSettings& settings) {
694        fCommon.fStencilSettings = settings;
695    }
696
697    /**
698     * Shortcut to disable stencil testing and ops.
699     */
700    void disableStencil() {
701        fCommon.fStencilSettings.setDisabled();
702    }
703
704    const GrStencilSettings& getStencil() const { return fCommon.fStencilSettings; }
705
706    GrStencilSettings* stencil() { return &fCommon.fStencilSettings; }
707
708    /// @}
709
710    ///////////////////////////////////////////////////////////////////////////
711    /// @name State Flags
712    ////
713
714    /**
715     *  Flags that affect rendering. Controlled using enable/disableState(). All
716     *  default to disabled.
717     */
718    enum StateBits {
719        /**
720         * Perform dithering. TODO: Re-evaluate whether we need this bit
721         */
722        kDither_StateBit        = 0x01,
723        /**
724         * Perform HW anti-aliasing. This means either HW FSAA, if supported by the render target,
725         * or smooth-line rendering if a line primitive is drawn and line smoothing is supported by
726         * the 3D API.
727         */
728        kHWAntialias_StateBit   = 0x02,
729        /**
730         * Draws will respect the clip, otherwise the clip is ignored.
731         */
732        kClip_StateBit          = 0x04,
733        /**
734         * Disables writing to the color buffer. Useful when performing stencil
735         * operations.
736         */
737        kNoColorWrites_StateBit = 0x08,
738
739        /**
740         * Usually coverage is applied after color blending. The color is blended using the coeffs
741         * specified by setBlendFunc(). The blended color is then combined with dst using coeffs
742         * of src_coverage, 1-src_coverage. Sometimes we are explicitly drawing a coverage mask. In
743         * this case there is no distinction between coverage and color and the caller needs direct
744         * control over the blend coeffs. When set, there will be a single blend step controlled by
745         * setBlendFunc() which will use coverage*color as the src color.
746         */
747         kCoverageDrawing_StateBit = 0x10,
748
749        // Users of the class may add additional bits to the vector
750        kDummyStateBit,
751        kLastPublicStateBit = kDummyStateBit-1,
752    };
753
754    void resetStateFlags() {
755        fCommon.fFlagBits = 0;
756    }
757
758    /**
759     * Enable render state settings.
760     *
761     * @param stateBits bitfield of StateBits specifying the states to enable
762     */
763    void enableState(uint32_t stateBits) {
764        fCommon.fFlagBits |= stateBits;
765    }
766
767    /**
768     * Disable render state settings.
769     *
770     * @param stateBits bitfield of StateBits specifying the states to disable
771     */
772    void disableState(uint32_t stateBits) {
773        fCommon.fFlagBits &= ~(stateBits);
774    }
775
776    /**
777     * Enable or disable stateBits based on a boolean.
778     *
779     * @param stateBits bitfield of StateBits to enable or disable
780     * @param enable    if true enable stateBits, otherwise disable
781     */
782    void setState(uint32_t stateBits, bool enable) {
783        if (enable) {
784            this->enableState(stateBits);
785        } else {
786            this->disableState(stateBits);
787        }
788    }
789
790    bool isDitherState() const {
791        return 0 != (fCommon.fFlagBits & kDither_StateBit);
792    }
793
794    bool isHWAntialiasState() const {
795        return 0 != (fCommon.fFlagBits & kHWAntialias_StateBit);
796    }
797
798    bool isClipState() const {
799        return 0 != (fCommon.fFlagBits & kClip_StateBit);
800    }
801
802    bool isColorWriteDisabled() const {
803        return 0 != (fCommon.fFlagBits & kNoColorWrites_StateBit);
804    }
805
806    bool isCoverageDrawing() const {
807        return 0 != (fCommon.fFlagBits & kCoverageDrawing_StateBit);
808    }
809
810    bool isStateFlagEnabled(uint32_t stateBit) const {
811        return 0 != (stateBit & fCommon.fFlagBits);
812    }
813
814    /// @}
815
816    ///////////////////////////////////////////////////////////////////////////
817    /// @name Face Culling
818    ////
819
820    enum DrawFace {
821        kInvalid_DrawFace = -1,
822
823        kBoth_DrawFace,
824        kCCW_DrawFace,
825        kCW_DrawFace,
826    };
827
828    /**
829     * Controls whether clockwise, counterclockwise, or both faces are drawn.
830     * @param face  the face(s) to draw.
831     */
832    void setDrawFace(DrawFace face) {
833        SkASSERT(kInvalid_DrawFace != face);
834        fCommon.fDrawFace = face;
835    }
836
837    /**
838     * Gets whether the target is drawing clockwise, counterclockwise,
839     * or both faces.
840     * @return the current draw face(s).
841     */
842    DrawFace getDrawFace() const { return fCommon.fDrawFace; }
843
844    /// @}
845
846    ///////////////////////////////////////////////////////////////////////////
847
848    bool operator ==(const GrDrawState& s) const {
849        if (fRenderTarget.get() != s.fRenderTarget.get() ||
850            fColorStages.count() != s.fColorStages.count() ||
851            fCoverageStages.count() != s.fCoverageStages.count() ||
852            fCommon != s.fCommon) {
853            return false;
854        }
855        for (int i = 0; i < fColorStages.count(); i++) {
856            if (fColorStages[i] != s.fColorStages[i]) {
857                return false;
858            }
859        }
860        for (int i = 0; i < fCoverageStages.count(); i++) {
861            if (fCoverageStages[i] != s.fCoverageStages[i]) {
862                return false;
863            }
864        }
865        return true;
866    }
867    bool operator !=(const GrDrawState& s) const { return !(*this == s); }
868
869    GrDrawState& operator= (const GrDrawState& s) {
870        SkASSERT(0 == fBlockEffectRemovalCnt || 0 == this->numTotalStages());
871        this->setRenderTarget(s.fRenderTarget.get());
872        fCommon = s.fCommon;
873        fColorStages = s.fColorStages;
874        fCoverageStages = s.fCoverageStages;
875        return *this;
876    }
877
878private:
879
880    void onReset(const SkMatrix* initialViewMatrix) {
881        SkASSERT(0 == fBlockEffectRemovalCnt || 0 == this->numTotalStages());
882        fColorStages.reset();
883        fCoverageStages.reset();
884
885        fRenderTarget.reset(NULL);
886
887        this->setDefaultVertexAttribs();
888
889        fCommon.fColor = 0xffffffff;
890        if (NULL == initialViewMatrix) {
891            fCommon.fViewMatrix.reset();
892        } else {
893            fCommon.fViewMatrix = *initialViewMatrix;
894        }
895        fCommon.fSrcBlend = kOne_GrBlendCoeff;
896        fCommon.fDstBlend = kZero_GrBlendCoeff;
897        fCommon.fBlendConstant = 0x0;
898        fCommon.fFlagBits = 0x0;
899        fCommon.fStencilSettings.setDisabled();
900        fCommon.fCoverage = 0xffffffff;
901        fCommon.fDrawFace = kBoth_DrawFace;
902    }
903
904    /** Fields that are identical in GrDrawState and GrDrawState::DeferredState. */
905    struct CommonState {
906        // These fields are roughly sorted by decreasing likelihood of being different in op==
907        GrColor               fColor;
908        SkMatrix              fViewMatrix;
909        GrBlendCoeff          fSrcBlend;
910        GrBlendCoeff          fDstBlend;
911        GrColor               fBlendConstant;
912        uint32_t              fFlagBits;
913        const GrVertexAttrib* fVAPtr;
914        int                   fVACount;
915        GrStencilSettings     fStencilSettings;
916        GrColor               fCoverage;
917        DrawFace              fDrawFace;
918
919        // This is simply a different representation of info in fVertexAttribs and thus does
920        // not need to be compared in op==.
921        int fFixedFunctionVertexAttribIndices[kGrFixedFunctionVertexAttribBindingCnt];
922
923        bool operator== (const CommonState& other) const {
924            bool result = fColor == other.fColor &&
925                          fViewMatrix.cheapEqualTo(other.fViewMatrix) &&
926                          fSrcBlend == other.fSrcBlend &&
927                          fDstBlend == other.fDstBlend &&
928                          fBlendConstant == other.fBlendConstant &&
929                          fFlagBits == other.fFlagBits &&
930                          fVACount == other.fVACount &&
931                          !memcmp(fVAPtr, other.fVAPtr, fVACount * sizeof(GrVertexAttrib)) &&
932                          fStencilSettings == other.fStencilSettings &&
933                          fCoverage == other.fCoverage &&
934                          fDrawFace == other.fDrawFace;
935            SkASSERT(!result || 0 == memcmp(fFixedFunctionVertexAttribIndices,
936                                            other.fFixedFunctionVertexAttribIndices,
937                                            sizeof(fFixedFunctionVertexAttribIndices)));
938            return result;
939        }
940        bool operator!= (const CommonState& other) const { return !(*this == other); }
941    };
942
943    /** GrDrawState uses GrEffectStages to hold stage state which holds a ref on GrEffectRef.
944        DeferredState must directly reference GrEffects, however. */
945    struct SavedEffectStage {
946        SavedEffectStage() : fEffect(NULL) {}
947        const GrEffect*                    fEffect;
948        GrEffectStage::SavedCoordChange    fCoordChange;
949    };
950
951public:
952    /**
953     * DeferredState contains all of the data of a GrDrawState but does not hold refs on GrResource
954     * objects. Resources are allowed to hit zero ref count while in DeferredStates. Their internal
955     * dispose mechanism returns them to the cache. This allows recycling resources through the
956     * the cache while they are in a deferred draw queue.
957     */
958    class DeferredState {
959    public:
960        DeferredState() : fRenderTarget(NULL) {
961            SkDEBUGCODE(fInitialized = false;)
962        }
963        // TODO: Remove this when DeferredState no longer holds a ref to the RT
964        ~DeferredState() { SkSafeUnref(fRenderTarget); }
965
966        void saveFrom(const GrDrawState& drawState) {
967            fCommon = drawState.fCommon;
968            // TODO: Here we will copy the GrRenderTarget pointer without taking a ref.
969            fRenderTarget = drawState.fRenderTarget.get();
970            SkSafeRef(fRenderTarget);
971            // Here we ref the effects directly rather than the effect-refs. TODO: When the effect-
972            // ref gets fully unref'ed it will cause the underlying effect to unref its resources
973            // and recycle them to the cache (if no one else is holding a ref to the resources).
974            fStages.reset(drawState.fColorStages.count() + drawState.fCoverageStages.count());
975            fColorStageCnt = drawState.fColorStages.count();
976            for (int i = 0; i < fColorStageCnt; ++i) {
977                fStages[i].saveFrom(drawState.fColorStages[i]);
978            }
979            for (int i = 0; i < drawState.fCoverageStages.count(); ++i) {
980                fStages[i + fColorStageCnt].saveFrom(drawState.fCoverageStages[i]);
981            }
982            SkDEBUGCODE(fInitialized = true;)
983        }
984
985        void restoreTo(GrDrawState* drawState) {
986            SkASSERT(fInitialized);
987            drawState->fCommon = fCommon;
988            drawState->setRenderTarget(fRenderTarget);
989            // reinflate color/cov stage arrays.
990            drawState->fColorStages.reset();
991            for (int i = 0; i < fColorStageCnt; ++i) {
992                SkNEW_APPEND_TO_TARRAY(&drawState->fColorStages, GrEffectStage, (fStages[i]));
993            }
994            int coverageStageCnt = fStages.count() - fColorStageCnt;
995            drawState->fCoverageStages.reset();
996            for (int i = 0; i < coverageStageCnt; ++i) {
997                SkNEW_APPEND_TO_TARRAY(&drawState->fCoverageStages,
998                                        GrEffectStage, (fStages[i + fColorStageCnt]));
999            }
1000        }
1001
1002        bool isEqual(const GrDrawState& state) const {
1003            int numCoverageStages = fStages.count() - fColorStageCnt;
1004            if (fRenderTarget != state.fRenderTarget.get() ||
1005                fColorStageCnt != state.fColorStages.count() ||
1006                numCoverageStages != state.fCoverageStages.count() ||
1007                fCommon != state.fCommon) {
1008                return false;
1009            }
1010            bool explicitLocalCoords = state.hasLocalCoordAttribute();
1011            for (int i = 0; i < fColorStageCnt; ++i) {
1012                if (!fStages[i].isEqual(state.fColorStages[i], explicitLocalCoords)) {
1013                    return false;
1014                }
1015            }
1016            for (int i = 0; i < numCoverageStages; ++i) {
1017                int s = fColorStageCnt + i;
1018                if (!fStages[s].isEqual(state.fCoverageStages[i], explicitLocalCoords)) {
1019                    return false;
1020                }
1021            }
1022            return true;
1023        }
1024
1025    private:
1026        typedef SkAutoSTArray<8, GrEffectStage::DeferredStage> DeferredStageArray;
1027
1028        GrRenderTarget*                       fRenderTarget;
1029        CommonState                           fCommon;
1030        int                                   fColorStageCnt;
1031        DeferredStageArray                    fStages;
1032
1033        SkDEBUGCODE(bool fInitialized;)
1034    };
1035
1036private:
1037
1038    SkAutoTUnref<GrRenderTarget>        fRenderTarget;
1039    CommonState                         fCommon;
1040
1041    typedef SkSTArray<4, GrEffectStage> EffectStageArray;
1042    EffectStageArray                    fColorStages;
1043    EffectStageArray                    fCoverageStages;
1044
1045    // Some of the auto restore objects assume that no effects are removed during their lifetime.
1046    // This is used to assert that this condition holds.
1047    SkDEBUGCODE(int fBlockEffectRemovalCnt;)
1048
1049    /**
1050     *  Sets vertex attributes for next draw.
1051     *
1052     *  @param attribs    the array of vertex attributes to set.
1053     *  @param count      the number of attributes being set, limited to kMaxVertexAttribCnt.
1054     */
1055    void setVertexAttribs(const GrVertexAttrib attribs[], int count);
1056
1057    typedef SkRefCnt INHERITED;
1058};
1059
1060GR_MAKE_BITFIELD_OPS(GrDrawState::BlendOptFlags);
1061
1062#endif
1063